JP4407884B2 - Vanishing model casting filter - Google Patents

Vanishing model casting filter Download PDF

Info

Publication number
JP4407884B2
JP4407884B2 JP2003100221A JP2003100221A JP4407884B2 JP 4407884 B2 JP4407884 B2 JP 4407884B2 JP 2003100221 A JP2003100221 A JP 2003100221A JP 2003100221 A JP2003100221 A JP 2003100221A JP 4407884 B2 JP4407884 B2 JP 4407884B2
Authority
JP
Japan
Prior art keywords
filter
fiber
model
casting
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003100221A
Other languages
Japanese (ja)
Other versions
JP2004306055A (en
Inventor
雅之 加藤
栄政 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2003100221A priority Critical patent/JP4407884B2/en
Publication of JP2004306055A publication Critical patent/JP2004306055A/en
Application granted granted Critical
Publication of JP4407884B2 publication Critical patent/JP4407884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Nonwoven Fabrics (AREA)
  • Woven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、消失模型鋳造法において消失模型の消失により発生した気体を排出する際に用いられる排ガス処理フィルター及び該フィルターを用いた消失模型鋳造法に関する。
【0002】
【従来の技術】
消失模型鋳造法はフルモールド法とも言われ、合成樹脂発泡体にて製作した模型を鋳物砂に埋設したまま鋳型として利用するプロセスである。このプロセスは鋳込まれた熔湯によって合成樹脂発泡体を熱分解させるものであるが、黒煙を含む多量の熱分解ガス(以下、排ガスということもある)が数秒から数分内の鋳込み中に発生し、異臭の発生等、環境を悪化させるとともに、その残渣により鋳物に表面欠陥が発生する欠点がある。
【0003】
消失模型鋳造時に発生する燃焼ガスを浄化する技術として、特許文献1には、排ガスを、排出気体浄化手段を備えた排出通路を介して鋳型の外部に放出させる消失模型鋳造法が開示され、排出気体浄化手段として、セラミックフィルタやメタリックフィルタを使用できることが記載されている。
【0004】
また、特許文献2には、押湯やガス揚りに、連続気孔を持つ多孔質体フィルターを設ける鋳型の製作法が開示されている。
【0005】
一方、鋳型内のガス層の圧力分布を調整して残渣欠陥の少ない鋳物を得るという観点から、特許文献3には、排ガスを、排出気体抑制手段を備えた排出通路を介して鋳型の外部に徐放させる消失模型鋳造法が開示され、排出気体抑制手段として、アルミナ等の耐火物粒子を使用できることが記載されている。
【0006】
【特許文献1】
特開2003−1377号公報
【特許文献2】
特開平5−138290号公報
【特許文献1】
特開2002−219552号公報
【0007】
【発明が解決しようとする課題】
しかし、消失模型鋳造法おける排ガス処理フィルターに要求される特性は、前記したように排ガスの徐放効果や、耐熱性、黒煙除去能、成形性等、多岐に渡り、更にこれらの機能が短時間の間のみ要求されることから、従来の手法では、特に発生黒煙除去能が未だ十分とは言い難い。さらに、この種のフィルターは、高温ガスにさらされ大量の黒煙を捕捉し、更に溶湯と接触したり、鋳型バラシ時に破損する可能性があり、使い捨て可能な安価なフィルターであることも望まれている。
【0008】
【課題を解決するための手段】
本発明は、無機繊維構造体を含有するろ過材を有する、消失模型鋳造法用フィルターに関する。
【0009】
また、本発明は、鋳物砂内に、合成樹脂発泡体製模型を埋設してなる鋳型に注湯し、注湯した該湯によって前記模型を消失させながら製品を鋳造する消失模型鋳造法であって、前記模型の消失により発生した気体を、無機繊維構造体を含有するろ過材を有するフィルターを備えた排出通路を介して、前記鋳型の外部に放出させつつ鋳造を行う消失模型鋳造法に関する。
【0010】
【発明の実施の形態】
本発明のフィルターのろ過材は、無機繊維構造体を含有するものであり、無機繊維としては、シリカ繊維、アルミナ繊維、シリカ−アルミナ繊維、ムライト繊維、炭素繊維、炭化ケイ素繊維、黒鉛繊維、ホウ素繊維、チタン酸カリウム繊維、チタン酸バリウム繊維、二酸化チタン繊維、サファイア繊維、ジルコニア繊維、スラグ・ロック繊維、石こう繊維、マグネシウムパイロボレート繊維、窒化ホウ素繊維、石綿、ガラス繊維、鉄などの金属繊維、また、フェノール樹脂系炭素繊維、PAN系炭素繊維等の炭素繊維も挙げられる。なお、成形性の観点より、他の従来公知の有機繊維を併用してもよいが、耐熱性の観点からは、有機繊維を含有しないことが好ましい。
【0011】
通常、排ガスは500〜1000℃の高温であるため、ろ過材は、耐熱性が高い、即ち融点若しくは軟化点が1000℃以上の材料を用いることが好ましい。この観点から、アルミナ繊維、シリカ−アルミナ繊維、ムライト繊維、炭素繊維が特に好ましい。
【0012】
これら無機繊維からなる構造体としては、無機繊維又は無機繊維の撚糸からなる織布もしくは編み物もしくは不織布、あるいは無機繊維をプレス加工したもの等が挙げられるが、目が細かく黒煙の除去効率が高いことから、好ましくは織布、不織布であり、強度の点から織布が最も好ましい。
【0013】
織布の場合、その目付、織り方は、所定の厚みを満たせばどの様なものでもよい。また、織物組織としては、平織物、綾織物、朱子織物、二重織物等の多重織物が挙げられる。形状を安定させ、黒煙の除去効率を高めるために、織物に接着剤を含浸、塗布して構造を固定化してもよい。特に高温時の接着性に優れるフェノール系、フラン系、エポキシ系等の有機バインダーやシリカゾル、アルミナゾル、エチルシリケート、水ガラス等の無機バインダーが用いられるのが好ましい。なお、織布の場合は、織ることで成形性が維持されるため、有機繊維を含有しないことが好ましい。
【0014】
また、不織布の製造方法としては、無機繊維のスラリーから抄造する湿式法や無機繊維を均一に吹き付けてシート状にする乾式法など、一般的に公知の方法でよい。なお、不織布においては、成型性及び形状保持性の観点より有機繊維及び/又は熱硬化性樹脂が配合されているのが好ましい。
【0015】
前記有機繊維としては、紙繊維、フィブリル化した合成繊維、再生繊維(例えば、レーヨン繊維)等の繊維が挙げられる。有機繊維は、これらを単独で又は二種以上を選択して用いることができる。そして、これらの中でも、特に、抄造により多様な形態に成形できるほか、脱水後と乾燥後に十分な強度が得られる点から紙繊維を用いることが好ましい。紙繊維としては、木材パルプ、コットンパルプ、リンターパルプ、竹やわらその他の非木材パルプが挙げられる。紙繊維は、これらのバージンパルプ若しくは古紙パルプを単独で又は二種以上を選択して用いることができる。紙繊維は、入手の容易性、環境保護、製造費用の低減等の点から、特に古紙パルプが好ましい。
【0016】
有機繊維は、成形性、表面平滑性、耐衝撃性を考慮すると、平均繊維長が0.3〜2.0mm、特に0.5〜1.5mmであるものが好ましい。また、有機繊維の配合割合は、不織布の場合、無機繊維100重量部に対して20〜150重量部、更に50〜100重量部であることが好ましい。
【0017】
また、前記熱硬化性樹脂としては、フェノール系樹脂、エポキシ系樹脂、フラン系樹脂等の熱硬化性樹脂が挙げられ、高温時の接着性の観点から、フェノール系樹脂を用いることが好ましい。フェノール系樹脂としては、ノボラックフェノール樹脂、レゾールタイプ等のフェノール樹脂、尿素、メラミン、エポキシ等で変性した変性フェノール樹脂等が挙げられるが、好ましくはフェノール樹脂である。これら熱硬化性樹脂は、単独で又は二以上を選択して用いることもでき、さらにはアクリル系樹脂やポリビニルアルコール系樹脂等と併用することもできる。
【0018】
また、熱硬化性樹脂の抄造時の配合割合は、不織布の場合、無機繊維100重量部に対して50〜200重量部、更に80〜150重量部であることが好ましい。
【0019】
繊維構造体を含有するろ過材の厚みは、フィルター内部における排ガスの冷却を抑制し、凝縮物や黒煙の発生を低減するために、1cm以下、更には5mm以下が好ましい。また、強度の点から0.005mm以上、更には0.01mm以上が好ましい。ここで、厚みとは、排ガスの通気部分における平均厚み(実質的に最も通気抵抗が大きい部分の厚み)であり、ろ過材に形成された貫通孔や切欠部などは含まない。この範囲の厚みを持つためには、無機繊維構造体は、織布、不織布が好ましい。特に織布は強度が高くより薄くできるため、好ましい。
【0020】
本発明のフィルターでは、強度を維持するために、ろ過材を適当な支持体で保持することが好ましい。その際、支持体は、フィルターより通気度が高いことが望ましく、また、排ガスの流路において下流に位置するのが好ましい。支持体の材質は耐熱性の高い物が好ましく、セラミックスや金属が好ましい。例えば、ハニカム形状や孔加工されたセラミックスや、パンチングメタル等が挙げられる。
【0021】
また、本発明のフィルターには、鋳込み時にろ過材に溶湯が接触するのを防止するため、溶湯防止手段を排ガスの流路において上流(例えば消失模型側)に、特にはろ過材に隣接して配置し、これを支持体で保持するのが好ましい。溶湯防止手段としては、ガスは容易に通過するが、溶湯が通過しにくい構造体であればよく、例えば、適度な通気性を有する多孔質ろ過材、具体的には直径0.5〜5mmの砂、アルミナボール、花崗岩、黒曜石等の耐火性骨材や鉄球等の無機粒子充填体や孔加工したセラミックス等が挙げられる。該溶湯防止手段は、特に有機繊維を含有するろ過材を用いる場合、使用することが好ましい。
【0022】
本発明のフィルターにおいて、ろ過材は、プリーツ状や筒状でもよいが、シート状が最も容易に製造でき、安価であるため好ましい。
【0023】
本発明のフィルターにおいて、ろ過材は、排ガスの流路に対してどの方向に設置されてもよいが、構造の簡易さ、強度から、流路に対して垂直である、すなわち、排ガスと接触するフィルターの最大面が流路と直交することが好ましい。
【0024】
また、ろ過材がシート状の場合、強度を向上させるため、複数重ねてもよいが、全体の厚みは1cm以下が好ましい。
【0025】
本発明において、ろ過材は、前記支持体と共に、適当な容器、例えば円筒状のフィルターケースに挿入されて鋳型に設置されることが好ましい。
【0026】
本発明のフィルターは、排ガスが鋳型外部に排出されるまでの間でろ過材が排ガスと接触する位置に設置される。特に、模型の消失により発生した気体を、排出通路を介して鋳型の外部に放出させつつ鋳造を行う消失模型鋳造法において、排出通路に設置されることが好ましい。本発明のフィルターは、公知の背圧制御手段(例えば粒子成型体等)と併用されても構わないが、本発明のフィルターが背圧制御手段を兼ねることが好ましい。
【0027】
設置するフィルターの面積、個数等は、鋳造される製品の大きさ、形状により適宜決めることができる。
【0028】
また、排出通路を複数設け、その一部又は全部に本発明のフィルターを設置してもよい。
【0029】
本発明のフィルターは、下記により算出される通気度Kが0.1〜100であることが好ましい。通気度は、黒煙低減効果の点から好ましくは10以下であり、通気性の点から好ましくは1以上である。
K=V×h/(p×A×t)
K:通気度
V:通気した気体の体積(cm3
h:ろ過材の厚み(cm)
p:圧力損失(kPa)(5000cm3/Sでの測定値)
A:有効面積(cm2)(有効面積=排ガスの通気部分の有効面積)
t:時間(秒)(圧力損失pの測定時の流量基準)
なお、圧力損失は、エアー流量5000cm3/Sでの測定値である。また、上記通気度は、ろ過材の種類、比率、織り方、バインダー量等により調整すればよい。
【0030】
本発明の消失模型鋳造法の例を図1に基づいて説明する。鋳型は、鋳枠4と鋳枠4の内部の鋳物砂7と鋳物砂7に埋設された模型1等からなり、模型1に連通した湯口5が図面左上方に設けられている。模型1は、発泡ポリスチレンによって製品と同一形状に形成されており、貫通孔2が設けられている。鋳物砂7は、5.5号珪砂であり、粘結剤を適量含有させてある。
【0031】
鋳型の形成は、まず、模型1の表面に耐火性に優れた塗型剤3を塗布し、その後充分乾燥させる。そして鋳枠4に湯道6を形成した後、模型1を固定し鋳物砂7で埋設し、湯口5を設置する。その際、貫通孔2の内部は空間にしておき、貫通孔2に連通する排出菅を設け排出通路8とする。
【0032】
排出通路8には、ろ過材9’を収容した本発明のフィルター9が設置される。また、排出通路8からの燃焼ガス排出量を調整する意味で、フィルター9の前後に、吸気手段、あるいは耐火物粒子及びその層、背圧弁等の排気抑制手段を設けても良い。排気抑制は、排出通路8を細く絞り込んだ形状にすることでも達成される。なお、フィルター9が、フィルターの安定化の点から鋳物砂中に設置される場合、溶湯がフィルター部まで達することがある。その場合、フィルターの発砲模型側に前記した溶湯防止手段を有することが好ましい。
【0033】
湯口から熔湯を注湯すると、湯は模型1を溶融させて、鋳型内に溜まる。一方、熔湯の熱により溶融、燃焼された模型1のガスの大部分が、貫通孔2を通り、排出通路8から効率よく排出されるのが確認される。これらのガスは本発明のフィルター9により、浄化されて大気に放出されることで、黒煙並びに悪臭が抑制され、且つフィルター9が背圧制御手段としての性能も有することから、鋳物表面欠陥も低減される。
【0034】
排出通路となる排出菅の径、設置位置、数等は、模型の形状や大きさにより決められる。排出通路は、直径30cm以下、好ましくは1〜10cmの円筒状の、好ましくはセラミック製の排気管により形成されるのが好ましい。その本数については所望の通気度を確保できるように適宜決定すればよいが、発泡体1千〜10万cm3、好ましくは1千〜1万cm3あたり、1本設けるのが好ましく、燃焼ガスの排出効率、黒煙等の除去効率の点から、少なくとも1つの排出通路は、模型に設けた貫通孔と連通するのが特に好ましい。
【0035】
模型は、合成樹脂発泡体からなるものが使用される。合成樹脂発泡体としては、ポリスチレン、ポリメタクリル酸メチル、又はこれらの共重合体等の発泡体が用いられる。
【0036】
模型は貫通孔を有するものが好ましく、湯口と連通する貫通孔、更に排出通路と連通する貫通孔を有するものが、鋳物品質が向上し、吹き戻しもなく安全であるため好ましい。貫通孔を設けた場合、特に排出通路からのガス発生量が多くなり、熱分解ガスの黒煙の発生量が多くなる傾向があるが、本発明のフィルターを用いることで、その黒煙がほとんど発生せず、環境、鋳物品質、安全の両立が可能となる。模型の貫通孔は、模型作成時に形成してもよいし、模型作製後、加熱した金属棒等により形成してもよい。貫通孔の径、形成位置、数等は、模型の形状や大きさにより決められる。
【0037】
鋳造に用いる鋳物砂としては、石英質を主成分とする珪砂の他、ジルコン砂、クロマイト砂、合成セラミック砂等の新砂又は再生砂が使用される。鋳物砂は粘結剤を添加せずに用いることもでき、その場合には充填性は良好であるが、強度が必要な場合には、粘結剤を添加し、硬化剤により硬化させるのが好ましい。
【0038】
消失模型鋳造法では、溶湯の熱により消失模型が分解するが、鋳型内は還元性雰囲気であるため、十分酸化されず、ガス状となったモノマーやオリゴマー、黒煙が混在した排ガスが発生する。本発明のフィルターではろ過材が無機繊維構造体を含有するため、目の細かいろ過材となり、黒煙の除去効果が大きいと推察される。また、排ガスの排出通路に本発明のフィルターを設けることで、背圧抵抗が最も高い部分で排ガスの勢いが抑えられ、黒煙が除去されるが、この部分が長い(フィルターが厚い)と、冷却により、排ガス成分の再凝縮が起き、高温では液状のタールのような状態になる。これも、黒煙の発生原因と考えられている。しかし、本発明のフィルターは、ろ過材を織布や不織布のような薄い形状とできるため、この部分での凝縮は少なく、スムーズに低分子量のガスが外部に排出され、空気と混合し燃焼するため、黒煙が発生しないものと考えられる。
【0039】
【発明の効果】
本発明によれば、消失模型鋳造法において、排ガス中の黒煙を低減し、且つ鋳物品質を向上できる排ガス処理フィルターが得られる。
【0040】
【実施例】
実施例1
シリカ−アルミナ織布(シリカ30重量%、アルミナ70重量%、ニチビ製、3025T、厚み0.3mm)を直径70mmの円形に裁断したものに、市販のレゾール樹脂(有効分15重量%)をディッピングし、200℃で乾燥硬化させろ過材を得た。これを、有効径60mmの陶管に挟み込み、図2に示す通気抵抗測定装置を用いて圧力損失を測定した。その結果、エアー流量5000cm3/Sの時の圧力損失が1.3kPaで、厚み、有効面積から、通気度Kは4.1であった。このろ過材と溶湯濾過用セラミックハニカムフィルター(京セラ製、内径60mm、高さ8mm、100セル)とを積層し、図3のように有効径60mmの陶管で挟み込んでフィルターとした。
【0041】
(鋳込み試験)
縦200mm×横200mm×高さ350mmの発泡模型1(発泡ポリスチレン製)に、直径3mmの金属棒を加熱し、図1のように貫通孔2を形成させた。貫通孔2の直径は約4mmであった。貫通孔を形成した模型1表面に、フルモールド用塗型剤PC−200(花王クエーカー(株)製)を70ボーメにしたものを塗布し乾燥後、該模型の貫通孔が排出通路8と連通するよう、図1のようにセットし、上記で得られたフィルター9を排出通路8に設けて造型を行った。鋳鉄の材質はFC−250、鋳込み温度は1400℃であった。鋳込み時の状況及び得られた鋳物の品質(鋳肌の状態)を評価した。結果を表1に示す。
【0042】
実施例2
シリカ−アルミナ織布を直径50mmに裁断し、レゾール樹脂をディッピングせず、陶管の有効径を40mmとした以外は実施例1と同様にしてフィルターを得た。実施例1と同様の評価を行った結果を表1に示す。
【0043】
実施例3
シリカ−アルミナ織布に代えてシリカ織布(シリカ分98重量%、ニチアス製シルテックスクロス1000)を用い、直径80mmに裁断し、陶管の有効径を70mmとした以外は実施例1と同様にしてフィルターを得た。実施例1と同様の評価を行った結果を表1に示す。
【0044】
実施例4
無機繊維としてPAN系炭素繊維(東レ(株)製トレカチョップ、繊維長3mm)3.5g、熱硬化性樹脂としてノボラックフェノール樹脂4.0g、バージンパルプ(NBKP)2.5gを水1.5リットルと混合し、凝集剤(ポリアクリルアミド系、三井サイテックA110)を加え、分散攪拌した。このスラリーを直径170mmのシート状に抄造し不織布を得、ヘキサミン0.6g(15重量%対ノボラック樹脂)を水20mLに溶かしたものを均一に散布し、ラボプレス(東洋精機製)を用いて、5kgf/m2、200℃にてプレス成型した。この不織布(厚み0.8mm)を直径70mmの円形に裁断した。以下、実施例1と同様にしてフィルターを得、実施例1と同様の評価を行った。結果を表1に示す。
【0045】
実施例5
シリカ−アルミナ織布に代えてガラス繊維織布(シリカ分55重量%、組成Eガラス、旭ファイバーガラス製ATG13100、軟化点846℃)を用いた以外は実施例1と同様にしてフィルターを得た。実施例1と同様の評価を行った結果を表1に示す。
【0046】
比較例1
フィルター9を設けない以外は、実施例1と同様に鋳込みを行い、同様の評価を行った。結果を表1に示す。
【0047】
比較例2
ろ過材として、粒径2mmのアルミナ粒子を内径40mm×長さ25mmの陶管内でアルカリフェノールバインダー(花王クエーカー(株)製、S651)を用いて成型したもの(ハニカムセラミックスは取り付けない)を用いた以外は実施例1と同様に鋳込みを行い、同様の評価を行った。結果を表1に示す。
【0048】
比較例3
ろ過材として、溶湯ろ過用セラミックフォームフィルター〔炭化ケイ素質、ポアサイズ10ppi(core per liner inch)、厚み20mm、外径60mm)を内径50mmの陶管に取り付けたもの(ハニカムセラミックスは取り付けない)を用いた以外は実施例1と同様に鋳込みを行い、同様の評価を行った。結果を表1に示す。
【0049】
比較例4
ろ過材として、有機繊維の織布であるポリエステルメッシュクロス(厚み0.3mm、目開き0.3mm)を用いた以外は実施例1と同様に鋳込みを行い、同様の評価を行った。結果を表1に示す。
【0050】
【表1】

Figure 0004407884
【0051】
実施例6
実施例4のろ過材に隣接して、φ2mmのアルミナボールからなる直径7cm、厚み1cmの溶湯防止手段を設け、当該溶湯防止手段が発泡模型1側に位置するように使用し、フィルターの位置を模型の直上とする以外は、実施例4と同様にして実施例1と同様の評価を行った。その結果、溶湯が吹き出すこともなく、黒煙の発生や鋳物の表面欠陥もほとんどなかった。
【図面の簡単な説明】
【図1】本発明のフィルターを用いた消失模型鋳造法の一例を示す概略図
【図2】実施例において圧力損失を測定する装置の概略図
【図3】本発明のフィルターの一例を示す断面概略図
【符号の説明】
1 模型
2 貫通孔
8 排出通路
9 本発明のフィルター
9’ろ過材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas treatment filter used when exhausting gas generated by disappearance of a disappearance model in the disappearance model casting method, and an disappearance model casting method using the filter.
[0002]
[Prior art]
The vanishing model casting method is also called a full mold method, and is a process in which a model made of a synthetic resin foam is used as a mold while being embedded in foundry sand. In this process, the synthetic resin foam is pyrolyzed by the cast molten metal, but a large amount of pyrolytic gas containing black smoke (hereinafter sometimes referred to as exhaust gas) is being cast within seconds to minutes. In addition to deteriorating the environment, such as the generation of a strange odor, there are disadvantages in that surface residues are generated in the casting due to the residue.
[0003]
As a technique for purifying combustion gas generated during disappearance model casting, Patent Document 1 discloses an disappearance model casting method in which exhaust gas is discharged to the outside of a mold through a discharge passage provided with exhaust gas purification means. It describes that a ceramic filter or a metallic filter can be used as the gas purification means.
[0004]
Further, Patent Document 2 discloses a method for producing a mold in which a porous filter having continuous pores is provided for a hot water supply or gas raising.
[0005]
On the other hand, from the viewpoint of obtaining a casting with less residual defects by adjusting the pressure distribution of the gas layer in the mold, Patent Document 3 discloses exhaust gas to the outside of the mold via a discharge passage provided with exhaust gas suppression means. Disclosed is a disappearing model casting method for releasing slowly, and describes that refractory particles such as alumina can be used as exhaust gas suppressing means.
[0006]
[Patent Document 1]
JP 2003-1377 A [Patent Document 2]
JP-A-5-138290 [Patent Document 1]
Japanese Patent Laid-Open No. 2002-219552
[Problems to be solved by the invention]
However, the characteristics required for the exhaust gas treatment filter in the disappearance model casting method are various as described above, such as the sustained release effect of the exhaust gas, heat resistance, black smoke removal ability, moldability, etc. Further, these functions are short. Since it is required only during the time, it is difficult to say that the black smoke removal ability is particularly sufficient with the conventional method. Furthermore, this type of filter is exposed to high-temperature gas, traps a large amount of black smoke, and may also come into contact with the molten metal or break when casting molds. ing.
[0008]
[Means for Solving the Problems]
The present invention relates to a filter for a disappearance model casting method having a filter medium containing an inorganic fiber structure.
[0009]
In addition, the present invention is a vanishing model casting method in which molten metal is poured into a mold in which a model made of a synthetic resin foam is embedded in foundry sand, and the product is cast while the model is disappeared by the poured hot water. Then, the present invention relates to a disappearing model casting method in which casting is performed while discharging gas generated by disappearance of the model to the outside of the mold through a discharge passage provided with a filter having a filter medium containing an inorganic fiber structure.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The filter material of the filter of the present invention contains an inorganic fiber structure. Examples of inorganic fibers include silica fiber, alumina fiber, silica-alumina fiber, mullite fiber, carbon fiber, silicon carbide fiber, graphite fiber, and boron. Fiber, potassium titanate fiber, barium titanate fiber, titanium dioxide fiber, sapphire fiber, zirconia fiber, slag rock fiber, gypsum fiber, magnesium pyroborate fiber, boron nitride fiber, asbestos, glass fiber, iron and other metal fibers, Moreover, carbon fibers, such as a phenol resin type carbon fiber and a PAN type carbon fiber, are also mentioned. In addition, from the viewpoint of moldability, other conventionally known organic fibers may be used in combination, but from the viewpoint of heat resistance, it is preferable not to contain organic fibers.
[0011]
Usually, since exhaust gas is high temperature of 500-1000 degreeC, it is preferable to use a material with high heat resistance, ie, melting | fusing point or a softening point, 1000 degreeC or more for a filter medium. From this viewpoint, alumina fiber, silica-alumina fiber, mullite fiber, and carbon fiber are particularly preferable.
[0012]
Examples of the structure made of these inorganic fibers include woven fabrics, knitted fabrics or nonwoven fabrics made of inorganic fibers or twisted yarns of inorganic fibers, or those obtained by pressing inorganic fibers. Therefore, a woven fabric and a non-woven fabric are preferable, and a woven fabric is most preferable from the viewpoint of strength.
[0013]
In the case of a woven fabric, the basis weight and weaving method may be any as long as a predetermined thickness is satisfied. In addition, examples of the fabric structure include multiple fabrics such as plain fabrics, twill fabrics, satin fabrics, and double fabrics. In order to stabilize the shape and increase the removal efficiency of black smoke, the structure may be fixed by impregnating and applying an adhesive to the fabric. In particular, it is preferable to use organic binders such as phenolic, furanic, and epoxy resins that are excellent in adhesiveness at high temperatures, and inorganic binders such as silica sol, alumina sol, ethyl silicate, and water glass. In addition, in the case of a woven fabric, it is preferable not to contain an organic fiber, since formability is maintained by weaving.
[0014]
Moreover, as a manufacturing method of a nonwoven fabric, generally well-known methods, such as the wet method of making paper from the slurry of an inorganic fiber, and the dry method of spraying an inorganic fiber uniformly and making it into a sheet form, may be sufficient. In addition, in a nonwoven fabric, it is preferable that the organic fiber and / or thermosetting resin are mix | blended from a viewpoint of moldability and shape retention property.
[0015]
Examples of the organic fibers include paper fibers, fibrillated synthetic fibers, and recycled fibers (for example, rayon fibers). These organic fibers can be used alone or in combination of two or more. Among these, it is particularly preferable to use paper fibers because they can be formed into various forms by papermaking and sufficient strength can be obtained after dehydration and drying. Examples of the paper fiber include wood pulp, cotton pulp, linter pulp, bamboo straw and other non-wood pulp. As the paper fiber, these virgin pulp or waste paper pulp can be used alone or in combination of two or more. The paper fiber is particularly preferably used paper pulp from the viewpoints of easy availability, environmental protection, and reduction of manufacturing costs.
[0016]
In view of moldability, surface smoothness, and impact resistance, the organic fiber preferably has an average fiber length of 0.3 to 2.0 mm, particularly 0.5 to 1.5 mm. Moreover, in the case of a nonwoven fabric, the blending ratio of the organic fibers is preferably 20 to 150 parts by weight, more preferably 50 to 100 parts by weight with respect to 100 parts by weight of the inorganic fibers.
[0017]
Moreover, as said thermosetting resin, thermosetting resins, such as a phenol resin, an epoxy resin, and a furan resin, are mentioned, It is preferable to use a phenol resin from an adhesive viewpoint at the time of high temperature. Examples of phenolic resins include novolac phenolic resins, phenolic resins such as resol type, modified phenolic resins modified with urea, melamine, epoxy, and the like, and phenolic resins are preferred. These thermosetting resins can be used alone or in combination of two or more, and can also be used in combination with an acrylic resin, a polyvinyl alcohol resin, or the like.
[0018]
Moreover, the blending ratio at the time of papermaking of the thermosetting resin is preferably 50 to 200 parts by weight and more preferably 80 to 150 parts by weight with respect to 100 parts by weight of the inorganic fiber in the case of the nonwoven fabric.
[0019]
The thickness of the filter medium containing the fiber structure is preferably 1 cm or less, and more preferably 5 mm or less in order to suppress cooling of exhaust gas inside the filter and reduce the generation of condensate and black smoke. Moreover, from the point of intensity | strength, 0.005 mm or more, Furthermore, 0.01 mm or more is preferable. Here, the thickness is an average thickness in a ventilation portion of exhaust gas (a thickness of a portion having the largest ventilation resistance) and does not include a through hole or a notch formed in the filter medium. In order to have a thickness in this range, the inorganic fiber structure is preferably a woven fabric or a non-woven fabric. In particular, a woven fabric is preferable because it has high strength and can be made thinner.
[0020]
In the filter of the present invention, it is preferable to hold the filter medium with an appropriate support in order to maintain the strength. At this time, the support preferably has a higher air permeability than the filter, and is preferably located downstream in the exhaust gas flow path. The material of the support is preferably a material having high heat resistance, and ceramics and metals are preferable. For example, a honeycomb shape, a hole-processed ceramic, a punching metal, and the like can be given.
[0021]
Further, in the filter of the present invention, in order to prevent the molten metal from coming into contact with the filter medium at the time of casting, the molten metal prevention means is disposed upstream (for example, on the disappearance model side) in the exhaust gas flow path, particularly adjacent to the filter medium. It is preferred to arrange and hold it on a support. The molten metal prevention means may be a structure that allows gas to pass through easily but does not allow the molten metal to pass through. For example, a porous filter medium having an appropriate air permeability, specifically having a diameter of 0.5 to 5 mm. Examples thereof include refractory aggregates such as sand, alumina balls, granite and obsidian, inorganic particle fillers such as iron balls, and perforated ceramics. The molten metal prevention means is preferably used particularly when a filter medium containing organic fibers is used.
[0022]
In the filter of the present invention, the filter medium may be a pleated shape or a cylindrical shape, but a sheet shape is preferable because it can be most easily manufactured and is inexpensive.
[0023]
In the filter of the present invention, the filter medium may be installed in any direction with respect to the exhaust gas flow path, but is perpendicular to the flow path, that is, in contact with the exhaust gas, because of the simplicity and strength of the structure. The maximum surface of the filter is preferably orthogonal to the flow path.
[0024]
Moreover, when a filter medium is a sheet form, in order to improve an intensity | strength, although you may pile up two or more, the whole thickness is preferable 1 cm or less.
[0025]
In the present invention, it is preferable that the filter medium is inserted into an appropriate container, for example, a cylindrical filter case, together with the support, and placed in a mold.
[0026]
The filter of the present invention is installed at a position where the filter medium comes into contact with the exhaust gas until the exhaust gas is discharged to the outside of the mold. In particular, in the disappearing model casting method in which casting is performed while discharging the gas generated by the disappearance of the model to the outside of the mold through the discharge passage, it is preferably installed in the discharge passage. The filter of the present invention may be used in combination with known back pressure control means (for example, a particle molded body), but it is preferable that the filter of the present invention also serves as the back pressure control means.
[0027]
The area and number of filters to be installed can be appropriately determined depending on the size and shape of the product to be cast.
[0028]
Further, a plurality of discharge passages may be provided, and the filter of the present invention may be installed in part or all of the discharge passages.
[0029]
In the filter of the present invention, the air permeability K calculated by the following is preferably 0.1 to 100. The air permeability is preferably 10 or less from the viewpoint of the effect of reducing black smoke, and is preferably 1 or more from the viewpoint of air permeability.
K = V × h / (p × A × t)
K: Air permeability V: Volume of gas vented (cm 3 )
h: thickness of filter medium (cm)
p: Pressure loss (kPa) (measured value at 5000 cm 3 / S)
A: Effective area (cm 2 ) (Effective area = Effective area of the ventilation part of exhaust gas)
t: Time (seconds) (flow rate reference when measuring pressure loss p)
The pressure loss is a measured value at an air flow rate of 5000 cm 3 / S. Moreover, what is necessary is just to adjust the said air permeability by the kind, ratio, weaving method, binder amount, etc. of a filter medium.
[0030]
An example of the vanishing model casting method of the present invention will be described with reference to FIG. The mold is composed of a casting frame 4, a casting sand 7 inside the casting frame 4, a model 1 embedded in the casting sand 7, and the like, and a gate 5 communicating with the model 1 is provided at the upper left of the drawing. The model 1 is formed in the same shape as the product by foamed polystyrene, and is provided with a through hole 2. The foundry sand 7 is No. 5.5 silica sand and contains an appropriate amount of binder.
[0031]
In forming the mold, first, a coating agent 3 having excellent fire resistance is applied to the surface of the model 1 and then sufficiently dried. And after forming the runner 6 in the casting frame 4, the model 1 is fixed, it embed | buries with the foundry sand 7, and the gate 5 is installed. At that time, the inside of the through hole 2 is left as a space, and a discharge rod communicating with the through hole 2 is provided as a discharge passage 8.
[0032]
The discharge passage 8 is provided with the filter 9 of the present invention containing a filter medium 9 ′. In order to adjust the amount of combustion gas discharged from the discharge passage 8, intake means or exhaust suppression means such as refractory particles and their layers and back pressure valves may be provided before and after the filter 9. Exhaust suppression is also achieved by making the discharge passage 8 into a narrowed shape. In addition, when the filter 9 is installed in casting sand from the point of stabilization of a filter, a molten metal may reach a filter part. In that case, it is preferable to have the above-described molten metal prevention means on the side of the firing model of the filter.
[0033]
When molten metal is poured from the gate, the hot water melts the model 1 and accumulates in the mold. On the other hand, it is confirmed that most of the gas of the model 1 melted and burned by the heat of the molten metal passes through the through hole 2 and is efficiently discharged from the discharge passage 8. Since these gases are purified by the filter 9 of the present invention and released into the atmosphere, black smoke and bad odor are suppressed, and the filter 9 also has a performance as a back pressure control means, so that there is no casting surface defect. Reduced.
[0034]
The diameter, installation position, number, etc., of the discharge rods serving as the discharge passages are determined by the shape and size of the model. The discharge passage is preferably formed by a cylindrical, preferably ceramic exhaust pipe having a diameter of 30 cm or less, preferably 1 to 10 cm. For its number may be suitably determined so as to ensure the desired air permeability, the foam 1 1000-100000 cm 3, preferably the per 1000 to 10,000 cm 3, it is preferably provided one combustion gas It is particularly preferable that at least one discharge passage communicates with a through hole provided in the model from the viewpoint of the discharge efficiency of black and the removal efficiency of black smoke and the like.
[0035]
A model made of a synthetic resin foam is used. As the synthetic resin foam, a foam such as polystyrene, polymethyl methacrylate, or a copolymer thereof is used.
[0036]
The model preferably has a through-hole, and a model having a through-hole communicating with the gate and a through-hole communicating with the discharge passage is preferable because it improves casting quality and is safe without blowing back. When the through hole is provided, the amount of gas generated from the discharge passage increases, and the amount of pyrolysis gas black smoke tends to increase. However, by using the filter of the present invention, the black smoke is hardly generated. It does not occur, and it is possible to achieve both environment, casting quality and safety. The through hole of the model may be formed at the time of creating the model, or may be formed by a heated metal rod or the like after the model is created. The diameter, formation position, number, etc. of the through holes are determined by the shape and size of the model.
[0037]
As foundry sand used for casting, new sand or recycled sand such as zircon sand, chromite sand, and synthetic ceramic sand is used in addition to quartz sand mainly composed of quartz. Casting sand can also be used without adding a binder, in which case the fillability is good, but if strength is required, a binder is added and cured with a curing agent. preferable.
[0038]
In the disappearance model casting method, the disappearance model is decomposed by the heat of the molten metal, but because the mold is in a reducing atmosphere, it is not sufficiently oxidized, and exhaust gas containing gaseous monomers, oligomers, and black smoke is generated. . In the filter of this invention, since a filter medium contains an inorganic fiber structure, it becomes a fine filter medium and it is guessed that the removal effect of black smoke is large. Moreover, by providing the filter of the present invention in the exhaust gas exhaust passage, the momentum of the exhaust gas is suppressed at the portion where the back pressure resistance is the highest, and black smoke is removed, but when this portion is long (the filter is thick), Cooling causes recondensation of exhaust gas components, and at a high temperature, it becomes like a liquid tar. This is also considered to be the cause of black smoke. However, in the filter of the present invention, since the filter medium can be made into a thin shape such as a woven fabric or a non-woven fabric, there is little condensation in this part, and low molecular weight gas is smoothly discharged to the outside, mixed with air and burned. Therefore, it is considered that black smoke does not occur.
[0039]
【The invention's effect】
According to the present invention, in the disappearance model casting method, an exhaust gas treatment filter that can reduce black smoke in exhaust gas and improve casting quality can be obtained.
[0040]
【Example】
Example 1
A silica-alumina woven fabric (silica 30% by weight, alumina 70% by weight, manufactured by Nichibi, 3025T, thickness 0.3mm) is cut into a circular shape with a diameter of 70mm, and a commercially available resol resin (effective content 15% by weight) is dipped. And dried and cured at 200 ° C. to obtain a filter medium. This was sandwiched between ceramic pipes having an effective diameter of 60 mm, and pressure loss was measured using a ventilation resistance measuring device shown in FIG. As a result, the pressure loss at an air flow rate of 5000 cm 3 / S was 1.3 kPa, and the air permeability K was 4.1 from the thickness and the effective area. This filter medium and a ceramic honeycomb filter for molten metal filtration (manufactured by Kyocera, inner diameter 60 mm, height 8 mm, 100 cells) were laminated and sandwiched between ceramic tubes having an effective diameter of 60 mm as shown in FIG.
[0041]
(Casting test)
A metal rod having a diameter of 3 mm was heated on a foam model 1 (made of polystyrene foam) having a length of 200 mm, a width of 200 mm, and a height of 350 mm to form a through hole 2 as shown in FIG. The diameter of the through hole 2 was about 4 mm. The model 1 with through holes formed on the surface is coated with 70-baume full mold coating agent PC-200 (manufactured by Kao Quaker Co., Ltd.) and dried, and then the through holes of the model communicate with the discharge passage 8. As shown in FIG. 1, the filter 9 obtained as described above was provided in the discharge passage 8 to perform molding. The cast iron material was FC-250, and the casting temperature was 1400 ° C. The situation at the time of casting and the quality of the obtained casting (state of casting surface) were evaluated. The results are shown in Table 1.
[0042]
Example 2
A filter was obtained in the same manner as in Example 1 except that the silica-alumina woven fabric was cut to a diameter of 50 mm, the resole resin was not dipped, and the effective diameter of the ceramic tube was 40 mm. The results of the same evaluation as in Example 1 are shown in Table 1.
[0043]
Example 3
Example 1 except that a silica woven fabric (silica content 98 wt%, Nichias Siltex cloth 1000) was used instead of the silica-alumina woven fabric, was cut into a diameter of 80 mm, and the effective diameter of the ceramic tube was set to 70 mm. A filter was obtained. The results of the same evaluation as in Example 1 are shown in Table 1.
[0044]
Example 4
PAN-based carbon fiber (Toray Co., Ltd., Torayca chop, fiber length 3 mm) 3.5 g as inorganic fiber, 4.0 g of novolak phenol resin as thermosetting resin, 2.5 g of virgin pulp (NBKP) 1.5 liters of water And a flocculant (polyacrylamide, Mitsui Cytec A110) was added and dispersed and stirred. This slurry is made into a sheet having a diameter of 170 mm to obtain a nonwoven fabric, and 0.6 g of hexamine (15 wt% vs. novolak resin) dissolved in 20 mL of water is uniformly sprayed, using a lab press (manufactured by Toyo Seiki), Press molding was performed at 5 kgf / m 2 and 200 ° C. This nonwoven fabric (thickness 0.8 mm) was cut into a circle having a diameter of 70 mm. Thereafter, a filter was obtained in the same manner as in Example 1, and the same evaluation as in Example 1 was performed. The results are shown in Table 1.
[0045]
Example 5
A filter was obtained in the same manner as in Example 1 except that a glass fiber woven fabric (silica content 55% by weight, composition E glass, Asahi Fiber Glass ATG13100, softening point 846 ° C.) was used instead of the silica-alumina woven fabric. . The results of the same evaluation as in Example 1 are shown in Table 1.
[0046]
Comparative Example 1
Except that the filter 9 was not provided, casting was performed in the same manner as in Example 1 and the same evaluation was performed. The results are shown in Table 1.
[0047]
Comparative Example 2
As a filtering material, alumina particles having a particle diameter of 2 mm were molded using an alkali phenol binder (S651, manufactured by Kao Quaker Co., Ltd.) in a ceramic tube having an inner diameter of 40 mm and a length of 25 mm (honeycomb ceramics were not attached). Except for the above, casting was performed in the same manner as in Example 1, and the same evaluation was performed. The results are shown in Table 1.
[0048]
Comparative Example 3
As a filter material, use a ceramic foam filter for molten metal filtration (silicon carbide, pore size 10ppi (core per liner inch), thickness 20mm, outer diameter 60mm) attached to a ceramic tube with an inner diameter of 50mm (honeycomb ceramics not attached) Except that, casting was performed in the same manner as in Example 1, and the same evaluation was performed. The results are shown in Table 1.
[0049]
Comparative Example 4
Casting was performed in the same manner as in Example 1 except that a polyester mesh cloth (thickness: 0.3 mm, mesh opening: 0.3 mm), which is a woven fabric of organic fibers, was used as a filter medium, and the same evaluation was performed. The results are shown in Table 1.
[0050]
[Table 1]
Figure 0004407884
[0051]
Example 6
Adjacent to the filter medium of Example 4, there is provided a melt prevention means having a diameter of 7 cm and a thickness of 1 cm made of φ2 mm alumina balls. The melt prevention means is located on the foamed model 1 side, and the position of the filter is set. The same evaluation as in Example 1 was performed in the same manner as in Example 4 except that it was just above the model. As a result, no molten metal was blown out, and there was almost no generation of black smoke or surface defects of the casting.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a vanishing model casting method using a filter of the present invention. FIG. 2 is a schematic view of an apparatus for measuring pressure loss in an embodiment. Schematic [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Model 2 Through-hole 8 Discharge passage 9 Filter 9 'filter material of this invention

Claims (6)

無機繊維構造体を含有し、通気度が0.1〜100であり、厚みが1cm以下であるろ過材と、該ろ過材を保持する、ハニカム形状のセラミックスフィルターからなる支持体とを有する、消失模型鋳造法用フィルター。Disappearing comprising a filter medium containing an inorganic fiber structure, having an air permeability of 0.1 to 100 and a thickness of 1 cm or less, and a support made of a honeycomb-shaped ceramic filter holding the filter medium Model casting filter. 無機繊維構造体が、無機繊維を含有する不織布又は織布である請求項1記載のフィルター。  The filter according to claim 1, wherein the inorganic fiber structure is a nonwoven fabric or a woven fabric containing inorganic fibers. 無機繊維が、炭素繊維、アルミナ繊維、シリカ−アルミナ繊維、ムライト繊維及びシリカ繊維から選ばれる1種以上である請求項1又は2記載のフィルター。  The filter according to claim 1 or 2, wherein the inorganic fiber is at least one selected from carbon fiber, alumina fiber, silica-alumina fiber, mullite fiber, and silica fiber. ろ過材がシート状である請求項1〜3の何れか1項記載のフィルター。  The filter according to any one of claims 1 to 3, wherein the filter medium is a sheet. 無機繊維構造体が、更に熱硬化性樹脂を含有する請求項1〜4の何れか1項記載のフィルター。The filter according to any one of claims 1 to 4, wherein the inorganic fiber structure further contains a thermosetting resin. 鋳物砂内に、合成樹脂発泡体製模型を埋設してなる鋳型に注湯し、注湯した該湯によって前記模型を消失させながら製品を鋳造する消失模型鋳造法であって、前記模型の消失により発生した気体を、無機繊維構造体を含有し、通気度が0.1〜100であり、厚みが1cm以下であるろ過材と、該ろ過材を保持する、ハニカム形状のセラミックスフィルターからなる支持体とを有するフィルターを備えた排出通路を介して、前記鋳型の外部に放出させつつ鋳造を行う消失模型鋳造法。A vanishing model casting method in which a cast product is cast while pouring a mold in which a model made of a synthetic resin foam is embedded in foundry sand, and the model is lost by the poured hot water. A filter medium containing an inorganic fiber structure, having an air permeability of 0.1 to 100 and a thickness of 1 cm or less, and a support made of a honeycomb-shaped ceramic filter that holds the filter medium A vanishing model casting method in which casting is performed while discharging to the outside of the mold through a discharge passage provided with a filter having a body .
JP2003100221A 2003-04-03 2003-04-03 Vanishing model casting filter Expired - Fee Related JP4407884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003100221A JP4407884B2 (en) 2003-04-03 2003-04-03 Vanishing model casting filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100221A JP4407884B2 (en) 2003-04-03 2003-04-03 Vanishing model casting filter

Publications (2)

Publication Number Publication Date
JP2004306055A JP2004306055A (en) 2004-11-04
JP4407884B2 true JP4407884B2 (en) 2010-02-03

Family

ID=33464416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100221A Expired - Fee Related JP4407884B2 (en) 2003-04-03 2003-04-03 Vanishing model casting filter

Country Status (1)

Country Link
JP (1) JP4407884B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106001418B (en) * 2016-07-21 2018-05-25 济南圣泉倍进陶瓷过滤器有限公司 A kind of casting exhaust apparatus and the device producing method
CN115635043A (en) * 2022-10-10 2023-01-24 西南医科大学附属医院 Automatic radiotherapy lead mold manufacturing device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004306055A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US8656982B2 (en) Part for removing impurities from a molten metal
US5073178A (en) Ceramic filter for a dust-containing gas and method for its production
US7963402B2 (en) Filter device for molten metal filtration and method for producing such filters
US5198006A (en) Ceramic filter for a dust-containing gas and method for its production
JP2009195991A (en) Member for producing casting
JP4471629B2 (en) Manufacturing method of parts for casting production
RU2288286C2 (en) Filtering unit for filtration of molten steel and method of manufacture of such unit
JP4226375B2 (en) Vanishing model casting filter
RU2380138C2 (en) Improved ceramic foam filter for improved filtering of melt cast iron
JP4407884B2 (en) Vanishing model casting filter
US7718114B2 (en) Ceramic foam filter for better filtration of molten iron
JP6838096B2 (en) Manufacturing method of runner protection tube for casting
JP4514995B2 (en) Vanishing model casting method
JP4862116B2 (en) Method for producing SiC-containing sheet
CN204918386U (en) Foam porcelain filter
JP3519937B2 (en) Molten metal holding pipe
JP2003334634A (en) Evaporative pattern casting method
CN116460253A (en) Structure for casting production
MX2008001958A (en) Improved ceramic foam filter for better filtration of molten iron
JPH10267558A (en) Method for executing monolithic refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees