JP3868529B2 - Insulating heat insulating sleeve, bearing structure using the same, fixing device - Google Patents

Insulating heat insulating sleeve, bearing structure using the same, fixing device Download PDF

Info

Publication number
JP3868529B2
JP3868529B2 JP35372695A JP35372695A JP3868529B2 JP 3868529 B2 JP3868529 B2 JP 3868529B2 JP 35372695 A JP35372695 A JP 35372695A JP 35372695 A JP35372695 A JP 35372695A JP 3868529 B2 JP3868529 B2 JP 3868529B2
Authority
JP
Japan
Prior art keywords
insulating
heat
sleeve
insulating heat
insulating sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35372695A
Other languages
Japanese (ja)
Other versions
JPH09184513A (en
Inventor
恵一 後藤
和夫 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP35372695A priority Critical patent/JP3868529B2/en
Publication of JPH09184513A publication Critical patent/JPH09184513A/en
Application granted granted Critical
Publication of JP3868529B2 publication Critical patent/JP3868529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/073Fixing them on the shaft or housing with interposition of an element between shaft and inner race ring

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fixing For Electrophotography (AREA)
  • Sliding-Contact Bearings (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電気絶縁性および断熱性を要求される箇所に使用される絶縁断熱スリーブおよびこれを用いた高温用軸受構造、並びにその軸受構造を採用した複写機、レーザビームプリンタ等の電子写真装置における加熱定着装置に関する。
【0002】
【従来の技術】
一般に、電子写真装置は、光学装置で形成された静電潜像にトナーを付着させ、このトナー像をコピー用紙に転写し、さらに定着させるものであり、前記定着工程では、ヒータを内蔵した定着ローラと加圧ローラとの間にトナー像を通過させる。これにより、トナー像からなる未転写像がコピー用紙上に加熱融着によって転写され、定着される。
図7は、このような電子写真装置における加熱定着装置の軸受構造の一例を示す。定着ローラ51は軸心部に線状のヒータ52を内蔵しており、両端で軸受53を介してハウジング54に回転自在に支持される。軸受53とローラ51の軸部51aとの間に、樹脂等からなる放熱防止用のスリーブ55が介在させてある。スリーブ55は、スリット56を形成して周方向一つ割りとし、熱膨張,熱収縮による定着ローラ51のがたつきを防止している。
放熱防止用のスリーブ55を介在させるのは、定着ローラ51の加熱時に、両端部の軸受53から熱が逃げて定着ローラ51の軸方向に沿う温度分布が不均一になる現象を防止するためである。
【0003】
【発明が解決しようとする課題】
未転写像が通過する際に、一部のトナー57が定着ローラ51に付着し、転写像の画質を低下させることがある。この残トナー57の除去方法として、クリーナローラ(図示せず)を接触させる方法があるが、クリーナローラは寿命が短く、かつコスト高になる。このため、定着ローラ51に付着した帯電残トナー57を電気的に取り除く方法が採られる。この場合に、定着ローラ51に帯電した残トナー57と同電極の高電圧を印加することになる。
しかし、このような高電圧を印加すると、軸受53と定着ローラ51の間で放電を生じる問題がある。軸受53と定着ローラ51の軸部51aとの間には、樹脂製の放熱防止用スリーブ55が介在しているため、一応の絶縁性は得られるが、このスリーブ55には前記のように熱伸縮を吸収するためのスリット56が設けられている。このため、定着ローラ51に印加された高電圧がスリット56内で波線aで示すように軸受53の内輪53aに放電され、これにより残トナー57の除去効率が低下する。
【0004】
この発明は、上記の課題を解消するものであり、断熱性を確保すると共に、全周にわたって放電が防止でき、かつ熱伸縮を吸収して径変化を防止できる絶縁断熱スリーブおよび高温用軸受構造を提供することを目的とする。
この発明の他の目的は、放電の問題を生じることなく、高電圧の印加により残トナーの除去が効果的に行え、低コストで高画質の転写が行える加熱定着装置を提供することである。
【0005】
【課題を解決するための手段】
この発明の絶縁断熱スリーブは、軸を転がり軸受により回転自在に支持する高温用軸受構造において、前記転がり軸受と前記軸との間に介在させる絶縁断熱スリーブであって、電気絶縁性の断熱材料からなり、円周方向の一箇所で分割されて分割部両側の合い口間に円周方向に間隔を持つスリットを設け、かつ両側の合い口を互いに半径方向に重なる形状とする。例えば、この絶縁断熱スリーブは、ヒータを内蔵した定着ローラを両端の軸部で転がり軸受により回転自在に支持する加熱定着装置において、前記転がり軸受と前記軸部との間に介在させる。
前記電気絶縁性の耐熱材料は、耐熱性で低熱伝導率の合成樹脂を母材とし、前記樹脂中に絶縁材を繊維または粒子状で分散状態に含有させたものであっても良い。また、前記電気絶縁性の耐熱材料はセラミックス系材料としても良い。
この発明の高温用軸受構造は、軸を転がり軸受により回転自在に支持する高温用軸受構造において、転がり軸受と軸との間に、前記構成の絶縁断熱スリーブを介在させたものである。
この発明の加熱定着装置は、ヒータを内蔵した定着ローラを端部で転がり軸受により回転自在に支持する加熱定着装置において、前記転がり軸受と軸との間に、前記構成の絶縁断熱スリーブを介在させたものである。
【0006】
この構成の絶縁断熱スリーブによると、このスリーブの内径側と外径側に設けられる部品の間で、スリーブの材質の持つ断熱性および電気絶縁性により、熱的な遮断および電気的な遮断が行われる。前記スリットが設けられていることにより、スリーブの熱膨張や熱収縮が生じても、スリット間隔でその伸縮を吸収し、スリーブに無理な応力が発生したり、スリーブとその内外の部品の間で隙間が発生してガタツキを生じることがない。スリットが設けられていても、両側の合い口が互いに半径方向に重なっているため、スリット部分で前記内径側部品と外径側部品が直接に対面することがなく、放電距離が長くなる。そのため、内外の部品の間で高電圧が印加されても、放電が生じ難い。
内径側の部品が定着ローラの軸であり、外径側の部品が軸受およびその軸受を取付けたハウジングである場合は、定着ローラとハウジングの間が熱的および電気的に遮断されることになり、また絶縁断熱スリーブの熱膨張,熱伸縮がスリットで吸収され、スリーブの変形によるガタツキが防止される。また、定着ローラに残トナーと同電極の高電圧を印加しても、絶縁断熱スリーブのスリット部で軸受側へ放電することがなくなり、残トナーの除去効率が高くなる。したがって、低コストで高画質の複写等ができる。
【0007】
【発明の実施の形態】
この発明の一実施形態を図1と共に説明する。図1(A)は複写機等の加熱定着装置の破断正面図である。定着ローラ1は、線状ないし棒状のヒータ2を軸心部に内蔵した軟質の金属製のものであり、両端に小径の軸部1a,1aが突出した円筒状に形成されている。定着ローラ1の材質は、例えば鉄,アルミニウム,またはアルミニウム合金(A5056、A6063等)等の熱伝導性に優れた金属材料であり、旋削や研磨等で表面が仕上げられている。定着ローラ1の表面にはフッ素樹脂やシリコンゴム等の離型性材料でコーティングしてオフセット防止されるようにしても良い。定着ローラ1は、両端の軸部1a,1aで深溝玉軸受からなる転がり軸受3,3を介してハウジング4に回転自在に支持され、一端における転がり軸受3よりも端部側に、回転動力を受けるギヤ5が設けられている。定着ローラ1に接して定着ローラ1と平行に加圧ローラ6が設けられ、両端で軸受7,7を介して前記ハウジング4に回転自在に支持されている。加圧ローラ6は、鉄やアルミニウム等の芯金上にシリコンゴム等の被覆を設けたものである。コピー紙は、回転駆動される定着ローラ1と従動する加圧ローラ6との間で送られながら、定着ローラ1による加熱融着でトナー像が定着処理される。
【0008】
各転がり軸受3と定着ローラ1の軸部1aとの間には、電気絶縁性の断熱材料からなる絶縁断熱スリーブ8が介在させてある。絶縁断熱スリーブ8は、定着ローラ1のローラ部端面を覆う鍔部8aを形成した断面L字状のものであり、円周方向の一箇所で分割されている。絶縁断熱スリーブ8の分割部両側の合い口9,9間には円周方向に間隔を持つスリット10が設けられ、かつ両側の合い口9,9は互いに半径方向に重なる形状とされている。この実施形態では、両側の合い口9,9は相欠状に形成してある。ステップカットとも呼ばれる。すなわち、一方の合い口9がスリーブ本体の外径面側に設けた外径面側突片9aと、その外径面側突片9aの内径面側に設けた内径面側段部9bとにより形成され、他方の合い口9がこれと相補的に嵌合するように、リング本体の内径面側に設けた内径面側突片9aとその内径面側突起9aの外径面側に設けた外径面側段部9bとにより形成される。
【0009】
絶縁断熱スリーブ8は、定着ローラ1に圧入によって回り止め状態に固定しても良く、また定着ローラ1に対して回り止めせずに、共回り可能としても良い。また、絶縁断熱スリーブ8と定着ローラ1の嵌合面の一部に平面部を設けて回り止めしても良い。
転がり軸受3は、外輪の外径面が段付き円筒面に形成され、その小径部がハウジング4の軸受取付孔に嵌合状態に取付けられている。
【0010】
材質例を説明する。絶縁断熱スリーブ8は、電気絶縁性の断熱材料あれば良く、その種類は特に問わないが、一般的には耐熱性で熱伝導率が低い合成樹脂等を母材として、この樹脂中にガラス等の電気絶縁材を繊維状または粒子状で分散状態に含有させたものとされる。例えば、絶縁断熱スリーブは、ポリアミドイミド系、ポリイミド系、ポリエーテルイミド系、ポリエーテルケトン系、ポリエーテルエーテルケトン系、ポリアリーレンサルファイド系等の樹脂に各種充填材を入れて強化されたものであって、熱変形温度220℃以上を有する超耐熱性樹脂が使用できる。絶縁断熱スリーブ8は、この他にセラミックス系材料としても良い。これらの材料の詳細は後に説明する。
【0011】
この構成の軸受構造によると、定着ローラ1と軸受3との間に絶縁断熱スリーブ8が介在することにより、定着ローラ1の熱がハウジング4に逃げることが防止される。定着ローラ1の加熱に伴う絶縁断熱スリーブ3の熱膨張,熱収縮は、スリット10で逃がされ、絶縁断熱スリーブ3とローラ軸部1aや軸受3との間に隙間が生じることがない。したがってガタツキの発生が防止される。定着ローラ1に残るトナーの除去は、電圧印加手段(図示せず)により定着ローラ1に残トナーと同電極の高電圧を印加することにより行われるが、絶縁断熱スリーブ8が介在することにより、定着ローラ1と軸受3の間が電気的に絶縁される。絶縁断熱スリーブ8にはスリット10が形成されているが、絶縁断熱スリーブ8の両側の合い口9,9が径方向に重なっているため、定着ローラ1の軸部1aと軸受3の内輪3aとが直接に対面せず、スリット10内における放電距離が長くなる。そのため、定着ローラ1から軸受3側へ放電されることがなくなり、残トナーの除去効率が高くなる。したがって、残トナー除去用のクリーナローラ等を設ける必要がなく、小型、軽量、低コストで高画質の複写機等ができる。
【0012】
図2ないし図4は、図1の絶縁断熱スリーブ8における合い口9の各種の変形例を示す。両側の合い口9,9は、互いの間に円周方向に間隔を有するスリット10が形成され、かつ互いに半径方向に重なる形状であれば良く、そのスリット幅や合い口9の形状,厚み,長さ等は特に問わない。なお、図2および図3の各例は、いずれも両側の合い口9,9が相補的に嵌合する形状としてある。
図2(A)の例は、絶縁断熱スリーブ8の合い口9,9を相欠状とし、かつその各突片9aの先端面の内外径端、および各突片9aと段差部9bとの境界部にそれぞれ面取り部12を設けたものである。このような面取り部12を形成することにより、合い口9,9相互の局部的な接触が防止される。
図2(B)の例は、合い口9,9を相欠状とし、かつ各突片9a,9aの先端面と段差部9b,9bとを半径方向に対して傾斜した傾斜面としたものである。
【0013】
図2(C)の例は、両側の合い口9,9の先端面を、内径側から外径側へ向かって傾斜面部、直角面部、および傾斜面部が順次並ぶ形状としたものである。内径側と外径側の傾斜面は、互いに同じ方向に傾斜させる。
図2(D)の例は、両側の合い口9,9の先端面の全面を半径方向に対して傾斜する傾斜面としたものである。アングルカットやまたバイアスカットとも呼ばれる。
図2(E)の例は、両側の合い口9,9の先端面を、互いに噛み合う段部が多数形成され、かつ全体として半径方向に対する傾斜状となる階段状面としたものである。
図2(F)の例は、両側の合い口9,9の先端面を、互いに噛み合う多数の曲面状の凹凸を有し、かつ全体として半径方向に対する傾斜状となるように形成したものである。凹凸が曲面状であるため、噛み合いが行い易い。
【0014】
図3(A)の例は、両側の合い口9,9の先端面を、内径側から直角面部と傾斜面部とが順に並ぶ形状としたものである。傾斜面部は半径方向に対して傾斜する面とする。
図3(B)の例は、(A)の例と逆に、両側の合い口9,9の先端面を、外径側から直角面部と傾斜面部とが順に並ぶ形状としたものである。
図3(C)の例は、両側の合い口9,9の先端面を、内径側から円弧状曲面部と直角面部とが順に並ぶ形状としてある。
図3(D)の例は、(C)の例と逆に、両側の合い口9,9の先端面を、外径側から円弧状曲面部と直角面部とが順に並ぶ形状としてある。
図3(E)の例は、両側の合い口9,9が互いに実継ぎ状に嵌合し合う形状としたものである。
図3(F)の例は、片方の合い口9の先端面を、側面形状が台形状となる凸面とし、もう片方の合い口9の先端面を、前記台形状の凸面が嵌合する台形状の凹面としたものである。
図3(G)の例は、両側の合い口9,9を相欠状とし、かつその突片9aの重なり面を軸方向に垂直な面に対して傾く傾斜面としたものである。
図3(H)の例は、両側の合い口9,9を相欠状とし、かつその突片9a,9aの重なり面を、円筒面状の曲面部と球面状の曲面部とが並ぶ面としたものである。
【0015】
図4(A)の例は、両側の合い口9,9を相欠状とし、かつその突片9a,9aの重なり側の面の先端に互いに係合する係合突部9cを形成したものである。両係合突部9c,9cの係合により、スリット10の開き過ぎが防止される。
図4(B)の例は、両側の合い口9,9を相欠状とし、かつその片方の突片9aの重なり側の面の先端に突部9dを形成したものである。この突部9dの形成により、突片9aの耐折損性が向上する。
図4(C)の例は、両側の合い口9,9を相欠状とし、かつその片方の突片9aの重なり側の面を段付き面に形成したものである。
図4(D)の例は、図4(B)の例における突部9dの形成された突片9aにおける突片同志の重なり側の面を傾斜面としたものである。
【0016】
図4(E)〜(H)の例は、いずれも両側の合い口9,9を相欠状としてある。このうち、(E),(F)の例はその突片9aの重なり側の面を軸方向に垂直な面に対して傾斜した面としてある。また、(E)の例は片方の突片9aの重なり側の面の先端に突部9dを形成し、(F)の例は片方の合い口9の突片9aの重なり側の面を段付き面としてある。(G)の例は、合い口9の突片9aの重なり側の面を平坦面部と傾斜面部とで形成し、かつ片方の突片9aの平坦面部を段付き面としてある。(H)の例は、合い口9となる突片9aの重なり側の面を平坦面部と傾斜面部とで形成し、かつ片方の突片9aの平坦面部の先端に突部9dを形成してある。
【0017】
これらのなかでも、例えば、図1(C),図2(B),図3(E),図4(A)〜(D)のように、合い口部分がスリット部を略遮断する形状、具体的には、スリーブをころがり軸受の内周面に組み付けた時に、互いの合い口部分のうち少なくとも一方の合い口部が他方の合い口部の少なくとも半径方向に互いに重なりあう範囲内にて、少なくとも一箇所以上接触している部分を有する絶縁断熱スリーブであればよい。ここでいう一箇所とは、点接触、線接触、面接触のいずれの状態での接触状態でもよい。
【0018】
上記のようなスリット形状を有するスリーブであれば、スリーブの内周側から外周側への通路となるスリット部分が一箇所以上で遮断されているので、放電が生じにくいばかりでなく、定着ローラから発生する熱も遮断しやすくなり、ころがり軸受に電気的負荷や熱的負荷を与えにくくできる。尚、前述の他の図のスリット形状のものでも、互いの合い口部分が一箇所以上接触しているものであれば、その形状は特に限定することなくこの発明を適用できる。
【0019】
図5は、絶縁断熱スリーブ8の製造方法の例を示す。この例では、図1(A)の形状の絶縁断熱スリーブ8を製造する場合を示しているが、前述の他の各形状の絶縁断熱スリーブ8も同様に製造できる。
まず、図5(A)に示すように、合い口9,9部分を離して、両者の間に半径方向の重なりのない形状に射出成形する。次に、図5(B)に示すごとき、合成樹脂製又はゴム製の円柱体29及びリングゲージ31とからなる治具を用い、上記の成形品(絶縁断熱スリーブ)28をリングゲージ31の内径面に挿入し、その成形品28の内側に円柱体29を挿入する。上記の円柱体29を構成する樹脂はリングゲージ31より熱膨張率の大きい物質、例えばリングゲージ31より熱膨張率の大きい樹脂又はエラストマー等の重合物質等であり、加熱した際の熱膨張により成形品28の内側から強制力を加える。エラストマー系重合体の場合、ゴム強度(Hs)が約60〜100程度、好ましくは65〜90程度であれば、良好な弾性強制力が得られ好ましいと考えられる。ゴム硬度が高すぎると硬すぎるため、成形品28の内側に円柱体29を挿入しずらく、ゴム硬度が低すぎると柔らかすぎるため、適度な弾性強制力が得にくい。
次に、上記の治具全体を電気炉等に入れ、成形品28のベース樹脂のガラス転移点以上の温度になるよう加熱して、この成形品28の熱固定を行う。かくして、前述のごとき相欠状の絶縁断熱スリーブ8を得ることができる。
つまり、同図の絶縁断熱スリーブ8の製造方法は、両方の合い口9,9の間隔を半径方向に見て重なり部分のないように拡げた形態に射出成形し、その後前記合い口9,9間の間隔を狭めて全体の外径面を真円状に保持して熱固定するようにする方法である。
【0020】
絶縁断熱スリーブ8を射出成形するときの材料注入位置(ゲート位置)43は、絶縁断熱スリーブ8の全長のほぼ中央部に配置する。「ほぼ中央」とは、絶縁断熱スリーブ8の全長の中央部であって±30°の範囲内の位置をいう。図5(E)の例のように、全長の中央から若干ずらせた(±10°〜±30°程度)位置に材料注入位置43を配置しても良い。
図5(F)は射出成形金型45の一部を示すものであり、前述の絶縁断熱スリーブ8を成形するためのキャビティ46が形成され、その全長のほぼ中央にゲート44を設けている。
具体的には、応力集中をさけるため、スリーブ全長(展開長さ)のほぼ中央部両端の±1°の範囲をさけ、±1〜±30°好ましくは±3〜±30°、更に好ましくは±10〜±30°の範囲に溶融樹脂の注入位置であるゲート位置を設ければよい。
【0021】
また、ゲート位置は、機械的強度が弱くなるウェルド部分を無くすため、図5(C)〜(F)のように、一ヶ所のみとすることが好ましく、射出金型で多数個取りが可能で、切削加工によるゲート部の後加工を必要とせず、効率的生産性に優れたピンポイントゲートやサブマリンゲート等のピンゲート方式がよい。
このようにゲート位置を配設することにより、ゲート位置から分岐して各々の合い口までの溶融樹脂の流路の距離は略等しいので、スリーブの曲率が極端に変化せず、つまりスリーブを図5(C),(E)のように見て偏った曲率でない略左右対称形とすることができ、真円度のよいスリーブとしながらも、スリーブのゲート位置の強度も確保できるようになる。
尚、ピンゲート部分の樹脂流れの分岐による樹脂ウェルドをなくすため、機械的強度に優れているディスクゲート方式によって射出成形してもよい。
【0022】
また、図5(C),(E),(F)は、ゲート位置がスリーブの内周部分に配置されたもので、図5(D)はスリーブの側面に配設されたスリーブのゲート部分の拡大図である。図5(D)のような位置にピンゲート方式のゲート部を配設すれば、ローラと接触するスリーブ内周面にゲート跡のような凹凸面が形成されないので、スリーブ内周面の真円度や円筒度、またスリーブ内外周面の同軸度等の精度を容易に向上でき、またスリーブ単体、あるいはころがり軸受内周部にスリーブを挿入して一体化した状態で、ローラに組み込む時に容易に組み付けることができ、ローラ表面をゲート跡に凸部によって傷つけられることもない。
【0023】
なお、前記実施形態では図1のように定着ローラ1を両端に軸部1aが突出するものとしたが、図6(A)に示すように、定着ローラ1を全長に同一径のものとし、絶縁断熱スリーブ8を定着ローラ1の外周に嵌合状態に取付けても良い。この場合に、定着ローラ1は、外径面にフッ素樹脂等の被膜1dを形成しておいても良い。
また、図6(B)に示すように、絶縁断熱スリーブ8は、回り止め手段であるキー20を介して定着ローラ1に対して回り止めしても良い。キー20は、同図のように絶縁断熱スリーブ8と別体のものであっても良く、また図6(C)のように絶縁断熱スリーブ8の内径面に一体に形成し、定着ローラ1の外径面のキー溝21に嵌合させても良い。さらに、絶縁断熱スリーブ8は、定着ローラ1の外径面に形成した止め輪溝22に嵌合する止め輪(図示せず)で定着ローラ1に軸方向に固定しても良い。このようにスリーブの形状で、その幅、厚み等の肉厚や、外径の大きさ等は、仕様により適宜設定するとよい。
【0024】
【実施例】
絶縁断熱スリーブ8は、耐熱性樹脂としてポリフェニレンサルファイド樹脂、ガラス繊維等の強化繊維、フッ素系樹脂、充填材からなる樹脂組成物を射出成形することにより得た。
絶縁断熱スリーブ8を合成樹脂製とする場合の材質例を示す。定着ローラ1の表面温度は約150℃〜約230℃以上、高いものは、瞬間最高温度は約300℃以上となり、定着ローラ1に直接に接する絶縁断熱スリーブ8は、高温耐熱性を要求される。樹脂成形体の耐熱性や硬度は、各々の樹脂の配合量、充填材の添加量等によって、一概に判断はしづらいが、各々の標準品の耐熱性樹脂の熱的物性値、硬度はおよそ以下のようである。尚、( )内のそれぞれの値は前から、ガラス転移温度、融点、荷重たわみ温度、ロックウェル硬度(一部ショア硬さ)、線膨張係数、体積固有抵抗の順に記載した。また、明確な測定点が測量しづらいものや不明なもの、また熱硬化性樹脂の一部の項目は−として表した。各樹脂には略称を付記した。
【0025】
フェノール樹脂(PF)(−、−、74〜144 ℃、M93〜128 、1.1 〜6.8 ×
10-5/℃、1012〜1018Ω・cm)
ポリイミド樹脂(PI)(−、−、350 〜360 ℃、M118 、0.8 〜6.6 ×10-5/℃、1016〜1018Ω・cm)
熱可塑性ポリイミド樹脂(PI)(250 ℃、388 ℃、238 〜260 ℃、E52〜99、0.4 〜 6×10-5/℃、107 〜1018Ω・cm)
ポリアミドイミド樹脂(PAI)(280 〜290 ℃、300 ℃、270 〜282 ℃、E86〜104 、0.9 〜4.1 ×10-5/℃、0.8×20.3×1016Ω・cm)
ポリエーテルイミド樹脂(PEI)(200 〜210 ℃、215 〜217 ℃、200 〜210 ℃、M109 、1.4 〜5.6 ×10-5/℃、1016〜1017Ω・cm)
ポリエーテルケトン樹脂(PEK)(165 〜170 ℃、365 〜380 ℃、168 ℃、−、−、−)
ポリエーテルエーテルケトン樹脂(PEEK)(145 ℃、335 ℃、150 ℃、M98、0.8 〜6.2 ×10-5/℃、105 〜1017Ω・cm)
ポリフェニレンサルファイド樹脂(PPS)(90℃、285 〜290 ℃、105 〜136 ℃、R123 、0.6 〜6.3 ×10-5/℃、10〜1017Ω・cm)
46ポリアミド樹脂(46PA)(78〜80℃、290 ℃、220 ℃、R118 〜121 、 3〜8.5 ×10-5/℃、1015Ω・cm)
全芳香族ポリエステル樹脂(POB,LCP)(−、412 ℃、180 〜355 ℃、R60〜66、0.1 〜12×10-5/℃、102 〜1017Ω・cm)
四フッ化エチレン樹脂(PTFE)(−、327 ℃、55℃、ショア硬さD50〜65、3.9 〜18×10-5/℃、>1017Ω・cm)
【0026】
これらは、ガラス転移温度は、少なくとも、70℃以上、融点は少なくとも215℃以上(熱可塑性樹脂)、構造材の荷重たわみ温度は、少なくとも70℃以上、好ましいものは150℃以上有している。
これらの各々の異種類の樹脂は、耐熱性、硬度がそれぞれ異なり、組合せは、仕様・条件、例えば常用温度や瞬間最高温度と融点、荷重たわみ温度、ガラス転移温度等の耐熱性温度とで選ぶ。このように、樹脂の耐熱性温度は、仕様・条件温度よりも高いほうが良く、好ましくは、安全のため仕様温度より約30℃〜60℃以上がよい。このような樹脂材は、絶縁断熱スリーブ8の外周面に形成されていてもよい。
【0027】
またこれらは、高い耐熱性に加え、高い耐燃性、優れた機械的性質、優れた電気的性質、耐薬品性を有している。これらの材料は、この絶縁断熱スリーブ8の成形ベース材料(母材)として用いられる。これらの耐熱性熱可塑性樹脂の融点は、少なくとも280℃以上あれば、この発明において好適に使用することができる。尚、融点の上限は特に限定しないが現在のところ射出成形可能な熱可塑性樹脂の融点は500℃が上限なようである。
【0028】
この前記の樹脂組成物には、上記以外の添加剤としてこの発明の効果を阻害しない範囲内で、例えば機械的強度、および熱安定性などの向上及び着色等の目的で増量剤、粉末充填剤および顔料など350℃程度以上の高温で安定な物質を適宜混合しても良い。例えば、樹脂組成物の潤滑性をさらに改良するために、耐摩耗性の改良剤を配合することができる。この耐摩耗性改良剤の具体例としては、カーボン、グラファイト、マイカ、ウォラストナイト、金属酸化物の粉末、硫酸カルシウムなどのウィスカ、リン酸塩、炭酸塩、ステアリン酸塩、超高分子量ポリエチレンなどを例示することができる。このような添加剤を添加する際の残部耐熱性樹脂は、約40重量%を下回らないようにすることが好ましい。また導電性を有する充填剤であってもスリーブが通電しない程度の量であれば混入されていてもよい。
【0029】
有機質の繊維状絶縁強化材や粒子状絶縁充填材としては、アラミド繊維・粉末、ポリエチレン繊維・粉末、ポリエステル繊維・粉末、ポリアミド繊維・粉末、四フッ化エチレン繊維・粉末、ポリビニルアルコール繊維・粉末、フェノール繊維・粉末、ポリフェニレンサルファイド繊維・粉末、ポリイミド繊維・粉末をあげることができる。
【0030】
これらの繊維状絶縁強化材や粒子状絶縁充填材として、ガラス繊維やガラスビーズが好ましい。ガラス繊維やガラスビーズは、SiO2 、B2 3 、Al2 3 、CaO、Na2 O、K2 O、MgO、Fe2 3 などを成分とする無機ガラスから得られ、一般に無アルカリガラス(Eガラス)、含アルカリガラス(Cガラス、Aガラス)などを用いることができる。Eガラスは、例えばSiO2 が約52〜56重量%、B2 3 が約8〜13重量%、Al2 3 が約12〜16重量%、CaOが約15〜25重量%、Na2 O或いはK2 Oが0を越え約1重量%以下、MgOが0を越え約6重量%以下を含有している。また、その引張強さは、約300〜400kgf /mm2 、平均して約350kgf /mm2 であり、弾性率は、約7400〜7700kgf /mm2 のもの等があり、引張強度、弾性率、量産性、価格等の点で平均して総合的に優れている。
【0031】
Eガラスの繊維長約0.01〜0.5mmのものが好ましく、またその繊維径は、約5〜15μm のもの、その中でも約7〜13μm が好ましい。なぜなら、繊維径が約15μm を越える大径のもの、または繊維長が約0.5mmを越えるガラス繊維を用いると、断熱性合成樹脂と混合する際に均一分散させることが難しく、またそのような組成物では成形も困難になって好ましくないからである。繊維径が細すぎたり、繊維長が短すぎたりすると、圧縮クリープ等の機械的強度が期待できないことも考えられ、定着装置の高温時に、加圧ローラ6による所定荷重の押し付け力を受けることによって絶縁断熱スリーブ6が変形すると予想される。このようなガラス繊維として旭ファイバーグラス社製:ミドルファイバー(繊維径13μm )がある。
【0032】
これらの耐熱性樹脂に対して各種の添加物を添加混合する方法は特に限定するものではなく、通常広く用いられている方法、たとえば主成分となる樹脂、その他の諸原料をそれぞれ個別に、またはヘンシェルミキサー、ボールミル、タンブラーミキサー等の混合機によって適宜乾式混合した後、溶融混合性のよい射出成形機もしくは溶融押出成形機に供給するか、又は予め熱ロール、ニーダ、バンバリーミキサー、溶融押出機などで溶融混合するなどの方法を利用すればよい。
【0033】
さらに、前記の組成物を成形する際には、特に成形方法を限定するものではなく、圧縮成形、押出成形、射出成形等の通常の方法、または組成物を溶融混合した後、これをジェットミル、冷凍粉砕機等によって粉砕し、所望の粒径に分級することも可能である。なかでも射出成形法は、生産性に優れ、安価な成形体を提供することができる。
【0034】
また、このようにして得られたペレットなどの粒は、成形前に後述の熱処理と同程度の乾燥処理を施しても良い。充分にペレット等の粒から水分などを蒸発させることで、成形体の膨れや強度低下を防ぐことができると考えられる。
このようにして得られた成形体は、熱固定及び成形時のひずみを除いて高温使用時の寸法安定性を確保するため、約100〜280℃で約0.1〜24時間程度のアニール熱処理をしておくことが望ましい。
【0035】
アニール熱処理温度は、材料にもよるが、約280℃以下、例えば約140〜270℃程度、材料によっては約140〜230℃程度や約140〜200℃程度で行われることが適当である。これらの耐熱樹脂は、広い温度範囲にわたって剛性が高く、耐衝撃性も優れており、クリープなどの歪みに対しても強く、また殆どの種類の油類や薬品等にも耐性を示す樹脂である。また、これらの樹脂は結晶性のものもあり、結晶化度の上昇で強度や剛性の増加、耐摩耗性や潤滑性の向上、熱膨張係数や吸水率の低下などの性質をもっている。
熱処理温度が約140℃未満の低温では、結晶化の進行に多大の時間を要して効率が悪く、成形体のわずかな歪みを除くことも難しくなり、寸法安定性も得られ難いと考えられる。
【0036】
アニール熱処理温度が熱変形温度よりも約20〜30℃程度を越えると、樹脂にかかる熱履歴の影響が大きくなり好ましくないと考えられ、これ以下で熱処理することが好ましい。熱処理時は、前記所定の温度に達する前に、例えば常温、約80℃、約130℃、約180℃、約220℃、約230℃、約280℃というように、数段階に分けて、約15〜180分程度の範囲で、約15〜60分毎に徐々に昇温し、前記温度範囲内の最適な温度にて、前記時間の範囲で温度を一定に保持してもよい。その場合の最高温度の保持時間は、約15〜480分程度であればよい。最高温度の保持時間が所定時間よりも短時間であると、樹脂の結晶化が不充分となって寸法安定性が悪くなり、所定時間よりも長時間であると、「ソリ」などの不適当な熱変形が起こり、また電気炉などのエネルギー消費量の増大や製造時間の長時間化からみても製造コストの低減を図ることが難しくなる。
【0037】
また、約90〜120℃程度に昇温した時にそのような一定温度で保持してもよい。このようにすると、成形体内に僅かに取り込まれた水分を乾燥させることができ、その後、結晶化させることができる。一方、短時間で急激に加熱して熱処理を終了させることは好ましくない。前記水分が沸点を越えて気化し、その際の体積膨張によって成形体に「膨れ」などの不具合が発生する可能性が高くなるからである。
結晶化工程後の冷却は、前記昇温時と逆の段階を経て冷却してもよく、または約60〜180分程度の時間をかけて連続的に徐冷してもよい。
【0038】
以上のような熱処理工程を行なうことにより、成形体の膨れなどの不具合の発生を極力防ぐと共に、樹脂の結晶化を確実かつ徐々に進行させて、成形体の寸法安定性を高めて寸法精度の高い成形体を提供することができる。
【0039】
絶縁断熱スリーブ8をセラミックス系材料で形成する場合は、下記のニューセラミックス等のセラミックス系材料を用いて成形することが好ましく、適度な強度や硬度を有し、これらの数値範囲内のセラミックス系材料からなる絶縁断熱スリーブ8としても良い。
また、これらの材料の強度、熱特性等を改質するために、約1〜10重量%程度のSiO2 ,Y2 3 ,Al2 7 ,AlN,TaN,TiC,Co等,その他希土類などの無害なものを1種類以上添加してもよい。
【0040】
セラミックス系材料の例および特性
( )内は前から順に最高使用温度、硬度(Hv)、線膨張係数、曲げ強度(、熱伝導率、耐水衝撃抵抗( 水冷) 、体積固有抵抗の順に記載した。
アルミナ(酸化アルミニウム)(Al2 3
(1600〜1900℃、1200〜2300Kgf /mm2 、4.6 〜9.3 ×10-6/℃、5 〜85Kgf/mm2 、0.004 〜0.1 cal/cm・sec ・℃、180 〜500 ℃、1014Ω・cm 以上)
ジルコニア(ZrO2
(800 ℃、1200〜1500Kgf /mm2 、9.5 〜11×10-6/℃、2 〜240 Kgf/mm2 、0.004 〜0.1 cal/cm・sec ・℃、200 〜470 ℃、1010Ω・cm以上)
シリカ (石英ガラス)
(1150℃、−、0.5 ×10-6/℃、 4〜6 Kgf/mm2 、0.003 cal/cm・sec ・℃、1000℃以下、1019Ω・cm)
炭化けい素(SiC)
(1100〜1600℃、2000〜2900Kgf /mm2 、3.1 〜5 ×10-6/℃、 6〜100 Kgf/mm2 、0.07〜0.6 cal/cm・sec ・℃、200 〜700 ℃、1012〜1013Ω・cm)
窒化けい素(Si3 4
(1400〜1500℃、1500〜1800Kgf /mm2 、1.9 〜4 ×10-6/℃、3 〜120 Kgf/mm2 、0.01〜0.07cal/cm・sec ・℃、1013Ω・cm)
サイアロン(Si6-Z AlZ Z 8-Z )(Z=0〜4.2)
(−、1800〜2000Kgf /mm2 、2.8 〜3 ×10-6/℃、60〜140 Kgf/mm2 、0 .02〜0.07cal/cm・sec ・℃、500 〜900 ℃、1013Ω・cm以上)
窒化アルミニウム(窒化アルミ)(AlN)
(−、1000〜1200Kgf /mm2 、4.4 〜5.7 ×10-6/℃、5 〜70Kgf/mm2 、0.14〜0.6 cal/cm・sec ・℃、300 〜400 ℃、1013Ω・cm以上)
窒化チタン(TiN)
(−、1200〜1600Kgf /mm2 、−、160 〜200 Kgf/mm2 、0.14〜0.6 cal/cm・sec ・℃、300 〜400 ℃、−)
炭化タングステン
(−、−、−、180 〜300 Kgf/mm2 、−、−、−)
【0041】
これらは、超耐熱性であり、断熱性は樹脂材のほうが比較的優れるものの、線膨張係数は、樹脂材よりも約1/10程度小さいため、定着ローラ1や軸受3等とのすきまを比較的小さくしやすく、すきま精度の高い軸受装置を提供できることにもつながる。特に絶縁断熱スリーブ8と定着ローラ1とを嵌合する時には、それぞれの線膨張係数が近いほうが良いので、絶縁断熱スリーブ8と定着ローラ1との線膨張係数の差は、樹脂材、セラミックス材を主成分とする断熱スリーブとも△α=1〜100倍程度以内、好ましくは△α=1〜10倍程度以内とすることが良い。このように定着ローラ1と線膨張係数が比較的同じで、かつ、断熱性を有する材質を絶縁断熱スリーブ8に適用することで、絶縁断熱スリーブ8と定着ローラ1間のすき間の精度を高くすることができ、使用温度差の大きい高温用軸受に適用してもガタが少なく、また、低温時の各部材にストレスを与えることの少ない高温用軸受装置を提供することができる。
このように線膨張係数が比較的小さく、断熱性を有し、また例えば耐熱衝撃抵抗が少なくとも約100℃以上、安全性を考慮した場合には約150℃以上の材質を絶縁断熱スリーブ8に適用することで、このスリーブ8と転がり軸受3間の隙間の精度を高くすることができ、高温な軸受装置の電源等の加熱手段が切られて、軸受装置が冷却された時に空気中の水分により発生する水滴がスリーブに付着していても熱衝撃による欠損はなく、ガタが少なく、また、ころがり軸受内のグリースが、固化したり劣化したりしにくいので低トルクで長寿命の軸受装置を提供することができる。
【0042】
セラミックス系材料の中でも代表的なファインセラミックであるアルミナ(酸化アルミニウム、Ai2 3 )については、結晶形、添加剤の使用などによって、前記の特性と共に下記に示す特性を備えたものがあり、このものは機械的強度、耐熱性、寸法安定性など、絶縁断熱スリーブ8として過剰のスペックでなく充分に使用可能であり、価格の点でも比較的平均しており、総合的に優れている。
アルミナの特性
圧縮強さ 100〜450Kgf /mm2
曲げ強さ 5〜85Kgf /mm2
ヤング率 2.5〜4.8×10Kgf /mm2
破壊靱性 3.0〜4.6MN/m3/2
ポアソン比 0.19〜0.26
熱伝導率 0.004〜0.1cal /cm・sec ・℃
耐衝撃性 180〜500℃
比熱 0.17〜0.33cal /g ・℃
【0043】
樹脂材、セラミック材からなるスリーブとも絶縁性を損なわないために、絶縁スリーブ体は、10Ω・cm以上、好ましくは、105 Ω・cm以上、さらに好ましくは、108 Ω・cm以上の体積抵抗率を有していれば、ローラと軸受とを良好に絶縁できる。尚、体積抵抗率の上限値は特に限定しないが、1020Ω・cm以下であれば充分である。
絶縁断熱スリーブ8の材料は特に限定されないが、前記に記載のそれぞれの材料群の熱的特性、線膨張係数、硬度の範囲の材料が好ましい。以上のようにすることで、ころがり軸受3の電食発生を防止することもできる。
【0044】
また、スリーブの内周面・外周面の少なくとも一方の摺動面の表面粗さ・形状は、最大粗さ(Rmax )、算術平均粗さ(Ra )、十点平均粗さ(Rz )等のJISで定義された評価法によって測定され、好ましくはRa 測定法であり、25μm 以下であり、10μm 以下が好ましく、3.2μm 以下がより好ましい。なぜなら、表面粗さが前記所定範囲を越えると、ローラ外周面やころがり軸受内周面に傷が多く付くことも考えられ、これは摩耗の原因になるとも考えられるからである。なお、表面粗さ・形状の下限値は、加工時の効率性も考慮して、0.1μm 程度以上であればよい。
【0045】
但し、射出金型内のキャビティ表面に仕上げ加工などの工程に長時間を要するので、効率的でないことや樹脂材の転移膜の形成に影響される可能性もあるため、摩耗に影響されないような仕様や条件であれば、3〜8μm 程度の範囲としても良いとも推定される。
【0046】
なお、この発明における絶縁断熱スリーブは、外部から与えられた電気信号によって記録パターンを感光体等の媒体上に形成し、この媒体上に形成された電気量のパターンを可視的なパターンに変換する種々の方式を採用したプリンタにも適用できることは勿論である。そのようなプリンタの方式としては、電子写真方式、インクジェット方式、感熱方式、光プリンタ方式、電子記録方式などが挙げられる。前記した電子写真方式の種類としては、カールソン法、光・電荷注入法、光分極法、光起電力法、電荷移動法、電解電子写真法、静電潜像写真法、光電気泳動法、サーモプラスチック法が挙げられる。また、光プリンタとしては、レーザプリンタ、LED(発光ダイオード)プリンタ、液晶シャッタプリンタ、CRTプリンタが挙げられる。また、電子記録方式としては、静電記録方式、通電記録方式、電解記録方式、放電記録方式が挙げられ、更に直接法、間接法等がある。またこれら静電記録法等で、油等を塗布する湿式、これに対する乾式等の方式がある。
【0047】
具体的には、トナー像転写式の乾式静電複写機や湿式静電複写機、レーザービームプリンター(LBP)、液晶シャッタ(LCD)プリンター、ファクシミリ用プリンター等、PPC、発光ダイオード(LED)、銀塩写真式によるプリンタ(CRT)等のプリンター等の印刷機などといった画像形成装置の全般を指す概念である。
【0048】
また、この発明でいう絶縁断熱スリーブは、給紙部、感光部、定着部、排紙部など、その用途部位は特に限定されないが、前記各々射出成形可能な熱可塑性樹脂の優れた耐熱性を適用すれば、定着部なかでも加圧ローラに加え高温で使用される定着ローラに適用でき、しかも射出成形可能な耐熱性樹脂なので、本発明の複雑な形状のスリットを有するスリーブでも容易に成形でき、生産性の点で効率よく、安価な絶縁断熱スリーブを提供することができる。
【0049】
【発明の効果】
この発明の絶縁断熱スリーブは、軸を転がり軸受により回転自在に支持する高温用軸受構造、例えば、ヒータを内蔵した定着ローラを両端の軸部で転がり軸受により回転自在に支持する加熱定着装置の軸受構造において、転がり軸受と前記軸との間に介在させる絶縁断熱スリーブであって、電気絶縁性の断熱材料からなり、円周方向の一箇所で分割されて両側の合い口間に円周方向に間隔を持つスリットを有し、かつ両側の合い口が互いに半径方向に重なる形状とされたものであるため、断熱性が確保されると共に、全周にわたって放電が防止でき、かつ熱伸縮が吸収されて径変化が防止される。
この発明の軸受構造は、上記構成の絶縁断熱スリーブを転がり軸受と前記軸との間に介在させたものであるため、軸と軸受間の断熱および電気絶縁が確保され、熱伸縮に伴う絶縁断熱スリーブのガタツキもなく、また軸に高電圧が印加されても、軸受への放電が防止される。
この発明の加熱定着装置は、上記構成の絶縁断熱スリーブを定着ローラと軸受の間に介在させたものであるため、定着ローラから軸受を介して放熱することが防止され、絶縁断熱スリーブの熱膨張,熱収縮によるガタツキの発生もなく、また定着ローラに高電圧を印加しても軸受側に放電されることがなくて、電圧印加による残トナーの除去効率が高くなり、低コストで高画質の複写等ができる。
【図面の簡単な説明】
【図1】(A)はこの発明の一実施形態にかかる加熱定着装置の定着ローラ部を示す破断側面図、(B)はその破断正面図、(C)は絶縁断熱スリーブの合い口を示す拡大図である。
【図2】(A)〜(F)は各々絶縁断熱スリーブの合い口の各種変形例を示す側面図である。
【図3】(A)〜(F)は各々絶縁断熱スリーブの合い口の他の各種変形例を示す側面図、(G),(H)は同斜視図である。
【図4】(A)〜(D)は各々絶縁断熱スリーブの合い口のさらに他の各種変形例を示す側面図、(E)〜(H)は同斜視図である。
【図5】絶縁断熱スリーブの製造方法の説明図である。
【図6】(A)はこの発明の他の実施形態にかかる軸受構造の部分断面図、(B)はさらに他の実施形態にかかる絶縁断熱スリーブとキーとの関係を示す分解斜視図、(C)はさらに他の実施形態にかかる絶縁断熱スリーブと定着ローラと軸受との関係を示す分解斜視図である。
【図7】(A)は従来の加熱定着装置の定着ローラ部を示す破断側面図、(B)はその破断正面図、(C)は絶縁断熱スリーブの合い口を示す拡大図である。
【符号の説明】
1…定着ローラ、2…ヒータ、3…転がり軸受、4…ハウジング、6…加圧ローラ、8…絶縁断熱スリーブ、9…合い口、10…スリット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulating heat insulating sleeve used in a place where electrical insulating properties and heat insulating properties are required, a high-temperature bearing structure using the same, and an electrophotographic apparatus such as a copying machine and a laser beam printer employing the bearing structure. The present invention relates to a heating and fixing apparatus.
[0002]
[Prior art]
In general, an electrophotographic apparatus attaches toner to an electrostatic latent image formed by an optical device, transfers the toner image to a copy sheet, and further fixes it. In the fixing step, fixing with a built-in heater is performed. A toner image is passed between the roller and the pressure roller. As a result, the untransferred image formed of the toner image is transferred and fixed on the copy sheet by heat fusion.
FIG. 7 shows an example of a bearing structure of a heat fixing device in such an electrophotographic apparatus. The fixing roller 51 incorporates a linear heater 52 in the shaft center portion, and is rotatably supported by a housing 54 via bearings 53 at both ends. A heat dissipation sleeve 55 made of resin or the like is interposed between the bearing 53 and the shaft 51a of the roller 51. The sleeve 55 is formed with a slit 56 and is divided in one circumferential direction to prevent rattling of the fixing roller 51 due to thermal expansion and contraction.
The reason why the sleeve 55 for preventing heat dissipation is interposed is to prevent a phenomenon in which the heat distribution from the bearings 53 at both ends when the fixing roller 51 is heated and the temperature distribution along the axial direction of the fixing roller 51 becomes nonuniform. is there.
[0003]
[Problems to be solved by the invention]
When the untransferred image passes, a part of the toner 57 may adhere to the fixing roller 51 and the image quality of the transferred image may be deteriorated. As a method for removing the residual toner 57, there is a method in which a cleaner roller (not shown) is brought into contact, but the cleaner roller has a short life and high cost. For this reason, a method of electrically removing the residual charging toner 57 adhering to the fixing roller 51 is employed. In this case, a high voltage of the same electrode as the residual toner 57 charged on the fixing roller 51 is applied.
However, when such a high voltage is applied, there is a problem that discharge occurs between the bearing 53 and the fixing roller 51. A resin heat dissipation prevention sleeve 55 is interposed between the bearing 53 and the shaft portion 51a of the fixing roller 51, so that a temporary insulation can be obtained. A slit 56 for absorbing expansion and contraction is provided. For this reason, the high voltage applied to the fixing roller 51 is discharged to the inner ring 53a of the bearing 53 as indicated by the broken line a in the slit 56, thereby reducing the removal efficiency of the residual toner 57.
[0004]
The present invention solves the above-described problems, and provides an insulating heat insulating sleeve and a high-temperature bearing structure capable of ensuring heat insulation, preventing discharge over the entire circumference, and absorbing thermal expansion and contraction to prevent diameter change. The purpose is to provide.
Another object of the present invention is to provide a heat fixing device that can effectively remove residual toner by applying a high voltage without causing a problem of discharge, and can perform high-quality transfer at low cost.
[0005]
[Means for Solving the Problems]
  Insulation insulation sleeve of this inventionIs an insulating heat insulating sleeve interposed between the rolling bearing and the shaft in a high temperature bearing structure in which the shaft is rotatably supported by a rolling bearing,A shape made of a gas-insulating heat insulating material that is split at one place in the circumferential direction and has slits with circumferential spacing between the joints on both sides of the divided part, and the joints on both sides overlap each other in the radial direction TossThe For example, the insulating heat insulating sleeve is interposed between the rolling bearing and the shaft portion in a heat fixing apparatus that rotatably supports a fixing roller incorporating a heater at both end shaft portions by rolling bearings.
  The electrically insulating heat-resistant material may be a material in which a synthetic resin having heat resistance and low thermal conductivity is used as a base material, and the insulating material is contained in a dispersed state in the form of fibers or particles in the resin. The electrically insulating heat-resistant material may be a ceramic material.
  The high-temperature bearing structure of the present invention is a high-temperature bearing structure in which a shaft is rotatably supported by a rolling bearing, and the insulating heat insulating sleeve having the above-described configuration is interposed between the rolling bearing and the shaft.
  The heat fixing device according to the present invention is a heat fixing device in which a fixing roller having a built-in heater is rotatably supported by a rolling bearing at an end portion, and the insulating heat insulating sleeve having the above structure is interposed between the rolling bearing and the shaft. It is a thing.
[0006]
According to the insulation heat insulating sleeve having this configuration, thermal insulation and electrical insulation are performed between the components provided on the inner diameter side and the outer diameter side of the sleeve due to the heat insulation and electric insulation of the sleeve material. Is called. By providing the slit, even if thermal expansion or contraction of the sleeve occurs, the expansion and contraction is absorbed by the slit interval, and excessive stress is generated in the sleeve, or between the sleeve and its inner and outer parts. A gap does not occur and no rattling occurs. Even if the slit is provided, since the joints on both sides overlap each other in the radial direction, the inner diameter side component and the outer diameter side component do not directly face each other at the slit portion, and the discharge distance becomes long. Therefore, even if a high voltage is applied between the internal and external components, it is difficult for discharge to occur.
When the inner diameter part is the shaft of the fixing roller and the outer diameter part is the bearing and the housing to which the bearing is mounted, the fixing roller and the housing are thermally and electrically disconnected. In addition, thermal expansion and thermal expansion / contraction of the insulating heat insulating sleeve are absorbed by the slits, and rattling due to deformation of the sleeve is prevented. Further, even when a high voltage of the same electrode as that of the residual toner is applied to the fixing roller, no discharge is caused to the bearing side at the slit portion of the insulating heat insulating sleeve, and the removal efficiency of the residual toner is increased. Accordingly, high-quality copying and the like can be performed at low cost.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. FIG. 1A is a cutaway front view of a heat fixing device such as a copying machine. The fixing roller 1 is made of a soft metal in which a linear or rod-like heater 2 is built in a shaft center portion, and is formed in a cylindrical shape in which small-diameter shaft portions 1a and 1a protrude from both ends. The material of the fixing roller 1 is a metal material having excellent thermal conductivity such as iron, aluminum, or aluminum alloy (A5056, A6063, etc.), and the surface is finished by turning or polishing. The surface of the fixing roller 1 may be coated with a releasable material such as fluororesin or silicon rubber to prevent offset. The fixing roller 1 is rotatably supported by the housing 4 via the rolling bearings 3 and 3 formed of deep groove ball bearings at the shaft portions 1a and 1a at both ends, and rotational power is supplied to the end side of the rolling bearing 3 at one end. A receiving gear 5 is provided. A pressure roller 6 is provided in contact with the fixing roller 1 and parallel to the fixing roller 1, and is rotatably supported by the housing 4 via bearings 7 and 7 at both ends. The pressure roller 6 is a core metal such as iron or aluminum provided with a coating such as silicon rubber. The copy paper is fed between the rotation-driven fixing roller 1 and the driven pressure roller 6, and the toner image is fixed by heat fusion by the fixing roller 1.
[0008]
An insulating heat insulating sleeve 8 made of an electrically insulating heat insulating material is interposed between each rolling bearing 3 and the shaft portion 1 a of the fixing roller 1. The insulating heat insulating sleeve 8 has an L-shaped cross section in which a flange portion 8a covering the roller portion end surface of the fixing roller 1 is formed, and is divided at one place in the circumferential direction. A slit 10 having a circumferential interval is provided between the mating ports 9 on both sides of the divided portion of the insulating heat insulating sleeve 8, and the mating ports 9 on both sides are configured to overlap each other in the radial direction. In this embodiment, the joints 9, 9 on both sides are formed in a phase-out shape. Also called step cut. In other words, one abutment 9 is formed by an outer diameter surface side protruding piece 9a provided on the outer diameter surface side of the sleeve body and an inner diameter surface side step portion 9b provided on the inner diameter surface side of the outer diameter surface side protruding piece 9a. Formed on the outer diameter surface side of the inner diameter surface side protrusion 9a and the inner diameter surface side protrusion 9a so that the other abutment 9 is complementarily fitted with this. The outer diameter surface side step portion 9b is formed.
[0009]
The insulating heat insulating sleeve 8 may be fixed in a non-rotating state by press-fitting into the fixing roller 1, or may be rotated together without being rotated around the fixing roller 1. Further, a flat portion may be provided on a part of the fitting surface between the insulating heat insulating sleeve 8 and the fixing roller 1 to prevent the rotation.
In the rolling bearing 3, an outer diameter surface of an outer ring is formed as a stepped cylindrical surface, and a small diameter portion thereof is attached to a bearing mounting hole of the housing 4 in a fitted state.
[0010]
Examples of materials will be described. The insulating heat insulating sleeve 8 is not particularly limited as long as it is an electrically insulating heat insulating material. Generally, a synthetic resin or the like having a heat resistance and a low thermal conductivity is used as a base material, and glass or the like is contained in the resin. The electrical insulating material is contained in a dispersed state in the form of fibers or particles. For example, the insulating heat insulating sleeve is reinforced by adding various fillers to resins such as polyamideimide, polyimide, polyetherimide, polyetherketone, polyetheretherketone, and polyarylene sulfide. Thus, a super heat resistant resin having a heat distortion temperature of 220 ° C. or higher can be used. In addition to this, the insulating heat insulating sleeve 8 may be a ceramic material. Details of these materials will be described later.
[0011]
According to the bearing structure of this configuration, the insulating heat insulating sleeve 8 is interposed between the fixing roller 1 and the bearing 3, thereby preventing the heat of the fixing roller 1 from escaping to the housing 4. The thermal expansion and contraction of the insulating heat insulating sleeve 3 due to the heating of the fixing roller 1 is released by the slit 10, and no gap is generated between the insulating heat insulating sleeve 3 and the roller shaft portion 1 a or the bearing 3. Therefore, the occurrence of rattling is prevented. The toner remaining on the fixing roller 1 is removed by applying a high voltage of the same electrode as that of the remaining toner to the fixing roller 1 by a voltage applying means (not shown). The fixing roller 1 and the bearing 3 are electrically insulated. A slit 10 is formed in the insulating heat insulating sleeve 8, but since the joints 9, 9 on both sides of the insulating heat insulating sleeve 8 overlap in the radial direction, the shaft portion 1 a of the fixing roller 1 and the inner ring 3 a of the bearing 3 Does not directly face each other, and the discharge distance in the slit 10 becomes long. For this reason, there is no discharge from the fixing roller 1 to the bearing 3 side, and the residual toner removal efficiency is increased. Therefore, it is not necessary to provide a cleaning roller for removing residual toner, and a high-quality copying machine with a small size, light weight and low cost can be obtained.
[0012]
2 to 4 show various modifications of the joint 9 in the insulating heat insulating sleeve 8 of FIG. The mating holes 9 and 9 on both sides may be any shape as long as slits 10 having a circumferential interval are formed between the mating holes 9 and 9 and overlap each other in the radial direction. The length is not particularly limited. 2 and FIG. 3 each have a shape in which the joints 9 on both sides are complementarily fitted.
In the example of FIG. 2 (A), the joints 9 and 9 of the insulating heat insulating sleeve 8 are phased, and the inner and outer diameter ends of the front end surface of each projecting piece 9a, and between each projecting piece 9a and the step 9b. A chamfered portion 12 is provided at each boundary portion. By forming such a chamfered portion 12, local contact between the abutments 9 and 9 is prevented.
In the example of FIG. 2 (B), the abutments 9 and 9 are formed in a staggered shape, and the tip surfaces of the protruding pieces 9a and 9a and the stepped portions 9b and 9b are inclined surfaces inclined with respect to the radial direction. It is.
[0013]
In the example of FIG. 2C, the tip surfaces of the mating ports 9 on both sides are formed in a shape in which an inclined surface portion, a right angle surface portion, and an inclined surface portion are sequentially arranged from the inner diameter side to the outer diameter side. The inclined surfaces on the inner diameter side and the outer diameter side are inclined in the same direction.
In the example of FIG. 2 (D), the entire front end surfaces of the joints 9 and 9 on both sides are inclined surfaces that are inclined with respect to the radial direction. Also called angle cut or bias cut.
In the example of FIG. 2 (E), the front end surfaces of the mating ports 9 and 9 on both sides are formed as stepped surfaces that are formed with a large number of stepped portions that mesh with each other and that are inclined with respect to the radial direction as a whole.
In the example of FIG. 2 (F), the tip surfaces of the mating ports 9 and 9 on both sides are formed so as to have a large number of curved irregularities meshing with each other and to be inclined in the radial direction as a whole. . Since the irregularities are curved, it is easy to engage.
[0014]
In the example of FIG. 3 (A), the front end surfaces of the joints 9 and 9 on both sides have a shape in which a right-angle surface portion and an inclined surface portion are arranged in order from the inner diameter side. The inclined surface portion is a surface inclined with respect to the radial direction.
In the example of FIG. 3B, the tip surfaces of the joints 9 and 9 on both sides are formed in a shape in which a right-angle surface portion and an inclined surface portion are arranged in order from the outer diameter side, contrary to the example of FIG.
In the example of FIG. 3C, the tip surfaces of the mating ports 9 on both sides are formed in a shape in which an arcuate curved surface portion and a right-angle surface portion are arranged in order from the inner diameter side.
In the example of FIG. 3D, the tip surfaces of the joints 9 and 9 on both sides are formed in a shape in which an arcuate curved surface portion and a right-angle surface portion are arranged in order from the outer diameter side, contrary to the example of FIG.
In the example of FIG. 3 (E), the joints 9 and 9 on both sides are fitted to each other in a joint shape.
In the example of FIG. 3 (F), the tip surface of one mating port 9 is a convex surface whose side shape is trapezoidal, and the tip surface of the other mating port 9 is a table on which the trapezoidal convex surface is fitted. It is a concave surface.
In the example of FIG. 3 (G), the joints 9 and 9 on both sides are formed in a staggered shape, and the overlapping surface of the projecting pieces 9a is an inclined surface inclined with respect to a plane perpendicular to the axial direction.
In the example shown in FIG. 3 (H), the joints 9 and 9 on both sides are formed in a staggered shape, and the overlapping surface of the projecting pieces 9a and 9a is a surface in which a cylindrical curved surface portion and a spherical curved surface portion are aligned. It is what.
[0015]
In the example of FIG. 4 (A), the joints 9 and 9 on both sides are formed in a staggered shape, and the engaging protrusions 9c that engage with each other are formed at the tips of the overlapping surfaces of the protruding pieces 9a and 9a. It is. Due to the engagement of both engaging protrusions 9c, 9c, the slit 10 is prevented from opening too much.
In the example of FIG. 4 (B), the joints 9 and 9 on both sides are formed in a staggered shape, and a protrusion 9d is formed at the tip of the overlapping surface of one of the protrusions 9a. By forming the protrusion 9d, the breakage resistance of the protrusion 9a is improved.
In the example of FIG. 4 (C), the joints 9 and 9 on both sides are formed in a staggered shape, and the surface on the overlapping side of one protruding piece 9a is formed as a stepped surface.
In the example of FIG. 4D, the surface on the overlapping side of the protruding pieces 9a in the protruding piece 9a in which the protruding part 9d is formed in the example of FIG. 4B is an inclined surface.
[0016]
In the examples of FIGS. 4 (E) to 4 (H), the joints 9 and 9 on both sides are phased. Among these, in the examples (E) and (F), the surface on the overlapping side of the projecting piece 9a is inclined with respect to the surface perpendicular to the axial direction. In the example of (E), a protrusion 9d is formed at the tip of the overlapping surface of the one protruding piece 9a, and in the example of (F), the overlapping side surface of the protruding piece 9a of one mating piece 9 is stepped. There is a face. In the example of (G), the surface on the overlapping side of the protruding piece 9a of the joint 9 is formed by a flat surface portion and an inclined surface portion, and the flat surface portion of the one protruding piece 9a is a stepped surface. In the example of (H), the surface on the overlapping side of the protruding piece 9a to be the abutment 9 is formed by a flat surface portion and an inclined surface portion, and a protruding portion 9d is formed at the tip of the flat surface portion of the one protruding piece 9a. is there.
[0017]
Among these, for example, as shown in FIG. 1 (C), FIG. 2 (B), FIG. 3 (E), and FIGS. 4 (A) to (D), the shape where the abutment portion substantially blocks the slit portion, Specifically, when the sleeve is assembled to the inner peripheral surface of the rolling bearing, at least one of the mating portions of each of the mating portions overlaps at least in the radial direction of the other mating portion, What is necessary is just the insulation heat insulation sleeve which has a part which has contacted at least 1 place or more. Here, the one place may be a contact state in any of a point contact, a line contact, and a surface contact.
[0018]
In the case of the sleeve having the slit shape as described above, since the slit portion serving as a passage from the inner peripheral side to the outer peripheral side of the sleeve is blocked at one or more places, not only is the discharge hardly generated, but also from the fixing roller. The generated heat can be easily cut off, and it is difficult to apply an electrical load or a thermal load to the rolling bearing. Note that the present invention can be applied to any of the slit shapes shown in the other figures described above, as long as one or more contact portions are in contact with each other.
[0019]
FIG. 5 shows an example of a method for manufacturing the insulating heat insulating sleeve 8. In this example, the case where the insulating heat insulating sleeve 8 having the shape shown in FIG. 1A is manufactured is shown, but the insulating heat insulating sleeves 8 having other shapes described above can be manufactured in the same manner.
First, as shown in FIG. 5 (A), the joints 9 and 9 are separated and injection molded into a shape having no radial overlap therebetween. Next, as shown in FIG. 5B, a jig made of a synthetic resin or rubber cylindrical body 29 and a ring gauge 31 is used, and the molded product (insulating heat insulating sleeve) 28 is connected to the inner diameter of the ring gauge 31. The cylindrical body 29 is inserted inside the molded product 28. The resin constituting the cylindrical body 29 is a substance having a higher coefficient of thermal expansion than the ring gauge 31, for example, a polymer having a higher coefficient of thermal expansion than the ring gauge 31, or a polymer substance such as an elastomer, and is molded by thermal expansion when heated. A forcing force is applied from the inside of the article 28. In the case of an elastomeric polymer, if the rubber strength (Hs) is about 60 to 100, preferably about 65 to 90, good elastic forcing is obtained, which is considered preferable. If the rubber hardness is too high, it is too hard, so it is difficult to insert the cylindrical body 29 inside the molded product 28. If the rubber hardness is too low, it is too soft, so that it is difficult to obtain an appropriate elastic forcing force.
Next, the entire jig is put in an electric furnace or the like and heated to a temperature equal to or higher than the glass transition point of the base resin of the molded product 28 to heat-fix the molded product 28. Thus, the phase-like insulating heat insulating sleeve 8 as described above can be obtained.
That is, in the manufacturing method of the insulating heat insulating sleeve 8 shown in the figure, the gap between the two joints 9 and 9 is injection-molded into a shape expanded so as not to overlap when viewed in the radial direction, and then the joints 9 and 9 are formed. This is a method in which the entire outer diameter surface is held in a perfect circle shape and is thermally fixed by narrowing the interval therebetween.
[0020]
The material injection position (gate position) 43 when the insulating heat insulating sleeve 8 is injection-molded is disposed at substantially the center of the entire length of the insulating heat insulating sleeve 8. The “substantially center” refers to a position within the range of ± 30 ° in the center of the entire length of the insulating heat insulating sleeve 8. As in the example of FIG. 5E, the material injection position 43 may be arranged at a position slightly shifted from the center of the entire length (about ± 10 ° to ± 30 °).
FIG. 5 (F) shows a part of the injection mold 45, in which a cavity 46 for forming the above-described insulating heat insulating sleeve 8 is formed, and a gate 44 is provided at substantially the center of its entire length.
Specifically, in order to avoid stress concentration, a range of ± 1 ° at both ends of the central portion of the entire length of the sleeve (deployed length) is avoided, ± 1 to ± 30 °, preferably ± 3 to ± 30 °, more preferably What is necessary is just to provide the gate position which is the injection | pouring position of molten resin in the range of +/- 10 +/- 30 degree.
[0021]
In addition, the gate position is preferably only one as shown in FIGS. 5C to 5F in order to eliminate the weld portion where the mechanical strength is weakened. A pin gate system such as a pinpoint gate or a submarine gate, which does not require post-processing of the gate portion by cutting and has excellent productivity, is preferable.
By arranging the gate position in this way, the distances of the flow paths of the molten resin branching from the gate position to the respective joints are substantially equal, so the curvature of the sleeve does not change drastically. 5 (C) and 5 (E), it is possible to obtain a substantially bilaterally symmetric shape that does not have a biased curvature, and it is possible to secure the strength of the sleeve gate position while achieving a sleeve with good roundness.
In addition, in order to eliminate the resin weld due to the branch of the resin flow at the pin gate portion, the injection molding may be performed by a disk gate method having excellent mechanical strength.
[0022]
5 (C), (E), and (F) show that the gate position is arranged on the inner peripheral portion of the sleeve, and FIG. 5 (D) shows the gate portion of the sleeve arranged on the side surface of the sleeve. FIG. If a pin gate type gate portion is disposed at a position as shown in FIG. 5D, an uneven surface such as a gate mark is not formed on the inner peripheral surface of the sleeve in contact with the roller. Can easily improve the accuracy of the cylinder, the degree of cylinder, the coaxiality of the inner and outer peripheral surfaces of the sleeve, etc. In addition, the roller surface is not damaged by the protrusion on the gate surface.
[0023]
In the above embodiment, the fixing roller 1 has the shaft portion 1a protruding at both ends as shown in FIG. 1. However, as shown in FIG. The insulating heat insulating sleeve 8 may be attached to the outer periphery of the fixing roller 1 in a fitted state. In this case, the fixing roller 1 may be formed with a coating 1d such as a fluororesin on the outer diameter surface.
Further, as shown in FIG. 6B, the insulating heat insulating sleeve 8 may be prevented from rotating with respect to the fixing roller 1 through a key 20 which is a rotation preventing means. The key 20 may be a separate body from the insulating heat insulating sleeve 8 as shown in the figure, and is integrally formed on the inner diameter surface of the insulating heat insulating sleeve 8 as shown in FIG. You may make it fit in the keyway 21 of an outer diameter surface. Further, the insulating heat insulating sleeve 8 may be fixed to the fixing roller 1 in the axial direction by a retaining ring (not shown) fitted in a retaining ring groove 22 formed on the outer diameter surface of the fixing roller 1. As described above, the thickness of the sleeve, such as its width and thickness, the size of the outer diameter, and the like may be appropriately set according to the specifications.
[0024]
【Example】
The insulating heat insulating sleeve 8 was obtained by injection-molding a resin composition comprising polyphenylene sulfide resin as a heat resistant resin, reinforcing fibers such as glass fibers, a fluorine-based resin, and a filler.
An example of a material when the insulating heat insulating sleeve 8 is made of synthetic resin will be shown. The surface temperature of the fixing roller 1 is about 150 ° C. to about 230 ° C. or higher, and the highest one has an instantaneous maximum temperature of about 300 ° C. or higher, and the insulating heat insulating sleeve 8 that is in direct contact with the fixing roller 1 is required to have high temperature heat resistance. . The heat resistance and hardness of resin moldings are generally difficult to judge depending on the blending amount of each resin, the amount of filler added, etc., but the thermal properties and hardness of each standard heat-resistant resin are approximately It is as follows. Each value in parentheses is described in the order of glass transition temperature, melting point, deflection temperature under load, Rockwell hardness (partially Shore hardness), linear expansion coefficient, and volume resistivity. In addition, items with clear measurement points that are difficult to survey, those that are unclear, and some items of thermosetting resins are represented as-. Abbreviations are added to each resin.
[0025]
Phenolic resin (PF) (−, −, 74 to 144 ° C., M93 to 128, 1.1 to 6.8 ×
Ten-Five/ ° C, 1012-1018Ω · cm)
Polyimide resin (PI) (−, −, 350 to 360 ° C., M118, 0.8 to 6.6 × 10-Five/ ° C, 1016-1018Ω · cm)
Thermoplastic polyimide resin (PI) (250 ° C, 388 ° C, 238-260 ° C, E52-99, 0.4-6x10-Five/ ° C, 107-1018Ω · cm)
Polyamideimide resin (PAI) (280-290 ° C, 300 ° C, 270-282 ° C, E86-104, 0.9-4.1 × 10-Five/ ° C, 0.8 × 20.3 × 1016Ω · cm)
Polyetherimide resin (PEI) (200-210 ° C., 215-217 ° C., 200-210 ° C., M109, 1.4-5.6 × 10-Five/ ° C, 1016-1017Ω · cm)
Polyetherketone resin (PEK) (165-170 ° C, 365-380 ° C, 168 ° C,-,-,-)
Polyether ether ketone resin (PEEK) (145 ° C., 335 ° C., 150 ° C., M98, 0.8 to 6.2 × 10-Five/ ° C, 10Five-1017Ω · cm)
Polyphenylene sulfide resin (PPS) (90 ° C, 285-290 ° C, 105-136 ° C, R123, 0.6-6.3 × 10-Five/ ° C, 10 to 1017Ω · cm)
46 Polyamide resin (46PA) (78-80 ° C, 290 ° C, 220 ° C, R118-121, 3-8.5 × 10-Five/ ° C, 1015Ω · cm)
Totally aromatic polyester resin (POB, LCP) (−, 412 ° C., 180 to 355 ° C., R 60 to 66, 0.1 to 12 × 10-Five/ ° C, 102-1017Ω · cm)
Tetrafluoroethylene resin (PTFE) (-, 327 ° C, 55 ° C, Shore hardness D50-65, 3.9-18x10-Five/ ° C,> 1017Ω · cm)
[0026]
These materials have a glass transition temperature of at least 70 ° C. or higher, a melting point of at least 215 ° C. (thermoplastic resin), and a deflection temperature under load of the structural material of at least 70 ° C., preferably 150 ° C. or higher.
Each of these different types of resins has different heat resistance and hardness, and the combination is selected according to the specifications and conditions, for example, the normal temperature, the instantaneous maximum temperature and the melting point, the deflection temperature under load, and the heat resistance temperature such as the glass transition temperature. . Thus, the heat resistant temperature of the resin should be higher than the specification / condition temperature, and preferably about 30 ° C. to 60 ° C. or more from the specification temperature for safety. Such a resin material may be formed on the outer peripheral surface of the insulating heat insulating sleeve 8.
[0027]
In addition to high heat resistance, they have high flame resistance, excellent mechanical properties, excellent electrical properties, and chemical resistance. These materials are used as a molding base material (base material) of the insulating heat insulating sleeve 8. If the melting point of these heat-resistant thermoplastic resins is at least 280 ° C. or higher, it can be suitably used in the present invention. The upper limit of the melting point is not particularly limited, but at present, the upper limit of the melting point of the thermoplastic resin that can be injection-molded seems to be 500 ° C.
[0028]
In the resin composition, as an additive other than the above, an extender and a powder filler for the purpose of, for example, improving mechanical strength and thermal stability and coloring, etc., within a range not impairing the effects of the present invention. Further, a substance that is stable at a high temperature of about 350 ° C. or higher, such as a pigment, may be appropriately mixed. For example, in order to further improve the lubricity of the resin composition, an abrasion resistance improving agent can be blended. Specific examples of the wear resistance improver include carbon, graphite, mica, wollastonite, metal oxide powder, whisker such as calcium sulfate, phosphate, carbonate, stearate, ultrahigh molecular weight polyethylene, etc. Can be illustrated. It is preferable that the remaining heat-resistant resin when adding such an additive does not fall below about 40% by weight. Moreover, even if it is a filler which has electroconductivity, it may be mixed if it is the quantity which is a grade which does not energize a sleeve.
[0029]
Organic fibrous insulation reinforcement and particulate insulating filler include aramid fiber / powder, polyethylene fiber / powder, polyester fiber / powder, polyamide fiber / powder, tetrafluoroethylene fiber / powder, polyvinyl alcohol fiber / powder, Examples thereof include phenol fiber / powder, polyphenylene sulfide fiber / powder, and polyimide fiber / powder.
[0030]
Glass fibers and glass beads are preferable as these fibrous insulating reinforcing materials and particulate insulating fillers. Glass fiber and glass beads are made of SiO2, B2OThree, Al2OThree, CaO, Na2O, K2O, MgO, Fe2OThreeIn general, alkali-free glass (E glass), alkali-containing glass (C glass, A glass) and the like can be used. E glass is, for example, SiO2Is about 52-56% by weight, B2OThreeIs about 8-13 wt%, Al2OThreeIs about 12-16% by weight, CaO is about 15-25% by weight, Na2O or K2O exceeds 0 and is approximately 1% by weight or less, and MgO exceeds 0 and approximately 6% by weight or less. Moreover, the tensile strength is about 300-400 kgf / mm.2An average of about 350kgf / mm2The elastic modulus is about 7400-7700 kgf / mm2The average is excellent in terms of tensile strength, elastic modulus, mass productivity, price, etc.
[0031]
The fiber length of E glass is preferably about 0.01 to 0.5 mm, and the fiber diameter is preferably about 5 to 15 μm, more preferably about 7 to 13 μm. This is because when a fiber having a fiber diameter of more than about 15 μm or a glass fiber having a fiber length of more than about 0.5 mm is used, it is difficult to uniformly disperse when mixed with a heat insulating synthetic resin. This is because the composition is not preferable because molding becomes difficult. If the fiber diameter is too thin or the fiber length is too short, it is possible that mechanical strength such as compression creep cannot be expected. By receiving a pressing force of a predetermined load by the pressure roller 6 at a high temperature of the fixing device. It is expected that the insulating heat insulating sleeve 6 is deformed. As such a glass fiber, there is a middle fiber (fiber diameter 13 μm) manufactured by Asahi Fiber Glass Co., Ltd.
[0032]
The method of adding and mixing various additives to these heat-resistant resins is not particularly limited, and a method that is usually widely used, for example, a resin as a main component, other raw materials individually, or After appropriate dry-mixing with a mixer such as a Henschel mixer, ball mill, or tumbler mixer, it is supplied to an injection molding machine or a melt extrusion molding machine with good melt mixing properties, or in advance a hot roll, kneader, Banbury mixer, melt extruder, etc. A method such as melt-mixing may be used.
[0033]
Further, when the above composition is molded, the molding method is not particularly limited, and a usual method such as compression molding, extrusion molding, injection molding, or the like, or after the composition is melt-mixed, this is jet milled. It is also possible to pulverize with a freeze pulverizer or the like and classify to a desired particle size. Among these, the injection molding method is excellent in productivity and can provide an inexpensive molded body.
[0034]
Moreover, you may perform the drying process comparable as the heat processing mentioned later before shaping | molding the particle | grains, such as a pellet obtained in this way. It is considered that swelling and strength reduction of the molded body can be prevented by sufficiently evaporating moisture and the like from grains such as pellets.
The molded body thus obtained is annealed at about 100 to 280 ° C. for about 0.1 to 24 hours in order to ensure dimensional stability during high temperature use, excluding heat setting and distortion during molding. It is desirable to keep
[0035]
Depending on the material, the annealing heat treatment temperature is about 280 ° C. or less, for example, about 140 to 270 ° C., and depending on the material, it is appropriate that the annealing heat treatment temperature is about 140 to 230 ° C. or about 140 to 200 ° C. These heat-resistant resins are resins with high rigidity over a wide temperature range, excellent impact resistance, resistance to distortion such as creep, and resistance to most types of oils and chemicals. . Some of these resins are crystalline and have properties such as an increase in strength and rigidity, an improvement in wear resistance and lubricity, a decrease in thermal expansion coefficient and a water absorption rate due to an increase in crystallinity.
If the heat treatment temperature is lower than about 140 ° C., it takes a long time for the crystallization to proceed and the efficiency is poor, it is difficult to remove slight distortion of the molded product, and it is considered difficult to obtain dimensional stability. .
[0036]
If the annealing heat treatment temperature exceeds about 20 to 30 ° C. higher than the heat distortion temperature, the influence of the thermal history on the resin is considered to be unfavorable, and it is preferable to perform the heat treatment below this temperature. During the heat treatment, before reaching the predetermined temperature, for example, normal temperature, about 80 ° C., about 130 ° C., about 180 ° C., about 220 ° C., about 230 ° C., about 280 ° C. The temperature may be gradually raised about every 15 to 60 minutes in the range of about 15 to 180 minutes, and the temperature may be kept constant at the optimum temperature within the temperature range within the time range. In this case, the maximum temperature holding time may be about 15 to 480 minutes. If the holding time at the maximum temperature is shorter than the predetermined time, the resin is not sufficiently crystallized and the dimensional stability is deteriorated. If the holding time is longer than the predetermined time, the warp is inappropriate. Therefore, it becomes difficult to reduce the manufacturing cost from the viewpoint of increasing the energy consumption of an electric furnace or the like and increasing the manufacturing time.
[0037]
Moreover, you may hold | maintain at such a fixed temperature, when it heats up to about 90-120 degreeC. If it does in this way, the water | moisture content slightly taken in in the molded object can be dried, and it can be made to crystallize after that. On the other hand, it is not preferable to end the heat treatment by heating rapidly in a short time. This is because the moisture vaporizes beyond the boiling point, and there is a high possibility that a defect such as “swelling” occurs in the molded article due to volume expansion at that time.
The cooling after the crystallization step may be performed through a step opposite to that at the time of increasing the temperature, or may be gradually cooled over about 60 to 180 minutes.
[0038]
By performing the heat treatment process as described above, the occurrence of defects such as swelling of the molded body is prevented as much as possible, and the crystallization of the resin is progressed reliably and gradually, thereby improving the dimensional stability of the molded body and improving the dimensional accuracy. A high molded article can be provided.
[0039]
When the insulating heat insulating sleeve 8 is formed of a ceramic material, it is preferably molded using a ceramic material such as the following new ceramics, and has an appropriate strength and hardness, and the ceramic material within these numerical ranges. The insulating heat insulating sleeve 8 may be used.
In addition, in order to modify the strength, thermal characteristics, etc. of these materials, about 1 to 10% by weight of SiO2, Y2OThree, Al2O7One or more harmless materials such as AlN, TaN, TiC, Co and other rare earths may be added.
[0040]
Examples and properties of ceramic materials
The values in parentheses are listed in the order of the maximum operating temperature, hardness (Hv), linear expansion coefficient, bending strength (thermal conductivity, water-resistant impact resistance (water cooling), and volume resistivity.
Alumina (aluminum oxide) (Al2OThree)
(1600 ~ 1900 ℃, 1200 ~ 2300Kgf / mm24.6 to 9.3 x10-6/ ℃, 5-85Kgf / mm2, 0.004 to 0.1 cal / cm ・ sec ・ ℃, 180 to 500 ℃, 1014Ω · cm or more)
Zirconia (ZrO2)
(800 ° C, 1200-1500Kgf / mm29.5 ~ 11 × 10-6/ ℃, 2-240 Kgf / mm2, 0.004 to 0.1 cal / cm ・ sec ° C, 200 to 470 ° C, 10TenΩ · cm or more)
Silica (quartz glass)
(1150 ° C,-, 0.5 × 10-6/ ℃, 4-6 Kgf / mm2, 0.003 cal / cm ・ sec ・ ℃, 1000 ℃ or less, 1019Ω · cm)
Silicon carbide (SiC)
(1100 ~ 1600 ℃, 2000 ~ 2900Kgf / mm2, 3.1 to 5 × 10-6/ ℃, 6-100 Kgf / mm20.07 ~ 0.6 cal / cm ・ sec ・ ℃, 200〜700 ℃, 1012~Ten13Ω · cm)
Silicon nitride (SiThreeNFour)
(1400-1500 ° C, 1500-1800Kgf / mm21.9 〜4 × 10-6/ ° C, 3 to 120 Kgf / mm20.01 ~ 0.07cal / cm ・ sec ・ ℃, 1013Ω · cm)
Sialon (Si6-ZAlZOZN8-Z(Z = 0 to 4.2)
(-, 1800-2000Kgf / mm22.8-3 x10-6/ ° C, 60-140 Kgf / mm2, 0. 02 ~ 0.07cal / cm ・ sec ・ ° C, 500-900 ° C, 1013Ω · cm or more)
Aluminum nitride (aluminum nitride) (AlN)
(-, 1000-1200Kgf / mm24.4 to 5.7 x10-6/ ℃, 5-70Kgf / mm20.14 ~ 0.6 cal / cm ・ sec ・ ℃, 300〜400 ℃, 1013Ω · cm or more)
Titanium nitride (TiN)
(-, 1200-1600Kgf / mm2,-, 160 to 200 Kgf / mm20.14-0.6 cal / cm · sec · ° C, 300-400 ° C,-)
Tungsten carbide
(-,-,-, 180-300 kgf / mm2,-,-,-)
[0041]
These are super heat resistant, and the heat insulation is relatively better with resin materials, but the linear expansion coefficient is about 1/10 smaller than that of resin materials, so the clearance with the fixing roller 1 and the bearing 3 is compared. This makes it possible to provide a bearing device with a high clearance accuracy. In particular, when the insulating heat insulating sleeve 8 and the fixing roller 1 are fitted together, it is better that the respective linear expansion coefficients are close to each other. Therefore, the difference in the linear expansion coefficient between the insulating heat insulating sleeve 8 and the fixing roller 1 is the difference between the resin material and the ceramic material. It is preferable that Δα = 1 to 100 times or less, preferably Δα = 1 to 10 times or less for the heat insulating sleeve as the main component. Thus, by applying a material having a linear expansion coefficient that is relatively the same as that of the fixing roller 1 and having a heat insulating property to the insulating heat insulating sleeve 8, the accuracy of the clearance between the insulating heat insulating sleeve 8 and the fixing roller 1 is increased. Therefore, it is possible to provide a high-temperature bearing device that has little backlash even when applied to a high-temperature bearing having a large operating temperature difference and that does not apply stress to each member at low temperatures.
As described above, a material having a relatively small linear expansion coefficient and heat insulation, and having a thermal shock resistance of at least about 100 ° C. or higher and considering safety, the material of about 150 ° C. or higher is applied to the insulating heat insulating sleeve 8. As a result, the accuracy of the gap between the sleeve 8 and the rolling bearing 3 can be increased, and the heating means such as the power source of the high-temperature bearing device is turned off, and when the bearing device is cooled, the moisture in the air Even if water droplets are attached to the sleeve, there is no loss due to thermal shock, there is little backlash, and the grease in the rolling bearing is difficult to solidify or deteriorate, providing a low-torque and long-life bearing device can do.
[0042]
Alumina (aluminum oxide, Ai) is a typical fine ceramic among ceramic materials.2OThree) May have the following characteristics as well as the above-mentioned characteristics depending on the crystal form and the use of additives, etc., and this is excessive as an insulating heat insulating sleeve 8 such as mechanical strength, heat resistance, and dimensional stability. It is not limited to specs, but can be used sufficiently, and it is relatively average in terms of price, and is excellent overall.
Characteristics of alumina
Compressive strength 100-450Kgf / mm2
Bending strength 5-85Kgf / mm2
Young's modulus 2.5-4.8 × 10Kgf / mm2
Fracture toughness 3.0-4.6MN / m3/2
Poisson's ratio 0.19-0.26
Thermal conductivity 0.004 ~ 0.1cal / cm ・ sec ・ ℃
Impact resistance 180-500 ° C
Specific heat 0.17 ~ 0.33cal / g ・ ℃
[0043]
In order not to impair the insulating property of the sleeve made of a resin material or a ceramic material, the insulating sleeve body should be 10 Ω · cm or more, preferably 10FiveΩ · cm or more, more preferably 108If the volume resistivity is Ω · cm or more, the roller and the bearing can be well insulated. The upper limit value of the volume resistivity is not particularly limited.20It is sufficient if it is less than Ω · cm.
The material of the insulating heat insulating sleeve 8 is not particularly limited, but materials in the ranges of the thermal characteristics, the linear expansion coefficient, and the hardness of each material group described above are preferable. By doing in the above way, the electric corrosion generation of the rolling bearing 3 can also be prevented.
[0044]
Further, the surface roughness and shape of at least one sliding surface of the inner and outer peripheral surfaces of the sleeve are the maximum roughness (Rmax), arithmetic average roughness (Ra), ten-point average roughness (Rz), etc. Measured by an evaluation method defined by JIS, preferably Ra measurement method, 25 μm or less, preferably 10 μm or less, more preferably 3.2 μm or less. This is because if the surface roughness exceeds the predetermined range, it is considered that the outer peripheral surface of the roller and the inner peripheral surface of the rolling bearing are often damaged, which is considered to cause wear. The lower limit of the surface roughness / shape may be about 0.1 μm or more in consideration of the efficiency during processing.
[0045]
However, since it takes a long time to finish the cavity surface in the injection mold, it is not efficient and may be affected by the formation of a transition film of resin material. It is estimated that a range of about 3 to 8 μm may be used if the specifications and conditions are met.
[0046]
The insulating heat insulating sleeve according to the present invention forms a recording pattern on a medium such as a photosensitive member by an electric signal given from the outside, and converts the electric quantity pattern formed on the medium into a visible pattern. Of course, the present invention can also be applied to printers employing various methods. Examples of such a printer system include an electrophotographic system, an inkjet system, a thermal system, an optical printer system, and an electronic recording system. The types of electrophotography described above include the Carlson method, light / charge injection method, photopolarization method, photovoltaic method, charge transfer method, electroelectrophotography, electrostatic latent image photography, photoelectrophoresis, thermophoresis, The plastic method can be mentioned. Examples of the optical printer include a laser printer, an LED (light emitting diode) printer, a liquid crystal shutter printer, and a CRT printer. Further, examples of the electronic recording method include an electrostatic recording method, an energization recording method, an electrolytic recording method, and a discharge recording method, and further include a direct method and an indirect method. In addition, these electrostatic recording methods and the like include a wet method in which oil or the like is applied and a dry method for this.
[0047]
Specifically, toner image transfer type dry electrostatic copiers, wet electrostatic copiers, laser beam printers (LBP), liquid crystal shutter (LCD) printers, facsimile printers, PPCs, light emitting diodes (LEDs), silver This is a concept indicating the whole of an image forming apparatus such as a printing machine such as a printer such as a salt photo printer (CRT).
[0048]
Further, the insulating heat insulating sleeve referred to in the present invention is not particularly limited in its application parts such as a paper feeding part, a photosensitive part, a fixing part, and a paper discharging part, but the excellent heat resistance of each of the injection-moldable thermoplastic resins. If applied, it can be applied not only to the pressure roller but also to the fixing roller that is used at high temperatures, and since it is a heat-resistant resin that can be injection-molded, it can be easily molded even with a sleeve having a slit having a complicated shape according to the present invention. Insulating and insulating sleeves that are efficient and inexpensive in terms of productivity can be provided.
[0049]
【The invention's effect】
  Insulation insulation sleeve of this inventionIs a high-temperature bearing structure in which a shaft is rotatably supported by a rolling bearing, for example, a heat-fixing device bearing structure in which a fixing roller having a built-in heater is rotatably supported by shaft bearings at both ends. An insulating heat insulating sleeve interposed between the shaft andIt is made of a heat insulating material that is gas-insulating, has a slit that is divided at one place in the circumferential direction and has a slit in the circumferential direction between the joints on both sides, and the joints on both sides overlap each other in the radial direction. Therefore, heat insulation is ensured, discharge can be prevented over the entire circumference, and thermal expansion and contraction is absorbed to prevent a change in diameter.
  In the bearing structure according to the present invention, since the insulating heat insulating sleeve having the above-described configuration is interposed between the rolling bearing and the shaft, heat insulation and electrical insulation between the shaft and the bearing are ensured, and insulation heat insulation accompanying thermal expansion and contraction is achieved. Even if a high voltage is applied to the shaft without the backlash of the sleeve, discharge to the bearing is prevented.
  In the heat fixing device of the present invention, the insulating heat insulating sleeve having the above-described configuration is interposed between the fixing roller and the bearing, so that heat is not radiated from the fixing roller through the bearing, and the heat insulating sleeve is thermally expanded. , No backlash due to heat shrinkage, and no high voltage is applied to the fixing roller, and no discharge is generated on the bearing side. Can be copied.
[Brief description of the drawings]
1A is a cutaway side view showing a fixing roller portion of a heat fixing apparatus according to an embodiment of the present invention, FIG. 1B is a cutaway front view thereof, and FIG. It is an enlarged view.
FIGS. 2A to 2F are side views showing various modifications of the joint of the insulating heat insulating sleeve.
FIGS. 3A to 3F are side views showing other various modifications of the joint of the insulating heat insulating sleeve, and FIGS. 3G and H are perspective views.
FIGS. 4A to 4D are side views showing still other various modifications of the joint of the insulating heat insulating sleeve, and FIGS. 4E to 4H are perspective views.
FIG. 5 is an explanatory diagram of a method for manufacturing an insulating heat insulating sleeve.
6A is a partial cross-sectional view of a bearing structure according to another embodiment of the present invention, FIG. 6B is an exploded perspective view showing the relationship between an insulating heat insulating sleeve and a key according to still another embodiment, C) is an exploded perspective view showing a relationship among an insulating heat insulating sleeve, a fixing roller, and a bearing according to still another embodiment.
7A is a cutaway side view showing a fixing roller portion of a conventional heat fixing device, FIG. 7B is a cutaway front view thereof, and FIG. 7C is an enlarged view showing a joint of an insulating heat insulating sleeve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Fixing roller, 2 ... Heater, 3 ... Rolling bearing, 4 ... Housing, 6 ... Pressure roller, 8 ... Insulation heat insulation sleeve, 9 ... Contact, 10 ... Slit

Claims (10)

軸を転がり軸受により回転自在に支持する高温用軸受構造において、前記転がり軸受と前記軸との間に介在させる絶縁断熱スリーブであって、この絶縁断熱スリーブは、電気絶縁性の断熱材料からなり、円周方向の一箇所で分割されて分割部両側の合い口間に円周方向に間隔を持つスリットを有し、かつ両側の合い口が互いに半径方向に重なる形状とされた絶縁断熱スリーブ。 In high-temperature bearing structure for rotatably supporting a shaft by a rolling bearing, an insulating insulating sleeve to be interposed between said rolling bearing shaft, the insulation insulating sleeve is made of electrical insulating heat-insulating material An insulating heat insulating sleeve that has a slit that is divided at one place in the circumferential direction and that has a slit in the circumferential direction between the joints on both sides of the divided portion, and that the joints on both sides overlap each other in the radial direction. ヒータを内蔵した定着ローラを両端の軸部で転がり軸受により回転自在に支持する加熱定着装置において、前記転がり軸受と前記軸部との間に介在させる絶縁断熱スリーブであって、この絶縁断熱スリーブは電気絶縁性の断熱材料からなり、円周方向の一箇所で分割されて分割部両側の合い口間に円周方向に間隔を持つスリットを有し、かつ両側の合い口が互いに半径方向に重なる形状とされた絶縁断熱スリーブ。In a heat fixing device that rotatably supports a fixing roller incorporating a heater at both end shaft portions by a rolling bearing, an insulating heat insulating sleeve interposed between the rolling bearing and the shaft portion, the insulating heat insulating sleeve being Made of an electrically insulating heat insulating material, divided at one place in the circumferential direction, with slits spaced in the circumferential direction between the joints on both sides of the divided part, and the joints on both sides overlap each other in the radial direction Insulated thermal insulation sleeve. 前記電気絶縁性の耐熱材料が、耐熱性で低熱伝導率の合成樹脂を母材とし、前記樹脂中に絶縁材を繊維または粒子状で分散状態に含有させたものである請求項1または請求項2記載の絶縁断熱スリーブ。The electrically insulating heat resistant material, a synthetic resin having a low thermal conductivity in the heat resistance as a base material, according to claim 1 or claim the insulating material is obtained by incorporating in a dispersed state in the fibers or particulate in the resin 2. The insulating heat insulating sleeve according to 2 . 前記電気絶縁性の耐熱材料がセラミックス系材料である請求項1または請求項2記載の絶縁断熱スリーブ。Claim 1 or claim 2 Symbol placement of insulation insulating sleeve the electrical insulating heat-resistant material is a ceramic material. 軸を転がり軸受により回転自在に支持する高温用軸受構造において、前記転がり軸受と前記軸との間に、電気絶縁性の断熱材料からなり、円周方向の一箇所で分割されて分割部両側の合い口間に円周方向に間隔を持つスリットを有し、かつ両側の合い口が互いに半径方向に重なる形状とされた絶縁断熱スリーブを介在させたことを特徴する高温用軸受構造。In a high-temperature bearing structure in which a shaft is rotatably supported by a rolling bearing, it is made of an electrically insulating heat insulating material between the rolling bearing and the shaft . A high-temperature bearing structure comprising an insulating heat insulating sleeve having slits spaced in the circumferential direction between the mating ports, and the mating ports on both sides overlapping each other in the radial direction . 前記電気絶縁性の耐熱材料が、耐熱性で低熱伝導率の合成樹脂を母材とし、前記樹脂中に絶縁材を繊維または粒子状で分散状態に含有させたものである請求項5記載の高温用軸受構造。6. The high temperature according to claim 5, wherein the electrically insulating heat-resistant material comprises a heat-resistant and low thermal conductivity synthetic resin as a base material, and the insulating material is contained in a dispersed state in the form of fibers or particles in the resin. Bearing structure. 前記電気絶縁性の耐熱材料がセラミックス系材料である請求項5記載の高温用軸受構造。The high-temperature bearing structure according to claim 5, wherein the electrically insulating heat-resistant material is a ceramic material. ヒータを内蔵した定着ローラを両端の軸部で転がり軸受により回転自在に支持する加熱定着装置において、前記転がり軸受と前記軸部との間に、電気絶縁性の断熱材料からなり、円周方向の一箇所で分割されて分割部両側の合い口間に円周方向に間隔を持つスリットを有し、かつ両側の合い口が互いに半径方向に重なる形状とされた絶縁断熱スリーブを介在させたことを特徴する加熱定着装置。In the heat fixing device for rotatably supporting the rolling rising bearing the fixing roller with a built-in heater with axial portions at both ends, between the rolling bearing and the shaft portion made of electrically insulating insulation material, the circumferential Insulating sleeves that are split at one place and have slits that are circumferentially spaced between the joints on both sides of the divided part, and that the joints on both sides overlap each other in the radial direction. A heat fixing device characterized by. 前記電気絶縁性の耐熱材料が、耐熱性で低熱伝導率の合成樹脂を母材とし、前記樹脂中に絶縁材を繊維または粒子状で分散状態に含有させたものである請求項8記載の加熱定着装置。The heating according to claim 8, wherein the electrically insulating heat-resistant material comprises a heat-resistant and low thermal conductivity synthetic resin as a base material, and the insulating material is contained in a dispersed state in the form of fibers or particles in the resin. Fixing device. 前記電気絶縁性の耐熱材料がセラミックス系材料である請求項8記載の加熱定着装置。The heat fixing apparatus according to claim 8, wherein the electrically insulating heat-resistant material is a ceramic material.
JP35372695A 1995-12-29 1995-12-29 Insulating heat insulating sleeve, bearing structure using the same, fixing device Expired - Fee Related JP3868529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35372695A JP3868529B2 (en) 1995-12-29 1995-12-29 Insulating heat insulating sleeve, bearing structure using the same, fixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35372695A JP3868529B2 (en) 1995-12-29 1995-12-29 Insulating heat insulating sleeve, bearing structure using the same, fixing device

Publications (2)

Publication Number Publication Date
JPH09184513A JPH09184513A (en) 1997-07-15
JP3868529B2 true JP3868529B2 (en) 2007-01-17

Family

ID=18432810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35372695A Expired - Fee Related JP3868529B2 (en) 1995-12-29 1995-12-29 Insulating heat insulating sleeve, bearing structure using the same, fixing device

Country Status (1)

Country Link
JP (1) JP3868529B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2436943A1 (en) * 2010-10-01 2012-04-04 ALSTOM Transport SA Rolling bearing protection device
US20220341464A1 (en) * 2019-09-30 2022-10-27 Ntn Corporation Insulating rolling bearing

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6390683B1 (en) 1999-06-11 2002-05-21 Ntn Corporation Heat insulation sleeve and bearing device for fixing roller
JP2000357333A (en) * 1999-06-15 2000-12-26 Ntn Corp Optical pickup device and supporting shaft therefor
DE10126477C1 (en) * 2001-05-31 2002-12-05 Hasse & Wrede Gmbh Torsional vibration damper
JP2010032059A (en) * 2001-12-12 2010-02-12 Ntn Corp High precision sliding bearing
JP2007057643A (en) * 2005-08-23 2007-03-08 Kyocera Mita Corp Fixing device
JP4691426B2 (en) * 2005-09-16 2011-06-01 京セラミタ株式会社 Image forming apparatus
ATE535711T1 (en) * 2008-07-02 2011-12-15 Siemens Ag WIND TURBINE BLADE WITH LIGHTNING RECEPTOR AND METHOD FOR PROTECTING THE SURFACE OF A WIND TURBINE BLADE
WO2012117938A1 (en) 2011-03-01 2012-09-07 Ntn株式会社 Sliding bearing
JP5717065B2 (en) * 2011-03-01 2015-05-13 Ntn株式会社 Plain bearing
DE102011076530A1 (en) * 2011-05-26 2012-11-29 Zf Friedrichshafen Ag Bearing arrangement of an electrical machine
JP6069889B2 (en) * 2012-05-22 2017-02-01 富士ゼロックス株式会社 Fixing device, image forming apparatus
WO2014134582A2 (en) * 2013-02-28 2014-09-04 Battelle Memorial Institute Gas seals for high temperature rotating shaft applications
JP2016098889A (en) * 2014-11-20 2016-05-30 大豊工業株式会社 Slide member
JP6595323B2 (en) 2015-12-03 2019-10-23 株式会社デンソー bush
CN107355472A (en) * 2016-05-09 2017-11-17 湖北广奥减振器制造有限公司 Silicon oil damper thrust bearing
DE102017128885A1 (en) * 2017-12-05 2019-06-06 Schaeffler Technologies AG & Co. KG Electrically insulating rolling bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2436943A1 (en) * 2010-10-01 2012-04-04 ALSTOM Transport SA Rolling bearing protection device
FR2965597A1 (en) * 2010-10-01 2012-04-06 Alstom Transport Sa DEVICE FOR PROTECTING A BEARING BEARING
US20220341464A1 (en) * 2019-09-30 2022-10-27 Ntn Corporation Insulating rolling bearing
US11873863B2 (en) * 2019-09-30 2024-01-16 Ntn Corporation Insulating rolling bearing

Also Published As

Publication number Publication date
JPH09184513A (en) 1997-07-15

Similar Documents

Publication Publication Date Title
JP3868529B2 (en) Insulating heat insulating sleeve, bearing structure using the same, fixing device
JP2009063902A (en) Image forming apparatus and intermediate transfer belt
CN101846920A (en) Charging member, process cartridge and image forming apparatus
US7014976B2 (en) Fuser member, apparatus and method for electrostatographic reproduction
JP6544993B2 (en) Manufacturing device for fixing member
US6390683B1 (en) Heat insulation sleeve and bearing device for fixing roller
JPH08240220A (en) Bearing structure for high temperature and bearing structure of heating fixer
US20140053393A1 (en) Method of forming thin resistive heating layer, heating member including the thin resistive heating layer, and fusing unit including the heating member
JP2001056020A (en) Heat insulation sleeve, bearing device for fixing roller and fixing device
JP2004025846A (en) Centrifugal mold, manufacturing method thereof, centrifugally molded object produced by them, blade and manufacturing method thereof
JP2001051534A (en) Bearing device for fixing roller
US11624994B2 (en) Fixing belt and fixing apparatus
JP2011075816A (en) Endless fixing belt and thermally fixing device
JP3293653B2 (en) Separation claw
JP5447948B2 (en) FIXING MEMBER, FIXING DEVICE HAVING THE SAME, AND IMAGE FORMING DEVICE
JP2001296767A (en) Thermally insulating sleeve for fixing roller
JP4038632B2 (en) Method for manufacturing substrate for photosensitive drum
JP3668644B2 (en) Bearing device for fixing roller
US11429046B2 (en) Fixing belt and method of manufacturing the fixing belt
US5980245A (en) Durable gudgeons for fusing rollers
JPH0744048A (en) Driving gear for thermal fixing roller for copying machine
JP5261998B2 (en) Conductive member, process cartridge having the same, and image forming apparatus
JP2002040798A (en) Developing roller and developing device
JP5582595B2 (en) Elastic roller and fixing device used in image forming apparatus
JP4460321B2 (en) Conductive member, process cartridge having the same, and image forming apparatus having the process cartridge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees