JP2018183805A - Evaporative pattern casting process - Google Patents

Evaporative pattern casting process Download PDF

Info

Publication number
JP2018183805A
JP2018183805A JP2017087306A JP2017087306A JP2018183805A JP 2018183805 A JP2018183805 A JP 2018183805A JP 2017087306 A JP2017087306 A JP 2017087306A JP 2017087306 A JP2017087306 A JP 2017087306A JP 2018183805 A JP2018183805 A JP 2018183805A
Authority
JP
Japan
Prior art keywords
casting
coating agent
internal cavity
seizure
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017087306A
Other languages
Japanese (ja)
Inventor
瑛介 黒澤
Eisuke KUROSAWA
瑛介 黒澤
優作 高川
Yusaku Takagawa
優作 高川
一之 堤
Kazuyuki Tsutsumi
一之 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017087306A priority Critical patent/JP2018183805A/en
Publication of JP2018183805A publication Critical patent/JP2018183805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaporative pattern casting process capable of casting a mold having no seizure at an internal cavity.SOLUTION: Provided is an evaporative pattern casting process where a mold obtained by coating the surface of a foam pattern with a mold wash is buried into casting sand, thereafter, the molten metal of cast iron is poured into the mold, and the foam pattern is disappeared and is substituted with the molten metal to cast a casting of cast iron provided with an internal cavity, the time in which the mold wash is exposed to a high temperature of 1,100°C or higher upon the casting is controlled to 1,300 s, preferably to 1,200 s.SELECTED DRAWING: Figure 4

Description

本発明は、内部空洞を備えた鋳鉄の鋳物を鋳造する消失模型鋳造方法に関する。   The present invention relates to a vanishing model casting method for casting a cast iron casting having an internal cavity.

消失模型鋳造法は、発泡模型の表面に塗型剤を塗布してなる鋳型を鋳砂の中に埋めた後に、鋳型内に金属の溶湯を注ぎ込み、発泡模型を消失させて溶湯と置換することで、鋳物を鋳造する方法である。この消失模型鋳造法は、複雑な形状(自由度が高い形状)の内部空洞を備えた鋳物をニアネットシェイプ(最終形状に近い形状)で鋳造するのに適した方法である。   In the disappearance model casting method, a mold made by applying a coating agent to the surface of the foam model is buried in the casting sand, and then the molten metal is poured into the mold to eliminate the foam model and replace it with the molten metal. In this method, the casting is cast. This vanishing model casting method is a method suitable for casting a casting having an internal cavity having a complicated shape (a shape having a high degree of freedom) with a near net shape (a shape close to the final shape).

消失模型鋳造法では、内部空洞や鋳抜き穴の内面も含めて、発泡模型の表面に塗布された塗型剤によって、造型・鋳造時の鋳型の形状が保持される。しかし、塗型剤は、鋳造時に溶湯からの熱負荷や様々な外力(溶湯静圧、湯流れによる動圧など)を受ける。塗型剤が上記の熱負荷や外力に耐えられない場合、塗型剤が損傷し、内部空洞や鋳抜き穴の内部に充填された鋳砂に溶湯が染み出して鋳砂と鋳物とが融着する「焼付き」と呼ばれる鋳造欠陥が生じる。   In the vanishing model casting method, the shape of the mold at the time of molding and casting is maintained by the coating agent applied to the surface of the foam model including the inner cavities and the inner surfaces of the punched holes. However, the coating agent is subjected to a heat load from the molten metal and various external forces (such as a molten metal static pressure and a dynamic pressure due to the molten metal flow) during casting. If the coating agent cannot withstand the heat load and external force described above, the coating agent will be damaged, and the molten metal will ooze out into the casting sand filled in the internal cavities and core holes, causing the casting sand and casting to melt. Casting defects called “seizure” occur.

そこで、特許文献1には、焼着を抑制できる消失模型用塗型剤組成物が開示されている。また、特許文献2には、鋳造時の鋳込み時間を、模型のモジュラス(模型の体積÷模型の表面積)に応じて設定する消失模型鋳造法が開示されている。また、特許文献3には、1250℃から1330℃の範囲の温度を有する溶湯を鋳型の湯口から注湯する鋳物の製造方法が開示されている。   Therefore, Patent Document 1 discloses a vanishing model coating agent composition capable of suppressing seizure. Patent Document 2 discloses a vanishing model casting method in which the casting time during casting is set according to the modulus of the model (model volume / model surface area). Patent Document 3 discloses a method for producing a casting in which a molten metal having a temperature in the range of 1250 ° C. to 1330 ° C. is poured from a mold gate.

特開2016−120517号公報JP 2016-120517 A 特開2011−110577号公報JP 2011-110577 A 特開2006−175492号公報JP 2006-175492 A

しかしながら、複雑な形状の内部空洞を備えた鋳物を鋳造する際に、焼付きの発生箇所を事前に予測することは、特許文献1乃至3の技術を採用したとしても困難である。特許文献1では、内部空洞の形状が矩形断面の簡易形状であり、複雑な形状の内部空洞には適用できない。特許文献2では、鋳込み時間を巨視的に把握しており、内部空洞の局所的な熱負荷状況や焼付き発生のリスク予測には適用できない。   However, even when the techniques of Patent Documents 1 to 3 are employed, it is difficult to predict the occurrence of seizure in advance when casting a casting having an internal cavity having a complicated shape. In Patent Document 1, the shape of the internal cavity is a simple shape having a rectangular cross section, and cannot be applied to an internal cavity having a complicated shape. In patent document 2, the casting time is grasped macroscopically and cannot be applied to the local heat load situation of the internal cavity and the risk prediction of occurrence of seizure.

そこで、複雑な形状の内部空洞を備えた鋳物を鋳造する場合、通常は数度の試作を行って適切な鋳造条件を求めている。しかし、試作段階で更なる設計変更が必要となった場合、開発段階でのリードタイムの増加に繋がる。そのため、複雑な形状の内部空洞を備えた鋳物を鋳造するに際して、設計段階で事前に、焼付きの発生リスクが高い箇所を明確に判定できる技術が望まれている。   Therefore, when casting a casting having an internal cavity having a complicated shape, an appropriate casting condition is usually obtained by performing trial manufacture several times. However, if further design changes are required at the prototype stage, this leads to an increase in lead time at the development stage. Therefore, when casting a casting having an internal cavity having a complicated shape, a technique that can clearly determine in advance at the design stage a place where the risk of occurrence of seizure is high is desired.

本発明の目的は、内部空洞に焼付きがない鋳物を鋳造することが可能な消失模型鋳造方法を提供することである。   An object of the present invention is to provide a vanishing model casting method capable of casting a casting in which an internal cavity is not seized.

本発明は、発泡模型の表面に塗型剤を塗布してなる鋳型を鋳砂の中に埋めた後に、前記鋳型内に鋳鉄の溶湯を注ぎ込み、前記発泡模型を消失させて前記溶湯と置換することで、内部空洞を備えた鋳鉄の鋳物を鋳造する消失模型鋳造方法において、鋳造時に前記塗型剤が1100℃以上の高温に曝される時間を、1300秒以下にすることを特徴とする。   In the present invention, after a mold formed by applying a coating agent on the surface of a foam model is buried in casting sand, a molten cast iron is poured into the mold, and the foam model is eliminated to replace the melt. Thus, in the vanishing model casting method for casting a cast iron casting having an internal cavity, the time during which the coating agent is exposed to a high temperature of 1100 ° C. or more during casting is 1300 seconds or less.

本発明によると、内部空洞を備えた鋳鉄の鋳物の鋳造時に、発泡模型の表面に塗布された塗型剤が1100℃以上の高温に曝される時間を、1300秒以下にする。鋳鉄の鋳物を鋳造する場合、鋳鉄の溶湯の温度は1100℃以上であり、塗型剤がその高温に曝される時間が1300秒よりも長い内部空洞の部位において、焼付きが発生する。そこで、塗型剤が1100℃以上の高温に曝される時間を1300秒以下にすることで、内部空洞での焼付きの発生を回避することができる。これにより、内部空洞に焼付きがない鋳物を鋳造することができる。   According to the present invention, during casting of a cast iron casting with an internal cavity, the time during which the coating agent applied to the surface of the foam model is exposed to a high temperature of 1100 ° C. or higher is set to 1300 seconds or shorter. When casting cast iron, the temperature of the molten cast iron is 1100 ° C. or higher, and seizure occurs at the site of the internal cavity where the time during which the mold is exposed to the high temperature is longer than 1300 seconds. Therefore, the occurrence of seizure in the internal cavity can be avoided by setting the time during which the coating agent is exposed to a high temperature of 1100 ° C. or higher to 1300 seconds or less. Thereby, it is possible to cast a casting in which the internal cavity is not seized.

代表位置(1)の初期形状を示す図である。It is a figure which shows the initial shape of a representative position (1). 代表位置(2)、(3)の初期形状を示す図である。It is a figure which shows the initial shape of representative position (2) and (3). 評価時における鋳物Aの代表位置(1)の形状を示す図である。It is a figure which shows the shape of the representative position (1) of the casting A at the time of evaluation. 評価時における鋳物Aの代表位置(2)の形状を示す図である。It is a figure which shows the shape of the representative position (2) of the casting A at the time of evaluation. 評価時における鋳物Bの代表位置(1)の形状を示す図である。It is a figure which shows the shape of the representative position (1) of the casting B at the time of evaluation. 評価時における鋳物Bの代表位置(3)の形状を示す図である。It is a figure which shows the shape of the representative position (3) of the casting B at the time of evaluation. 塗型剤の熱負荷指標と、焼付き判定結果との関係を示す図である。It is a figure which shows the relationship between the thermal load parameter | index of a coating type agent, and a seizing determination result.

以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

(消失模型鋳造方法)
本発明の実施形態による消失模型鋳造方法は、発泡模型の表面に塗型剤を塗布してなる鋳型を鋳砂(乾燥砂)の中に埋めた後に、鋳型内に鋳鉄の溶湯を注ぎ込み、発泡模型を消失させて溶湯と置換することで、内部空洞を備えた鋳鉄の鋳物を鋳造する方法である。この消失模型鋳造方法は、複雑な形状(自由度が高い形状)の内部空洞を備えた鋳物をニアネットシェイプ(最終形状に近い形状)で鋳造するのに適した方法である。
(Disappearance model casting method)
In the disappearance model casting method according to the embodiment of the present invention, a mold formed by applying a coating agent on the surface of a foamed model is buried in casting sand (dry sand), and then molten cast iron is poured into the mold to foam. This is a method for casting a cast iron casting having an internal cavity by eliminating the model and replacing it with molten metal. This disappearance model casting method is a method suitable for casting a casting having an internal cavity having a complicated shape (a shape having a high degree of freedom) with a near net shape (a shape close to the final shape).

消失模型鋳造方法は、鋳鉄を溶解して溶湯とする溶解工程と、発泡模型を成形する成形工程と、発泡模型の表面に塗型剤を塗布して鋳型とする塗布工程と、を有している。さらに、消失模型鋳造方法は、鋳型を鋳砂の中に埋めて鋳型の隅々にまで鋳砂を充填する造型工程と、鋳型内に鋳鉄の溶湯(溶融金属)を注ぎ込むことで、発泡模型を溶かして溶湯と置換する鋳込工程と、鋳型内に注ぎ込んだ溶湯を冷却して鋳物にする冷却工程と、鋳物と鋳砂とを分離する分離工程と、を有している。   The vanishing model casting method includes a melting step of melting cast iron to form a molten metal, a molding step of molding a foam model, and a coating step of applying a coating agent to the surface of the foam model to form a mold. Yes. Furthermore, the disappearing model casting method is a molding process in which the mold is filled in the casting sand and filled with the casting sand to every corner of the casting mold, and the molten cast iron (molten metal) is poured into the casting mold. It has a casting step for melting and replacing the molten metal, a cooling step for cooling the molten metal poured into the mold to form a casting, and a separation step for separating the casting from the casting sand.

溶湯にする鋳鉄としては、ねずみ鋳鉄(JIS−FC250)や球状黒鉛鋳鉄(JIS−FCD450)などを用いることができる。また、発泡模型としては、発泡スチロールなどの発泡樹脂を用いることができる。また、塗型剤としては、シリカ系骨材の塗型剤などを用いることができる。また、鋳砂としては、SiO2を主成分とする「けい砂」や、ジルコン砂、クロマイト砂、合成セラミック砂などを用いることができる。なお、鋳砂に粘結剤や硬化剤を添加してもよい。 As cast iron to be melted, gray cast iron (JIS-FC250), spheroidal graphite cast iron (JIS-FCD450), or the like can be used. In addition, as the foam model, a foam resin such as polystyrene foam can be used. As the coating agent, a silica-based aggregate coating agent or the like can be used. Further, as the sand, “silica sand” containing SiO 2 as a main component, zircon sand, chromite sand, synthetic ceramic sand and the like can be used. In addition, you may add a binder and a hardening | curing agent to foundry sand.

発泡模型の表面に塗型剤を塗布して適切に乾燥させることで、発泡模型の表層に塗型剤の膜が形成される。この塗型剤の膜は、内部に、耐火物の骨材と、膜を形成するための樹脂バインダーとを含んでいる。鋳造時、塗型剤の膜が溶湯に曝されることにより、塗型剤の内部において樹脂バインダーの熱分解が進行し、塗型剤自身の強度は低下する。樹脂バインダーの熱分解が完了すると、塗型剤の膜は、骨材同士の結合力だけで支えられている状態となり、ほとんど強度を有しない状態となる。そのため、塗型剤の膜は損傷しやすくなる。   A coating agent film is formed on the surface layer of the foam model by applying a coating agent to the surface of the foam model and drying it appropriately. The film of the coating agent contains a refractory aggregate and a resin binder for forming the film. When the film of the coating agent is exposed to the molten metal during casting, the thermal decomposition of the resin binder proceeds inside the coating agent, and the strength of the coating agent itself is reduced. When the thermal decomposition of the resin binder is completed, the film of the coating agent is supported only by the bonding force between the aggregates, and has almost no strength. Therefore, the coating agent film is easily damaged.

したがって、内部空洞を備えた鋳鉄の鋳物を鋳造する場合、内部空洞の形状に応じて鋳造時に塗型剤が受ける局所的な熱負荷状態を事前に把握し、塗型剤の損傷に伴って焼付きが発生する際の熱負荷状態の閾値を明確にすれば、内部空洞の形状を変更するなどすることによって、鋳造する前段階で、焼付きを回避することが可能になる。   Therefore, when casting cast iron castings with internal cavities, the local thermal load applied to the coating material during casting is determined in advance according to the shape of the internal cavities, and fired as the coating material is damaged. If the threshold value of the heat load state when sticking occurs is clarified, it becomes possible to avoid seizure in the stage before casting by changing the shape of the internal cavity.

(熱負荷指標)
溶湯成分にもよるが、一般に、鋳鉄の融点は、1100〜1200℃の範囲にある。鋳鉄の鋳物を鋳造する場合、鋳鉄の溶湯の温度は1100℃以上である。今回、塗型剤の膜が溶湯による高温状態に曝される時間が長い部位と、焼付きの発生箇所との間に、相関関係があることが、鋳造実験や数値解析(鋳造シミュレーション)により明らかになった。
(Heat load index)
Generally, the melting point of cast iron is in the range of 1100 to 1200 ° C., although it depends on the molten metal component. When casting a cast iron casting, the temperature of the molten cast iron is 1100 ° C. or higher. The casting experiment and numerical analysis (casting simulation) reveal that there is a correlation between the site where the coating film is exposed to the molten metal at a high temperature and the location where seizure occurs. Became.

特に、内部空洞において、塗型剤の膜が1100℃以上の高温に曝される時間が1300秒よりも長い部位において、焼付きが発生することが明らかとなった。別途作成した塗型剤の膜のサンプルに、同程度の熱負荷を与える曝熱試験を実施し、塗型剤の内部状態を調査したところ、樹脂バインダーが完全に熱分解しており、塗型剤自身は強度をほとんど有さず、塗型剤が極めて損傷しやすい状態であることを確認した。   In particular, it has been clarified that seizure occurs in the internal cavity at a site where the time during which the coating agent film is exposed to a high temperature of 1100 ° C. or more is longer than 1300 seconds. A sample of the coating agent film prepared separately was subjected to a heat exposure test that applied a similar heat load, and when the internal state of the coating agent was investigated, the resin binder was completely pyrolyzed and the coating mold The agent itself has almost no strength, and it was confirmed that the coating agent was very easily damaged.

内部空洞において、焼付きが発生しやすい部位に対しては、確実に鋳砂が充填されるようにするための工夫(可能な限りバックサンドで形状保持する)や、内部空洞の表面への塗型剤の塗布回数を増やすなどの追加処置が必要となる。他に焼付きを抑制する手法として、焼付きが発生しやすい部位の周りにおける肉厚を薄くすることにより、この部位への熱負荷を低減させることが考えられる。   In areas where seizure is likely to occur in the internal cavity, a device to ensure that the sand is filled with casting sand (preserve the shape with back sand as much as possible) or to apply to the surface of the internal cavity. Additional measures such as increasing the number of times the mold is applied are required. As another technique for suppressing seizure, it is conceivable to reduce the thermal load on this part by reducing the thickness around the part where seizure is likely to occur.

内部空洞で局所的に焼付きが発生する鋳物に対して、内部空洞の形状が同じで全体のサイズを小さくした発泡模型を用いて、同様の条件で鋳造したところ、焼付きが発生した部位に相当する箇所において、塗型剤の膜が1100℃以上の高温に曝される時間は1300秒以下となり、焼付きを回避することができた。   For castings where seizure occurs locally in the internal cavity, using a foam model with the same internal cavity shape and a reduced overall size, casting under the same conditions, the site where seizure occurred In a corresponding portion, the time during which the coating agent film was exposed to a high temperature of 1100 ° C. or higher was 1300 seconds or shorter, and seizure could be avoided.

このように、発泡模型の表面に塗布した塗型剤の膜が1100℃以上の高温に曝される時間を熱負荷指標(焼付き判定指標)とすることで、内部空洞の形状によらず、焼付き発生のリスクを事前に予測することが可能となる。そして、この指標が1300秒以下となるように、鋳物の形状設計もしくは鋳造条件を設定することで、内部空洞に焼付きがない鋳物を鋳造することができる。   In this way, by setting the time during which the film of the coating agent applied to the surface of the foam model is exposed to a high temperature of 1100 ° C. or more as a thermal load index (seizure determination index), regardless of the shape of the internal cavity, It becomes possible to predict the risk of seizure in advance. Then, by setting the shape design or casting conditions of the casting so that this index is 1300 seconds or less, it is possible to cast a casting in which the internal cavity is not seized.

ここで、熱負荷指標として、「鋳物の表層の凝固が完了するまでの時間」で評価することも考えられるが、鋳造シミュレーションや実測により得られる鋳物の表層近傍の冷却曲線から、凝固完了点を厳密に求めることは困難である。そこで、指標の閾値を明確かつ簡易的に求めることができるようにするため、「塗型剤が1100℃以上の高温に曝された時間」を熱負荷指標として採用した。   Here, as a heat load index, it is conceivable to evaluate by “time until solidification of casting surface layer is completed”, but the solidification completion point is determined from the cooling curve near the casting surface layer obtained by casting simulation or actual measurement. It is difficult to determine exactly. Therefore, in order to be able to determine the threshold value of the index clearly and simply, “time during which the coating agent was exposed to a high temperature of 1100 ° C. or higher” was adopted as the thermal load index.

(焼付き評価)
次に、消失模型鋳造方法により鋳物を試作鋳造して焼付きを評価するとともに、塗型剤の膜が受ける熱負荷状況を鋳造シミュレーションにより評価した。
(Scoring evaluation)
Next, the cast was cast by the vanishing model casting method to evaluate seizure, and the thermal load applied to the coating agent film was evaluated by casting simulation.

まず、ねずみ鋳鉄を溶湯とし、内部空洞の形状が同じで全体のサイズを異ならせた2種類の鋳物(鋳物A、鋳物B)を消失模型鋳造方法により試作鋳造した。ここで、鋳物Aは、鋳物Bよりもサイズが大きい。そして、鋳造後の2種類の鋳物をそれぞれ切断して、内部空洞内の代表位置(1)〜(3)における焼付きの発生状況を調査した。代表位置(1)の初期形状を図1Aに示す。また、代表位置(2)、(3)の初期形状を図1Bに示す。なお、代表位置(2)、(3)は、初期形状が同じであるが、内部空洞内での位置が異なる。   First, two types of castings (casting A and casting B), in which the gray cast iron was used as the molten metal and the internal cavities had the same shape and different overall sizes, were cast as prototypes by the disappearance model casting method. Here, the casting A is larger in size than the casting B. And two types of castings after casting were cut | disconnected, respectively, and the occurrence condition of the seizure in the representative positions (1)-(3) in the internal cavity was investigated. The initial shape of the representative position (1) is shown in FIG. 1A. Further, the initial shapes of the representative positions (2) and (3) are shown in FIG. 1B. The representative positions (2) and (3) have the same initial shape, but the positions in the internal cavity are different.

評価結果を表1に示す。また、評価時における鋳物Aの代表位置(1)の形状を図2Aに示し、評価時における鋳物Aの代表位置(2)の形状を図2Bに示す。また、評価時における鋳物Bの代表位置(1)の形状を図3Aに示し、評価時における鋳物Bの代表位置(3)の形状を図3Bに示す。   The evaluation results are shown in Table 1. 2A shows the shape of the representative position (1) of the casting A at the time of evaluation, and FIG. 2B shows the shape of the representative position (2) of the casting A at the time of evaluation. Moreover, the shape of the representative position (1) of the casting B at the time of evaluation is shown in FIG. 3A, and the shape of the representative position (3) of the casting B at the time of evaluation is shown in FIG. 3B.

焼付きが発生した鋳物Aの代表位置(1)、および、鋳物Aの代表位置(2)では、本来空洞が形成されるべき箇所において、内部に充填された鋳砂が焼付いている状況を確認できる。   At the representative position (1) of the casting A where seizure occurred and the representative position (2) of the casting A, it was confirmed that the cast sand filled inside was seized at the place where the cavity should be originally formed. it can.

次に、2種類の鋳物(鋳物A、鋳物B)を鋳造した際に、代表位置(1)〜(3)において塗型剤の膜が受ける熱負荷状況を、鋳造シミュレーションにより評価した。その評価指標として、塗型剤が1100℃以上の高温に曝された時間(秒)を用いた。その結果を表2に示す。   Next, when two types of castings (casting A and casting B) were cast, the thermal load condition received by the coating agent film at the representative positions (1) to (3) was evaluated by casting simulation. As the evaluation index, the time (seconds) during which the coating agent was exposed to a high temperature of 1100 ° C. or higher was used. The results are shown in Table 2.

また、代表位置(2)については、2種類の鋳物(鋳物A、鋳物B)を消失模型鋳造方法により2回試作鋳造した際に、それぞれ測温を実施し、塗型剤が1100℃以上の高温に曝される時間をそれぞれ計測することで、実測結果に基づく熱負荷指標をそれぞれ求めた。その結果を表2に合わせて示す。   Moreover, about representative position (2), when two types of castings (casting A, casting B) were prototyped twice by the disappearance model casting method, temperature measurement was performed, and the coating agent was 1100 ° C. or higher. By measuring the time of exposure to high temperatures, the heat load index based on the actual measurement results was obtained. The results are also shown in Table 2.

ここで、測温には、発泡模型の表面に貼付することで発泡模型と塗型剤の膜との間に配置した熱電対を用い、熱電対で塗型剤の鋳物側表層の温度を計測した。   Here, for temperature measurement, a thermocouple placed between the foam model and the coating agent film is attached to the surface of the foam model, and the temperature of the casting surface layer of the coating agent is measured with the thermocouple. did.

表2の熱負荷状態と、表1の焼付き発生状況とを比較したところ、塗型剤の膜が1100℃以上の高温に曝される時間が1700秒以上と長い、鋳物Aの代表位置(1)、および、鋳物Aの代表位置(2)において焼付きが発生しており、焼付きの発生と塗型剤の膜が受ける熱負荷状態との間に相関があることがわかる。   When the thermal load state in Table 2 and the seizure occurrence state in Table 1 were compared, the time at which the coating agent film was exposed to a high temperature of 1100 ° C. or higher was as long as 1700 seconds or longer. 1) and the seizure occurs at the representative position (2) of the casting A, and it can be seen that there is a correlation between the occurrence of seizure and the thermal load applied to the coating agent film.

今回の塗型剤の熱負荷指標と、焼付き判定結果との関係を図4に示す。図4において、A−(1)は、鋳物Aの代表位置(1)を意味する。A−(2)なども同様である。また、図4において、数値解析結果が、鋳造シミュレーションによる評価結果である。また、実測(1)が1回目の試作鋳造の際に計測した実測結果であり、実測(2)が2回目の試作鋳造の際に計測した実測結果である。   FIG. 4 shows the relationship between the thermal load index of the current coating agent and the seizure determination result. In FIG. 4, A- (1) means the representative position (1) of the casting A. The same applies to A- (2) and the like. Moreover, in FIG. 4, a numerical analysis result is an evaluation result by casting simulation. Further, the actual measurement (1) is an actual measurement result measured during the first trial casting, and the actual measurement (2) is an actual measurement result measured during the second trial casting.

今回の熱負荷指標を用いて、焼付き欠陥が発生する閾値を求めた結果、塗型剤が1100℃以上の高温に曝される時間を1300秒以下(望ましくは1200秒以下)にすれば、内部空洞での焼付きの発生を回避することができることがわかる。ここで、1300秒は、数値解析結果から導出し、1200秒は、実測結果から導出した。   As a result of obtaining the threshold value for occurrence of seizure defects using the present thermal load index, if the time during which the coating agent is exposed to a high temperature of 1100 ° C. or higher is 1300 seconds or less (preferably 1200 seconds or less), It can be seen that the occurrence of seizure in the internal cavity can be avoided. Here, 1300 seconds were derived from the numerical analysis results, and 1200 seconds were derived from the actual measurement results.

以上の結果から、発泡模型の表面に塗布した塗型剤の膜が1100℃以上の高温に曝される時間を熱負荷指標(焼付き判定指標)とすることで、内部空洞の形状によらず、焼付き発生のリスクを事前に予測することが可能となることがわかる。そして、この指標が1300秒以下となるように、鋳物の形状設計もしくは鋳造条件を設定することで、内部空洞に焼付きがない鋳物を鋳造することができることがわかる。   From the above results, the time for which the film of the coating agent applied to the surface of the foamed model is exposed to a high temperature of 1100 ° C. or higher is used as a thermal load index (seizure determination index), regardless of the shape of the internal cavity. It can be seen that the risk of seizure can be predicted in advance. Then, it can be seen that a casting having no seizure in the internal cavity can be cast by setting the shape design or casting conditions of the casting so that the index is 1300 seconds or less.

(効果)
以上に述べたように、本実施形態に係る消失模型鋳造方法によると、内部空洞を備えた鋳鉄の鋳物の鋳造時に、発泡模型の表面に塗布された塗型剤が1100℃以上の高温に曝される時間を、1300秒以下にする。鋳鉄の鋳物を鋳造する場合、鋳鉄の溶湯の温度は1100℃以上であり、塗型剤がその高温に曝される時間が1300秒よりも長い内部空洞の部位において、焼付きが発生する。そこで、塗型剤が1100℃以上の高温に曝される時間を1300秒以下にすることで、内部空洞での焼付きの発生を回避することができる。これにより、内部空洞に焼付きがない鋳物を鋳造することができる。
(effect)
As described above, according to the vanishing model casting method according to the present embodiment, the casting agent applied to the surface of the foam model is exposed to a high temperature of 1100 ° C. or higher when casting a cast iron casting having an internal cavity. Time to be set to 1300 seconds or less. When casting cast iron, the temperature of the molten cast iron is 1100 ° C. or higher, and seizure occurs at the site of the internal cavity where the time during which the mold is exposed to the high temperature is longer than 1300 seconds. Therefore, the occurrence of seizure in the internal cavity can be avoided by setting the time during which the coating agent is exposed to a high temperature of 1100 ° C. or higher to 1300 seconds or less. Thereby, it is possible to cast a casting in which the internal cavity is not seized.

また、塗型剤が1100℃以上の高温に曝される時間を1200秒以下にすることで、内部空洞での焼付きの発生を好適に回避することができる。   In addition, by setting the time during which the coating agent is exposed to a high temperature of 1100 ° C. or more to 1200 seconds or less, the occurrence of seizure in the internal cavity can be suitably avoided.

以上、本発明の実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施の形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施の形態に記載されたものに限定されるものではない。   The embodiment of the present invention has been described above, but only specific examples are illustrated, and the present invention is not particularly limited, and the specific configuration and the like can be appropriately changed in design. Further, the actions and effects described in the embodiments of the invention only list the most preferable actions and effects resulting from the present invention, and the actions and effects according to the present invention are described in the embodiments of the present invention. It is not limited to what was done.

Claims (2)

発泡模型の表面に塗型剤を塗布してなる鋳型を鋳砂の中に埋めた後に、前記鋳型内に鋳鉄の溶湯を注ぎ込み、前記発泡模型を消失させて前記溶湯と置換することで、内部空洞を備えた鋳鉄の鋳物を鋳造する消失模型鋳造方法において、
鋳造時に前記塗型剤が1100℃以上の高温に曝される時間を、1300秒以下にすることを特徴とする消失模型鋳造方法。
After embedding a mold formed by applying a coating agent on the surface of the foam model in casting sand, pouring a molten cast iron into the mold, and disappearing the foam model to replace the molten metal, In the vanishing model casting method for casting a cast iron casting with a cavity,
A disappearance model casting method characterized in that the time during which the coating agent is exposed to a high temperature of 1100 ° C. or more during casting is 1300 seconds or less.
鋳造時に前記塗型剤が1100℃以上の高温に曝される時間を、1200秒以下にすることを特徴とする請求項1に記載の消失模型鋳造方法。   2. The disappearance model casting method according to claim 1, wherein a time during which the coating agent is exposed to a high temperature of 1100 ° C. or more during casting is 1200 seconds or less.
JP2017087306A 2017-04-26 2017-04-26 Evaporative pattern casting process Pending JP2018183805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017087306A JP2018183805A (en) 2017-04-26 2017-04-26 Evaporative pattern casting process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017087306A JP2018183805A (en) 2017-04-26 2017-04-26 Evaporative pattern casting process

Publications (1)

Publication Number Publication Date
JP2018183805A true JP2018183805A (en) 2018-11-22

Family

ID=64356661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017087306A Pending JP2018183805A (en) 2017-04-26 2017-04-26 Evaporative pattern casting process

Country Status (1)

Country Link
JP (1) JP2018183805A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066366A1 (en) 2018-09-28 2020-04-02 Dic株式会社 Sensor device
CN113385638A (en) * 2021-06-22 2021-09-14 内蒙古工业大学 Production process for casting core mould parts based on lost foam technology

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066366A1 (en) 2018-09-28 2020-04-02 Dic株式会社 Sensor device
EP4296640A2 (en) 2018-09-28 2023-12-27 DIC Corporation Sensor device
CN113385638A (en) * 2021-06-22 2021-09-14 内蒙古工业大学 Production process for casting core mould parts based on lost foam technology

Similar Documents

Publication Publication Date Title
US5868194A (en) Method of investment casting and a method of making an investment casting mould
KR101663084B1 (en) Faucet manufacturing method
PH12015501514B1 (en) Method of managing manufacturing data of cast products
CN109396349A (en) A kind of investment precision casting technology of small thin-wall
JP2018183805A (en) Evaporative pattern casting process
CN104148590A (en) Method for casting upper bearing and lower bearing of compressor
Ben Saada et al. Assessment of the effect of 3D printed sand mold thickness on solidification process of AlSi13 casting alloy
TWI628015B (en) Disappearing model casting method
JP2010052019A (en) Simulation method for sand mold casting
JP2010502443A (en) One-piece temperature adjustable vanishing model mold for cast metal parts and method for producing the mold
Karimian et al. Effects of casting parameters on shape replication and surface roughness of LM6 aluminium alloy cast using lost foam process
Deore et al. A study of core and its types for casting process
Peters et al. Effect of mould expansion on pattern allowances in sand casting of steel
Nor et al. The effect of dewaxing and burnout temperature in block mold process for copper alloy casting
JP6231465B2 (en) Disappearance model casting method
TWI583458B (en) Evaporative pattern casting method
CN207508236U (en) Aluminium copper structural member casting and forming internal densener structure
KR102017440B1 (en) Vanishing Model Molding Method
JP3871966B2 (en) Vanishing model casting method
TWI695747B (en) Precision casting process capable of accelerating heat dissipation of concave part of shell mold
RU2722956C1 (en) Cast multilayer shell mold
PL414627A1 (en) Channel for venting the foundry sand moulds and method for venting the foundry sand moulds
TWI681829B (en) Precise casting process with supporting step of shell mold recess
Tseng et al. Effect of shell mold thickness and insulating wool pattern on internal porosity in investment casting of vortex flow meter
JP2003205343A (en) Coat for lost foam pattern casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201222