JP3325266B2 - Vanishing model casting - Google Patents

Vanishing model casting

Info

Publication number
JP3325266B2
JP3325266B2 JP2001316341A JP2001316341A JP3325266B2 JP 3325266 B2 JP3325266 B2 JP 3325266B2 JP 2001316341 A JP2001316341 A JP 2001316341A JP 2001316341 A JP2001316341 A JP 2001316341A JP 3325266 B2 JP3325266 B2 JP 3325266B2
Authority
JP
Japan
Prior art keywords
gas
model
casting
mold
casting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001316341A
Other languages
Japanese (ja)
Other versions
JP2002219552A (en
Inventor
茂夫 仲井
昌彦 鍵谷
栄政 高城
毅 成島
等 船田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2001316341A priority Critical patent/JP3325266B2/en
Publication of JP2002219552A publication Critical patent/JP2002219552A/en
Application granted granted Critical
Publication of JP3325266B2 publication Critical patent/JP3325266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、消失模型の鋳造法
に関し、特に消失模型から発生する気体を排出通路を介
して鋳型外へ徐放させつつ鋳造を行う消失模型鋳造法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a casting method for a vanishing model, and more particularly to a vanishing model casting method in which a gas generated from the vanishing model is gradually released from a mold through a discharge passage.

【0002】[0002]

【従来の技術】消失模型鋳造法はフルモールド法とも言
われ、一般に、ポリスチレン発泡体等より成る消失模型
を砂鋳型の中に埋設し、熔湯を注湯して湯の熱で消失模
型を気化消失させるとともに、生じた空隙に熔湯を充填
して、鋳造品を作る鋳造法であり、特にプレス金型の製
作に広く利用されている。
2. Description of the Related Art The vanishing model casting method is also referred to as a full mold method. Generally, a vanishing model made of polystyrene foam or the like is buried in a sand mold, and molten metal is poured to remove the vanishing model by the heat of the hot water. This is a casting method in which a casting is formed by filling a gap with a molten metal while vaporizing and disappearing, and is widely used particularly for manufacturing a press die.

【0003】消失模型鋳造法は、正確な形状に鋳造でき
る等、多くの利点を有しているが、その反面、ガス抜き
調整不良による鋳造欠陥の発生、模型強度が低く変形が
起こりやすく、模型が傷つきやすいので強い砂込めがで
きず、充填密度が不足して鋳型強度の不足や焼着を引き
起こす等の欠点がある。
[0003] The vanishing model casting method has many advantages, such as casting into an accurate shape. However, on the other hand, casting defects occur due to poor gas vent adjustment, the model strength is low, and deformation tends to occur. However, there is a drawback that strong sand filling cannot be performed, the packing density is insufficient, the mold strength is insufficient, and seizure is caused.

【0004】なお、ガス抜きに関する技術として、特開
平5−261470号公報には消失模型の内部に、排気
口と連通する通気経路を設ける方法が、また、特開平8
−206777号公報には外部気体を吸引しながら、鋳
物砂を通して発生ガスを外部に強制的に排出する方法
が、更に、特開平11−90583号公報にも発生する
ガスをスムーズに鋳型外に排出できるフルモールド鋳造
法が開示されている。
As a technique relating to gas venting, Japanese Patent Application Laid-Open No. 5-261470 discloses a method in which a ventilation path communicating with an exhaust port is provided inside a vanishing model.
Japanese Patent Application Laid-Open No. 11-90583 discloses a method for forcibly discharging generated gas to the outside through molding sand while suctioning an external gas. A possible full mold casting method is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかし、特開平5−2
61470号公報、特開平8−206777号公報、特
開平11−90583号公報のように、消失模型から発
生するガスをより効率良く鋳型外へ排出し、欠陥の少な
い鋳造品を得ようとする方法では、燃焼ガスの排出速度
が速すぎるため、鋳型内に発生したガス層の圧力分布が
大きくなり、通気経路に沿って熔湯が吹き上がる。その
結果、鋳型内での熔湯の乱れが大きくなり、残渣や発生
ガスが熔湯内に巻き込まれ、欠陥発生を助長する場合が
あった。
However, Japanese Patent Laid-Open Publication No.
No. 61470, JP-A-8-206777, and JP-A-11-90583, a method for more efficiently discharging a gas generated from a disappearing model to the outside of a mold to obtain a cast product with few defects. In this case, since the discharge speed of the combustion gas is too high, the pressure distribution of the gas layer generated in the mold becomes large, and the molten metal blows up along the ventilation path. As a result, the turbulence of the molten metal in the mold becomes large, and the residue and generated gas may be involved in the molten metal, which may promote the generation of defects.

【0006】本発明の課題は、鋳型内のガス層の圧力分
布を調整することで、残渣欠陥の少ない優れた品質の鋳
物が得られる、改良された消失模型鋳造法を提供するこ
とである。
[0006] It is an object of the present invention to provide an improved vanishing model casting method in which a high quality casting with few residual defects can be obtained by adjusting the pressure distribution of a gas layer in a mold.

【0007】[0007]

【課題を解決するための手段】本発明は、鋳物砂内に貫
通孔が形成されている模型を埋設してなる鋳型に注湯
し、注湯した該湯によって前記模型を消失させながら製
品を鋳造する消失模型鋳造法であって、前記模型の消失
により発生した気体を、排出気体抑制手段を備えた排出
通路を介して前記鋳型の外部に徐放させつつ鋳造を行う
消失模型鋳造法に関する。また、本発明は、鋳物砂内に
貫通孔が形成されている模型を埋設してなる鋳型に注湯
し、注湯した該湯によって前記模型を消失させながら製
品を鋳造する際に、前記模型の消失により発生した気体
を、排出気体抑制手段を備えた排出通路を介して前記鋳
型の外部に徐放させつつ鋳造を行う、消失模型鋳造法に
おける湯乱れの防止方法に関する。
SUMMARY OF THE INVENTION The present invention is directed to a method of pouring a mold in which a model having a through-hole formed in a casting sand is buried, and removing the model by pouring the model with the hot water. The present invention relates to a vanishing model casting method for casting, in which a gas generated by the disappearance of the model is gradually released to the outside of the mold through a discharge passage provided with an exhaust gas suppressing means, and casting is performed. Further, the present invention is directed to pouring a mold in which a model having a through hole formed in casting sand is buried and casting a product while erasing the model with the poured hot water. The present invention relates to a method for preventing hot water turbulence in a vanishing model casting method, wherein casting is performed while slowly releasing gas generated by the disappearance of gas through a discharge passage provided with a discharged gas suppressing means to the outside of the mold.

【0008】[0008]

【発明の実施の形態】本発明の消失模型鋳造法を図1に
基づいて説明する。鋳型は、鋳枠4と鋳枠4の内部の鋳
物砂7と鋳物砂7に埋設された模型1等からなり、模型
1に連通した湯口5が左上方に設けられている。模型1
は、発泡ポリスチレンによって製品と同一形状に形成さ
れており、貫通孔2が設けられている。鋳物砂7は、
5.5号硅砂であり、粘結剤を適量含有させてある。鋳
型の形成は、まず、模型1の表面に耐火性に優れた塗型
剤3を塗布し、その後充分乾燥させる。そして鋳枠4に
湯道6を形成した後、模型1を固定し鋳物砂7で埋設
し、湯口5を設置する。その際、貫通孔2の内部は空間
にしておき、貫通孔2に連通する排出管を設け排出通路
8とする。排出通路8となる排出管はセラミック製で、
排出気体抑制手段としてバインダーで成型されたアルミ
ナ等の耐火物粒子9が充填され、貫通孔2と大気とを連
通させるように鋳物砂7に埋設される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A vanishing model casting method of the present invention will be described with reference to FIG. The casting mold includes a casting flask 4, casting sand 7 inside the casting flask 4, a model 1 buried in the casting sand 7, and the like, and a gate 5 communicating with the model 1 is provided at the upper left side. Model 1
Is formed in the same shape as the product by using expanded polystyrene, and a through hole 2 is provided. Foundry sand 7
No. 5.5 silica sand, containing an appropriate amount of binder. To form the mold, first, a coating agent 3 having excellent fire resistance is applied to the surface of the model 1 and then sufficiently dried. After the runner 6 is formed in the flask 4, the model 1 is fixed, buried with the casting sand 7, and the gate 5 is installed. At that time, the inside of the through-hole 2 is made to be a space, and a discharge pipe communicating with the through-hole 2 is provided to form a discharge passage 8. The discharge pipe serving as the discharge passage 8 is made of ceramic.
As an exhaust gas suppressing means, refractory particles 9 such as alumina molded with a binder are filled and buried in molding sand 7 so as to make the through hole 2 communicate with the atmosphere.

【0009】湯口5から熔湯を注湯すると湯は模型1を
溶融させて、鋳型内に溜る。一方、排出通路8からは、
湯によって溶融、燃焼された模型1の気体が排出される
のが確認されるが、耐火物粒子が充填されているので、
気体は徐放される。
When the molten metal is poured from the gate 5, the molten metal melts the model 1 and accumulates in the mold. On the other hand, from the discharge passage 8,
It is confirmed that the gas of the model 1 melted and burned by the hot water is discharged, but since the refractory particles are filled,
The gas is released slowly.

【0010】このように、本発明では、模型の燃焼・消
失により発生した気体(以下、発生気体という)を鋳型
の外部に徐放させる。ここで、徐放とは、発生気体をそ
の発生とほぼ同時に強制的に排出するのではなく、その
排出量を抑制しつつ排出することをいう。このように発
生気体を鋳型の外部に徐放することで、鋳型内における
熔湯の乱れを制御できる。また、排出気体抑制手段と
は、該手段を設けることで上記徐放を達成し得る通気性
を有する手段であり、耐火物粒子及びその層、背圧弁、
中空細管等が挙げられ、熔湯の吹き出し防止や鋳物品質
の点から、耐火物粒子及びその層、背圧弁がより好まし
い。
As described above, in the present invention, the gas generated by burning and disappearing of the model (hereinafter referred to as generated gas) is gradually released to the outside of the mold. Here, the term "controlled release" means that the generated gas is not forcibly discharged almost simultaneously with its generation, but is discharged while suppressing the discharge amount. By releasing the generated gas to the outside of the mold in this manner, the turbulence of the molten metal in the mold can be controlled. Further, the exhaust gas suppressing means is a means having air permeability that can achieve the sustained release by providing the means, refractory particles and a layer thereof, a back pressure valve,
For example, a refractory particle and its layer and a back pressure valve are more preferable from the viewpoint of prevention of molten metal blowing and casting quality.

【0011】本発明においては、排出通路を通過する気
体の第一の圧力損失(計算値)が0.05〜5000g
/cm2であることが好ましく、より好ましくは0.1
〜1000g/cm2であり、更に好ましくは0.5〜
100g/cm2であり、特に好ましくは1〜50g/
cm2である。ここで圧力損失とは、排出気体抑制手段
の前後(気体流路の上流、下流)の圧力差であり、排出
通路の排気側の圧力は何れでもよいが、好ましくは大気
圧である。なお、第一の圧力損失(計算値)は次のよう
な手順に則り、計算により求められる。まず図2に示し
たように、コンプレッサーから通気量(通常1〜10L
/分の範囲)を変動させて加圧空気を流通させた時のそ
れぞれの圧力を求め、それに基づき検量線を作成する。
鋳込み時間と予想される気体発生量Vから単位時間あた
りの気体発生量(L/分)を求め、検量線をその気体流
量に一次近似外挿することで第一の圧力損失(計算値)
が求まる。ここで、「鋳鍛造と熱処理」(1995年8
月号)の第27頁図3によれば、1000℃における熱
分解気体発生量として、ポリスチレンで650cm3
g、ポリメチルメタクリレートで980cm3/gであ
る。これら以外の材質を用いる場合は計測してVを求め
る。この第一の圧力損失(計算値)は、実験が容易で簡
便に求められるという利点がある。
In the present invention, the first pressure loss (calculated value) of the gas passing through the discharge passage is 0.05 to 5000 g.
/ Cm 2 , more preferably 0.1
To 1000 g / cm 2 , more preferably 0.5 to
100 g / cm 2 , particularly preferably 1 to 50 g / cm 2
cm 2 . Here, the pressure loss is a pressure difference before and after the exhaust gas suppressing means (upstream and downstream of the gas flow path), and the pressure on the exhaust side of the exhaust passage may be any, but is preferably atmospheric pressure. The first pressure loss (calculated value) is obtained by calculation in accordance with the following procedure. First, as shown in FIG.
(Range / min) is varied to obtain respective pressures when the pressurized air is circulated, and a calibration curve is created based on the pressures.
The first pressure loss (calculated value) is obtained by calculating the gas generation amount per unit time (L / min) from the casting time and the gas generation amount V which is expected, and linearly approximating the calibration curve to the gas flow rate.
Is found. Here, "casting and forging and heat treatment" (August 1995
According to FIG. 3 on page 27 of the Monthly Publication, the amount of pyrolysis gas generated at 1000 ° C. was 650 cm 3 /
g, polymethyl methacrylate: 980 cm 3 / g. When a material other than these is used, V is obtained by measurement. This first pressure loss (calculated value) has an advantage that an experiment is easy and can be easily obtained.

【0012】また、本発明においては、排出通路を通過
する気体の第二の圧力損失(実測値)が0.5〜500
0g/cm2であることが好ましく、更に好ましくは5
〜1000g/cm2であり、特に好ましくは10〜5
00g/cm2である。この第二の圧力損失(実測値)
は、排出気体抑制手段の入り口側の圧力変化を圧力計
(ゲージ圧力)により測定したときの最大値である。こ
の第二の圧力損失(実測値)は、第一の圧力損失に比べ
て実験が難しくなるが、鋳物品質との相関性がより高い
という利点がある。
In the present invention, the second pressure loss (actually measured value) of the gas passing through the discharge passage is 0.5 to 500.
0 g / cm 2 , more preferably 5 g / cm 2.
To 1000 g / cm 2 , particularly preferably 10 to 5 g / cm 2.
00 g / cm 2 . This second pressure loss (actual value)
Is the maximum value when the pressure change on the inlet side of the exhaust gas suppressing means is measured by a pressure gauge (gauge pressure). The second pressure loss (actually measured value) is more difficult to experiment than the first pressure loss, but has the advantage of higher correlation with casting quality.

【0013】また、排出気体抑制手段が耐火物の充填に
より構成される場合、すなわち排出気体抑制手段が耐火
物の層からなる場合、該排出気体抑制手段は、第一の通
気度(検量線外挿気体流量からの計算値)が0.5〜2
000、更に5〜1000、特に50〜800であるこ
とが好ましい。通気度は、JACT試験法M−1「通気
度試験法」に準じて測定されるものである。この試験法
では、通気度は、(V×h)/(P×A×t)で算出さ
れる。本発明において、Vは上記検量線外挿から計算さ
れた熱分解気体の発生量(cm3)、hは耐火物等の充
填厚さ(cm)、Pは排出通路における排出気体の第一
の圧力損失(計算値)(g/cm2)、Aは排出通路の
断面積(cm2)、tは鋳込み時間(秒)とする。
Further, when the exhaust gas suppressing means is constituted by refractory filling, that is, when the exhaust gas suppressing means comprises a refractory layer, the exhaust gas suppressing means has a first air permeability (outside the calibration curve). 0.5 to 2)
000, more preferably 5 to 1000, particularly preferably 50 to 800. The air permeability is measured according to JACT test method M-1 "air permeability test method". In this test method, the air permeability is calculated by (V × h) / (P × A × t). In the present invention, V is the amount of generated pyrolysis gas (cm 3 ) calculated from the above-mentioned extrapolation of the calibration curve, h is the filling thickness of the refractory or the like (cm), and P is the first of the discharged gas in the discharge passage. Pressure loss (calculated value) (g / cm 2 ), A is the cross-sectional area of the discharge passage (cm 2 ), and t is the casting time (second).

【0014】更に本発明では、第二の通気度(空気流量
2L/分における計算値)が100〜10,000,0
00、更に200〜1,000,000、特に250〜
500,000、特に更には300〜100,000で
ある排出気体抑制手段を用いることが好ましい。この第
二の通気度は、空気流量を2L(2000ml)/分と
した時の通気度であり、2000×h/(P×A)によ
り求める。
Further, in the present invention, the second air permeability (calculated value at an air flow rate of 2 L / min) is 100 to 10,000,000,0.
00, even 200-1,000,000, especially 250-
It is preferable to use emission gas suppression means of 500,000, especially 300 to 100,000. The second air permeability is the air permeability when the air flow rate is 2 L (2000 ml) / min, and is determined by 2000 × h / (P × A).

【0015】通気性のある耐火物層としては、耐火物粒
子をバインダー等を添加して成型させたものや、ウレタ
ンフォームにセラミックススラリーを浸漬しその後焼成
した、いわゆるセラミックスフォームフィルター等を使
用することもでき、好ましくは前者である。耐火物粒子
の平均粒径は0.1〜10mm、更に0.5〜5mmが
好ましく、金属又はその酸化物の粒子、例えばアルミ
ナ、珪砂、ジルコン砂、クロマイト砂、合成セラミック
砂等が挙げられる。耐火物は、排出通路の面積、形状に
もよるが、厚さが0.5〜20cm、更に1〜10cm
となる量で充填されることが好ましい。
As the breathable refractory layer, a refractory particle formed by adding a binder or the like to a refractory particle, or a so-called ceramic foam filter obtained by immersing a ceramic slurry in urethane foam and then firing the same is used. And the former is preferred. The average particle size of the refractory particles is preferably 0.1 to 10 mm, more preferably 0.5 to 5 mm, and examples thereof include metal or oxide particles thereof, such as alumina, silica sand, zircon sand, chromite sand, and synthetic ceramic sand. The refractory has a thickness of 0.5 to 20 cm, further 1 to 10 cm, depending on the area and shape of the discharge passage.
It is preferable that the filler be filled in such an amount that:

【0016】また、背圧弁とは、気体の流れ方向の圧力
を弁の前側(気体流路の上流)に比して後側(気体流路
の下流)を低く設定できる弁のことであり、バネ式低圧
バルブ、ニードル式等何れを用いてもよく、これらを排
気通路に設置することで排出気体抑制手段が形成され
る。
The back pressure valve is a valve that can set the pressure in the gas flow direction lower on the rear side (downstream of the gas flow path) than on the front side (upstream of the gas flow path) of the valve. Any of a spring type low pressure valve, a needle type and the like may be used, and the exhaust gas suppressing means is formed by installing them in the exhaust passage.

【0017】排出通路となる排出管の径、設置位置、数
等は、模型の形状や大きさにより決められる。排出通路
は、直径30cm以下、好ましくは1〜10cmの円筒
状の、好ましくはセラミック製の排気管により形成され
るのが好ましい。その本数については所望の通気度を確
保できるように適宜決定すればよいが、発泡体1千〜1
0万cm3、好ましくは1千〜1万cm3あたり、1本設
けるのが好ましい。
The diameter, installation position, number, etc. of the discharge pipes serving as the discharge passages are determined by the shape and size of the model. The discharge passage is preferably formed by a cylindrical, preferably ceramic, exhaust pipe having a diameter of 30 cm or less, preferably 1 to 10 cm. The number may be appropriately determined so as to ensure a desired air permeability.
It is preferable to provide one wire per 10,000 cm 3 , preferably 1,000 to 10,000 cm 3 .

【0018】なお、中空細管を排出気体抑制手段とする
場合、該細管を模型に接するように設置してもよい。中
空細管は排出通路を兼ねることができる。中空細管は、
内径0.1〜5cm、長さ30cm〜5m、好ましくは
内径0.5〜2cm、長さ40cm〜2mで、金属等の
耐火性のある材質で構成されるものが好ましい。
When the hollow thin tube is used as the exhaust gas suppressing means, the thin tube may be installed so as to be in contact with the model. The hollow capillary can also serve as a discharge passage. The hollow capillary is
It is preferable that the inner diameter is 0.1 to 5 cm and the length is 30 cm to 5 m, more preferably the inner diameter is 0.5 to 2 cm and the length is 40 cm to 2 m.

【0019】模型は、合成樹脂発泡体からなるものが使
用される。合成樹脂発泡体としては、ポリスチレン、ポ
リメタクリル酸メチル、又はこれらの共重合体等の発泡
体が用いられる。
A model made of a synthetic resin foam is used. As the synthetic resin foam, a foam such as polystyrene, polymethyl methacrylate, or a copolymer thereof is used.

【0020】模型には、貫通孔が形成されている。特
に、図1のように、排出気体抑制手段を備えた排出通路
8、更に湯道6に連通する貫通孔を形成することが好ま
しい。熱分解ガスの徐放を精度良くコントロールするた
めには、排出気体抑制手段に集中的にガスを導く必要が
ある。そのため、模型には排出通路、更に湯道に連通す
る貫通孔を形成することが好ましい。貫通孔は、模型作
製時に形成してもよいし、模型作製後、加熱した金属棒
等、あるいはドリル、レーザーにより形成してもよい
し、カッターナイフ等で切れ込みを入れた後、接着テー
プ等を模型表面に貼り付けることで形成させてもよい。
貫通孔の径、形成位置、数等は、模型の形状や大きさに
より決める。
A through hole is formed in the model. In particular, as shown in FIG. 1, it is preferable to form a discharge passage 8 provided with a discharge gas suppressing means and a through hole communicating with the runner 6. In order to accurately control the sustained release of the pyrolysis gas, it is necessary to intensively guide the gas to the exhaust gas suppressing means. Therefore, it is preferable to form a through hole communicating with the discharge passage and the runner in the model. The through-hole may be formed at the time of model production, or after the model production, may be formed by a heated metal rod or the like, or a drill or a laser, or may be cut with a cutter knife or the like, and then an adhesive tape or the like may be formed. It may be formed by sticking to the model surface.
The diameter, formation position, number, and the like of the through holes are determined according to the shape and size of the model.

【0021】模型には塗型剤により塗型層が形成され
る。本発明では塗型膜を通じてのガス排出の必要が少な
いため、塗型剤としては、市販のもののほか、従来フル
モールド法では通常使用することのできなかった、粒径
10μm以下、好ましくは1〜10μmの細粒径の耐火
性骨材を含有するものをも使用することが可能となる。
これにより、塗型膜の表面平滑性が向上し、鋳物の表面
平滑性も向上する。従来、細粒径の耐火性骨材を含有す
る塗型剤を消失模型鋳造法に使用すると、塗型膜の通気
性が低下し、残渣欠陥やガス欠陥の増加が見られていた
が、本発明の消失模型鋳造法ではこのような問題は解消
される。また、2〜10mmという厚膜の塗型層を形成
して高強度の塗型膜とすることで、大粒径(1mm以
上)の耐火性粒子を用い、充填性を向上させることもで
きる。塗型剤中の耐火性骨材としては、例えば黒鉛、ジ
ルコン、マグネシア、アルミナ、シリカなどがある。ま
た塗型剤の粘結剤として、水系ではポリアクリル酸ナト
リウム、澱粉、メチルセルロース、ポリビニルアルコー
ル、アルギン酸ナトリウム、アラビアガム等の水溶性高
分子や酢酸ビニル系等の各種の樹脂のエマルションを、
またアルコール系ではアルコール可溶もしくは分散する
各種樹脂を添加するのが、塗型強度の点から好ましい。
添加量は耐火性骨材100重量部に対し、好ましくは
0.5〜10重量部である。
A coating layer is formed on the model by a coating agent. In the present invention, since there is little need to discharge gas through the coating film, as the coating agent, besides commercially available ones, the particle size is 10 μm or less, preferably 1 to 1, which cannot be conventionally used in the conventional full mold method. What contains a refractory aggregate having a fine particle size of 10 μm can also be used.
Thereby, the surface smoothness of the coating film is improved, and the surface smoothness of the casting is also improved. Conventionally, when a coating agent containing a refractory aggregate having a small particle size was used in the vanishing model casting method, the air permeability of the coating film was reduced, and residue defects and gas defects were increased. Such a problem is solved by the vanishing model casting method of the present invention. In addition, by forming a coating layer having a thickness of 2 to 10 mm to form a high-strength coating layer, refractory particles having a large particle diameter (1 mm or more) can be used to improve the filling property. Examples of the refractory aggregate in the coating composition include graphite, zircon, magnesia, alumina, silica and the like. In addition, as a binder for the coating composition, in the aqueous system, water-soluble polymers such as sodium polyacrylate, starch, methyl cellulose, polyvinyl alcohol, sodium alginate, gum arabic, and emulsions of various resins such as vinyl acetate,
In the case of alcohols, it is preferable to add various resins that are soluble or dispersed in alcohol from the viewpoint of coating strength.
The addition amount is preferably 0.5 to 10 parts by weight based on 100 parts by weight of the refractory aggregate.

【0022】鋳造に用いる鋳物砂としては、石英質を主
成分とする珪砂の他、ジルコン砂、クロマイト砂、合成
セラミック砂等の新砂又は再生砂が使用される。鋳物砂
は粘結剤を添加せずに用いることもでき、その場合には
充填性が良好であるが、強度が必要な場合には、粘結剤
を添加し、硬化剤により硬化させるのが好ましい。
As the foundry sand used for casting, in addition to silica sand containing quartz as a main component, new sand such as zircon sand, chromite sand, and synthetic ceramic sand or recycled sand is used. Foundry sand can be used without adding a binder, in which case the filling property is good, but if strength is required, it is better to add a binder and cure with a curing agent. preferable.

【0023】本発明の方法では、発生ガスを外部に徐放
させることにより、注湯時の湯乱れを抑制しつつ鋳造を
行うことができる。これは、注湯に適度な背圧、好まし
くは前記第一、第二の圧力損失を達成できる程度の背圧
が、第一、第二の通気度を有する排出気体抑制手段を用
いて、負荷されることにより、湯乱れ(鋳込み時の熔湯
の吹き戻し等)の発生防止と速やかな注湯とが実現され
ているためと考えられる。
In the method of the present invention, the generated gas is gradually released to the outside, so that casting can be performed while suppressing turbulence during pouring. This is because the back pressure appropriate for pouring, preferably the back pressure enough to achieve the first and second pressure losses, is reduced by using the exhaust gas suppressing means having the first and second air permeability. This is considered to prevent the occurrence of turbulence (such as blow-back of the molten metal during casting) and quick pouring.

【0024】[0024]

【発明の効果】本発明では発生気体が強制的に排出され
ることもなく徐放されるため、鋳型内の気体層の圧力分
布が小さくなり、従来法と比較して残渣欠陥が飛躍的に
低減される。
According to the present invention, since the generated gas is gradually released without being forcibly discharged, the pressure distribution of the gas layer in the mold is reduced, and residue defects are dramatically reduced as compared with the conventional method. Reduced.

【0025】更なる効果として、従来のフルモールド法
と比較して気体排出性がコントロールされるため、鋳込
み時の吹き戻しや、気体排出口からの熔湯の吹き上がり
が抑制され、作業安全性が向上する。
As a further effect, the gas discharge property is controlled as compared with the conventional full mold method, so that blow-back during casting and blow-up of molten metal from the gas discharge port are suppressed, and work safety is improved. Is improved.

【0026】また、従来のフルモールド法の如く、塗型
膜を通してのガス排出の必要性が少ないため、細粒径の
耐火性骨材を含有する塗型剤を用いて鋳物の表面平滑性
を向上させたり、厚膜の塗型層を形成して塗型膜を高強
度とすることができる。
Further, unlike the conventional full molding method, since there is little need to discharge gas through the coating film, the surface smoothness of the casting is reduced by using a coating agent containing a refractory aggregate having a small particle diameter. The strength of the coating film can be increased by improving the thickness or forming a thick coating layer.

【0027】[0027]

【実施例】実施例1 120mm×80mm×250mmHの発泡模型1(発
泡ポリスチレン製)に、直径3mmの金属棒を加熱し、
図1のように貫通孔2を形成した。貫通孔2の直径は約
4mmであった。
EXAMPLE 1 A metal rod having a diameter of 3 mm was heated on a foam model 1 (made of expanded polystyrene) having a size of 120 mm × 80 mm × 250 mmH.
The through holes 2 were formed as shown in FIG. The diameter of the through hole 2 was about 4 mm.

【0028】内径4cmの円筒形の陶管(長さ30c
m)に、エステル硬化性フェノール樹脂を含有する直径
2mmの球状アルミナ9を厚さ(h)2.5cmとなる
ように充填し硬化させ排出通路8とした。
A cylindrical ceramic tube having an inner diameter of 4 cm (length 30 c)
m), a spherical alumina 9 having a diameter of 2 mm containing an ester-curable phenol resin was filled so as to have a thickness (h) of 2.5 cm and cured to form a discharge passage 8.

【0029】この排出通路8について、圧力損失Pを、
図2のように測定した。その結果、空気通気速度1L/
分ではP=0.02g/cm2、空気通気速度3L/分
ではP=0.08g/cm2、空気通気速度5L/分で
はP=0.15g/cm2であった。本実施例では、鋳
込み時間(t)を10秒としたため、単位時間あたりの
気体排出量は約172L/分となる。よって172L/
分の時の第一の圧力損失Pは6g/cm2となる。
With respect to the discharge passage 8, the pressure loss P
The measurement was performed as shown in FIG. As a result, the air ventilation speed 1 L /
Min, P = 0.02 g / cm 2 , P = 0.08 g / cm 2 at an air flow rate of 3 L / min, and P = 0.15 g / cm 2 at an air flow rate of 5 L / min. In this embodiment, since the casting time (t) is set to 10 seconds, the gas discharge per unit time is about 172 L / min. Therefore 172L /
The first pressure loss P in minutes is 6 g / cm 2 .

【0030】なお、本実施例の発泡模型1の重量は44
gであり、先に示したポリスチレンの1000℃におけ
る熱分解気体発生量の文献値から、この発泡模型の熱分
解気体発生量Vは28600cm3となり、気体排出量
は28.6L/10秒≒172L/分と計算される。
The weight of the foam model 1 of this embodiment is 44
g from the above-mentioned literature values of the amount of pyrolysis gas generated at 1000 ° C. for polystyrene, the pyrolysis gas generation amount V of this foam model was 28,600 cm 3 , and the gas discharge amount was 28.6 L / 10 sec ≒ 172 L. / Min.

【0031】以上から、本実施例では、V=28600
cm3、h=2.5cm、P=6g/cm2、A=12.
6cm2(3.14×2×2)、t=10秒であり、排
出気体抑制手段である球状アルミナ充填層の第一の通気
度は、(V×h)/(P×A×t)=(28600×
2.5)/(6×12.6×10)=95となる。
From the above, in this embodiment, V = 28600
cm 3 , h = 2.5 cm, P = 6 g / cm 2 , A = 12.
6 cm 2 (3.14 × 2 × 2), t = 10 seconds, and the first air permeability of the spherical alumina packed layer as the exhaust gas suppressing means is (V × h) / (P × A × t) = (28600x
2.5) / (6 × 12.6 × 10) = 95.

【0032】また、空気通気速度を2L/分とした時の
圧力損失は0.05g/cm2であり、それにより第二
の通気度は、(2000×2.5)/(0.05×1
2.6)=7937と計算される。
The pressure loss at an air flow rate of 2 L / min is 0.05 g / cm 2 , whereby the second air permeability is (2000 × 2.5) / (0.05 × 1
2.6) = 7937.

【0033】貫通孔を形成した模型1表面に塗型剤3
(80ボーメ)を塗布し乾燥後、図1に準じて造型を行
った。鋳鉄の材質はFC−250、鋳込み温度は140
0℃であった。鋳込み時の状況及び得られた鋳物の品質
(鋳肌の状態)を評価した。
On the surface of the model 1 in which the through holes are formed,
(80 Baume) was applied and dried, followed by molding according to FIG. Cast iron material is FC-250, casting temperature is 140
It was 0 ° C. The condition at the time of casting and the quality of the obtained casting (the state of the casting surface) were evaluated.

【0034】鋳込み時に、排出気体抑制手段である球状
アルミナ充填層9を備えた排出通路8の入り口側の圧力
変化を圧力計(ゲージ圧力)により測定し、第二の圧力
損失を得た。
At the time of casting, a pressure change on the inlet side of the discharge passage 8 provided with the spherical alumina packed layer 9 as a discharge gas suppressing means was measured by a pressure gauge (gauge pressure) to obtain a second pressure loss.

【0035】評価結果と鋳込み時間、第一の圧力損失
(計算値)、第二の圧力損失(実測値)、及び排出気体
抑制手段の第一の通気度(検量線外挿気体流量からの計
算値)、第二の通気度(空気流量2L/分における計算
値)を表1に示す。なお、塗型剤の組成は、シリカ粉
(平均粒径8μm)40重量%、鱗状黒鉛10重量%、
酢酸ビニル系バインダー5重量%、水40重量%、非イ
オン界面活性剤0.5重量%、ベントナイト4.5重量
%であった。
The evaluation results and the casting time, the first pressure loss (calculated value), the second pressure loss (actually measured value), and the first air permeability of the exhaust gas suppressing means (calculation from the extrapolated gas flow rate of the calibration curve) Table 1 shows the second air permeability (calculated value at an air flow rate of 2 L / min). The composition of the mold wash was 40% by weight of silica powder (average particle size: 8 μm), 10% by weight of flaky graphite,
The content was 5% by weight of a vinyl acetate binder, 40% by weight of water, 0.5% by weight of a nonionic surfactant, and 4.5% by weight of bentonite.

【0036】実施例2〜4 鋳込み時間、圧力損失及び排出気体抑制手段の通気度を
表1のように変えた以外は実施例1と同様に鋳込みを行
い、同様の評価を行った。結果を表1に示す。
Examples 2 to 4 Casting was carried out in the same manner as in Example 1 except that the casting time, pressure loss and air permeability of the exhaust gas suppressing means were changed as shown in Table 1, and the same evaluation was performed. Table 1 shows the results.

【0037】なお、実施例2では、直径0.5mmの球
状アルミナを厚さ2cmとなるように充填した。その排
出通路における圧力損失Pは、空気通気速度1L/分で
はP=0.47g/cm2、空気通気速度3L/分では
P=1.41g/cm2、空気通気速度5L/分ではP
=2.36g/cm2であった。
In Example 2, spherical alumina having a diameter of 0.5 mm was filled to a thickness of 2 cm. Pressure loss P in the discharge passage, air aeration rate 1L / in min P = 0.47 g / cm 2, the air aeration rate 3L / min P = 1.41 g / cm 2, P is an air aeration rate of 5L / min
= 2.36 g / cm 2 .

【0038】また、実施例3では、直径5mmの球状ア
ルミナを厚さ2cmとなるように充填した。その排出通
路における圧力損失Pは、空気通気速度1L/分ではP
=0.0033g/cm2、空気通気速度3L/分では
P=0.0099g/cm2、空気通気速度5L/分で
はP=0.0165g/cm2であった。
In Example 3, spherical alumina having a diameter of 5 mm was filled to a thickness of 2 cm. The pressure loss P in the discharge passage is P at an air ventilation rate of 1 L / min.
= 0.0033g / cm 2, air aeration rate 3L / in min P = 0.0099g / cm 2, the air aeration rate 5L / min was P = 0.0165g / cm 2.

【0039】また、実施例4では、直径0.1mmの球
状アルミナを厚さ2.5cmとなるように充填した。そ
の排出通路における圧力損失Pは、空気通気速度1L/
分ではP=1.36g/cm2、空気通気速度3L/分
ではP=1.72g/cm2、空気通気速度5L/分で
はP=2.22g/cm2であった。
In Example 4, spherical alumina having a diameter of 0.1 mm was filled to a thickness of 2.5 cm. The pressure loss P in the discharge passage is 1 L /
The min P = 1.36g / cm 2, air aeration rate 3L / in min P = 1.72g / cm 2, the air aeration rate 5L / min was P = 2.22g / cm 2.

【0040】実施例5 排出気体抑制手段として内径8.8mm、長さ600m
mのステンレス製細管を用い、排出通路を設けない(前
記細管が排出通路を兼ねる)以外は実施例1と同様に鋳
込みを行い、同様の評価を行った。該細管は模型の貫通
孔と連通するように設置した。この排出通路における圧
力損失Pは、空気通気速度1L/分ではP=0.02g
/cm2、空気通気速度3L/分ではP=0.09g/
cm2、空気通気速度5L/分ではP=0.16g/c
2であった。結果を表1に示す。
Embodiment 5 The inner diameter is 8.8 mm and the length is 600 m as exhaust gas suppressing means.
Casting was carried out in the same manner as in Example 1 except that a stainless steel thin tube of m was used and no discharge passage was provided (the thin tube also served as the discharge passage), and the same evaluation was performed. The capillary was placed so as to communicate with the through hole of the model. The pressure loss P in this discharge passage is P = 0.02 g at an air ventilation speed of 1 L / min.
/ Cm 2 , P = 0.09 g / at an air flow rate of 3 L / min.
cm 2 , P = 0.16 g / c at an air flow rate of 5 L / min.
m 2 . Table 1 shows the results.

【0041】比較例1 実施例1において、排出通路8を設けない以外は同様に
鋳込みを行い、同様の評価を行った。結果を表1に示
す。
Comparative Example 1 Casting was performed in the same manner as in Example 1 except that the discharge passage 8 was not provided, and the same evaluation was performed. Table 1 shows the results.

【0042】比較例2 実施例1において、排出通路にアルミナボールを充填し
ない以外は同様に鋳込みを行い、同様の評価を行った。
結果を表1に示す。
Comparative Example 2 The procedure of Example 1 was repeated except that the discharge passage was not filled with alumina balls, and the same evaluation was performed.
Table 1 shows the results.

【0043】比較例3 実施例1において、貫通孔が形成されていない模型を用
いた以外は同様に鋳込みを行い、同様の評価を行った。
結果を表1に示す。
Comparative Example 3 Casting was performed in the same manner as in Example 1 except that a model having no through hole was used, and the same evaluation was performed.
Table 1 shows the results.

【0044】[0044]

【表1】 [Table 1]

【0045】(注1):実施例5、比較例2では、アル
ミナボールを充填していないため、充填厚さが規定でき
ず、通気度は求められなかった。
(Note 1): In Example 5 and Comparative Example 2, since the alumina balls were not filled, the filling thickness could not be specified, and the air permeability could not be obtained.

【0046】(注2):排出気体抑制手段を用いていな
いため数値無し。この比較例1は、圧力損失が限りなく
大きい排出気体抑制手段を設置した系と同等と見なすこ
とができる。
(Note 2): No numerical value because exhaust gas suppression means is not used. Comparative Example 1 can be regarded as equivalent to a system in which exhaust gas suppressing means having an extremely large pressure loss is installed.

【0047】(注3):排出気体抑制手段を用いていな
いため数値無し。この比較例1は、通気度が限りなく小
さい排出気体抑制手段を設置した系と同等と見なすこと
ができる。
(Note 3): No numerical value because no exhaust gas suppression means was used. Comparative Example 1 can be considered to be equivalent to a system in which exhaust gas suppression means having an extremely low air permeability is installed.

【0048】(注4):排出気体抑制手段を通過する熱
分解気体量を把握できないため、計算できなかった。
(Note 4): The calculation could not be performed because the amount of pyrolysis gas passing through the exhaust gas suppressing means could not be grasped.

【0049】(注5):総合評価は、◎が最良で、以下
○、△、×の順に評価が下がることを意味する。×は実
用上、問題のあるレベルである。
(Note 5): ◎ is the best overall evaluation, and means that the evaluation decreases in the order of ○, Δ, × below. X is a practically problematic level.

【0050】なお、表1中、実施例1とほぼ同じ圧力損
失を生じている実施例5で鋳物品質がやや低下している
のは、実施例5では細管を用いているため該細管内の中
央と壁面で排出気体の流速に差異が生じ、これが影響し
ているものと考えられる。
In Table 1, the casting quality is slightly deteriorated in Example 5 in which the same pressure loss as in Example 1 occurs. The reason for this is that in Example 5, a thin tube is used. It is considered that there is a difference in the flow rate of the exhaust gas between the center and the wall surface, and this is affecting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の消失模型鋳造法の一例を示す概略図FIG. 1 is a schematic diagram showing an example of a vanishing model casting method of the present invention.

【図2】通気抵抗の測定方法を示す概略図FIG. 2 is a schematic diagram showing a method of measuring airflow resistance.

【符号の説明】[Explanation of symbols]

1 模型 2 貫通孔 8 排気通路 9 耐火物粒子 DESCRIPTION OF SYMBOLS 1 Model 2 Through-hole 8 Exhaust passage 9 Refractory particles

───────────────────────────────────────────────────── フロントページの続き (72)発明者 成島 毅 栃木県芳賀郡市貝町赤羽2606 花王株式 会社研究所内 (72)発明者 船田 等 愛知県豊橋市明海町4−51 花王株式会 社研究所内 (56)参考文献 特開 平8−206777(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22C 1/00 - 9/30 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Takeshi Narishima 2606 Kabane-cho, Akaga-cho, Haga-gun, Tochigi Prefecture Inside Kao Co., Ltd. (72) Inventor, etc. 56) References JP-A-8-206777 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22C 1/00-9/30

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋳物砂内に貫通孔が形成されている模型
を埋設してなる鋳型に注湯し、注湯した該湯によって前
記模型を消失させながら製品を鋳造する消失模型鋳造法
であって、前記模型の消失により発生した気体を、排出
気体抑制手段を備えた排出通路を介して前記鋳型の外部
に徐放させつつ鋳造を行う消失模型鋳造法。
1. A vanishing model casting method in which a mold having a through hole formed in casting sand is poured into a mold in which the model is buried, and a product is cast while the model is lost by the poured hot water. A vanishing model casting method in which the gas generated by the disappearance of the model is cast while being gradually released to the outside of the mold through a discharge passage provided with a gas emission suppressing means.
【請求項2】 排出通路を通過する気体の第一の圧力損
失(計算値)が0.05〜5000g/cm2である請
求項1記載の消失模型鋳造法。
2. The vanishing model casting method according to claim 1, wherein the first pressure loss (calculated value) of the gas passing through the discharge passage is 0.05 to 5000 g / cm 2 .
【請求項3】 排出通路を通過する気体の第二の圧力損
失(実測値)が0.5〜5000g/cm2である請求
項1又は2記載の消失模型鋳造法。
3. The vanishing model casting method according to claim 1, wherein the second pressure loss (actually measured value) of the gas passing through the discharge passage is 0.5 to 5000 g / cm 2 .
【請求項4】 排出気体抑制手段の第一の通気度(検量
線外挿気体流量からの計算値)が0.5〜2000であ
る請求項1〜3の何れか1項記載の消失模型鋳造法。
4. The vanishing model casting according to any one of claims 1 to 3, wherein the first air permeability (calculated from the calibration curve extrapolated gas flow rate) of the exhaust gas suppressing means is 0.5 to 2,000. Law.
【請求項5】 排出気体抑制手段の第二の通気度(空気
流量2L/分における計算値)が100〜10,00
0,000である請求項1〜4の何れか1項記載の消失
模型鋳造法。
5. The second air permeability (calculated value at an air flow rate of 2 L / min) of the exhaust gas suppressing means is 100 to 10,000.
The vanishing model casting method according to any one of claims 1 to 4, wherein the quenching method is 0.000.
【請求項6】 排出気体抑制手段が耐火物粒子からなる
請求項1〜5の何れか1項記載の消失模型鋳造法。
6. The vanishing model casting method according to claim 1, wherein the exhaust gas suppressing means comprises refractory particles.
【請求項7】 排出気体抑制手段が背圧弁からなる請求
項1〜5の何れか1項記載の消失模型鋳造法。
7. The vanishing model casting method according to claim 1, wherein the exhaust gas suppressing means comprises a back pressure valve.
【請求項8】 粒径10μm以下の耐火性骨材を含有す
る塗型剤が塗布された模型を用いる請求項1〜7の何れ
か1項記載の消失模型鋳造法。
8. The vanishing model casting method according to claim 1, wherein a model coated with a mold wash containing a refractory aggregate having a particle size of 10 μm or less is used.
【請求項9】 発生ガスを外部に徐放させることによ
り、注湯時の湯乱れを抑制しつつ鋳造を行う請求項1〜
8の何れか1項記載の消失模型鋳造法。
9. The casting is carried out by releasing the generated gas to the outside so as to suppress turbulence during pouring.
8. The vanishing model casting method according to any one of 8 above.
【請求項10】 鋳物砂内に貫通孔が形成されている模
型を埋設してなる鋳型に注湯し、注湯した該湯によって
前記模型を消失させながら製品を鋳造する際に、前記模
型の消失により発生した気体を、排出気体抑制手段を備
えた排出通路を介して前記鋳型の外部に徐放させつつ鋳
造を行う、消失模型鋳造法における湯乱れの防止方法。
10. When pouring a mold in which a through-hole is formed in a casting sand into a mold in which the model is buried, and casting the product while erasing the model with the poured hot water, A method for preventing hot water turbulence in a vanishing model casting method, wherein casting is performed while gas generated by disappearance is gradually released to the outside of the mold via a discharge passage provided with a discharge gas suppressing means.
JP2001316341A 2000-11-24 2001-10-15 Vanishing model casting Expired - Fee Related JP3325266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001316341A JP3325266B2 (en) 2000-11-24 2001-10-15 Vanishing model casting

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000357845 2000-11-24
JP2000-357845 2000-11-24
JP2001316341A JP3325266B2 (en) 2000-11-24 2001-10-15 Vanishing model casting

Publications (2)

Publication Number Publication Date
JP2002219552A JP2002219552A (en) 2002-08-06
JP3325266B2 true JP3325266B2 (en) 2002-09-17

Family

ID=26604540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001316341A Expired - Fee Related JP3325266B2 (en) 2000-11-24 2001-10-15 Vanishing model casting

Country Status (1)

Country Link
JP (1) JP3325266B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514995B2 (en) * 2001-06-22 2010-07-28 花王株式会社 Vanishing model casting method
JP3691430B2 (en) 2001-11-20 2005-09-07 花王株式会社 Vanishing model casting method
JP5883704B2 (en) * 2012-03-30 2016-03-15 株式会社栗本鐵工所 Full mold casting equipment
JP6250499B2 (en) * 2014-08-06 2017-12-20 本田技研工業株式会社 Disappearance model and disappearance model casting method using the same

Also Published As

Publication number Publication date
JP2002219552A (en) 2002-08-06

Similar Documents

Publication Publication Date Title
JP3691430B2 (en) Vanishing model casting method
US5058653A (en) Process for lost foam casting of metal parts
US7044190B2 (en) Sublimation pattern casting method
WO2011065410A1 (en) Evaporative pattern casing process
CN105397027A (en) Casting method of casting
JP3325266B2 (en) Vanishing model casting
Liao et al. Study on the surface roughness of ceramic shells and castings in the ceramic shell casting process based on expandable pattern
JP3983583B2 (en) Vanishing model casting method
JP2665876B2 (en) Casting method of low carbon stainless steel parts using high vacuum mouth stow process
JP3871966B2 (en) Vanishing model casting method
JP3871952B2 (en) Vanishing model casting method
JPS649898B2 (en)
JP2003025044A (en) Lost pattern for casting
JP2019084566A (en) Mold wash composition for lost foam pattern
JP4941842B2 (en) Casting equipment
US2772458A (en) Method of making smooth-surfaced sand-resin molds
JP3847652B2 (en) Disappearance model coating composition
JPH0760396A (en) Joining method and casting mold
JP2003334634A (en) Evaporative pattern casting method
JP2011110572A (en) Lost foam pattern casting method
JP3045711B2 (en) Full mold casting method
JP4421466B2 (en) Slurry for casting mold and mold obtained using the same
Littleton et al. Process control for precision lost foam castings. II
JP3213609B1 (en) Coating composition
JPH05138290A (en) Production of expendable pattern casting mold and casting method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R151 Written notification of patent or utility model registration

Ref document number: 3325266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees