JP3868566B2 - Melt forming method and apparatus used therefor - Google Patents

Melt forming method and apparatus used therefor Download PDF

Info

Publication number
JP3868566B2
JP3868566B2 JP35938896A JP35938896A JP3868566B2 JP 3868566 B2 JP3868566 B2 JP 3868566B2 JP 35938896 A JP35938896 A JP 35938896A JP 35938896 A JP35938896 A JP 35938896A JP 3868566 B2 JP3868566 B2 JP 3868566B2
Authority
JP
Japan
Prior art keywords
water
rotating plate
melt
water injection
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35938896A
Other languages
Japanese (ja)
Other versions
JPH10169963A (en
Inventor
健治 鈴木
啓一郎 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP35938896A priority Critical patent/JP3868566B2/en
Publication of JPH10169963A publication Critical patent/JPH10169963A/en
Application granted granted Critical
Publication of JP3868566B2 publication Critical patent/JP3868566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス工芸材、廃棄物等の融点が800℃以上の溶融物を、小塊状又は粒状の固形物に成形する方法及びこれに用いる装置(以下単に成形方法及び成形装置と略称する)に関する。
【0002】
【従来の技術】
従来の成形方法及び成形装置としては、例えば特開平6−47366号公報及び実開平3−83691号公報等記載のものがある。
これらはいずれも回転板上に溶融状態にある溶融物を落下させ、回転板内に冷却水を通して溶融物を間接冷却するものである。
【0003】
【発明が解決しようとする課題】
前記従来技術では、回転板の表面エネルギーと溶融物の表面エネルギーの差が小さく、成形物は薄く広く延ばされて薄板状の成形物が得られる。又、溶融物と回転板の剥離性が悪く、掻取り板が成形物の上に乗上げ掻取りが不十分になることがあった。また、成形物の粒度分布は回転数によってしか調節できず、その調節範囲も狭く、所望の粒度を得るのに困難性を伴っていた。さらに、溶融物の量が多くなると成形物が十分冷却されず、溶融物が大きな塊のまま排出され、後段の装置でトラブルを発生する等の課題を有していた。
これに対し、本発明では回転板自体の耐久性が高く、回転板と成形物の剥離性がよく、成形物の掻き取り能力も高く、得られる成形物は品質が安定し、粒度を任意の大きさに調整可能な簡易な溶融物の成形方法及び成形装置を得ることを目的とする。
【0004】
【課題を解決するための手段】
請求項1の発明は次のとおりである。
低速回転する回転板上に注水して水膜を形成させ、前記回転板上に溶融状態にある溶融物を落下させ、前記溶融物を実質的に遠心力を作用させることなく冷却しつつ粒状に成形し、回転板上への注水を溶融物の落下位置の前と後で可能とし、前記注水を選択調節することにより成形物の粒度調節をなすことを特徴とする溶融物の成形方法。
【0005】
請求項2の発明は次のとおりである。
溶融物の供給手段に連設され回転可能な傾斜面を有する回転板と、前記回転板上への溶融物落下点の上流側に前注水管を下流側に後注水管をそれぞれ前記回転板上に選択的に注水可能に配設され、低速回転する前記回転板上に注水して水膜を形成させ、前記回転板上への落下溶融物を実質的に遠心力を作用させることなく冷却しつつ粒状に成形可能としたことを特徴とする溶融物の成形装置。
請求項3の発明は次のとおりである。
前注水管及び後注水管による回転板上への注水は供給、停止及び水量について選択調整可能とされていることを特徴とする請求項に記載の溶融物の成形装置。
請求項4の発明は次のとおりである。
扇形切欠部を有する複数の回転板を上下に段差をつけ且つ一部が重なるように逐次配列しそれぞれ反対方向に回転駆動可能とし、前記各回転板について請求項2又は3に記載の溶融物の成形装置を用いたことを特徴とする溶融物の成形装置。
【0006】
【発明の実施の形態】
本発明の実施の形態を図面に基づき説明する。
図1は本発明の成形装置の一例の概略図であって、(a)全体縦断面図、(b)内部平面略図である。
図2は図1の成形装置の回転板上の成形状態を示す拡大説明図であって、(a)従来例、(b)及び(c)本発明の例である。
図1において、成形装置1の内部に中空の回転軸4の上端に固着された外周端部が下がり勾配の傾斜面をなす回転板2と、回転板2は最外周端部が下方に向かい冷却室3が設けられている。この回転板2には、回転軸4の下部に連結されたモータ5が図1(b)に示す時計回り方向Pに駆動回転し得る様に取り付けられている。
回転軸4内には上下を貫通する排水パイプ7が立設され、下端部の給水管6から回転軸4と排水パイプ7の間隙を介して回転板2内に形成した冷却室3に冷却水を供給して回転板2を冷却可能としている。又冷却室3で回転板2を冷却した冷却水は冷却室3の中心にある排水パイプ7を流下して下端開口部より排水される。この構造により回転板2は常時冷却水により冷却状態に保持される。
【0007】
さらに、回転板2外周には間隔をおいて水冷カバー12が囲繞され、該水冷カバー12上端に破線で示す溶炉Fが連結され、該溶融炉Fで溶融された溶融物Mが回転板2上に供給される様配置され、溶融物Mを回転板2の中心からずれた位置の落下範囲Maに落下可能とされている。水冷カバー12には、溶融物Mの落下範囲Maの上流側に前注水管8a、8b、下流側に後注水管9a、9bが設られ回転板2上に注水可能とされ、注水の供給、停止及び水量について選択調整可能とされている。
回転板2上には下流側に板状のスクレパー10が傾斜面を横切って配設され、該スクレパー10の下端末下方水冷カバー12に排出口11が連設されている。水冷カバー12下端の排出口11から外れた位置に、回転板2上から流下した水が排水可能な排水口13が設けられている。
【0008】
次に、図1、2により、本発明の成形装置1及び成形方法の作動について説明する。
回転板2をモータ5により通常0.1〜20rpmの範囲で低速回転に駆動すると同時に、上流側の前注水管8a、8bから回転板2上に注水し形成された水膜w上に、溶融炉Fで溶融された溶融物Mが供給される。後注水管9a、9bからの注水は、後述する通り所望の粒径に対応して選択決定する。
ここで、溶融物Mは回転板2に供給され延べ板状になり、回転板2上で冷却され成形物Sとなり、回転板2上で方向Pに回転冷却中に破砕が進行する。破砕された成形物Sは、下流側のスクレパー10により掻取られ、排出口11から排出される。また回転板2上から流下した水は排水口13より排出される。回転板2上での滞留時間は回転数により調整するが、滞留時間が極端に短いと冷却・破砕が進行しない間に排出されるため、この滞留時間通常15秒以上5分以内、好ましくは30秒以上3分以内に取られる。
【0009】
図2(a)、(b)及び(c)について、従来例と本発明との成形状態の相違を説明する。
図2(a)従来の成形装置で成形した場合であり、回転板2は冷却水で間接冷却されているものの、溶融物Mとの温度差が80℃以上と大きいため回転板2の表面温度が上昇し、回転板2表面が熱組成変化し、成形物Sと回転板2の剥離性が悪くなる。特に溶融物Mの温度が1400℃以上と高い場合、回転板2が熱変形する場合がある。又回転板2の表面における溶融物Mの接触角θは小さく、その結果溶融物Mの成形時の高さHは小さくなる。
図2(b)は図1の成形装置により成形した場合であり、注水管8又は9により注水された水により回転板2上に水膜wが形成され、溶融物Mと回転板2が直接接触することがなくなるため、回転板2表面の熱組成変化が防止でき、成形物Sの剥離性が向上し、水膜wの形成により溶融物Mからの伝熱量が低下し、回転板2の表面温度の上昇が低く、回転板2の熱変形も防止できる。又水膜wと溶融物Mとの温度及び物性値の違いから接触角θが大きく、その結果成形物Sの高さHを高くすることができ、粒度を大きくする効果が得られる。
図2(c)はさらに粒度を調整するために、後注水管9a及び/又は9bからも注水しその注水量を制御する。後注水管9aから注水した場合、成形物Sと回転板2の間に水膜wが形成されるため、剥離性がより向上するものの、粒度は後注水管9aから注水しない場合に比べ小さくなる。又後注水管9bは成形物Sに直接水がかかるよう配置し、後注水管9aからのみ注水した場合に比し更に粒度を小さくできる。この場合でも溶融物Mを直接水中に落として冷却した場合に比し、成形物Sの粒度を大きくする事が可能となる。すなわち、注水管8、9、9a、9bよりの注水調節を行うことにより成形物Sの粒度を幅広く調整することが可能である。
【0010】
【実施例】
組成(SiO 40.1%,Al 17.2%,CaO 21.4%,Fe 4.2%,P 6.9%,MgO 0.8%,NaO 0.2%,KO 1.1%,その他8.1%)である1400℃溶融物を図1に示す本発明の成形装置1に供給量150又は250Kg/Hr.で、回転数0.5又は1rpmの回転板2上に供給し、注水管8a、8b及び9bよりの注水調節を組合わせて行い、得られた成形物Sの粒度分布を測定し表1に示す。
【0011】
【表1】

Figure 0003868566
【0012】
表1から明らかなように、注水しない場合は、どの処理量も40mmオーバーが60%以上あり粒度が大きい。また剥離性も悪く、スクレーパーによる掻残しも見られた。これに対し、回転板2に前注水管8a、8bから注水した場合、どの処理量も粒度のピークは、25〜40mmと小さくなった。さらに後注水管9bより注水を追加した場合は、より粒度が小さくなり15〜25mmに粒度のピークが見られ、注水調節の顕著な効果が得られた。
【0013】
図3は、本発明の他の例で回転板を一対用いた成形装置の一部切断正面略図である。
図4は、図3のX・X線断面平面略図である。
以下の説明においては、前記図1について説明した構成要素と同様の要素は、同一符号を用い、詳細説明は省略する。又図1で使用した符号に加えて、一対の構成要素はそれぞれ上段側にc、下段側にd、単一の構成要素はそれぞれにcのサフィックスを付してある。
図3、4において、成形装置1cの内部には中空回転軸4c、4dに上下に段差をつけ且つ後述する溶融物Mの落下範囲Mcを中心として一部が重なるように固着された一対の回転板上段2c、下段2dに冷却室3c、3dが設けられている。回転軸4c、4dの下部に連結されたモータ5c、5dが図4に示す時計回り方向Q及び時計回り方向Rに駆動回転し得る様に取り付けられている。回転板2c、2dには、図4に示すように、扇形切欠部α、β(図の例では135度)が設けられているが、駆動回転中において落下範囲Mcには回転板2c、2dのいずれかが位置するようにされている。
回転軸4c、4dには上下を貫通する排水パイプ7c、7dが立設され、下端部の給水管6c、6dから複数の放射パイプ14c、14dを通して回転板2c、2d内に形成した冷却室3c、3dに冷却水を供給して回転板2c、2dを冷却可能としている。又冷却室3c、3dで回転板2c、2dを冷却した冷却水は排水パイプ7を流下して下端開口部より排水される。この構造により回転板2c、2dは常時冷却水により冷却状態に保持される。
【0014】
さらに、回転板2c、2d外周には間隔をおいて水冷カバー12c、12dが囲繞され、該水冷カバー12c、12d上端に破線で示す溶融炉Fが連結され、該溶融炉Fで溶融された溶融物Mが駆動回転位置によって回転板2c、2d上のいずれかに供給される様配置され、溶融物Mは回転板2c、2dの中心からずれた位置に落下可能とされている。水冷カバー12c上から溶融物Mの落下範囲Mcの上流側に前注水管8から8c、8c、8d、8d、下流側に後注水管9から9c、9c、9d、9dが延長して設けられ回転板2c、2d上に注水され、注水の供給、停止及び水量について選択調整可能とされている。回転板2c、2d上には下流側に板状のスクレパー10c、10dが傾斜面を横切って配設され、該スクレパー10c、10dの下端末下方にスクリュウー軸15、収集室16を介して排出口11cが連設されている。水冷カバー12c、12d下端の排出口11cから外れた位置に、回転板2c、2d上から流下した水が排水可能な排水口(図示省略)が設けられている。スクリュウー軸15はモータ5cによって駆動される。
【0015】
次に、図3、4により、本発明の成形装置1c及び成形方法の作動について説明する。
回転板2c、2dをモータ5c、5dにより前記の方向Q、Rに通常0.1〜20rpmの範囲で低速回転駆動し、上流側の前注水管8c、8c、8d、8dから回転板2c、2d上に注水し水膜が形成され、このいずれかの水膜上に溶融炉Fで溶融された溶融物Mが落下範囲Mcに供給される。後注水管9c、9c、9d、9dからの注水は、所望粒径に対応して選択調整する。ここで、溶融物Mは回転板2c、2d上に供給され延べ板状になり、冷却され成形物となり、回転板2c、2d上で回転冷却中に破砕が進行する。破砕された成形物は、下流側のスクレパー10c、10dにより掻取られ、スクリュウー軸15、収集室16を経て排出口11cから排出される。また回転板2c、2d上から流下した水は、排水口より排出される。
成形物の成形状態及び粒度調整は、図1、2で前記説明した成形装置1及び成形方法と同様である。
又成形装置1cは一対の回転板2c、2dを用いているが、これに限定されず3個以上の複数としてもよい。
【0016】
本発明の成形方法及び成形装置においては、回転板の表面エネルギーの状態を従来より小さくし、低速回転する回転板上に注水して水膜を形成させ、回転板上に溶融状態にある溶融物を落下させ、溶融物を実質的に遠心力を作用させることなく冷却しつつ粒状に成形することとした。
すなわち、例えば平板上に落下させた水銀球が丸くなるように、低速回転の回転板上に水膜を張り、その表面に溶融物を落下させることで水と溶融物の表面張力の違いから、水膜のない場合に比べ、成形物の厚みを厚くすることを可能とし、溶融物は延べ板状になるものの、回転板上での冷却と注水の量と場所をコントロールすることで、破砕を進行せしめ所望の粒度に調整が可能である。回転板は冷却室で間接的に水で冷却するものの、さらに注水して水膜を張ることにより回転板の変形を防ぎ、その保護を図ると共に、溶融物を冷却して破砕させまた回転板と成形物の剥離性を向上させるよう作用する。
注水箇所は、溶融物の落下範囲の前後に設け、粒度を小さくする場合は落下点の前後から注水し、水量も多くすることで溶融物がより急速に冷却し粒度を小さくすることができる。又粒度を大きくする場合は、注水を落下点の前のみとし水量を絞ることで成形物の粒度を大きくすることができる。
【0017】
【発明の効果】
・ 低速回転する回転板2上に注水して水膜wを形成させるので、溶融物Mに実質的に遠心力を作用させることなく、冷却しつつ、粒状に成形することができる。
・ 前注水管8a、8b及び後注水管9a、9bからの注水を選択調節することにより成形物Sの粒度を調節することができる。すなわち、後注水管9bから注水すると、注水しない場合に比べて、粒度は小さくなる。前注水管8a、8bからも注水を追加すると、粒度はさらに小さくなる。(段落番号[0012]・[表1] 参照
)。
・ 注水を行うと、回転板2の表面に水膜wが形成されるので、成形物Sの剥離性が向上する(段落番号[0009]・[表1]参照)。
【図面の簡単な説明】
【図1】本発明の成形装置の一例の概略図であって、(a)全体縦断面図、(b)内部平面略図である。
【図2】図1の成形装置の回転板上の成形状態を示す拡大説明図であって、(a)従来例、(b)及び(c)本発明の例である。
【図3】本発明の他の例で回転板を一対用いた成形装置の一部切断正面略図である。
【図4】図3のX・X線断面平面略図である。
【符号の説明】
1、1c 成形装置
2、2c、2d 回転板
3、3c、3d 冷却室
4、4c、4d 回転軸
5 5c、5d、5e モータ
6、6c、6d 給水管
7、7c、7d 排水パイプ
8、8a、8b、8c、8c、8d、8d 前注水管
9、9a、9b、9c、9c、9d、9d 後注水管
10、10c、10d スクレーパー
11、11c 排出口
12、12c、12d 水冷カバー
13 排水口
14c、14d 放射パイプ
15 スクリュウー軸
16 収集室
F 溶融炉
、H 高さ
M 溶融物
Ma、Mc 落下範囲
S 成形物
w 水膜
P、Q、R 回転方向
α、β 扇形切欠部
θ、θ 接触角[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a glass craft material, a waste material or the like having a melting point of 800 ° C. or more into a small lump or granular solid and an apparatus used therefor (hereinafter simply referred to as a forming method and a forming apparatus). About.
[0002]
[Prior art]
Examples of conventional molding methods and molding apparatuses include those described in JP-A-6-47366 and JP-A-3-83691.
In any of these methods, a melt in a molten state is dropped on a rotating plate, and the melt is indirectly cooled through cooling water in the rotating plate.
[0003]
[Problems to be solved by the invention]
In the prior art, the difference between the surface energy of the rotating plate and the surface energy of the melt is small, and the molded product is thinly and widely extended to obtain a thin plate-shaped molded product. In addition, the peelability between the melt and the rotating plate is poor, and the scraping plate rides on the molded product and may be insufficiently scraped. In addition, the particle size distribution of the molded product can be adjusted only by the number of rotations, the adjustment range is narrow, and it is difficult to obtain a desired particle size. Furthermore, when the amount of the melt increases, the molded product is not sufficiently cooled, and the melt is discharged as a large lump, which causes problems in the subsequent apparatus.
On the other hand, in the present invention, the rotating plate itself has high durability, the releasability between the rotating plate and the molded product is good, the scraping ability of the molded product is high, the quality of the obtained molded product is stable, and the particle size can be arbitrarily set. It is an object of the present invention to obtain a simple melt molding method and molding apparatus that can be adjusted in size.
[0004]
[Means for Solving the Problems]
The invention of claim 1 is as follows.
Water is poured onto a rotating plate that rotates at a low speed to form a water film, the molten material in a molten state is dropped onto the rotating plate, and the molten material is cooled to a granular shape while being substantially free of centrifugal force. A method for forming a melt, which comprises forming and allowing water injection onto a rotating plate before and after the dropping position of the melt, and adjusting the particle size of the formed product by selectively adjusting the water injection.
[0005]
The invention of claim 2 is as follows.
A rotating plate having a rotatable inclined surface connected to the melt supply means, and a pre-water injection pipe on the upstream side of the melt dropping point on the rotating plate and a post-water injection pipe on the rotating plate on the downstream side, respectively. Water is selectively poured onto the rotating plate rotating at a low speed to form a water film, and the falling melt on the rotating plate is cooled without substantially applying centrifugal force. A melt molding apparatus characterized in that it can be molded in a granular form.
The invention of claim 3 is as follows.
3. The melt molding apparatus according to claim 2 , wherein the water injection onto the rotating plate by the pre-injection pipe and the post-injection pipe can be selectively adjusted with respect to supply, stop, and amount of water.
The invention of claim 4 is as follows.
Sector notch a plurality of rotating plates vertically and partially stepped in is successively arranged so as to overlap a rotatably driven in opposite directions with, the melt according to claim 2 or 3 for the respective rotating plates A melt molding apparatus, characterized by using a molding apparatus.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
1A and 1B are schematic views of an example of a molding apparatus according to the present invention, in which FIG. 1A is an overall longitudinal sectional view, and FIG.
FIG. 2 is an enlarged explanatory view showing a molding state on the rotating plate of the molding apparatus of FIG. 1, and (a) a conventional example, (b) and (c) an example of the present invention.
In FIG. 1, a rotating plate 2 in which an outer peripheral end fixed to the upper end of a hollow rotating shaft 4 in the molding apparatus 1 forms an inclined surface with a downward slope, and the outer peripheral end of the rotating plate 2 is cooled downward. A chamber 3 is provided. This rotary plate 2, the motor 5 connected to a lower portion of the rotating shaft 4 is mounted so as be rotated in the counterclockwise direction P shown in FIG. 1 (b).
A drainage pipe 7 penetrating vertically is provided in the rotary shaft 4, and cooling water is supplied to a cooling chamber 3 formed in the rotary plate 2 from a water supply pipe 6 at the lower end through a gap between the rotary shaft 4 and the drainage pipe 7. Is supplied so that the rotating plate 2 can be cooled. The cooling water that has cooled the rotating plate 2 in the cooling chamber 3 flows down the drain pipe 7 at the center of the cooling chamber 3 and is drained from the lower end opening. With this structure, the rotating plate 2 is always kept in a cooled state by cooling water.
[0007]
Further, the rotating plate 2 circumference cooled cover 12 is surrounded at a distance, is connected the melting furnace F indicated by a broken line in the water-cooling cover 12 upper, melt M, which is melted in the melting furnace F is rotating plate The melt M is arranged so as to be supplied onto the fall plate 2 and can fall into the fall range Ma at a position shifted from the center of the rotating plate 2. The water-cooled cover 12, is capable water injection on the melt dropping range Ma upstream before the water injection tube 8a of M, 8b, downstream post injection tube 9a, 9b is set only is the rotating plate 2, the supply of water injection , Stop and water volume can be selected and adjusted.
On the rotary plate 2, a plate-shaped scraper 10 is disposed on the downstream side across the inclined surface, and a discharge port 11 is connected to the lower end lower water cooling cover 12 of the scraper 10. A drainage port 13 through which water that has flowed down from the rotating plate 2 can be drained is provided at a position off the discharge port 11 at the lower end of the water cooling cover 12.
[0008]
Next, the operation of the molding apparatus 1 and the molding method of the present invention will be described with reference to FIGS.
The rotating plate 2 is driven to rotate at a low speed within a range of usually 0.1 to 20 rpm by the motor 5, and at the same time, melted on the water film w formed by pouring water onto the rotating plate 2 from the upstream pre-water injection pipes 8a and 8b. A melt M melted in the furnace F is supplied. Water injection from the post-water injection pipes 9a and 9b is selected and determined according to a desired particle size as described later.
Here, the melt M is supplied to the rotating plate 2 to become a plate-like shape, is cooled on the rotating plate 2 to become a molded product S, and crushing proceeds in the direction P on the rotating plate 2 during rotational cooling. The crushed molded product S is scraped off by the downstream scraper 10 and discharged from the discharge port 11. Further, the water flowing down from the rotating plate 2 is discharged from the drain port 13. The residence time on the rotating plate 2 is adjusted by the number of revolutions. However, if the residence time is extremely short, the residence time is usually 15 seconds or more and within 5 minutes, preferably 30 because cooling and crushing do not proceed. It is taken within 3 minutes.
[0009]
2A, 2B, and 2C, the difference in molding state between the conventional example and the present invention will be described.
FIG. 2 (a) shows the case of molding with a conventional molding apparatus. Although the rotating plate 2 is indirectly cooled with cooling water, the surface temperature of the rotating plate 2 is large because the temperature difference with the melt M is as large as 80 ° C. or more. Rises, the surface of the rotating plate 2 changes its thermal composition, and the peelability between the molded product S and the rotating plate 2 becomes poor. In particular, when the temperature of the melt M is as high as 1400 ° C. or higher, the rotating plate 2 may be thermally deformed. Further, the contact angle θ 1 of the melt M on the surface of the rotating plate 2 is small, and as a result, the height H 1 when the melt M is formed becomes small.
FIG. 2B shows a case where the molding apparatus of FIG. 1 is used, and a water film w is formed on the rotating plate 2 by the water injected by the water injection pipe 8 or 9, and the melt M and the rotating plate 2 are directly formed. Since contact with the rotating plate 2 is eliminated, the change in the thermal composition of the surface of the rotating plate 2 can be prevented, the peelability of the molded product S is improved, and the amount of heat transfer from the melt M is reduced by the formation of the water film w. The rise in surface temperature is low, and thermal deformation of the rotating plate 2 can be prevented. Further, the contact angle θ 2 is large due to the difference in temperature and physical properties between the water film w and the melt M, and as a result, the height H 2 of the molded product S can be increased, and the effect of increasing the particle size can be obtained.
In FIG. 2C, in order to further adjust the particle size, water is injected from the post-injection pipes 9a and / or 9b and the amount of water injected is controlled. When water is injected from the post-injection pipe 9a, a water film w is formed between the molded product S and the rotating plate 2, so that the peelability is further improved, but the particle size is smaller than that in the case of not injecting water from the post-injection pipe 9a. . Further, the post-water injection pipe 9b is arranged so that water is directly applied to the molded product S, and the particle size can be further reduced as compared with the case where water is injected only from the post-water injection pipe 9a. Even in this case, the particle size of the molded product S can be increased as compared with the case where the melt M is dropped directly into water and cooled. That is, it is possible to widely adjust the particle size of the molded product S by adjusting the water injection from the water injection pipes 8, 9, 9a, 9b.
[0010]
【Example】
Composition (SiO 2 40.1%, Al 2 O 3 17.2%, CaO 21.4%, Fe 2 O 3 4.2%, P 2 O 5 6.9%, MgO 0.8%, Na 2 O 0.2%, K 2 O 1.1%, others 8.1%) 1400 ° C. melt is supplied to the molding apparatus 1 of the present invention shown in FIG. 1 at a feed rate of 150 or 250 kg / hr. Then, it is supplied onto the rotating plate 2 having a rotational speed of 0.5 or 1 rpm, and water injection adjustment from the water injection pipes 8a, 8b and 9b is performed in combination, and the particle size distribution of the obtained molded product S is measured and shown in Table 1. Show.
[0011]
[Table 1]
Figure 0003868566
[0012]
As can be seen from Table 1, when no water is poured, the amount of treatment is 40% over 60% or more and the particle size is large. Further, the peelability was poor, and scraping with a scraper was also observed. On the other hand, when water was poured into the rotating plate 2 from the pre-water injection pipes 8a and 8b, the particle size peak was as small as 25 to 40 mm for any treatment amount. Furthermore, when water injection was added from the post-injection pipe 9b, the particle size became smaller and a particle size peak was observed at 15 to 25 mm, and a remarkable effect of water injection control was obtained.
[0013]
FIG. 3 is a partially cut front schematic view of a molding apparatus using a pair of rotating plates in another example of the present invention.
4 is a schematic cross-sectional plan view taken along the line X and X in FIG.
In the following description, the same components as those described with reference to FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. Further, in addition to the reference numerals used in FIG. 1, the pair of components is suffixed with c on the upper side, d on the lower side, and c on each of the single components.
3 and 4, inside the molding apparatus 1c, a pair of rotations are provided so that the hollow rotary shafts 4c and 4d are stepped up and down and are partially overlapped with each other around a fall range Mc of the melt M described later. Cooling chambers 3c and 3d are provided on the upper plate 2c and the lower plate 2d. Rotary shaft 4c, a motor 5c, which is connected to the lower portion of 4d, 5d are mounted so as be rotated in the clockwise direction Q and counter-clockwise direction R shown in FIG. As shown in FIG. 4, the rotary plates 2 c and 2 d are provided with fan-shaped notches α and β (135 degrees in the illustrated example), but the rotary plate 2 c and 2 d are in the drop range Mc during driving rotation. One of them is supposed to be located.
Drain pipes 7c and 7d penetrating vertically are provided on the rotary shafts 4c and 4d, and the cooling chamber 3c formed in the rotary plates 2c and 2d from the water supply pipes 6c and 6d at the lower end through the plurality of radiation pipes 14c and 14d. The rotating plates 2c and 2d can be cooled by supplying cooling water to 3d. The cooling water that has cooled the rotating plates 2c and 2d in the cooling chambers 3c and 3d flows down the drain pipe 7 and is drained from the lower end opening. With this structure, the rotating plates 2c and 2d are always kept in a cooled state by cooling water.
[0014]
Further, water cooling covers 12c and 12d are surrounded on the outer periphery of the rotating plates 2c and 2d with a space therebetween, and a melting furnace F indicated by a broken line is connected to the upper ends of the water cooling covers 12c and 12d. The product M is arranged so as to be supplied to any one of the rotary plates 2c and 2d depending on the driving rotational position, and the melt M can be dropped to a position shifted from the center of the rotary plates 2c and 2d. From the water cooling cover 12c to the upstream side of the falling range Mc of the melt M, pre-water injection pipes 8 to 8c 1 , 8c 2 , 8d 1 , 8d 2 and downstream water injection pipes 9 to 9c 1 , 9c 2 , 9d 1 , 9d 2 is extended and water is poured onto the rotating plates 2c and 2d, and selection and adjustment can be made with respect to supply, stop, and amount of water injection. On the rotary plates 2c and 2d, plate-shaped scrapers 10c and 10d are disposed on the downstream side across the inclined surface, and the discharge ports are provided below the scrapers 10c and 10d via the screw shaft 15 and the collection chamber 16 below the terminal. 11c is continuously provided. The water cooling covers 12c and 12d are provided with drainage ports (not shown) through which the water that has flowed down from the rotary plates 2c and 2d can be drained from the discharge ports 11c at the lower ends. The screw shaft 15 is driven by a motor 5c.
[0015]
Next, the operation of the molding apparatus 1c and the molding method of the present invention will be described with reference to FIGS.
The rotary plates 2c and 2d are driven to rotate at a low speed in the range of usually 0.1 to 20 rpm in the directions Q and R by the motors 5c and 5d, and from the upstream pre-water injection pipes 8c 1 , 8c 2 , 8d 1 and 8d 2. Water is poured onto the rotating plates 2c and 2d to form a water film, and the melt M melted in the melting furnace F on any of the water films is supplied to the drop range Mc. Water injection from the post-water injection pipes 9c 1 , 9c 2 , 9d 1 , 9d 2 is selected and adjusted according to the desired particle size. Here, the melt M is supplied onto the rotating plates 2c and 2d to form a plate-like shape, cooled to become a molded product, and crushing proceeds during the rotation cooling on the rotating plates 2c and 2d. The crushed molded product is scraped off by the scrapers 10 c and 10 d on the downstream side, and is discharged from the discharge port 11 c through the screw shaft 15 and the collection chamber 16. Further, the water flowing down from the rotary plates 2c and 2d is discharged from the drain port.
The molding state and particle size adjustment of the molded product are the same as those of the molding apparatus 1 and the molding method described above with reference to FIGS.
Moreover, although the shaping | molding apparatus 1c uses a pair of rotating plate 2c, 2d, it is not limited to this, It is good also as three or more.
[0016]
In the molding method and molding apparatus of the present invention, the surface energy state of the rotating plate is made smaller than before, water is poured onto the rotating plate that rotates at a low speed to form a water film, and the molten material is in a molten state on the rotating plate. The molten material was dropped into a granular shape while cooling without substantially applying centrifugal force.
That is, for example, from a difference in the surface tension of water and melt by dropping a melt on the surface of a low-speed rotating plate so that the mercury sphere dropped on a flat plate becomes round, Compared to the case without a water film, it is possible to increase the thickness of the molded product, and the melt becomes a plate-like shape, but by controlling the amount and location of cooling and water injection on the rotating plate, crushing can be achieved. It can be advanced and adjusted to the desired particle size. Although the rotating plate is indirectly cooled with water in the cooling chamber, the rotating plate is further poured to form a water film to prevent the rotating plate from being deformed and protected, and the melt is cooled and crushed. It acts to improve the peelability of the molded product.
Water injection points are provided before and after the fall range of the melt, and when the particle size is reduced, water is injected from before and after the drop point, and the amount of water is increased so that the melt can be cooled more rapidly and the particle size can be reduced. When the particle size is increased, the particle size of the molded product can be increased by reducing the amount of water only when the water is poured before the drop point.
[0017]
【The invention's effect】
-Water is poured onto the rotating plate 2 that rotates at a low speed to form the water film w, so that the melt M can be formed into a granular shape while cooling without substantially applying centrifugal force.
The particle size of the molded product S can be adjusted by selectively adjusting the water injection from the pre-water injection pipes 8a and 8b and the post-water injection pipes 9a and 9b. That is, when water is injected from the post-injection pipe 9b, the particle size becomes smaller than when water is not injected. When water is added also from the pre-water injection pipes 8a and 8b, the particle size is further reduced. (See paragraph numbers [0012] and [Table 1]).
-When water is injected, a water film w is formed on the surface of the rotating plate 2, so that the peelability of the molded product S is improved (see paragraphs [0009] and [Table 1]).
[Brief description of the drawings]
1A and 1B are schematic views of an example of a molding apparatus according to the present invention, in which FIG. 1A is an overall longitudinal sectional view, and FIG.
2 is an enlarged explanatory view showing a molding state on a rotating plate of the molding apparatus of FIG. 1, (a) a conventional example, (b) and (c) an example of the present invention.
FIG. 3 is a partially cut front schematic view of a forming apparatus using a pair of rotating plates in another example of the present invention.
4 is a schematic cross-sectional plan view taken along the line X—X in FIG. 3;
[Explanation of symbols]
1, 1c Molding device 2, 2c, 2d Rotating plate 3, 3c, 3d Cooling chamber 4, 4c, 4d Rotating shaft 5 5c, 5d, 5e Motor 6, 6c, 6d Water supply pipe 7, 7c, 7d Drain pipe 8, 8a 8b, 8c 1 , 8c 2 , 8d 1 , 8d 2 pre-water injection pipes 9, 9a, 9b, 9c 1 , 9c 2 , 9d 1 , 9d 2 post-water injection pipes 10, 10c, 10d scraper 11, 11c 12c, 12d water cooling cover 13 drainage port 14c, 14d radiation pipe 15 Sukuryuu shaft 16 collection chamber F melting furnace H 1, H 2 height M melt Ma, Mc drop range S moldings w water film P, Q, R rotational direction α, β Fan-shaped notch θ 1 , θ 2 Contact angle

Claims (4)

低速回転する回転板上に注水して水膜を形成させ、前記回転板上に溶融状態にある溶融物を落下させ、前記溶融物を実質的に遠心力を作用させることなく冷却しつつ粒状に成形し、回転板上への注水を溶融物の落下位置の前と後で可能とし、前記注水を選択調節することにより成形物の粒度調節をなすことを特徴とする溶融物の成形方法。 Water is poured onto a rotating plate that rotates at a low speed to form a water film, the molten material in a molten state is dropped onto the rotating plate, and the molten material is cooled to a granular shape while being substantially free of centrifugal force. A method for forming a melt, which comprises forming and allowing water injection onto a rotating plate before and after the dropping position of the melt, and adjusting the particle size of the formed product by selectively adjusting the water injection . 溶融物の供給手段に連設され回転可能な傾斜面を有する回転板と、前記回転板上への溶融物落下点の上流側に前注水管を下流側に後注水管をそれぞれ前記回転板上に選択的に注水可能に配設され、低速回転する前記回転板上に注水して水膜を形成させ、前記回転板上への落下溶融物を実質的に遠心力を作用させることなく冷却しつつ粒状に成形可能としたことを特徴とする溶融物の成形装置。A rotating plate having a rotatable inclined surface connected to the melt supply means, and a pre-water injection pipe on the upstream side of the melt dropping point on the rotating plate and a post-water injection pipe on the rotating plate on the downstream side, respectively. Water is selectively poured onto the rotating plate rotating at a low speed to form a water film, and the falling melt on the rotating plate is cooled without substantially applying centrifugal force. A melt molding apparatus characterized in that it can be molded in a granular form. 前注水管及び後注水管による回転板上への注水は供給、停止及び水量について選択調整可能とされていることを特徴とする請求項に記載の溶融物の成形装置。 3. The melt molding apparatus according to claim 2 , wherein the water injection onto the rotating plate by the pre-injection pipe and the post-injection pipe can be selectively adjusted with respect to supply, stop, and amount of water. 扇形切欠部を有する複数の回転板を上下に段差をつけ且つ一部が重なるように逐次配列しそれぞれ反対方向に回転駆動可能とし、前記各回転板について請求項2又は3に記載の溶融物の成形装置を用いたことを特徴とする溶融物の成形装置。Sector notch a plurality of rotating plates vertically and partially stepped in is successively arranged so as to overlap a rotatably driven in opposite directions with, the melt according to claim 2 or 3 for the respective rotating plates A melt molding apparatus, characterized by using a molding apparatus.
JP35938896A 1996-12-11 1996-12-11 Melt forming method and apparatus used therefor Expired - Fee Related JP3868566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35938896A JP3868566B2 (en) 1996-12-11 1996-12-11 Melt forming method and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35938896A JP3868566B2 (en) 1996-12-11 1996-12-11 Melt forming method and apparatus used therefor

Publications (2)

Publication Number Publication Date
JPH10169963A JPH10169963A (en) 1998-06-26
JP3868566B2 true JP3868566B2 (en) 2007-01-17

Family

ID=18464255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35938896A Expired - Fee Related JP3868566B2 (en) 1996-12-11 1996-12-11 Melt forming method and apparatus used therefor

Country Status (1)

Country Link
JP (1) JP3868566B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048301B (en) * 2014-05-28 2016-05-11 安徽龙泉硅材料有限公司 A kind of discarded cinder scavenge unit

Also Published As

Publication number Publication date
JPH10169963A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
WO2001034326A1 (en) Thin metal strip producing device
JP3868566B2 (en) Melt forming method and apparatus used therefor
JP2000212607A (en) Manufacture of tip for thixo-molding machine, and device therefor
JP4003271B2 (en) Silicon unidirectional solidification equipment
JP3808930B2 (en) Melt forming method and apparatus
JP2003342047A (en) Granulation method and apparatus for fused slag
JP4606573B2 (en) Method for cooling and solidifying molten thermotropic liquid crystal polymer, and solid-state polymerization method for thermotropic liquid crystal polymer
JPH09155513A (en) Strip casting tundish
JPS63126705A (en) Granulation device
JP2005279663A (en) Apparatus for casting silicon
JPH0142339Y2 (en)
SU940828A1 (en) Apparatus for granulating high viscous melts
JPH03174951A (en) Continuous casting method
JP2022039742A (en) Manufacturing method and manufacturing device for casting materials
JP2001096342A (en) Rotary quickly quenching casting device
SU897272A1 (en) Apparatus for granulating silicate melts
JP2004154835A (en) Amorphous alloy plate, its manufacturing method, and its manufacturing apparatus
KR20070108600A (en) Method and device for manufacturing al alloy material included high si
JPS55126528A (en) Production of silicon thin strip
RU2186754C2 (en) Method of crystallizing explosive composition melts with solid inclusions, and apparatus for implementation thereof
JPS63749Y2 (en)
SU1731748A1 (en) Device for granulation of melted slag
JPS5854918B2 (en) Manufacturing method and device for molten flux for welding
JPS583984B2 (en) Method for refining molten slag
JPS59182216A (en) Dish for producing polycrystal silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees