JP3867944B2 - Pure water production method and ultrapure water production apparatus with reduced oxidizing substances - Google Patents

Pure water production method and ultrapure water production apparatus with reduced oxidizing substances Download PDF

Info

Publication number
JP3867944B2
JP3867944B2 JP08199898A JP8199898A JP3867944B2 JP 3867944 B2 JP3867944 B2 JP 3867944B2 JP 08199898 A JP08199898 A JP 08199898A JP 8199898 A JP8199898 A JP 8199898A JP 3867944 B2 JP3867944 B2 JP 3867944B2
Authority
JP
Japan
Prior art keywords
exchange resin
pure water
cation exchange
water
metal ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08199898A
Other languages
Japanese (ja)
Other versions
JPH11277059A (en
Inventor
千佳 建持
円 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP08199898A priority Critical patent/JP3867944B2/en
Publication of JPH11277059A publication Critical patent/JPH11277059A/en
Application granted granted Critical
Publication of JP3867944B2 publication Critical patent/JP3867944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコンウエハ等の洗浄に使用される超純水のような純水の製造方法に関し、特に過酸化水素のような酸化性物質の濃度を低減した純水の製造方法に関する。さらに本発明は、過酸化水素のような酸化性物質の濃度を低減した超純水の製造装置に関する。
【0002】
【従来の技術】
半導体製造産業において、不純物を高度に除去した超純水は必須のアイテムである。超純水は、一般に、前処理工程で大きなゴミを除去した原水(例えば、河川水、地下水、工業用水)を、1次系純水製造装置及び2次系純水製造装置(サブシステム)で順次処理することによって製造され、ウエハ洗浄を行うユースポイントに供給される。このような超純水は、不純物の定量も困難である程の純度を有するが、全く不純分を含有しない訳ではない。
【0003】
例えば、超純水に含まれる溶存酸素(DO)は、シリコンウエハの表面に自然酸化膜を形成する。自然酸化膜がシリコンウエハ表面に形成されると、低温でのエピタキシャルSi薄膜の成長を妨げたり、非常に薄いゲート酸化膜の膜厚及び膜質の精密制御の妨げとなる。あるいは、微小断面積のコンタクトホールのコンタクト抵抗の増加原因となる。そのため、自然酸化膜の形成は極力抑制する必要がある。
そこで、超純水製造装置においては、特に、1次系純水製造装置において脱気装置を設け溶存酸素値(DO値)を低減している。この脱気装置により、2次系純水製造装置(サブシステム)入り口における溶存酸素値は、通常1ppbDO(μg/リットル)程度にまで低減されている。
【0004】
【発明が解決すべき課題】
ところが、2次系純水製造装置における紫外線酸化装置において、水中に生成または添加される過酸化水素のような酸化性物質が、2次系純水製造装置中のその後の工程(ポリッシャ工程)で分解されて、酸素を生成し、超純水中の溶存酸素値を押し上げることが分かっている。
【0005】
そして、超純水中の溶存酸素値を押し上げる原因となっている紫外線酸化装置において生成または添加される過酸化水素に起因する溶存酸素を膜式脱気装置を用いて除去する方法が提案されている(特開平9−29251号公報)。しかし、この方法で溶存酸素を除去した超純水でも相変わらず、自然酸化膜の形成が抑制できないという問題があった。
【0006】
これとは別に、超純水中に残存する過酸化水素を、合成炭素系粒状吸着剤を用いて吸着除去する方法も提案されている(特開平9−29233号公報)。この方法によれば、超純水中に残存する過酸化水素自体を除去することから、自然酸化膜の形成を抑制することができる。
しかるに、上記合成炭素系粒状吸着剤を用いる方法は、所定の除去率を得るためには、多量の吸着剤を充填した大型の吸着塔が必要であり、多量の吸着剤を使用すると、吸着剤から超純水中に溶出物が溶け込むという問題があること、及び吸着剤の寿命も数カ月と短く、吸着剤を高い頻度で交換する必要があること、等の問題があった。
【0007】
また、超純水中に残存する過酸化水素を、パラジウムを担持した触媒樹脂を用いることで分解する方法も提案されている(特開平9−192658号)。しかるに上記パラジウム担持触媒樹脂では、パラジウムは樹脂に物理的に担持されており、純水中にコロイドや酸化物として溶出する恐れがあるという問題がある。また、樹脂に担持されたパラジウムの表面が有機物等で汚染され、能力が低下するという問題もある。
【0008】
そこで本発明の目的は、純水中に生成または添加されて自然酸化膜の原因となる過酸化水素のような酸化性物質を除去した純水の製造方法であって、純水中に溶出物が混入するという問題がないか、または少ない方法であって、かつ交換が必要な場合であってもその頻度が低い方法を提供することにある。
さらに本発明の目的は、超純水製造装置であって、自然酸化膜の原因となる過酸化水素のような酸化性物質を除去でき、酸化性物質除去装置から純水中に溶出物が混入するという問題がないか、または少なく、かつ酸化性物質除去装置の寿命が長い超純水製造装置を提供することにある。
【0009】
本発明者らは、上記本発明の目的を達成すべく、純水中に含まれる過酸化水素のような酸化性物質を除去する方法について種々検討した。その結果、酸化性物質を含有する純水に金属イオン形陽イオン交換樹脂を接触させることで、酸化性物質含有量を低減することができ、さらに上記効果は、比較的少量の金属イオン形陽イオン交換樹脂で達成でき、かつ金属イオン形陽イオン交換樹脂の寿命が長いことを見出して本発明に到達した。
【0010】
【課題を解決するための手段】
本発明は、酸化性物質を含有する純水に金属イオン形陽イオン交換樹脂を接触させること、および前記酸化性物質が過酸化水素であることを特徴とする酸化性物質含有量を低減した純水の製造方法に関する。さらに本発明は、紫外線酸化装置、金属イオン形陽イオン交換樹脂充填装置、及び脱塩装置からなり、一次純水をこの順に通水するように設置したこと、および一次純水に紫外線を照射して酸化処理した過酸化水素を含む水に金属イオン形陽イオン交換樹脂を接触させることを特徴とする過酸化水素含有量を低減した純水の製造に用いられる超純水製造装置に関する。
【0011】
【発明の実施の形態】
本発明の純水の製造方法において、除去対象となる酸化性物質は、過酸化水素であるが、それ以外の酸化性物質、例えば、オゾン等も除去することはできる。酸化性物質を含有する純水は、超純水製造装置において、一次純水に紫外線を照射し、酸化処理した水であることができる。この水は、紫外線照射により比較的多くの過酸化水素を含有する。但し、酸化性物質を含有する純水は、これに限定されることはなく、例えば、配管系の殺菌や、非イオン状シリカをイオン状シリカに変換することを目的として、純水装置内の一部で、オゾンを添加する構造を有する純水装置において、添加したオゾンの分解により生成する過酸化水素等も挙げることができる。
【0012】
本発明に使用する金属イオン形陽イオン交換樹脂に用いられる金属イオンとして、例えば、2価以上の原子価を有する金属のイオンを挙げることができる。そのような金属イオンとしては、例えば、鉄イオン、銅イオン、ニッケルイオン、クロムイオン、コバルトイオン等を挙げることができる。基材となる陽イオン交換樹脂には特に制限はないが、金属イオンの保持力が高いという観点からは、強酸性の陽イオン交換樹脂であることが適当である。また、金属イオンによる分解を受けにくいという観点からは、高架橋陽イオン交換樹脂であることが適当である。陽イオン交換樹脂に対する金属イオンの保持量は、金属イオン形陽イオン交換樹脂に要求される酸化性物質の分解能力や陽イオン交換樹脂の安定性を考慮して適宜決定される。
金属イオン形陽イオン交換樹脂は、金属イオンを含有する水溶液に水素イオン形陽イオン交換樹脂を接触させることで調製することができる。陽イオン交換樹脂に対する金属イオンの保持量は、金属イオンを含有する水溶液の濃度や接触時間を調整することで、変化させることができる。
【0013】
酸化性物質を含有する純水と金属イオン形陽イオン交換樹脂との接触は、例えば、金属イオン形陽イオン交換樹脂を充填した塔に純水を通すことで行うことができる。また、純水と金属イオン形陽イオン交換樹脂との接触時間は、純水に含有される酸化性物質の濃度や金属イオン形陽イオン交換樹脂の能力等を考慮して適宜決定できる。
金属イオン形陽イオン交換樹脂と接触した酸化性物質は、分解されて最終的に酸素と水になる。分解により発生した酸素は、真空脱気装置、膜脱気装置、パラジウム樹脂装置あるいは窒素曝気装置等の脱気手段を後置することにより、容易に除去することができる。
【0014】
本発明の方法においては、金属イオン形陽イオン交換樹脂に接触させた純水を、次いで水素イオン形強酸性陽イオン交換樹脂単独、水酸化物イオン形強塩基性陰イオン交換樹脂単独、あるいは水素イオン形強酸性陽イオン交換樹脂と水酸化物イオン形強塩基性陰イオン交換樹脂との混床、もしくは水素イオン形強酸性陽イオン交換樹脂と水酸化物イオン形強塩基性陰イオン交換樹脂を積層させた樹脂層と接触させることが有効である。水素イオン形強酸性陽イオン交換樹脂と接触させることで、金属イオン形陽イオン交換樹脂から微量溶出してくる金属イオンを除去することができる。水酸化物イオン形強塩基性陰イオン交換樹脂と接触させることで、金属イオン形陽イオン交換樹脂が過酸化水素との接触により酸化分解され陰イオン性の有機物が微量放出されたとしても除去できる。また、金属イオン形陽イオン交換樹脂に水素イオン形強酸性陽イオン交換樹脂及び/又は水酸化物イオン形強塩基性陰イオン交換樹脂を混合することによっても同様の効果が得られる。
【0015】
本発明の超純水製造装置は、紫外線酸化装置、金属イオン形陽イオン交換樹脂充填装置、及び脱塩装置からなり、一次純水をこの順に通水するように設置したことを特徴とする。
紫外線酸化装置で生成した過酸化水素は後段のカートリッジポリッシャで十分に分解されず、また、時間の経過と共に殆ど分解されずに該カートリッジポリッシャの出口水に残存する。しかし、本発明の装置では、カートリッジポリッシャの前段に設置した酸化性物質分解装置である金属イオン形陽イオン交換樹脂充填装置で過酸化水素を分解して、過酸化水素濃度が極めて低い超純水を得ることができる。さらに、過酸化水素の分解により生成する溶存酸素は脱気装置で除去される。そのため、本発明の装置では、過酸化水素濃度及び溶存酸素濃度が共に極めて低い超純水を得ることができ、シリコンウエハ上の自然酸化膜の形成を抑制できる。
【0016】
本発明において、一次純水とは、原水を通常使用されている一次純水システムで処理した純水である。一次純水を得るには、例えば、図3に示す装置において、まず、工業用水等の原水を前処理システム4に通水して、原水中の懸濁物質及び有機物の一部を除去した後、濾過水槽6を経て、一次純水システム8に供給し、該供給水を水中の不純物イオンの除去を行なう脱塩装置12、水中の無機イオン、有機物、微粒子等の除去を行なう逆浸透膜装置16、水中の溶存酸素等の溶存ガス除去を行なう真空脱気装置20、残存するイオン等を除去して高純度の純水を製造する再生型混床式脱塩装置22に順次通水させれば一次純水を得ることができる。
【0017】
本発明において、紫外線酸化装置としては、被処理水に紫外線を照射可能な紫外線ランプを備え、被処理水中の有機物を分解可能なものであればよい。紫外線としては、例えば、185nm付近の波長の紫外線を挙げることができる。また、185nm付近の波長の紫外線以外に、254nm付近の波長の紫外線であってもよい。但し、254nm付近の波長の紫外線は、185nm付近の波長の紫外線より有機物分解能力が低いので、この点を考慮して使用すればよい。254nm付近の波長は照射するが、185nm付近の波長はほとんど照射しない紫外線照射装置もある。本発明においては、185nm付近の波長の紫外線及び254nm付近の波長の紫外線を共に強く照射可能な紫外線酸化装置を用いることが、有機物を良好に分解できる点で好ましい。また、用いる紫外線ランプとしては、特に制限されないが、低圧水銀ランプが好ましい。また、紫外線酸化装置としては、流通型及び浸漬型等が挙げられ、このうち、流通型が処理効率の点からも好ましい。
【0018】
本発明において、酸化性物質分解装置は、酸化性物質を分解させる物質として金属イオン形陽イオン交換樹脂を充填した装置である。金属イオン形陽イオン交換樹脂は、上記で説明したものと同様である。
【0019】
本発明において、脱気装置は、過酸化水素が分解生成した酸素を除去できる装置であれば、特に制限はない。例えば、気体分離膜で仕切られた一方の室に被処理水を流すとともに、他方の室を減圧することにより、被処理水中に含まれるガスを気体分離膜を通して他方の室に移行させて除去する膜式脱気装置を挙げることができる。気体分離膜としては、通常、テトラフルオロエチレン系、シリコーンゴム系等の疎水性の高分子膜を中空糸膜状等の適宜形状に形成したものが使用される。膜式脱気装置以外に真空脱気塔や加熱脱気装置等の脱気ガス装置を用いることもできる。しかし、脱ガス装置として膜式脱気装置は、装置から水中に不純物が混入したり、装置の充填物から水中に不純物が溶出したりすることがなく、かつ装置が小型であるという利点がある。
【0020】
本発明において、脱塩装置として、例えば、イオン交換装置を用いることができる。イオン交換装置は、好ましくは非再生型イオン交換装置である。非再生型イオン交換装置としては、例えば、強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂との混床によるイオン交換装置(混床1塔式)、強塩基性陰イオン交換樹脂の単床によるイオン交換装置(単床1塔式)、強塩基性陰イオン交換樹脂の単床層を入口側、強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂との混床層を出口側に設けた複層式イオン交換装置(複層1塔式)、及び強塩基性陰イオン交換樹脂の単床による樹脂塔を前段側、強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂との混床による樹脂塔を後段側に設けたイオン交換装置(2塔式)が挙げられる。このうち、混床1塔式イオン交換装置を用いた場合には、混床層内のいずれの位置においても水のpHの変化がないため、効率の良いイオン交換ができるという利点がある。
【0021】
次に、本発明の超純水製造装置を用いて超純水を製造する手順を図1を参照して説明する。図1は本発明の実施の形態における超純水製造装置を示す系統図である。各種前処理工程により得られた、例えば、TOC濃度2ppb以下の一次純水は、二次系システム10の純水貯槽24に供給される。純水貯槽24に蓄えられる一次純水の抵抗率は、通常、10MΩ・cm以上である。純水貯槽24を出た純水は、紫外線酸化装置26で処理される。紫外線酸化装置26は、高い有機物分離能力がある185nm付近の紫外線も強く照射可能な低圧水銀ランプを備えた紫外線酸化装置であり、水中の有機物を炭酸や有機酸に分解するために設置されている。紫外線酸化装置26の前後の溶存酸素濃度を測定したところ、該溶存酸素濃度が22ppbから6ppbへと激変する現象が認められる。この現象は、紫外線酸化装置26の被処理水中の溶存酸素が有機物の酸化のための酸素源として消費されたり、紫外線と水との相互作用によるラジカル、オゾン及び過酸化水素等の生成によって消費されたりするためと考えられる。従って、紫外線酸化装置26の前後の過酸化水素濃度は数ppbから50ppbへと増加する。
【0022】
次に、紫外線酸化装置26で処理された水を、酸化性物質分解装置である金属イオン形陽イオン交換樹脂充填装置27に通水し、該装置に充填されたイオン交換樹脂に接触させることにより、処理水中の過酸化水素を分解する。この場合、金属イオン形陽イオン交換樹脂への被処理水の接触は固定層方式で行なうことが過酸化水素の除去効率の点で好ましい。このような固定層方式で被処理水をイオン交換樹脂に接触させる場合、通水条件は線流速50m/h〜600m/h、特に100〜300m/hとすることが好ましい。線流速が600m/hを超えると過酸化水素が十分に除去されないことがある。
【0023】
次に、金属イオン形陽イオン交換樹脂充填装置27で処理された水を膜式脱気装置50に通水して、処理水中の溶存酸素を好ましくは1ppb以下、全溶存ガス濃度を好ましくは3000ppb以下に低減する。
【0024】
次に、この処理水を非再生型イオン交換装置であるカートリッジポリッシャ28に通水して、金属イオン形陽イオン交換樹脂充填装置27及び前記膜式脱気装置50から発生する溶出イオンを含む一次純水中のイオンを更に除去する。このように、処理水を金属イオン形陽イオン交換樹脂充填装置27→膜式脱気装置50→カートリッジポリッシャ28の順に通水することにより、金属イオン形陽イオン交換樹脂充填装置27及び膜式脱気装置50からの溶出イオンを有効に除去できる。
【0025】
また、限外濾過膜分離装置30は、水中の残存微粒子等を除去して超純水を製造し、この超純水は使用場所32に供給される。該超純水は使用している時及び使用していないときのいずれの場合でも二次純水循環配管34を通って純水貯槽24に戻り、純水貯槽24→紫外線酸化装置26→金属イオン形陽イオン交換樹脂充填装置27→膜式脱気装置50→カートリッジポリッシャ28→限外濾過膜分離装置30→純水貯槽24からなる閉ループを常時循環している。
【0026】
また、本発明においては、図2に示すように、前記紫外線酸化装置26の出口水を、前記金属イオン形陽イオン交換樹脂充填装置27に通水する前に、254nm付近の波長は照射するが185nm付近の波長はほとんど照射しない紫外線殺菌装置25に通水することが好ましい。図2において、図1と同一構成要素には同一の記号を付してその説明を省略する。この紫外線殺菌装置25により、過酸化水素の分解が期待できるため、後段の金属イオン形陽イオン交換樹脂の負荷を低減し、使用期間の延長又は充填量の低減が図れる。
【0027】
また、本発明の超純水製造装置は、超純水製造供給システムの循環ラインの適切な箇所にオゾンを連続的に注入し、超純水中のバクテリア数を最低レベルに制御する方法にも適用できる。すなわち、オゾンの注入と紫外線酸化装置の分解作用により生じた過酸化水素の除去を後段の金属イオン形陽イオン交換樹脂充填装置及び脱気装置により行えば、超純水製造装置の機能を高めることができる。
【0028】
【実施例】
以下、本発明を実施例によりさらに詳細に説明する。
実施例1
鉄イオン形強酸性陽イオン交換樹脂
水素イオン形強酸性陽イオン交換樹脂100mlに1(W/W)%のFeSO4・7H2O水溶液(Feとして0.2(W/W)%)を100ml加え、一時間攪拌した。次いで、デカンテーションにより、イオン交換樹脂を水洗して、鉄イオン形強酸性陽イオン交換樹脂を得た。
これらの鉄イオン形強酸性陽イオン交換樹脂(5gFe/リットル−CER)を充填したカラムに過酸化水素100ppbを含有する純水をSV50の条件で通水し、流出水中の過酸化水素の分解率をフェノールフタリン法により測定した。結果を図4に示す。
鉄イオンの保持量が増えると過酸化水素の分解率は高くなり、鉄イオン形強酸性陽イオン交換樹脂により、過酸化水素が分解されることが分かる。
FeSO4・7H2O水溶液をCuCl2・5H2O水溶液に代えて調製した銅イオン形強酸性陽イオン交換樹脂についても、同様の結果を得た。
【0029】
実施例2
100ppbの過酸化水素を含有する純水を鉄イオン形強酸性陽イオン交換樹脂(10gFe/リットル−CER)を充填したカラムにSV50の条件で通水し、経時的に流出水中の過酸化水素の分解率をフェノールフタリン法により測定した。結果を図5に示す。図5の結果から、測定期間内には、使用した鉄イオン形強酸性陽イオン交換樹脂の性能に変化がなかったことが分かる。
比較のため、アンバーソーブを用いて、同様の実験を行った。その結果、過酸化水素通水量が700mgH22/リットル−CERを過ぎたころから、流出水中の過酸化水素濃度が上昇し、寿命に問題があることが分かる。また、過酸化水素除去効率についてもアンバーソーブを用いた比較よりも優れており、ほとんど除去できていることが分かる。
【0030】
実施例3
一次純水(溶存酸素40ppb、抵抗率17.5MΩ・cm)を図1の装置及び下記装置仕様によって処理して6ヶ月に亘り超純水を製造すると共に、超純水中の過酸化水素量及び溶存酸素量の経時的変化を調べた。検液水の測定点は紫外線酸化装置の出口及び超純水の使用場所(ユースポイント)である。また、過酸化水素の定量は前述の方法で行った。超純水の使用場所(ユースポイント)における測定結果は、過酸化水素量1ppb以下及び溶存酸素量1ppb以下と6ヶ月に亘り殆ど変化はなかった。また、紫外線酸化装置の出口での測定値も過酸化水素量50ppb及び溶存酸素量10ppbと6ヶ月に亘り殆ど変化はなかった。
【0031】
(各装置の仕様等)
紫外線酸化装置;低圧型TDFL−4(千代田工販社製)紫外線照射量0.3kW・h/m3
酸化性物質分解装置;実施例1と同様の方法で調製した銅イオン形強酸性陽イオン交換樹脂を充填した円筒状の充填塔(高さ90cm、内径30cm)、SV150h-1
膜式脱気装置;MJ−520p(大日本インキ化学工業社製)真空度18Torr
カートリッジポリッシャ;カチオン交換樹脂とアニオン交換樹脂とを混合充填した混床式イオン交換装置、SV70〜80h-1
限外濾過膜分離装置;FIT−3016型(旭化成工業社製)
【0032】
【発明の効果】
本発明の製造方法によれば、純水中に生成または添加されて自然酸化膜の原因となる過酸化水素のような酸化性物質を除去した純水を、純水中への溶出物の混入を抑制しながら製造できる。さらに、使用する金属イオン形強酸性陽イオン交換樹脂は寿命が長く、除去率も高く実用上非常に有利であるという利点もある。
さらに本発明の超純水製造装置を用いると、過酸化水素濃度及び溶存酸素濃度が共に極めて低い超純水を得ることができ、シリコンウエハ上の自然酸化膜の形成を抑制できる。
【図面の簡単な説明】
【図1】 本発明の超純水製造装置の実施の形態例を示すフロー図である。
【図2】 本発明の超純水製造装置の他の実施の形態例を示すフロー図である。
【図3】 従来の超純水製造装置の一例を示すフロー図である。
【図4】 鉄イオン形強酸性陽イオン交換樹脂の鉄イオン保持量と流出水中の過酸化水素の分解率との関係を示す。
【図5】 鉄イオン形強酸性陽イオン交換樹脂とアンバーソーブの性能比較試験結果。
【符号の説明】
2 原水貯槽
4 前処理システム
6 濾過水槽
8 一次純水システム
10 二次純水システム
12 脱塩装置
16 逆浸透膜装置
20 真空脱気装置
22 再生型混床脱塩装置
24 純水貯槽
25 紫外線殺菌装置
26 紫外線酸化装置
27 金属イオン形強酸性陽イオン交換樹脂充填装置
28 カートリッジポリッシャ
30 限外濾過膜分離装置
32 使用場所(ユースポイント)
34 二次純水循環配管
50 膜式脱気装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing pure water such as ultrapure water used for cleaning silicon wafers and the like, and more particularly to a method for producing pure water with a reduced concentration of an oxidizing substance such as hydrogen peroxide. Furthermore, the present invention relates to an apparatus for producing ultrapure water in which the concentration of an oxidizing substance such as hydrogen peroxide is reduced.
[0002]
[Prior art]
In the semiconductor manufacturing industry, ultrapure water from which impurities are highly removed is an essential item. In general, ultrapure water is obtained by removing raw water (for example, river water, groundwater, industrial water) from which large debris has been removed in a pretreatment process using a primary pure water production apparatus and a secondary pure water production apparatus (subsystem). It is manufactured by sequentially processing and supplied to a use point for performing wafer cleaning. Such ultrapure water has such a purity that it is difficult to quantify impurities, but it does not contain any impurities.
[0003]
For example, dissolved oxygen (DO) contained in ultrapure water forms a natural oxide film on the surface of a silicon wafer. When a natural oxide film is formed on the surface of a silicon wafer, growth of an epitaxial Si thin film at a low temperature is hindered, and precise control of the film thickness and film quality of a very thin gate oxide film is hindered. Or, it may increase the contact resistance of the contact hole having a small cross-sectional area. Therefore, it is necessary to suppress the formation of the natural oxide film as much as possible.
Therefore, in the ultrapure water production apparatus, in particular, a degassing apparatus is provided in the primary pure water production apparatus to reduce the dissolved oxygen value (DO value). With this deaeration device, the dissolved oxygen value at the inlet of the secondary pure water production device (subsystem) is usually reduced to about 1 ppbDO (μg / liter).
[0004]
[Problems to be Solved by the Invention]
However, in the ultraviolet oxidation apparatus in the secondary pure water production apparatus, an oxidizing substance such as hydrogen peroxide generated or added in the water is generated in a subsequent process (polish process) in the secondary pure water production apparatus. It has been found to be decomposed to produce oxygen and to increase the dissolved oxygen level in ultrapure water.
[0005]
Then, a method for removing dissolved oxygen caused by hydrogen peroxide generated or added in an ultraviolet oxidizer, which causes the dissolved oxygen value in ultrapure water to be increased, using a membrane deaerator has been proposed. (Japanese Patent Laid-Open No. 9-29251). However, even with ultrapure water from which dissolved oxygen has been removed by this method, there is a problem that the formation of a natural oxide film cannot be suppressed.
[0006]
Apart from this, a method has also been proposed in which hydrogen peroxide remaining in ultrapure water is adsorbed and removed using a synthetic carbon-based granular adsorbent (Japanese Patent Laid-Open No. 9-29233). According to this method, since the hydrogen peroxide itself remaining in the ultrapure water is removed, the formation of a natural oxide film can be suppressed.
However, the method using the above synthetic carbon-based particulate adsorbent requires a large adsorption tower filled with a large amount of adsorbent in order to obtain a predetermined removal rate. There is a problem that the eluate dissolves in ultrapure water, and the life of the adsorbent is as short as several months, and the adsorbent needs to be replaced frequently.
[0007]
In addition, a method for decomposing hydrogen peroxide remaining in ultrapure water by using a catalyst resin supporting palladium has been proposed (Japanese Patent Laid-Open No. 9-192658). However, the palladium-supported catalyst resin has a problem that palladium is physically supported on the resin and may be eluted as colloid or oxide in pure water. There is also a problem that the surface of palladium supported on the resin is contaminated with an organic substance or the like, and the capacity is lowered.
[0008]
Therefore, an object of the present invention is a method for producing pure water from which an oxidizing substance such as hydrogen peroxide that is generated or added to pure water and causes a natural oxide film is removed, It is an object of the present invention to provide a method in which there is no problem that there is no or a problem of contamination, and the frequency is low even when replacement is necessary.
Furthermore, an object of the present invention is an ultrapure water production apparatus, which can remove an oxidizing substance such as hydrogen peroxide that causes a natural oxide film, and an eluate is mixed into pure water from the oxidizing substance removing apparatus. It is an object of the present invention to provide an ultrapure water production apparatus in which there is no problem or a small problem and the lifetime of an oxidizing substance removing apparatus is long.
[0009]
In order to achieve the object of the present invention, the present inventors have studied various methods for removing oxidizing substances such as hydrogen peroxide contained in pure water. As a result, by bringing the metal ion cation exchange resin into contact with pure water containing an oxidizing substance, the content of the oxidizing substance can be reduced, and the above effect can be achieved with a relatively small amount of the metal ion positive cation. The present invention has been achieved by finding that it can be achieved with an ion exchange resin and that the lifetime of the metal ion type cation exchange resin is long.
[0010]
[Means for Solving the Problems]
The present invention relates to pure water with reduced oxidizing substance content, characterized in that a metal ion cation exchange resin is brought into contact with pure water containing an oxidizing substance , and the oxidizing substance is hydrogen peroxide. The present invention relates to a method for producing water. Furthermore, the present invention comprises an ultraviolet oxidation device, a metal ion type cation exchange resin filling device, and a desalination device, and is installed so that primary pure water is passed in this order , and the primary pure water is irradiated with ultraviolet rays. The present invention relates to an ultrapure water production apparatus used for producing pure water with a reduced hydrogen peroxide content , characterized in that a metal ion type cation exchange resin is brought into contact with water containing hydrogen peroxide oxidized .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The method of manufacturing a pure water of the present invention, the oxidizing substance to be removed is a hydrogen peroxide, other oxidizing substances, for example, that ozone is also removed can. The pure water containing the oxidizing substance may be water that is oxidized by irradiating the primary pure water with ultraviolet rays in an ultrapure water production apparatus. This water contains a relatively large amount of hydrogen peroxide by ultraviolet irradiation. However, the pure water containing the oxidizing substance is not limited to this. For example, for the purpose of sterilizing the piping system or converting nonionic silica into ionic silica, For example, in a pure water apparatus having a structure to which ozone is added, hydrogen peroxide generated by decomposition of the added ozone can also be mentioned.
[0012]
As a metal ion used for the metal ion type cation exchange resin used for this invention, the ion of the metal which has a valence more than bivalence can be mentioned, for example. Examples of such metal ions include iron ions, copper ions, nickel ions, chromium ions, cobalt ions, and the like. Although there is no restriction | limiting in particular in the cation exchange resin used as a base material, From a viewpoint that the retention power of a metal ion is high, it is suitable that it is a strongly acidic cation exchange resin. Further, from the viewpoint that it is difficult to be decomposed by metal ions, a highly crosslinked cation exchange resin is appropriate. The amount of metal ions retained with respect to the cation exchange resin is appropriately determined in consideration of the ability to decompose an oxidizing substance required for the metal ion type cation exchange resin and the stability of the cation exchange resin.
The metal ion cation exchange resin can be prepared by bringing a hydrogen ion cation exchange resin into contact with an aqueous solution containing metal ions. The amount of metal ions retained relative to the cation exchange resin can be changed by adjusting the concentration and contact time of the aqueous solution containing the metal ions.
[0013]
The contact between the pure water containing the oxidizing substance and the metal ion type cation exchange resin can be performed, for example, by passing pure water through a tower packed with the metal ion type cation exchange resin. Further, the contact time between pure water and the metal ion cation exchange resin can be appropriately determined in consideration of the concentration of the oxidizing substance contained in the pure water, the ability of the metal ion cation exchange resin, and the like.
The oxidizing substance that has come into contact with the metal ion type cation exchange resin is decomposed to finally become oxygen and water. Oxygen generated by the decomposition can be easily removed by installing a deaeration means such as a vacuum deaeration device, a membrane deaeration device, a palladium resin device, or a nitrogen aeration device.
[0014]
In the method of the present invention, pure water brought into contact with a metal ion type cation exchange resin, hydrogen ion type strongly acidic cation exchange resin alone, hydroxide ion type strongly basic anion exchange resin alone, or hydrogen Mixed bed of ion-type strongly acidic cation exchange resin and hydroxide ion-type strongly basic anion exchange resin, or hydrogen ion-type strongly acidic cation exchange resin and hydroxide ion-type strongly basic anion exchange resin It is effective to contact the laminated resin layer. By making it contact with a hydrogen ion type strong acidic cation exchange resin, the metal ion eluted in a trace amount from a metal ion type cation exchange resin can be removed. By contacting with a hydroxide ion type strongly basic anion exchange resin, even if metal ion type cation exchange resin is oxidized and decomposed by contact with hydrogen peroxide and a small amount of anionic organic substances are released, it can be removed. . Moreover, the same effect is acquired also by mixing a hydrogen ion type strong acidic cation exchange resin and / or a hydroxide ion type strong basic anion exchange resin with a metal ion type cation exchange resin.
[0015]
The ultrapure water production apparatus of the present invention comprises an ultraviolet oxidation apparatus, a metal ion type cation exchange resin filling apparatus, and a desalting apparatus, and is characterized in that it is installed so as to pass primary pure water in this order.
Hydrogen peroxide generated by the ultraviolet oxidation apparatus is not sufficiently decomposed by the cartridge polisher in the subsequent stage, and remains in the outlet water of the cartridge polisher with little decomposition with time. However, in the apparatus of the present invention, ultrapure water having an extremely low hydrogen peroxide concentration is obtained by decomposing hydrogen peroxide with a metal ion type cation exchange resin filling apparatus which is an oxidizing substance decomposing apparatus installed in the preceding stage of the cartridge polisher. Can be obtained. Furthermore, dissolved oxygen generated by the decomposition of hydrogen peroxide is removed by a deaeration device. Therefore, in the apparatus of the present invention, ultrapure water having both extremely low hydrogen peroxide concentration and dissolved oxygen concentration can be obtained, and the formation of a natural oxide film on the silicon wafer can be suppressed.
[0016]
In the present invention, primary pure water is pure water obtained by treating raw water with a primary pure water system that is usually used. In order to obtain primary pure water, for example, in the apparatus shown in FIG. 3, first, raw water such as industrial water is passed through the pretreatment system 4 to remove suspended substances and a part of organic matter in the raw water. The desalination apparatus 12 that supplies the primary pure water system 8 through the filtered water tank 6 and removes the impurity ions in the water, and the reverse osmosis membrane apparatus that removes inorganic ions, organic substances, fine particles, and the like in the water. 16. Water is sequentially passed through a vacuum deaerator 20 that removes dissolved gas such as dissolved oxygen in water, and a regenerative mixed-bed desalinator 22 that produces high-purity pure water by removing remaining ions and the like. Primary pure water can be obtained.
[0017]
In the present invention, the ultraviolet oxidizer may be any apparatus that includes an ultraviolet lamp capable of irradiating the water to be treated with ultraviolet rays and can decompose organic substances in the water to be treated. Examples of the ultraviolet rays include ultraviolet rays having a wavelength near 185 nm. Further, in addition to ultraviolet light having a wavelength near 185 nm, ultraviolet light having a wavelength near 254 nm may be used. However, ultraviolet light having a wavelength of about 254 nm has a lower ability to decompose organic substances than ultraviolet light having a wavelength of about 185 nm. There is an ultraviolet irradiation device that irradiates a wavelength near 254 nm but hardly irradiates a wavelength near 185 nm. In the present invention, it is preferable to use an ultraviolet oxidizer capable of strongly irradiating ultraviolet rays having a wavelength of around 185 nm and ultraviolet rays having a wavelength of around 254 nm, from the viewpoint of satisfactorily decomposing organic matter. The ultraviolet lamp to be used is not particularly limited, but a low-pressure mercury lamp is preferable. In addition, examples of the ultraviolet oxidation apparatus include a distribution type and an immersion type, and among these, the distribution type is preferable from the viewpoint of processing efficiency.
[0018]
In the present invention, the oxidizing substance decomposing apparatus is an apparatus filled with a metal ion type cation exchange resin as a substance for decomposing an oxidizing substance. The metal ion type cation exchange resin is the same as that described above.
[0019]
In the present invention, the degassing apparatus is not particularly limited as long as it is an apparatus capable of removing oxygen generated by decomposition of hydrogen peroxide. For example, the water to be treated is allowed to flow into one chamber partitioned by a gas separation membrane, and the other chamber is depressurized so that the gas contained in the water to be treated is transferred to the other chamber through the gas separation membrane and removed. Mention may be made of a membrane deaerator. As the gas separation membrane, a membrane in which a hydrophobic polymer membrane such as tetrafluoroethylene or silicone rubber is formed into an appropriate shape such as a hollow fiber membrane is usually used. In addition to the membrane deaerator, a degassing gas apparatus such as a vacuum degassing tower or a heated degassing apparatus can also be used. However, the membrane-type degassing device as a degassing device has an advantage that impurities are not mixed into the water from the device, impurities are not eluted into the water from the filling of the device, and the device is small. .
[0020]
In the present invention, for example, an ion exchange apparatus can be used as the desalting apparatus. The ion exchange device is preferably a non-regenerative ion exchange device. Non-regenerative ion exchange devices include, for example, an ion exchange device using a mixed bed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin (one mixed bed type), or a simple basic anion exchange resin. Ion-exchange equipment with a single bed (single-bed type), single-bed layer of strong basic anion exchange resin on the inlet side, mixed bed layer of strongly acidic cation exchange resin and strong basic anion exchange resin on the outlet side A multi-layered ion exchange device (single-layered single-column system) installed in the front, and a resin tower with a single bed of strongly basic anion exchange resin on the front side, a strongly acidic cation exchange resin and a strongly basic anion exchange resin An ion exchange apparatus (two-column type) in which a resin tower with a mixed bed is provided on the rear stage side. Among these, when a mixed bed single tower type ion exchange apparatus is used, since there is no change of pH of water in any position in a mixed bed layer, there exists an advantage that efficient ion exchange can be performed.
[0021]
Next, the procedure for producing ultrapure water using the ultrapure water production apparatus of the present invention will be described with reference to FIG. FIG. 1 is a system diagram showing an ultrapure water production apparatus according to an embodiment of the present invention . For example, primary pure water obtained by various pretreatment processes, for example, with a TOC concentration of 2 ppb or less is supplied to the pure water storage tank 24 of the secondary system 10. The resistivity of primary pure water stored in the pure water storage tank 24 is usually 10 MΩ · cm or more. The pure water exiting the pure water storage tank 24 is processed by the ultraviolet oxidizer 26. The ultraviolet oxidizer 26 is an ultraviolet oxidizer equipped with a low-pressure mercury lamp capable of strongly irradiating ultraviolet rays in the vicinity of 185 nm, which has a high ability to separate organic substances, and is installed to decompose organic substances in water into carbonic acid and organic acids. . When the dissolved oxygen concentration before and after the ultraviolet oxidizer 26 is measured, a phenomenon is observed in which the dissolved oxygen concentration changes drastically from 22 ppb to 6 ppb. In this phenomenon, dissolved oxygen in the water to be treated by the ultraviolet oxidizer 26 is consumed as an oxygen source for the oxidation of organic matter, or is consumed by the generation of radicals, ozone, hydrogen peroxide, and the like due to the interaction between ultraviolet rays and water. It is thought to be. Therefore, the hydrogen peroxide concentration before and after the ultraviolet oxidizer 26 increases from several ppb to 50 ppb.
[0022]
Next, the water treated by the ultraviolet oxidation device 26 is passed through a metal ion cation exchange resin filling device 27 which is an oxidative substance decomposition device, and is brought into contact with the ion exchange resin filled in the device. Decomposes hydrogen peroxide in treated water. In this case, the contact of the water to be treated with the metal ion type cation exchange resin is preferably carried out by a fixed bed method in view of the removal efficiency of hydrogen peroxide. When the water to be treated is brought into contact with the ion exchange resin in such a fixed bed system, the water flow condition is preferably set to a linear flow velocity of 50 m / h to 600 m / h, particularly 100 to 300 m / h. If the linear flow rate exceeds 600 m / h, hydrogen peroxide may not be sufficiently removed.
[0023]
Next, the water treated by the metal ion type cation exchange resin filling device 27 is passed through the membrane deaerator 50, the dissolved oxygen in the treated water is preferably 1 ppb or less, and the total dissolved gas concentration is preferably 3000 ppb. Reduce to:
[0024]
Next, the treated water is passed through a cartridge polisher 28 which is a non-regenerative ion exchange device, and primary water containing elution ions generated from the metal ion type cation exchange resin filling device 27 and the membrane type deaeration device 50 is contained. Further remove ions in pure water. In this way, the treated water is passed in the order of the metal ion cation exchange resin filling device 27 → the membrane deaeration device 50 → the cartridge polisher 28, so that the metal ion cation exchange resin filling device 27 and the membrane desorption are supplied. Elution ions from the gas device 50 can be effectively removed.
[0025]
Further, the ultrafiltration membrane separation device 30 removes residual fine particles and the like in the water to produce ultrapure water, and this ultrapure water is supplied to the use place 32. The ultrapure water returns to the pure water storage tank 24 through the secondary pure water circulation pipe 34 in both cases of using and not using the pure water storage tank 24 → ultraviolet oxidizer 26 → metal ion. A closed loop consisting of a cation exchange resin filling device 27 → a membrane deaeration device 50 → a cartridge polisher 28 → an ultrafiltration membrane separation device 30 → a pure water storage tank 24 is constantly circulated.
[0026]
Further, in the present invention, as shown in FIG. 2, the water near the 254 nm is irradiated before the outlet water of the ultraviolet oxidizer 26 is passed through the metal ion cation exchange resin filling device 27. It is preferable to pass water through an ultraviolet sterilizer 25 that irradiates almost no wavelength near 185 nm. In FIG. 2, the same components as those in FIG. Since the ultraviolet sterilizer 25 can be expected to decompose hydrogen peroxide, the load of the metal ion cation exchange resin in the subsequent stage can be reduced, and the use period can be extended or the filling amount can be reduced.
[0027]
In addition, the ultrapure water production apparatus of the present invention is also a method for continuously injecting ozone into an appropriate portion of the circulation line of the ultrapure water production and supply system to control the number of bacteria in the ultrapure water to the lowest level. Applicable. In other words, if the removal of hydrogen peroxide generated by the ozone injection and the decomposition action of the ultraviolet oxidizer is performed by the metal ion cation exchange resin filling device and the deaeration device in the subsequent stage, the function of the ultrapure water production device is enhanced. Can do.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
Iron ion type strong acid cation exchange resin 1 (W / W)% FeSO 4 .7H 2 O aqueous solution (Fe (0.2 (W / W) as Fe) in 100 ml of hydrogen ion type strong acid cation exchange resin %) Was added and stirred for 1 hour. Subsequently, the ion exchange resin was washed with water by decantation to obtain an iron ion type strongly acidic cation exchange resin.
Pure water containing 100 ppb hydrogen peroxide was passed through a column packed with these iron ion type strongly acidic cation exchange resins (5 g Fe / liter-CER) under SV50 conditions, and the decomposition rate of hydrogen peroxide in the effluent water Was measured by the phenolphthalin method. The results are shown in FIG.
It can be seen that as the iron ion retention amount increases, the decomposition rate of hydrogen peroxide increases and hydrogen peroxide is decomposed by the iron ion type strongly acidic cation exchange resin.
Similar results were obtained with a copper ion type strongly acidic cation exchange resin prepared by replacing the FeSO 4 · 7H 2 O aqueous solution with the CuCl 2 · 5H 2 O aqueous solution.
[0029]
Example 2
Pure water containing 100 ppb hydrogen peroxide was passed through a column packed with an iron ion type strongly acidic cation exchange resin (10 g Fe / liter-CER) under SV50 conditions. The decomposition rate was measured by the phenol phthaline method. The results are shown in FIG. From the results of FIG. 5, it can be seen that there was no change in the performance of the iron ion type strongly acidic cation exchange resin used within the measurement period.
For comparison, the same experiment was performed using an amber sorb. As a result, it can be seen that the hydrogen peroxide concentration in the effluent increases from the time when the hydrogen peroxide flow rate exceeds 700 mgH 2 O 2 / liter-CER, and there is a problem in the life. Also, the hydrogen peroxide removal efficiency is superior to the comparison using Ambersorb, and it can be seen that the hydrogen peroxide removal efficiency is almost eliminated.
[0030]
Example 3
Primary pure water (dissolved oxygen 40 ppb, resistivity 17.5 MΩ · cm) is treated according to the equipment shown in FIG. 1 and the following equipment specifications to produce ultrapure water for 6 months, and the amount of hydrogen peroxide in the ultrapure water. And the change with time of the amount of dissolved oxygen was examined. The measurement points of the test water are the outlet of the UV oxidizer and the place (use point) where ultra pure water is used. In addition, hydrogen peroxide was quantified by the method described above. The measurement results at the use location (use point) of ultrapure water showed almost no change over 6 months, with hydrogen peroxide amount of 1 ppb or less and dissolved oxygen amount of 1 ppb or less. Also, the measured values at the outlet of the ultraviolet oxidizer were hardly changed over the course of 6 months, with the hydrogen peroxide amount being 50 ppb and the dissolved oxygen amount being 10 ppb.
[0031]
(Specifications of each device)
Ultraviolet oxidizer: Low pressure TDFL-4 (manufactured by Chiyoda Corporation) Ultraviolet radiation dose 0.3kW · h / m 3
Oxidizing substance decomposition apparatus; cylindrical packed tower (height 90 cm, inner diameter 30 cm) packed with copper ion type strongly acidic cation exchange resin prepared in the same manner as in Example 1, SV 150 h −1
Membrane type deaerator; MJ-520p (manufactured by Dainippon Ink & Chemicals) 18 degree vacuum
Cartridge polisher: Mixed bed type ion exchange apparatus, SV70-80h -1 mixed and filled with cation exchange resin and anion exchange resin
Ultrafiltration membrane separator; FIT-3016 (Asahi Kasei Kogyo Co., Ltd.)
[0032]
【The invention's effect】
According to the manufacturing method of the present invention, pure water from which an oxidizing substance such as hydrogen peroxide, which is generated or added in pure water and causes a natural oxide film, is removed is mixed with eluate in pure water. It can manufacture while suppressing. Further, the metal ion type strongly acidic cation exchange resin to be used has an advantage that it has a long life, a high removal rate, and is very advantageous in practice.
Furthermore, when the apparatus for producing ultrapure water of the present invention is used, ultrapure water having extremely low hydrogen peroxide concentration and dissolved oxygen concentration can be obtained, and the formation of a natural oxide film on the silicon wafer can be suppressed.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an embodiment of an ultrapure water production apparatus of the present invention.
FIG. 2 is a flowchart showing another embodiment of the ultrapure water production apparatus of the present invention.
FIG. 3 is a flowchart showing an example of a conventional ultrapure water production apparatus.
FIG. 4 shows the relationship between the iron ion retention amount of the iron ion type strongly acidic cation exchange resin and the decomposition rate of hydrogen peroxide in the effluent water.
FIG. 5 shows the results of a performance comparison test between an iron ion type strongly acidic cation exchange resin and ambersorb.
[Explanation of symbols]
2 Raw water storage tank 4 Pretreatment system 6 Filtration water tank 8 Primary pure water system 10 Secondary pure water system 12 Desalination device 16 Reverse osmosis membrane device 20 Vacuum deaeration device 22 Regenerative mixed bed desalination device 24 Pure water storage tank 25 UV sterilization Equipment 26 Ultraviolet oxidation equipment 27 Metal ion type strongly acidic cation exchange resin filling equipment 28 Cartridge polisher 30 Ultrafiltration membrane separation equipment 32 Use point (use point)
34 Secondary pure water circulation piping 50 Membrane type deaerator

Claims (6)

酸化性物質を含有する純水に金属イオン形陽イオン交換樹脂を接触させること、および前記酸化性物質が過酸化水素であることを特徴とする酸化性物質含有量を低減した純水の製造方法。A method for producing pure water with reduced oxidizing substance content , wherein a metal ion type cation exchange resin is brought into contact with pure water containing an oxidizing substance , and the oxidizing substance is hydrogen peroxide . 酸化性物質を含有する純水が、一次純水に紫外線を照射して酸化処理した水である請求項1記載の製造方法。  The production method according to claim 1, wherein the pure water containing an oxidizing substance is water obtained by oxidizing primary pure water by irradiating with ultraviolet rays. 金属イオン形陽イオン交換樹脂の金属イオンが2価以上の原子価を有する請求項1または2に記載の製造方法。The production method according to claim 1 or 2 , wherein the metal ion of the metal ion type cation exchange resin has a valence of 2 or more. 金属イオン形陽イオン交換樹脂に接触させた純水を脱気処理する請求項1〜3のいずれか1項に記載の製造方法。  The manufacturing method of any one of Claims 1-3 which deaerate-process the pure water made to contact metal ion type cation exchange resin. 紫外線酸化装置、金属イオン形陽イオン交換樹脂充填装置、及び脱塩装置からなり、一次純水をこの順に通水するように設置したこと、および一次純水に紫外線を照射して酸化処理した過酸化水素を含む水に金属イオン形陽イオン交換樹脂を接触させることを特徴とする過酸化水素含有量を低減した純水の製造に用いられる超純水製造装置。It consists of an ultraviolet oxidation device, a metal ion type cation exchange resin filling device, and a desalination device.The primary pure water was installed in this order , and the primary pure water was irradiated with ultraviolet rays and oxidized. An ultrapure water production apparatus used for producing pure water with reduced hydrogen peroxide content , wherein a metal ion type cation exchange resin is brought into contact with water containing hydrogen oxide . 金属イオン形陽イオン交換樹脂充填装置と脱塩装置との間に脱気装置を設けた、請求項に記載の装置。The apparatus of Claim 5 which provided the deaeration apparatus between the metal ion type cation exchange resin filling apparatus and the desalination apparatus.
JP08199898A 1998-03-27 1998-03-27 Pure water production method and ultrapure water production apparatus with reduced oxidizing substances Expired - Fee Related JP3867944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08199898A JP3867944B2 (en) 1998-03-27 1998-03-27 Pure water production method and ultrapure water production apparatus with reduced oxidizing substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08199898A JP3867944B2 (en) 1998-03-27 1998-03-27 Pure water production method and ultrapure water production apparatus with reduced oxidizing substances

Publications (2)

Publication Number Publication Date
JPH11277059A JPH11277059A (en) 1999-10-12
JP3867944B2 true JP3867944B2 (en) 2007-01-17

Family

ID=13762153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08199898A Expired - Fee Related JP3867944B2 (en) 1998-03-27 1998-03-27 Pure water production method and ultrapure water production apparatus with reduced oxidizing substances

Country Status (1)

Country Link
JP (1) JP3867944B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045099B2 (en) * 2004-03-31 2012-10-10 栗田工業株式会社 Ultrapure water production apparatus and operation method of ultrapure water production apparatus
JP5430983B2 (en) * 2009-03-18 2014-03-05 オルガノ株式会社 Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5588225B2 (en) * 2010-05-14 2014-09-10 野村マイクロ・サイエンス株式会社 Method and apparatus for manufacturing ultrapure water for immersion exposure

Also Published As

Publication number Publication date
JPH11277059A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP5649520B2 (en) Ultrapure water production equipment
Lalezary‐Craig et al. Optimizing the removal of Geosmin and 2‐methylisoborneol by powdered activated carbon
KR100687361B1 (en) Apparatus for producing water containing dissolved ozone
JP2677468B2 (en) Method and apparatus for producing pure water
KR101692212B1 (en) Process and equipment for the treatment of water containing organic matter
JP4920019B2 (en) Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
JP6228471B2 (en) To-be-treated water processing apparatus, pure water production apparatus and to-be-treated water processing method
JPH07284799A (en) Ultra-pure water manufacturing apparatus
JP2006192354A (en) Non-regenerative type ion exchange vessel and ultrapure water production apparatus
JP4552327B2 (en) Ultrapure water production equipment
JP2001179252A (en) Method and apparatus for making pure water reduced in content of oxidizing substance
JP3867944B2 (en) Pure water production method and ultrapure water production apparatus with reduced oxidizing substances
JP2017127875A (en) Ultrapure water system and ultrapure water production method
JPH0638953B2 (en) High-purity water manufacturing equipment
JP2009112944A (en) Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP4534766B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP2002336886A (en) Extrapure water making device and extrapure water making method
JP5061410B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP2000308815A (en) Producing device of ozone dissolved water
JP4826864B2 (en) Ultrapure water production equipment
JP3256647B2 (en) Method for removing hydrogen peroxide in water to be treated and water treatment apparatus
JPH05305297A (en) Apparatus for treating acid drainage containing organic material
JP3580648B2 (en) Ultrapure water production equipment
JPH1177091A (en) Ultrapure water making apparatus
JP2003010849A (en) Secondary pure water making apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061006

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees