JP2003334634A - Evaporative pattern casting method - Google Patents

Evaporative pattern casting method

Info

Publication number
JP2003334634A
JP2003334634A JP2002141412A JP2002141412A JP2003334634A JP 2003334634 A JP2003334634 A JP 2003334634A JP 2002141412 A JP2002141412 A JP 2002141412A JP 2002141412 A JP2002141412 A JP 2002141412A JP 2003334634 A JP2003334634 A JP 2003334634A
Authority
JP
Japan
Prior art keywords
gas
model
mold
casting method
discharge passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002141412A
Other languages
Japanese (ja)
Inventor
Hitoshi Funada
等 船田
Shigeo Nakai
茂夫 仲井
Tadashi Kusube
匡 楠部
Takeshi Nakagawa
武司 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002141412A priority Critical patent/JP2003334634A/en
Publication of JP2003334634A publication Critical patent/JP2003334634A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporative pattern casting method excellent in removal effect for decomposition gas from an evaporative pattern. <P>SOLUTION: The pattern having a through-hole is buried in casing sand to form a mold. A mold is cast in the mold, and the pattern is evaporated to produce an article. The gas produced by evaporation of the pattern is discharged outside of the mold by means of a discharge passage and the gas is burned by feeding an oxidizing gas. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、消失模型鋳造法に
関し、特に模型の消失により発生した気体を、排出通路
を介して鋳型外部に放出させつつ鋳造を行うに際して、
酸化性の気体を供給することにより、鋳込み時に発生す
る有害ガスの大気への放出を防止する消失模型鋳造法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a disappearing model casting method, and more particularly, when performing casting while discharging gas generated by disappearing a model to the outside of a mold through a discharge passage,
The present invention relates to a disappearance model casting method for preventing harmful gas generated during casting from being released into the atmosphere by supplying an oxidizing gas.

【0002】[0002]

【従来の技術】消失模型鋳造法はフルモールド法とも言
われ、合成樹脂発泡体にて製作した模型を鋳物砂に埋設
したまま鋳型として利用するプロセスである。このプロ
セスは鋳込まれた溶湯によって合成樹脂発泡体を熱分解
させるものであるが、すすを含む多量の熱分解ガスが発
生し、異臭の発生等、環境を悪化させるとともに、その
残渣により鋳物に鋳造欠陥が発生する欠点がある。
2. Description of the Related Art The vanishing model casting method is also called a full molding method, and is a process of using a model made of synthetic resin foam as a mold while being embedded in molding sand. This process pyrolyzes the synthetic resin foam with the molten metal that is cast.However, a large amount of pyrolysis gas containing soot is generated, and the environment is deteriorated, such as the generation of offensive odors, and the residue causes a cast product. There is a drawback that casting defects occur.

【0003】ガス抜きに関する技術として、特開平5−
261470号公報には模型の内部に、排気口と連通す
る通気経路を設ける方法が、また、特開平8−2067
77号公報には外部気体を吸引しながら、鋳物砂を通し
て発生気体を外部に強制的に排出する方法が、更に、特
開平11−90583号公報にも発生する気体をスムー
ズに鋳型外に排出できる消失模型鋳造法が開示されてい
る。
As a technique relating to degassing, Japanese Patent Application Laid-Open No. Hei 5-
Japanese Patent No. 261470 discloses a method of providing a ventilation path communicating with an exhaust port inside a model.
In Japanese Patent Publication No. 77, a method of forcibly discharging the generated gas to the outside through the molding sand while sucking the external gas, and in Japanese Patent Laid-Open No. 11-90583, the generated gas can be smoothly discharged to the outside of the mold. Disappearance model casting is disclosed.

【0004】また、ガスの浄化法に関する技術として、
特開平4−344867号公報には鋳込時および型ばら
し時などにおいて発生する有害ガスを、強制吸引して燃
焼させる方法が開示されている。
Further, as a technique relating to a gas purification method,
Japanese Unexamined Patent Publication (Kokai) No. 4-344867 discloses a method of forcibly sucking and burning harmful gas generated during casting, unmolding, and the like.

【0005】[0005]

【発明が解決しようとする課題】上記のように発生気体
を強制的に排出することで、ある程度の鋳物品質の向上
は達成されるが、鋳型内の溶湯の乱れを引き起こし、必
ずしも目的が達成できるとは限らない。
By forcibly discharging the generated gas as described above, the casting quality can be improved to some extent, but the molten metal in the mold is disturbed, and the purpose is not always achieved. Not necessarily.

【0006】また、発生気体を強制吸引するには真空ポ
ンプなどの装置が必要であり、しかも模型全体から発生
する気体をすべて吸引するためには、能力の高いポンプ
が求められる。
Further, a device such as a vacuum pump is required for forcibly sucking the generated gas, and a pump having a high ability is required for sucking all the gas generated from the entire model.

【0007】従って、発生気体の最適な排出が達成で
き、残渣欠陥の少ない優れた品質の鋳物が得られ、ま
た、発生気体を簡便に集中的に処理する(すすや異臭の
低減等)ことができれば、当業界での利用価値は極めて
高いものと考えられる。
Therefore, the optimum discharge of the generated gas can be achieved, a casting of excellent quality with few residue defects can be obtained, and the generated gas can be simply and intensively processed (reduction of soot and odor). If possible, the utility value in this industry is considered to be extremely high.

【0008】[0008]

【課題を解決するための手段】本発明は、鋳物砂内に合
成樹脂発泡体製模型を埋設してなる鋳型に溶湯を注湯
し、該溶湯によって前記模型を消失させながら製品を鋳
造する際に、前記該模型の消失により発生した気体(以
下、発生気体という)を、排出通路、好ましくは排出気
体抑制手段を備えた排出通路を介して、前記鋳型の外部
に放出させつつ鋳造を行う消失模型鋳造法であって、発
生気体に酸化性の気体を供給し発生気体を燃焼させる消
失模型鋳造法に関する。
According to the present invention, when a molten metal is poured into a mold in which a synthetic resin foam model is embedded in a molding sand, the product is cast while the model disappears by the molten metal. In addition, the gas generated by the disappearance of the model (hereinafter referred to as the generated gas) is discharged to the outside of the mold through a discharge passage, preferably a discharge passage equipped with a discharge gas suppressing means, and the casting is performed. The present invention relates to a model casting method, in which an oxidative gas is supplied to a generated gas and the generated gas is burned, so that the model gas disappears.

【0009】[0009]

【発明の実施の形態】本発明の消失模型鋳造法の概要を
図1に基づいて説明する。鋳型は、鋳枠4と鋳枠4の内
部の鋳物砂7と鋳物砂7に埋設された模型1等からな
り、模型1に連通した受口5が左上方に設けられてい
る。模型1は、発泡ポリスチレンによって製品と同一形
状に形成されており、貫通孔2が設けられている。鋳物
砂7は、5.5号硅砂であり、粘結剤を適量含有させて
ある。鋳型の形成は、まず、模型1の表面に耐火性に優
れた塗型剤3を塗布し、その後充分乾燥させる。そして
鋳枠4に湯口6および湯道10を形成した後、模型1を
固定し鋳物砂7で埋設し、受口5を設置する。その際、
貫通孔2の内部は空間にしておき、貫通孔2に連通する
排出管を設け排出通路8とする。排出通路8となる排出
管はセラミック製で、排出気体抑制手段としてバインダ
ーで成型されたアルミナ等の耐火物粒子9が充填され、
貫通孔2と大気とを連通させるように鋳物砂7に埋設さ
れる。
BEST MODE FOR CARRYING OUT THE INVENTION The outline of the vanishing model casting method of the present invention will be described with reference to FIG. The mold comprises a casting frame 4, a molding sand 7 inside the casting frame 4, a model 1 embedded in the molding sand 7, and the like, and a receiving port 5 communicating with the model 1 is provided on the upper left side. The model 1 is made of expanded polystyrene in the same shape as the product, and has a through hole 2. Foundry sand 7 is No. 5.5 silica sand, and contains an appropriate amount of a binder. In forming the mold, first, the mold coating agent 3 having excellent fire resistance is applied to the surface of the model 1 and then sufficiently dried. Then, after forming the sprue 6 and the runner 10 in the casting frame 4, the model 1 is fixed and embedded in the foundry sand 7, and the receiving port 5 is installed. that time,
The inside of the through hole 2 is left as a space, and a discharge pipe communicating with the through hole 2 is provided as a discharge passage 8. The exhaust pipe that becomes the exhaust passage 8 is made of ceramic, and is filled with refractory particles 9 such as alumina molded with a binder as exhaust gas suppressing means.
It is embedded in the foundry sand 7 so that the through hole 2 and the atmosphere can communicate with each other.

【0010】受口5から溶湯を注湯すると湯は湯口6お
よび湯道10を通って模型1に到達し、模型1を溶融さ
せて、鋳型内に溜る。一方、排出通路8からは、湯によ
って溶融、燃焼された模型1からの発生気体が排出され
るのが確認されるが、耐火物粒子が充填されているの
で、発生気体の放出が調整される。
When the molten metal is poured from the receiving port 5, the molten metal reaches the model 1 through the sprue 6 and the runner 10, melts the model 1, and collects in the mold. On the other hand, it is confirmed that the generated gas from the model 1 melted and burned by the hot water is discharged from the discharge passage 8, but since the refractory particles are filled, the discharge of the generated gas is adjusted. .

【0011】このように、本発明では、模型の燃焼・消
失により発生した発生気体を、排出通路を介して、鋳型
の外部に放出させる。好ましくは、発生気体をその発生
とほぼ同時に強制的に排出するのではなく、排出気体抑
制手段を備えた排出通路を解して、その排出量を抑制し
つつ徐々に排出する。このように発生気体を鋳型の外部
に徐々に排出することで、鋳型内における溶湯の乱れを
制御できる。また、排出気体抑制手段とは、該手段を設
けることで発生気体を外部に徐々に放出し得る通気性を
有する手段であり、耐火物粒子及びその層、背圧弁、中
空細管からなることが好ましく、さらには、溶湯の吹き
出し防止やすすのろ過などの機能も兼ねられる点から耐
火物粒子及びその層、背圧弁が好ましい。
As described above, in the present invention, the generated gas generated by the combustion and disappearance of the model is discharged to the outside of the mold through the discharge passage. Preferably, the generated gas is not forcibly discharged almost at the same time as its generation, but is gradually discharged while suppressing the discharge amount by opening the discharge passage provided with the discharge gas suppressing means. By gradually discharging the generated gas to the outside of the mold in this way, the turbulence of the molten metal in the mold can be controlled. In addition, the exhaust gas suppressing means is a means having breathability that allows the generated gas to be gradually released to the outside by providing the means, and is preferably made of refractory particles and their layers, a back pressure valve, and a hollow thin tube. Further, the refractory particles and the layer thereof, and the back pressure valve are preferable from the viewpoint that they also have the functions of preventing the molten metal from blowing out and filtering soot.

【0012】本発明の排出気体抑制手段として用いられ
る通気性のある耐火物層としては、バインダー等を添加
して耐火物粒子を成型させたものや、ウレタンフォーム
にセラミックススラリーを浸漬しその後焼成した、いわ
ゆるセラミックスフォームフィルター等を使用すること
もでき、好ましくは前者である。耐火物粒子の平均粒径
は0.1〜10mm、更に0.5〜5mmが好ましく、
金属又はその酸化物の粒子、例えばアルミナ、珪砂、ジ
ルコン砂、クロマイト砂、合成セラミック砂等が挙げら
れる。耐火物は、排出通路の面積、形状にもよるが、厚
さが0.5〜20cm、更に1〜10cmとなる量で充
填されることが好ましい。中空細管を排出気体抑制手段
とする場合は内径0.1〜5cm、長さ30cm〜5
m、更には内径0.5cm〜2cm、長さ40cm〜2
mで、金属等の耐火性のある材質で構成されるものが好
ましい。
As the breathable refractory layer used as the exhaust gas suppressing means of the present invention, a refractory particle is molded by adding a binder or the like, or a ceramic slurry is immersed in urethane foam and then fired. A so-called ceramic foam filter or the like can be used, and the former is preferable. The average particle size of the refractory particles is preferably 0.1 to 10 mm, more preferably 0.5 to 5 mm,
Particles of metal or its oxide, such as alumina, silica sand, zircon sand, chromite sand, synthetic ceramic sand, etc. may be mentioned. The refractory material is preferably filled in an amount such that the thickness is 0.5 to 20 cm, more preferably 1 to 10 cm, depending on the area and shape of the discharge passage. When the hollow thin tube is used as the exhaust gas suppressing means, the inner diameter is 0.1 to 5 cm and the length is 30 cm to 5.
m, further, inner diameter 0.5 cm to 2 cm, length 40 cm to 2
It is preferable that m is composed of a fire resistant material such as metal.

【0013】また、背圧弁とは、気体の流れ方向の圧力
を弁の前側(気体流路の上流)に比して後側(気体流路
の下流)を低く設定できる弁のことであり、バネ式低圧
バルブ、ニードル式等何れを用いてもよく、これらを排
気通路に設置することで排出気体抑制手段が形成され
る。
The back pressure valve is a valve whose pressure in the gas flow direction can be set lower on the rear side (downstream of the gas flow path) than on the front side (upstream of the gas flow path) of the valve. Any of a spring type low pressure valve and a needle type may be used, and the exhaust gas suppressing means is formed by installing these in the exhaust passage.

【0014】排出通路となる排出管の径、設置位置、数
等は、模型の形状や大きさにより決められる。排出通路
は、直径30cm以下、好ましくは1〜10cmの円筒
状の、好ましくはセラミック製の排気管により形成され
るのが好ましい。その本数については所望の通気度を確
保できるように適宜決定すればよいが、発泡体1千〜1
0万cm3、好ましくは1千〜1万cm3あたり、1本設
けるのが好ましい。尚、中空細管を抑制手段とする場合
は、細管を直接模型に設置してもよい。
The diameter, the installation position, the number, etc. of the discharge pipes serving as the discharge passages are determined by the shape and size of the model. The discharge passage is preferably formed by a cylindrical, preferably ceramic, exhaust pipe having a diameter of 30 cm or less, preferably 1 to 10 cm. The number of foams may be appropriately determined so as to ensure a desired air permeability, but
It is preferable to provide one per 100,000 cm 3 , preferably 1,000 to 10,000 cm 3 . When the hollow thin tube is used as the suppressing means, the thin tube may be directly installed on the model.

【0015】本発明者は、消失模型鋳造法において上記
のように排出通路、好ましくは排出気体抑制手段を備え
た排出通路を用いる場合、排出通路から排出される発生
気体に、酸化性の気体を供給し、発生気体を燃焼させる
ことで、すすや異臭を飛躍的に低減できることを見出し
た。
The present inventor uses an oxidizing gas as the generated gas discharged from the discharge passage when the discharge passage, preferably the discharge passage provided with the discharge gas suppressing means, is used in the disappearance model casting method as described above. It was found that soot and offensive odors can be dramatically reduced by supplying and burning the generated gas.

【0016】酸化性気体の供給は、排出通路において行
うことが好ましい。更に、排出通路の排出気体抑制手段
の排出口よりも下流で酸化性気体を供給することが好ま
しい。具体的には、図1に示すように排出通路8に導入
管12を連通させ、ポンプ等(図示せず)で酸化性気体
を強制的に供給しても良いし、排出通路8に発生気体の
移動による吸引機構(図2)を設けて酸化性気体が自給
されるようにしても良い。
The oxidizing gas is preferably supplied in the discharge passage. Further, it is preferable to supply the oxidizing gas downstream of the exhaust port of the exhaust gas suppressing means of the exhaust passage. Specifically, as shown in FIG. 1, the introduction pipe 12 may be communicated with the discharge passage 8 and the oxidizing gas may be forcibly supplied by a pump or the like (not shown). The oxidative gas may be self-supplied by providing a suction mechanism (FIG. 2) for moving the gas.

【0017】酸化性気体としては、発生気体の燃焼を促
進するものであれば特に限定されることはないが、空
気、酸素ガス、又はこれらの混合物が好ましい。
The oxidizing gas is not particularly limited as long as it promotes combustion of the generated gas, but air, oxygen gas, or a mixture thereof is preferable.

【0018】通常、発生気体は高温であるため、酸化性
気体を供給することで、自然に燃焼するが、発生気体の
燃焼を補助するために、図1のように、種火11を設置
してもよい。
Normally, since the generated gas is at a high temperature, it naturally burns by supplying the oxidizing gas. However, in order to assist the combustion of the generated gas, a pilot fire 11 is installed as shown in FIG. May be.

【0019】模型は、合成樹脂発泡体からなるものが使
用される。合成樹脂発泡体としては、ポリスチレン、ポ
リメタクリル酸メチル、又はこれらの共重合体等の発泡
体が用いられる。
As the model, a model made of synthetic resin foam is used. As the synthetic resin foam, a foam such as polystyrene, polymethylmethacrylate, or a copolymer thereof is used.

【0020】模型には、貫通孔を形成させることが好ま
しい。特に、排出気体抑制手段を備えた排出通路8に連
通し、更に湯道10にも連通する貫通孔を形成すること
が好ましい。貫通孔は、模型作製時に形成してもよい
し、模型作製後、加熱した金属棒等、あるいはドリル、
レーザーにより形成してもよいし、カッターナイフ等で
切れ込みを入れた後、接着テープ等を模型表面に貼り付
けることで形成させてもよい。貫通孔の径、形成位置、
数等は、模型の形状や大きさにより決める。
It is preferable to form a through hole in the model. In particular, it is preferable to form a through hole that communicates with the discharge passage 8 provided with the exhaust gas suppressing means and further communicates with the runner 10. The through-holes may be formed at the time of model production, or after the model production, heated metal rods, drills,
It may be formed by laser, or may be formed by making an incision with a cutter knife or the like and then attaching an adhesive tape or the like to the model surface. Through hole diameter, formation position,
The number etc. is determined by the shape and size of the model.

【0021】尚、貫通孔の形成手段からの制限により、
貫通孔を湯道や排出通路に近い位置にしか形成出来ない
場合は、可能な範囲でこれらの近くに形成するのが好ま
しい。
Incidentally, due to the restriction from the means for forming the through hole,
When the through hole can be formed only at a position close to the runner or the discharge passage, it is preferable to form the through hole as close to these as possible.

【0022】模型には塗型剤により塗型層が形成され
る。本発明では塗型膜を通じての気体排出の必要が少な
いため、塗型剤としては、市販のもののほか、従来フル
モールド法では通常使用することのできなかった、粒径
10μm以下、好ましくは1〜10μmの細粒径の耐火
性骨材を含有するものをも使用することが可能となる。
これにより、塗型膜の表面平滑性が向上し、鋳物の表面
平滑性も向上する。従来、細粒径の耐火性骨材を含有す
る塗型剤を消失模型鋳造法に使用すると、塗型膜の通気
性が低下し、残渣欠陥やガス欠陥の増加が見られていた
が、本発明の消失模型鋳造法ではこのような問題は解消
される。また、2〜10mmという厚膜の塗型層を形成
して高強度の塗型膜とすることで、大粒径(1mm以
上)の耐火性粒子を用い、充填性を向上させることもで
きる。塗型剤中の耐火性骨材としては、例えば黒鉛、ジ
ルコン、マグネシア、アルミナ、シリカなどがある。ま
た塗型剤の粘結剤として、水系ではポリアクリル酸ナト
リウム、澱粉、メチルセルロース、ポリビニルアルコー
ル、アルギン酸ナトリウム、アラビアガム等の水溶性高
分子や酢酸ビニル系等の各種の樹脂のエマルションを、
またアルコール系ではアルコール可溶もしくは分散する
各種樹脂を添加するのが、塗型強度の点から好ましい。
添加量は耐火性骨材100重量部に対し、好ましくは
0.5〜10重量部である。
A mold coat layer is formed on the model with a mold coat agent. In the present invention, since it is less necessary to discharge gas through the mold-coating film, as the mold-coating agent, besides the commercially available mold-coating agent, a particle size of 10 μm or less, which cannot be usually used in the conventional full-molding method, preferably 1 to It is possible to use a material containing a refractory aggregate having a fine particle diameter of 10 μm.
As a result, the surface smoothness of the coating film is improved, and the surface smoothness of the casting is also improved. Conventionally, when a mold-coating agent containing a refractory aggregate with a fine particle diameter was used in the disappearance model casting method, the permeability of the mold-coating film was lowered, and residual defects and gas defects were observed to increase. The disappearance model casting method of the invention solves such a problem. Further, by forming a thick mold coating layer having a thickness of 2 to 10 mm to form a high-strength mold coating film, it is possible to use refractory particles having a large particle size (1 mm or more) to improve the filling property. Examples of the refractory aggregate in the coating agent include graphite, zircon, magnesia, alumina and silica. In addition, as a binder of a coating agent, in the case of an aqueous system, sodium polyacrylate, starch, methyl cellulose, polyvinyl alcohol, sodium alginate, water-soluble polymers such as gum arabic and emulsions of various resins such as vinyl acetate,
Further, in the case of an alcohol type, it is preferable to add various resins which are soluble or dispersible in alcohol from the viewpoint of coating strength.
The addition amount is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the refractory aggregate.

【0023】鋳造に用いる鋳物砂としては、石英質を主
成分とする珪砂の他、ジルコン砂、クロマイト砂、合成
セラミック砂等の新砂又は再生砂が使用される。鋳物砂
は粘結剤を添加せずに用いることもでき、その場合には
充填性が良好であるが、強度が必要な場合には、粘結剤
を添加し、硬化剤により硬化させるのが好ましい。
As the casting sand used for casting, in addition to silica sand containing silica as a main component, new sand or reclaimed sand such as zircon sand, chromite sand, and synthetic ceramic sand is used. Foundry sand can be used without adding a binder, and in that case the filling property is good, but when strength is required, it is recommended to add a binder and cure with a curing agent. preferable.

【0024】[0024]

【実施例】実施例1 120mm×80mm×250mmHの発泡模型1(発
泡ポリスチレン製)に、直径3mmの金属棒を加熱し、
図1のように貫通孔2を形成した。貫通孔2の直径は約
4mmであった。
Example 1 A foamed model 1 (made of expanded polystyrene) of 120 mm × 80 mm × 250 mmH was heated with a metal rod having a diameter of 3 mm,
The through hole 2 was formed as shown in FIG. The diameter of the through hole 2 was about 4 mm.

【0025】内径4cmの円筒形の陶管(長さ20c
m)に、エステル硬化性フェノール樹脂を含有する直径
5mmの球状アルミナ9を厚さ(h)10cmとなるよ
うに充填し硬化させ排出通路8とした。
A cylindrical ceramic tube with an inner diameter of 4 cm (length 20 c
m) was filled with spherical alumina 9 having a diameter of 5 mm and containing an ester-curable phenol resin so as to have a thickness (h) of 10 cm, and cured to form a discharge passage 8.

【0026】この排出通路8のアルミナ充填層の上部に
図1のように空気を送り込むための導入管12を設け、
鋳込み時にここから通気速度80L/分で空気を送り込
んだ。ただし、図1の種火11は設けなかった。
An inlet pipe 12 for feeding air is provided above the alumina-filled layer of the discharge passage 8 as shown in FIG.
At the time of casting, air was fed from here at a ventilation rate of 80 L / min. However, the pilot fire 11 of FIG. 1 was not provided.

【0027】貫通孔を形成した模型1表面に塗型剤3
(80ボーメ)を塗布し乾燥後、図1に準じて造型を行
った。鋳鉄の材質はFC−250、鋳込み温度は140
0℃であった。なお、塗型剤の組成は、シリカ粉(平均
粒径8μm)40重量%、鱗状黒鉛10重量%、酢酸ビ
ニル系バインダー5重量%、水40重量%、非イオン界
面活性剤0.5重量%、ベントナイト4.5重量%であ
った。
A coating agent 3 is applied to the surface of the model 1 in which the through holes are formed.
(80 Baume) was applied and dried, followed by molding according to FIG. Cast iron material is FC-250, casting temperature is 140
It was 0 ° C. The composition of the coating agent was 40% by weight of silica powder (average particle size 8 μm), 10% by weight of scaly graphite, 5% by weight of vinyl acetate binder, 40% by weight of water, and 0.5% by weight of nonionic surfactant. The bentonite was 4.5% by weight.

【0028】鋳込み時に排出通路から発生する、すすと
異臭について評価した結果を表1に示す。
Table 1 shows the results of evaluation of soot and offensive odor generated from the discharge passage during casting.

【0029】実施例2 空気を送り込むための導入管に代えて、図2のような吸
引機構を排出通路に設け、空気の導入を自給式とした以
外は実施例1と同様に鋳込みを行い、実施例1と同様の
評価を行った。その結果を表1に示す。
Example 2 Casting was performed in the same manner as in Example 1 except that a suction mechanism as shown in FIG. 2 was provided in the discharge passage in place of the introduction pipe for feeding air, and the introduction of air was made self-contained. The same evaluation as in Example 1 was performed. The results are shown in Table 1.

【0030】実施例3 空気の代わりに、純酸素ガスを20L/分導入した以外
は実施例1と同様に鋳込みを行い、実施例1と同様の評
価を行った。その結果を表1に示す。
Example 3 Casting was performed in the same manner as in Example 1 except that pure oxygen gas was introduced at 20 L / min instead of air, and the same evaluation as in Example 1 was performed. The results are shown in Table 1.

【0031】比較例1 空気を送り込まずに鋳込みを行った以外は実施例1と同
様に鋳込みを行い、実施例1と同様の評価を行った。そ
の結果を表1に示す。
Comparative Example 1 Casting was performed in the same manner as in Example 1 except that the casting was performed without sending in air, and the same evaluation as in Example 1 was performed. The results are shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の消失模型鋳造法の一例を示す概略図FIG. 1 is a schematic view showing an example of a vanishing model casting method of the present invention.

【図2】吸引機構が設けられた排出通路の一例を示す概
略図
FIG. 2 is a schematic view showing an example of a discharge passage provided with a suction mechanism.

【符号の説明】[Explanation of symbols]

1 模型 2 貫通孔 3 塗型剤 4 鋳枠 5 受口 6 湯口 7 鋳物砂 8 排気通路 9 耐火物粒子 10 湯道 11 種火 1 model 2 through holes 3 Coating agent 4 flasks 5 mouth 6 gate 7 Foundry sand 8 exhaust passage 9 Refractory particles 10 runways 11 kinds of fire

───────────────────────────────────────────────────── フロントページの続き (72)発明者 楠部 匡 東京都墨田区文花2−1−3 花王クエー カー株式会社内 (72)発明者 中川 武司 東京都墨田区文花2−1−3 花王クエー カー株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tadashi Kusube             2-1-3 Bunka, Sumida-ku, Tokyo Kao Quay             Car Co., Ltd. (72) Inventor Takeshi Nakagawa             2-1-3 Bunka, Sumida-ku, Tokyo Kao Quay             Car Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鋳物砂内に合成樹脂発泡体製模型を埋設
してなる鋳型に溶湯を注湯し、該溶湯によって前記模型
を消失させながら製品を鋳造する際に、前記該模型の消
失により発生した気体(以下、発生気体という)を、排
出通路を介して、前記鋳型の外部に放出させつつ鋳造を
行う消失模型鋳造法であって、発生気体に酸化性の気体
を供給し発生気体を燃焼させる消失模型鋳造法。
1. When a molten metal is poured into a mold in which a synthetic resin foam model is embedded in foundry sand, and the product is cast while the model is disappeared by the melt, the model disappears. A disappearance model casting method in which a generated gas (hereinafter, referred to as a generated gas) is discharged while being discharged to the outside of the mold through an exhaust passage, and an oxidizing gas is supplied to the generated gas to generate the generated gas. Disappearance model casting method to burn.
【請求項2】 排出通路が排出気体抑制手段を備えてい
る請求項1記載の消失模型鋳造法。
2. The vanishing model casting method according to claim 1, wherein the exhaust passage is provided with an exhaust gas suppressing means.
【請求項3】 酸化性の気体が、空気、酸素ガス又はこ
れらの混合物である請求項1又は2記載の消失模型鋳造
法。
3. The vanishing model casting method according to claim 1, wherein the oxidizing gas is air, oxygen gas or a mixture thereof.
【請求項4】 排出通路において酸化性の気体を供給す
る請求項1〜3の何れか1項記載の消失模型鋳造法。
4. The vanishing model casting method according to claim 1, wherein an oxidizing gas is supplied in the discharge passage.
【請求項5】 排出通路に吸引機構を設け、酸化性の気
体を供給する請求項1〜4の何れか1項記載の消失模型
鋳造法。
5. The vanishing model casting method according to claim 1, wherein a suction mechanism is provided in the discharge passage to supply an oxidizing gas.
JP2002141412A 2002-05-16 2002-05-16 Evaporative pattern casting method Pending JP2003334634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002141412A JP2003334634A (en) 2002-05-16 2002-05-16 Evaporative pattern casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002141412A JP2003334634A (en) 2002-05-16 2002-05-16 Evaporative pattern casting method

Publications (1)

Publication Number Publication Date
JP2003334634A true JP2003334634A (en) 2003-11-25

Family

ID=29702001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002141412A Pending JP2003334634A (en) 2002-05-16 2002-05-16 Evaporative pattern casting method

Country Status (1)

Country Link
JP (1) JP2003334634A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044190B2 (en) * 2000-11-24 2006-05-16 Kao Corporation Sublimation pattern casting method
CN107671242A (en) * 2016-08-01 2018-02-09 象山中鼎机械模具有限公司 A kind of smokeless pouring technology of gravity casting mold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044190B2 (en) * 2000-11-24 2006-05-16 Kao Corporation Sublimation pattern casting method
CN107671242A (en) * 2016-08-01 2018-02-09 象山中鼎机械模具有限公司 A kind of smokeless pouring technology of gravity casting mold

Similar Documents

Publication Publication Date Title
JP3691430B2 (en) Vanishing model casting method
JP4444831B2 (en) Temperature control method for gas permeable mold wall
US7044190B2 (en) Sublimation pattern casting method
JP4507209B2 (en) Full mold casting method and mold used in the casting method
JP2854814B2 (en) Vanishing model casting
JP5858382B2 (en) Mold, cast steel manufacturing method and mold manufacturing method
JP2003334634A (en) Evaporative pattern casting method
JP4941842B2 (en) Casting equipment
JP3325266B2 (en) Vanishing model casting
JP2003025044A (en) Lost pattern for casting
JP3871952B2 (en) Vanishing model casting method
JP3871966B2 (en) Vanishing model casting method
JP4514995B2 (en) Vanishing model casting method
JP2005046856A (en) Full mold casting method
RU2729229C1 (en) Method of making a ceramic mold for casting on molten patterns
JP2011110572A (en) Lost foam pattern casting method
JP4666259B2 (en) Vanishing model casting method
JP4407884B2 (en) Vanishing model casting filter
JPH05138290A (en) Production of expendable pattern casting mold and casting method
RU2725921C1 (en) Method of making ceramic shell mold
JPH11285780A (en) Method for casting cast product having hollow part and core used for the product
RU2015799C1 (en) Method for painting of working surfaces of microcellular mold with system of gas cooling and casting ejection
JPS62179849A (en) Casting method
JPS6224838A (en) Production of casting having excellent casting surface
JPH07275993A (en) Casting mold and method for adjusting component of molding sand and binder