JP3866852B2 - Cold-rolled steel sheet with excellent fatigue characteristics and formability of spot welded joints - Google Patents

Cold-rolled steel sheet with excellent fatigue characteristics and formability of spot welded joints Download PDF

Info

Publication number
JP3866852B2
JP3866852B2 JP08657398A JP8657398A JP3866852B2 JP 3866852 B2 JP3866852 B2 JP 3866852B2 JP 08657398 A JP08657398 A JP 08657398A JP 8657398 A JP8657398 A JP 8657398A JP 3866852 B2 JP3866852 B2 JP 3866852B2
Authority
JP
Japan
Prior art keywords
steel
fatigue
spot welded
formability
haz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08657398A
Other languages
Japanese (ja)
Other versions
JPH11279689A (en
Inventor
龍雄 横井
浩之 棚橋
学 高橋
宏司 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08657398A priority Critical patent/JP3866852B2/en
Publication of JPH11279689A publication Critical patent/JPH11279689A/en
Application granted granted Critical
Publication of JP3866852B2 publication Critical patent/JP3866852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スポット溶接継手の疲労特性と成形性に優れた冷延鋼板に関するものである。
【0002】
【従来の技術】
近年、自動車用鋼板に要求される材料特性は年々高度になっている。特に自動車のフェンダーやオイルパン等については、極めて過酷なプレス成形がなされることから、深絞り性および延性についてはより一層の向上が期待されてきた。折から、RH(Ruhrstahl−Heraus)やDH(Dortmunt−Horde)などの真空脱ガス技術の発展にともない鋼中の固溶元素を低減し成形性を向上させた極低炭素鋼が開発され、それまで使用されてきた低炭素Alキルド鋼に代わって用いられるようになった。さらに最近ではTi、Nb等によって鋼中の固溶C、Nをscavengingすることで飛躍的に成形性を向上させた鋼として、特開平1−225727号公報、特開平2−34722号公報等に開示されているInterstitial atoms free steel(以下IF鋼)が、広く用いられるようになっている。
【0003】
一方、サスペンションアーム、ロードホイール等の足廻り部品やサイドメンバー、クロスメンバー等の内板構造部材においては、成形性、静的強度などに加えて耐久性が強く求められるのは当然のことながら、フロア、ダッシュ等の内板パネルおよびフードアウター、トランクリッドアウター等の外板部品についても、走行時の振動によって外力が繰返し加えられるため、疲労耐久性が求められている。
【0004】
このような内外板部品の接合にはスポット溶接が多用され、一台の乗用車のスポット溶接の打点数は数千点にも及ぶものもある。こうしたスポット溶接継手部分はその形状から応力集中が起こりやすく、自動車走行時の振動による疲労破壊の起点になる危険性がある。一般に疲労特性は、材料の引張強度や降伏強度に比例しているが、スポット溶接部の疲労特性は、その形状および、溶接によって受ける局部的な温度履歴のため、静的強度による整理が困難であり、その材料設計には特別な配慮が必要である。しかし、このようなスポット溶接継手部の疲労特性について述べられているものは極めて少ない。
【0005】
例えば、特公平3−56301号公報には、スポット溶接前の原板中に未再結晶組織を5〜30%残留させることでスポット溶接後の溶接継手部近傍の硬度分布を最適化しスポット溶接継手部の疲労強度を向上させる発明が開示されている。また、特公平5−57330号公報には、Ti、NbおよびBを複合添加しスポット溶接部を細粒化することで疲労強度の改善を狙った発明が開示されている。一方、特公平7−56054号公報には、O量およびAl(%)/N(%)の値を規定し、特にAl/N≧30とすることで溶接部の組織を改善し、疲労強度を向上させることを特徴とする発明が開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来技術の特公平3−56301号公報に記載の発明では、未再結晶組織は、深絞り性および張出し性などの成形性には有害であるため、高度なプレス成形性を要求される自動車の内外板部品への適用には不適当である。また、上記従来技術の特公平5−57330号公報に記載の発明では、疲労限については従来の低炭素鋼と同等以上の特性が得られているものの、100万回以下の低サイクルにおける時間強度を向上させるためには、さらにスキンパス圧延率を上げことが必須とされている。しかしながら、そのように焼鈍後に過度の冷間圧延を施すことは伸びなどの材質劣化をもたらすので成形性にとって好ましくない。
【0007】
特公平7−56054号公報に記載の発明では、Al/N≧30を満たすためには、Nを少なくするか、Alの添加量を増やさなければならない。Nを極端に少なくすることは、製鋼コストの増加につながる。一方、Alの増加は、表面性状の劣化につながるのでいずれも好ましくない。
そこで、本発明は、非常に過酷な成形性を要求され、かつ良好なスポット溶接継手疲労特性を必要とする自動車部品への適用を目指すため、深絞り性をはじめとするプレス成形性を損なうことなくスポット溶接継手疲労特性を改善できる自動車用深絞り用鋼板を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
発明者らは、スポット溶接継手の疲労特性を向上させるための長年にわたる研究の成果として、まず従来鋼である低炭素Alキルド鋼の疲労破壊の起点が母材部であるのに対して、IF鋼のそれがシートセパレーション先端であることを見出した(図1参照)。そこで、更に同じスポット溶接継手でありながら両鋼種の間で疲労破壊の起点が異なる原因を詳細に調査したところ、スポット溶接によって溶融した部位(ナゲット)の周囲に生成した熱影響部(Heat Affected Zone:以下HAZ)の特性が両者で大きく異なることが判明した。
【0009】
すなわち、一般にスポット溶接継手部に外力が加えられるとシートセパレーション先端に最も応力集中が起こると考えられる。また、標準的な溶接条件によればシートセパレーション先端はHAZに含まれる。その結果、該部で生じた応力の大きさとHAZの強度の大小関係により、前者が大きいIF鋼ではシートセパレーション先端が疲労破壊の起点となり、後者の方が大きい低炭素Alキルド鋼では、HAZより強度の低い母材が疲労破壊の起点となるという機構を解明するに至ったのである。
【0010】
また、HAZの強度が両鋼種で異なる理由についても検討し、低炭素Alキルド鋼のHAZのミクロ組織はスポット溶接時の加熱によってα→γ→αの変態によって細粒化されているのに対して、IF鋼では高純化によりAc3 変態点が上昇したことでスポット溶接時の加熱によるα→γ→αの変態が起こらずα域において粒成長のみが起こったためにHAZのミクロ組織が粗大化し、結果的にHAZが疲労破壊の起点となったことも見出した。そしてIF鋼のHAZを強化するにはスポット溶接時のフェライト粒の粒成長を抑制することが重要であると考え、IF鋼の他の特性への影響を極力少なくしてそれを為しうる方法について鋭意研究を重ねた結果、MgとTiの酸化物および/または複合酸化物を予め分散させておくとHAZのフェライト粒の粒成長を抑制することを見出した。
【0011】
また、MgとTiの酸化物および複合酸化物によってHAZが強化されたIF鋼は、疲労き裂の起点がHAZから母材部に移った結果、疲労限が低炭素Alキルド鋼と同等になることを確認した。さらに、これらの酸化物は、焼鈍時の再結晶の粒成長過程には何ら影響を及ぼさず、スポット溶接時のHAZのミクロ組織の粗大化のみを抑制することも新たに知見した。
【0012】
以下にこの発明の基礎となった実験結果について述べる。
まず、本発明におけるスポット溶接継手の疲労特性の改善効果について調査を行った。表1に示した化学組成の鋼(鋼イを除く)を1150℃で1時間加熱後、仕上温度(FT)920℃で熱間圧延し、700℃で巻取った。酸洗後圧延率80%で冷間圧延を施し、焼鈍炉で810℃で1分間、冷却速度20℃/sで焼鈍し、1%のスキンパス圧延を行った。なお、鋼イについては1230℃で1時間加熱後、仕上温度(FT)870℃で熱間圧延し、550℃で巻取り、酸洗後圧延率75%で冷間圧延を施し、箱型焼鈍炉(BAF:Box Annealing Furnace)で最高炉温720℃にて焼鈍し、1%のスキンパス圧延を行った。
【0013】
【表1】

Figure 0003866852
【0014】
このようにして得られた焼鈍板の機械的性質は、JIS Z 2201記載の5号試験片にて、JIS Z 2241記載の引張試験方法で測定した。また、スポット溶接継手部の疲労特性は、図2に示すような板厚0.8mm、長さ140mm、幅40mmの試験板をJIS Z 3138のスポット溶接継手の疲れ試験方法に従って表2に示したスポット溶接条件で溶接して作成した。そして、引張せん断疲労試験は、米国MTS社製10tテストスター電気油圧式サーボ型疲労試験機を用い応力比R=0.05、繰返し速度7〜15Hz、荷重波形は、正弦波の試験条件で行った。試験条件の詳細は表3に示す。なお、試験中、試験片に所定の応力が付加されているかどうかを確認するために試験片表裏にひずみゲージを貼り付けて試験中に荷重波形を監視した。
【0015】
【表2】
Figure 0003866852
【0016】
【表3】
Figure 0003866852
【0017】
図3に、スポット溶接継手部の硬度分布を示す。低炭素Alキルド鋼である鋼イのHAZの硬度は、母材と比較して十分に高い。これに対して、Mgを添加していないIF鋼である鋼ロでは、HAZの硬度が母材のそれと殆んど同等である。一方、Mgを添加したIF鋼である鋼ハのHAZの硬度は、母材と比較して低炭素Alキルド鋼並に高いレベルにある。
図4にスポット溶接継手の疲れ試験の結果を示す。IF鋼のうちでMgを添加していない鋼ロは、低炭素Alキルド鋼である鋼イと比較して疲労限および有限寿命域における時間強度ともに低い。これに対してMgを添加した鋼ハは疲労限、時間強度とも低炭素Alキルド鋼である鋼イと同等以上の強度を示している。
【0018】
次に、MgとTiの酸化物および複合酸化物径がHAZのビッカース硬度およびランクフォード値に及ぼす効果について調査を行った。鋼ハの成分の鋼をベースとし、脱酸剤であるAl、Si、TiおよびMg等の添加順序、添加間隔等を製鋼工程にてさまざまに変化させ得られた鋼片を1150℃で1時間加熱後、仕上温度(FT)920℃で熱間圧延し、700℃で巻取った。酸洗後圧延率80%で冷間圧延を施し、焼鈍炉で810℃で1分間、冷却速度20℃/sで焼鈍し、1%のスキンパス圧延を行った。このようにして得られた焼鈍板のランクフォード値の測定とスポット溶接を行い、HAZのビッカース硬度の測定をJIS Z 2244記載に従って行った。
【0019】
一方、MgとTiの酸化物および複合酸化物の状態は、供試鋼の1/4厚のところから透過型電子顕微鏡サンプルを採取し、エネルギー分散型X線分光(Energy Dispersive X−ray Spectroscope:EDS)や電子エネルギー損失分光(Electron Energy LossSpectroscope:EELS)の組成分析機能を加えた、200kVの加速電圧の電界放射型電子銃(Field Emission Gun:FEG)を搭載した透過型電子顕微鏡によって観察した。観察される粒子の組成は、上記EDSおよびEELSによりMgとTiの酸化物および複合酸化物であることを確認した。
【0020】
また、本発明で規定するMgとTiの酸化物および複合酸化物の平均粒子径は、観察される粒子をそれぞれ測定したもののその一視野での平均の値である。また、MgとTiの酸化物および複合酸化物の面密度(1mm2 あたりの個数)はCMA(コンピュータマイクロアナライザー)を用いて、供試鋼の1/4厚のところから試料を採取し、試料表面の5mm×0.5mmの範囲に1μm径のビームを照射し、単位面積あたりの数を計算して求めた。測定した後、スポット溶接を施し、疲労試験を行った。
【0021】
図5にMgとTiの酸化物および複合酸化物の粒子の大きさとHAZのビッカース硬度およびランクフォード値の測定結果を示す。なお、図中でrm値とは、平均ランクフォード値{rm=(r0+2r45+r90)/4}であり、r値の値は15%における板厚の変化量を板幅の変化量で除した値である。また、r0、r45、r90はそれぞれ、圧延方向、圧延方向から45°方向、圧延方向から90°の板幅方向でのr値である。
本発明は、上記知見により構成したものであり、その要旨は、以下の通りである。
【0022】
(1)質量%にて、C:≦0.005%、Si:≦0.1%、Mn:≦0.5%、P:≦0.05%、S:≦0.02%、Al:≦0.004%、Mg:0.0001〜0.01%、O:0.001〜0.01%、N:0.001〜0.01%、を含み、さらにTiをTi/48>N/14、かつTi、Nbの一方あるいは双方を{(Ti/48+Nb/93)>(C/12+N/14+S/32)}であるように含み、残部がFe及び不可避的不純物から成り、平均粒子径で0.005μm以上、0.1μm以下であるMgとTiの酸化物および/または複合酸化物をミクロ組織中に、面密度で40〜95個/mm2含有することを特徴とするスポット溶接継手の疲労特性と成形性に優れた冷延鋼板。
(2)前記鋼板が、さらに、質量%にて、B:0.0003〜0.002%を含むことを特徴とする前記(1)に記載のスポット溶接継手の疲労特性と成形性に優れた冷延鋼板。
【0023】
(2)前記鋼板が、さらに、質量%にて、B:0.0003〜0.002%を含むことを特徴とする前記(1)に記載のスポット溶接継手の疲労特性と成形性に優れた冷延鋼板である。
【0024】
【発明の実施の形態】
以下、本発明の構成要素について説明する。
まず、本発明の化学成分の限定理由について説明する。
C:
Cは冷延時に固溶状態で鋼中に存在していると、後の焼鈍時に深絞り性にとって好ましくない方位が生成するので0.005%以下、好ましくは0.003%以下がよい。
【0025】
Si:
Siは固溶強化元素であり0.1%を越えて添加すると固溶硬化が著しくなり加工用に不適当になるばかりでなく、ランクフォード値を劣化させかつ溶融亜鉛めっきの密着性を悪くするため0.1%以下とした。好ましくは0.05%以下がよい。
Mn:
Mnは0.5%を越えて添加するとランクフォード値が劣化し、また延性も低下するため0.5%以下とした。
【0026】
P:
Pは粒界に偏析し粒界脆化を起こし、二次加工割れの原因となる元素である。ただし、0.05%以下ならば、許容できる範囲である。
S:
Sは多すぎると熱間圧延時の割れを引き起こすばかりでなく、ランクフォード値の劣化を起こすので極力低減させるべきであるが0.02%以下ならば許容できる範囲である。
【0027】
Al:
Alは、溶鋼脱酸のために添加するが、0.004%超添加するとMg添加の効果を阻害するために0.004%以下とする。
Mg:
Mgは、酸素と結合して微細な酸化物を形成する。鋼中に微細に分散したMg酸化物はピニング効果によって、HAZでの結晶粒の粗大化を抑制し、HAZ軟化を防止する効果のある。このためには0.0001%以上必要である。しかし、0.01%超添加してもその効果は飽和してしまうばかりでなく、製鋼技術上非常に難しい。従って、Mgの添加量は0.0001%以上、0.01%以下とする。
【0028】
O:
Oは、スポット溶接時にHAZの結晶粒の粗大化を抑制し、HAZ軟化を防止する効果のあるMgまたは/およびTiを含む微細な粒子を得るためには、0.001%以上必要である。しかし、0.01%超では、酸化物が粗大化し、その効果が失われるばかりか、成形性に好ましくないC系介在物が増加する。従って、Oの含有量は、0.001%以上、0.01%以下とする。
【0029】
N:
NはMgとTiの酸化物および複合酸化物と、TiNが含まれる複合粒子を形成し、HAZ軟化を防止する効果がある。この効果を得るために、Nは、0.001%以上含有する必要がある。しかし、ランクフォード値向上にとって好ましくない元素であるので、Nの含有量は、0.001%以上、0.01%以下とする。
B:
Bは二次加工割れを防止するために添加する。ただし、0.0003%未満の添加では、その効果がなく、0.002%超添加してもその効果は飽和してしまう。従って、Bの添加量は、0.0003%以上、0.002%以下とする。
【0030】
Ti、Nb:
Ti、Nbは{(Ti/48+Nb/93)>(C/12+N/14+S/32)}の関係を満たす範囲でN、C、Sを析出物として固定し成形性を確保する。特に、Tiは、HAZ軟化を防止する効果のあるMgとTiの酸化物および複合酸化物を形成に必要である。また、Tiは、γ相の高温域においてTiNとして析出するが、Ti/48≦N/14ではTiNとして固溶Nが十分固定されず残存した固溶Nが深絞り性を劣化させるだけでなく、BNとして析出して二次加工性に有効なBが確保されない。さらに、Tiは0.03%以上添加すると溶融亜鉛めっきの密着性を悪くし、プレス成形時にパウダリングを起こす。一方、Nbは、0.03%以上添加すると再結晶温度を上昇させるので焼鈍時に十分再結晶が完了させることができずランクフォード値の劣化を招く。そこで、Ti、Nbの含有量は、Ti/48>N/14、{(Ti/48+Nb/93)>(C/12+N/14+S/32)}を満たす範囲に限定する。好ましくは、Ti、Nb共にそれぞれ0.03%以下がよい。
なお、本発明において上記以外の成分はFeとなるが、スクラップ等の溶製原料から混入する不可避的不純物の含有は許容される。
【0031】
次に、本発明の鋼板に含まれるMgとTiの酸化物および複合酸化物の存在状態について説明する。
ここで、MgとTiの酸化物および複合酸化物とは、MgOのようなMg単独およびTi2 3 のようなTi単独の酸化物粒子およびその複合酸化物粒子だけでなく、それら以外の酸化物およびTiN、MnS等の析出物が含まれるような複合粒子のことを指す。ただし、これらの粒子の直径が、平均粒子径で0.005μm未満であると再結晶焼鈍時の粒成長が妨げられ良好なランクフォード値が得られない。また、0.1μm超であるとスポット溶接時のフェライト粒の粒成長を抑制することが不十分になり十分なHAZの強度が得られずスポット溶接継手の疲労特性の向上が望めない。従って、ランクフォード値およびHAZの強度の両方を満足させるためには、MgとTiの酸化物および複合酸化物の平均粒子径を0.005μm以上、0.1μm以下とする。
【0032】
また、MgとTiの酸化物および複合酸化物の面密度は、40個/mm2未満では、これら粒子の数が少なくスポット溶接時のフェライト粒の粒成長を抑制することが不十分になり十分なHAZの強度が得られずスポット溶接継手の疲労特性の向上が望めない。従って、MgとTiの酸化物および複合酸化物の面密度は、40個/mm2以上とする。MgとTiの酸化物および複合酸化物の面密度の上限は、実施例の表5中、Jの鋼の95個/mm 2 に基づいて、95個/mm 2 以下とした。
【0033】
【実施例】
以下に、実施例により本発明をさらに説明する。
表4に示す鋼成分の鋼を、転炉にて溶製して連続鋳造後、その鋳片を加熱温度1150℃で再加熱し、910℃〜930℃の仕上げ圧延の温度範囲で6.0mmに圧延した後710℃で巻き取った。酸洗後、0.8mmまで冷間圧延を施し、連続焼鈍ライン(最高加熱温度810℃、スキンパス圧延率0.8%)を通板した。ただし、鋼Hについては、冷延後溶融亜鉛めっきライン(最高加熱温度820℃、溶融亜鉛めっき460℃、合金化処理520℃×20秒、スキンパス圧延率0.8%)を通板した。
【0034】
【表4】
Figure 0003866852
【0035】
このようにして得られた焼鈍板の機械的性質を、JIS Z 2201記載の5号試験片にて、JIS Z 2241記載の引張試験方法で測定した。また、スポット溶接継手部の疲労特性は、図2に示すような板厚0.8mm、長さ140mm、幅40mmの試験板を、JIS Z 3138のスポット溶接継手の疲れ試験方法に従って、表2に示したスポット溶接条件で溶接して作成した。そして、引張せん断疲労試験は、米国MTS社製10tテストスター電気油圧式サーボ型疲労試験機を用い応力比R=0.05、繰返し速度7〜15Hz、荷重波形は、正弦波の試験条件で行った。試験条件の詳細は表3に示す。
【0036】
なお、試験中、試験片に所定の応力が付加されているかどうかを確認するために試験片表裏にひずみゲージを貼り付けて試験中に荷重波形を監視した。試験結果を、表5に示す。ただし、表中の記号において、YPは降伏強度、TSは引張強度、Elは破断伸び、HvはHAZのビッカース硬度の平均値、FLはスポット溶接部の疲労限rmはランクフォード値である。
【0037】
【表5】
Figure 0003866852
【0038】
一方、MgとTiの酸化物および複合酸化物の状態は、供試鋼の1/4厚のところから透過型電子顕微鏡サンプルを採取し、エネルギー分散型X線分光(Energy Dispersive X−ray Spectroscope:EDS)や電子エネルギー損失分光(Electron Energy LossSpectroscope:EELS)の組成分析機能を加えた、200kVの加速電圧の電界放射型電子銃(Field Emission Gun:FEG)を搭載した透過型電子顕微鏡によって観察した。観察される粒子の組成は、上記EDSおよびEELSによりMgO単独および結晶学的に平行関係にあるMgOとTiNの複合粒であることを確認した。
【0039】
また、本発明で規定するMgとTiの酸化物および複合酸化物の平均粒子径は、観察される粒子をそれぞれ測定したもののその一視野での平均の値である。また、MgとTiの酸化物および複合酸化物の面密度(1mm2 あたりの個数)はCMA(コンピュータマイクロアナライザー)を用いて、供試鋼の1/4厚のところから試料を採取し、試料表面の5mm×0.5mmの範囲に1μm径のビームを照射し、単位面積あたりの数を計算して求めた。測定結果を、表5に示す。ただし、表中の記号において、dは平均粒子径、ρは粒子の面密度である。
【0040】
本発明に沿うものは、鋼A、D、E、G、HJの6鋼種である。上記以外の鋼は、本発明の範囲以外の化学組成である。比較鋼は、各々以下に述べる理由によって、疲労限、ランクフォード値またはその両特性について本発明の範囲外である。鋼Bは、Mgが添加されていないため、スポット溶接継手の疲労強度が低い。鋼Cは、Cの含有量が本発明の範囲外であるために、深絞り性の指標であるランクフォード値が低い。鋼Fは、Oの含有量が本発明範囲外であるためにMgとTiの酸化物および複合酸化物の粒子径が大きく、スポット溶接継手の疲労強度が低い。
【0041】
鋼Iは、Alの含有量が本発明の範囲外であるのでMgとTiの酸化物および複合酸化物の面密度が低く、スポット溶接継手の疲労強度が低い。鋼Kは、Oの含有量が少ないためMgとTiの酸化物および複合酸化物の面密度が低く、スポット溶接継手の疲労強度が低い。鋼Lは、Ti* が負であるので深絞り性の指標であるランクフォード値が低い。鋼Mは、Ti* Nb* が負であるので深絞り性の指標であるランクフォード値が低い。
【0042】
【発明の効果】
以上詳述したように、本発明は、スポット溶接継手の疲労特性および成形性に優れた冷延鋼板とその製造方法を与えるもので、これらの鋼板を用いることで、自動車の部品等における疲労耐久性の大幅な改善が期待できる。
【図面の簡単な説明】
【図1】スポット溶接部引張せん断疲労試験片での疲労き裂の発生、伝播状況を断面図で説明する図である。
【図2】スポット溶接部引張せん断継手疲労試験片の形状を示す図である。
【図3】スポット溶接部近傍のビッカ−ス硬度分布を示す図である。
【図4】本発明の冷延鋼板のスポット溶接部引張せん断継手の疲労特性を示すL−N曲線である。
【図5】本発明の範囲をHAZの平均ビッカ−ス硬度およびランクフォード値とMgとTiの酸化物および複合酸化物の粒子径の関係で示しす図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold-rolled steel sheet excellent in fatigue characteristics and formability of a spot welded joint.
[0002]
[Prior art]
In recent years, the material properties required for automotive steel sheets have become more advanced year by year. In particular, automobile fenders, oil pans, and the like are subjected to extremely severe press molding, so that further improvement in deep drawability and ductility has been expected. From time to time, along with the development of vacuum degassing technologies such as RH (Ruhrstahl-Heraus) and DH (Dortmount-Horde), ultra-low carbon steel with reduced solid solution elements and improved formability has been developed. It has come to be used in place of the low carbon Al killed steel that has been used up to now. More recently, steels having dramatically improved formability by scavenging solute C and N in steel with Ti, Nb, etc. are disclosed in JP-A-1-225727, JP-A-2-34722, etc. The disclosed interstitial atoms free steel (hereinafter referred to as IF steel) has been widely used.
[0003]
On the other hand, it is a matter of course that durability in addition to formability, static strength, etc. is strongly demanded for suspension parts such as suspension arms, road wheels, and inner plate structural members such as side members and cross members. Since the external force is repeatedly applied to the inner plate panels such as the floor and the dash, and the outer plate parts such as the hood outer and the trunk lid outer, the fatigue durability is required.
[0004]
Spot welding is often used for joining such inner and outer plate parts, and the number of spot welding points of a single passenger car can reach several thousand. Such a spot welded joint tends to cause stress concentration due to its shape, and there is a risk of becoming a starting point of fatigue failure due to vibration during vehicle travel. In general, the fatigue properties are proportional to the tensile strength and yield strength of the material, but the fatigue properties of spot welds are difficult to organize by static strength due to their shape and local temperature history that is experienced by welding. There are special considerations for the material design. However, very little is described about the fatigue characteristics of such spot welded joints.
[0005]
For example, Japanese Patent Publication No. 3-56301 discloses a spot welded joint portion that optimizes the hardness distribution in the vicinity of the welded joint portion after spot welding by leaving an unrecrystallized structure 5 to 30% in the original plate before spot welding. An invention for improving the fatigue strength of the steel is disclosed. Japanese Patent Publication No. 5-57330 discloses an invention that aims to improve fatigue strength by adding Ti, Nb and B in combination to make the spot welds finer. On the other hand, Japanese Examined Patent Publication No. 7-56054 defines the amount of O and the value of Al (%) / N (%), and in particular, Al / N ≧ 30 improves the structure of the welded portion, thereby improving fatigue strength. An invention characterized by improving the above is disclosed.
[0006]
[Problems to be solved by the invention]
However, in the invention described in the above Japanese Patent Publication No. 3-56301, the non-recrystallized structure is detrimental to moldability such as deep drawability and stretchability, so that high press formability is required. It is unsuitable for application to inner and outer plate parts of automobiles. Further, in the invention described in Japanese Patent Publication No. 5-57330 of the above prior art, although the fatigue limit has the same or better characteristics as the conventional low carbon steel, the time strength in a low cycle of 1 million times or less is obtained. In order to improve this, it is essential to further increase the skin pass rolling rate. However, excessive cold rolling after annealing as described above is not preferable for formability because it causes material deterioration such as elongation.
[0007]
In the invention described in Japanese Patent Publication No. 7-56054, in order to satisfy Al / N ≧ 30, N must be reduced or the amount of Al added must be increased. Reducing N extremely leads to an increase in steelmaking costs. On the other hand, an increase in Al leads to deterioration of surface properties, which is not preferable.
Therefore, the present invention aims to be applied to automotive parts that require extremely severe formability and require good spot welded joint fatigue characteristics, and thus impairs press formability including deep drawability. An object of the present invention is to provide a steel sheet for deep drawing for automobiles that can improve the fatigue characteristics of spot welded joints.
[0008]
[Means for Solving the Problems]
As a result of many years of research for improving the fatigue characteristics of spot welded joints, the inventors firstly found that the starting point of fatigue fracture of low-carbon Al killed steel, which is a conventional steel, is the base metal part, whereas IF It was found that that of steel was the sheet separation tip (see FIG. 1). Therefore, when the cause of the difference in the starting point of fatigue fracture between the two steel types was investigated in detail, even though they were the same spot welded joint, a heat affected zone (Heat Affected Zone) generated around the part (nugget) melted by spot welding. : HAZ) characteristics were found to be greatly different between the two.
[0009]
That is, it is generally considered that when an external force is applied to the spot welded joint, the stress concentration occurs most at the front end of the sheet separation. Also, according to standard welding conditions, the sheet separation tip is included in the HAZ. As a result, due to the magnitude relationship between the magnitude of the stress generated in the part and the strength of the HAZ, the front of the sheet separation is the starting point of fatigue fracture in the former IF steel, and the latter is larger in the low carbon Al killed steel than in the HAZ. This led to the elucidation of the mechanism by which a low-strength base metal is the starting point for fatigue failure.
[0010]
In addition, the reason why the strength of HAZ differs between the two steel types is also examined, whereas the microstructure of HAZ in low-carbon Al killed steel is refined by the transformation of α → γ → α by heating during spot welding. In the case of IF steel, the Ac 3 transformation point has increased due to high purity, so that the transformation of α → γ → α does not occur due to heating during spot welding, and only the grain growth occurs in the α region. As a result, it was also found that HAZ became the starting point of fatigue fracture. In order to strengthen the HAZ of IF steel, it is important to suppress the grain growth of ferrite grains during spot welding, and this can be achieved by minimizing the influence on other properties of IF steel. As a result of extensive research on the above, it has been found that if the oxides and / or composite oxides of Mg and Ti are dispersed in advance, the growth of ferrite grains of HAZ is suppressed.
[0011]
In addition, the IF steel in which HAZ is strengthened by Mg and Ti oxides and composite oxides has a fatigue limit equivalent to that of low-carbon Al-killed steel as a result of the fatigue crack starting point moving from the HAZ to the base metal part. It was confirmed. Furthermore, it has been newly found that these oxides have no influence on the recrystallization grain growth process during annealing and suppress only the coarsening of the HAZ microstructure during spot welding.
[0012]
The experimental results on which the present invention is based will be described below.
First, the effect of improving the fatigue characteristics of the spot welded joint in the present invention was investigated. Steel having the chemical composition shown in Table 1 (excluding steel A) was heated at 1150 ° C. for 1 hour, hot-rolled at a finishing temperature (FT) of 920 ° C., and wound at 700 ° C. After pickling, cold rolling was performed at a rolling rate of 80%, and annealing was performed at 810 ° C. for 1 minute at a cooling rate of 20 ° C./s in an annealing furnace, and 1% skin pass rolling was performed. For steel A, after heating at 1230 ° C. for 1 hour, hot rolled at a finishing temperature (FT) of 870 ° C., wound at 550 ° C., pickled, cold-rolled at a rolling reduction rate of 75%, and box-type annealing. Annealing was performed at a maximum furnace temperature of 720 ° C. in a furnace (BAF: Box Annealing Furnace), and 1% skin pass rolling was performed.
[0013]
[Table 1]
Figure 0003866852
[0014]
The mechanical properties of the annealed plate thus obtained were measured by a tensile test method described in JIS Z 2241 using a No. 5 test piece described in JIS Z 2201. The fatigue characteristics of the spot welded joints are shown in Table 2 in accordance with the fatigue test method for spot welded joints of JIS Z 3138 using a test plate having a thickness of 0.8 mm, a length of 140 mm, and a width of 40 mm as shown in FIG. It was created by welding under spot welding conditions. The tensile shear fatigue test was performed using a 10-t test star electrohydraulic servo type fatigue tester manufactured by MTS, USA, with a stress ratio R = 0.05, a repetition rate of 7 to 15 Hz, and a load waveform under sine wave test conditions. It was. Details of the test conditions are shown in Table 3. During the test, in order to confirm whether or not a predetermined stress was applied to the test piece, strain gauges were attached to the front and back of the test piece, and the load waveform was monitored during the test.
[0015]
[Table 2]
Figure 0003866852
[0016]
[Table 3]
Figure 0003866852
[0017]
FIG. 3 shows the hardness distribution of the spot weld joint. The hardness of HAZ of steel A, which is a low carbon Al killed steel, is sufficiently higher than that of the base material. On the other hand, in steel B which is IF steel to which Mg is not added, the hardness of HAZ is almost equivalent to that of the base material. On the other hand, the hardness of HAZ of steel HA, which is IF steel to which Mg is added, is as high as that of low-carbon Al-killed steel compared to the base metal.
FIG. 4 shows the results of a fatigue test of the spot welded joint. Among the steels of IF, steel B to which Mg is not added is low in both fatigue limit and time strength in a finite life region as compared with steel A which is a low carbon Al killed steel. On the other hand, steel added with Mg shows a strength equal to or higher than that of steel A, which is a low carbon Al killed steel, in both fatigue limit and time strength.
[0018]
Next, the effect of the Mg and Ti oxide and composite oxide diameter on the Vickers hardness and the Lankford value of HAZ was investigated. A steel slab obtained by changing the order of addition of deoxidizers such as Al, Si, Ti, and Mg, the addition interval, etc. in the steelmaking process, at 1150 ° C. for 1 hour. After heating, it was hot-rolled at a finishing temperature (FT) of 920 ° C. and wound at 700 ° C. After pickling, cold rolling was performed at a rolling rate of 80%, and annealing was performed at 810 ° C. for 1 minute at a cooling rate of 20 ° C./s in an annealing furnace, and 1% skin pass rolling was performed. The Rankford value and spot welding of the annealed plate thus obtained were measured, and the HAZ Vickers hardness was measured according to JIS Z 2244.
[0019]
On the other hand, the state of the oxide and composite oxide of Mg and Ti is obtained by taking a transmission electron microscope sample from a thickness of 1/4 of the test steel, and energy dispersive X-ray spectroscopy (Energy Dispersive X-ray Spectroscope: It was observed with a transmission electron microscope equipped with a field emission electron gun (Field Emission Gun: FEG) with an acceleration voltage of 200 kV to which a composition analysis function of EDS) and electron energy loss spectroscopy (EELS) was added. The observed particle composition was confirmed to be an oxide and composite oxide of Mg and Ti by the EDS and EELS.
[0020]
Moreover, the average particle diameter of the oxides and composite oxides of Mg and Ti defined in the present invention is an average value in one field of view of the observed particles. The surface density of Mg and Ti oxides and composite oxides (number per 1 mm 2 ) was sampled from 1/4 thickness of the test steel using CMA (computer microanalyzer). A surface of 5 mm × 0.5 mm on the surface was irradiated with a 1 μm diameter beam, and the number per unit area was calculated. After the measurement, spot welding was performed and a fatigue test was performed.
[0021]
FIG. 5 shows the measurement results of the particle sizes of Mg and Ti oxides and composite oxides, the Vickers hardness of HAZ, and the Rankford value. In the figure, the rm value is the average rankford value {rm = (r0 + 2r45 + r90) / 4}, and the r value is a value obtained by dividing the change in plate thickness at 15% by the change in plate width. is there. R0, r45, and r90 are r values in the rolling direction, 45 ° direction from the rolling direction, and 90 ° from the rolling direction, respectively.
The present invention is constituted by the above findings, and the gist thereof is as follows.
[0022]
(1) In mass%, C: ≦ 0.005%, Si: ≦ 0.1%, Mn: ≦ 0.5%, P: ≦ 0.05%, S: ≦ 0.02%, Al: ≦ 0.004%, Mg: 0.0001 to 0.01%, O: 0.001 to 0.01%, N: 0.001 to 0.01%, and further Ti is Ti / 48> N / 14, and one or both of Ti and Nb are included such that {(Ti / 48 + Nb / 93)> (C / 12 + N / 14 + S / 32)}, the balance is made of Fe and inevitable impurities, and the average particle size A spot welded joint comprising an oxide of Mg and Ti and / or a composite oxide of 0.005 μm or more and 0.1 μm or less at a surface density of 40 to 95 / mm 2 in a microstructure. Cold rolled steel sheet with excellent fatigue characteristics and formability.
(2) The steel sheet further includes B: 0.0003 to 0.002% by mass%, and is excellent in fatigue characteristics and formability of the spot welded joint according to (1) above Cold rolled steel sheet.
[0023]
(2) The steel sheet further includes B: 0.0003 to 0.002% by mass%, and is excellent in fatigue characteristics and formability of the spot welded joint according to (1) above It is a cold-rolled steel sheet.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the components of the present invention will be described.
First, the reasons for limiting the chemical components of the present invention will be described.
C:
If C is present in the steel in the form of a solid solution during cold rolling, an orientation which is undesirable for deep drawability is generated during subsequent annealing, so 0.005% or less, preferably 0.003% or less.
[0025]
Si:
Si is a solid solution strengthening element, and if added over 0.1%, solid solution hardening becomes remarkable and not only is unsuitable for processing, but also deteriorates the Rankford value and deteriorates the adhesion of hot dip galvanizing. Therefore, it was made 0.1% or less. Preferably it is 0.05% or less.
Mn:
If Mn is added in excess of 0.5%, the Rankford value deteriorates and the ductility also decreases.
[0026]
P:
P is an element that segregates at the grain boundary and causes embrittlement at the grain boundary, causing secondary processing cracks. However, if it is 0.05% or less, it is an acceptable range.
S:
If S is too large, it not only causes cracking during hot rolling, but also degrades the Rankford value. Therefore, it should be reduced as much as possible, but it is acceptable if it is 0.02% or less.
[0027]
Al:
Al is added for deoxidation of molten steel, but if added over 0.004%, the effect of Mg addition is hindered, so the content is made 0.004% or less.
Mg:
Mg combines with oxygen to form a fine oxide. The finely dispersed Mg oxide in the steel has an effect of suppressing the coarsening of crystal grains in the HAZ and preventing the HAZ softening due to the pinning effect. For this purpose, 0.0001% or more is necessary. However, the addition of more than 0.01% not only saturates the effect, but is very difficult in terms of steelmaking technology. Therefore, the addition amount of Mg is set to 0.0001% or more and 0.01% or less.
[0028]
O:
O is required to be 0.001% or more in order to obtain fine particles containing Mg and / or Ti that are effective in suppressing coarsening of HAZ crystal grains during spot welding and preventing HAZ softening. However, if it exceeds 0.01%, the oxide becomes coarse and its effect is lost, and C-based inclusions which are undesirable for moldability increase. Therefore, the content of O is set to 0.001% or more and 0.01% or less.
[0029]
N:
N forms an oxide and a composite oxide of Mg and Ti, the composite particles include TiN, the effect of preventing the HAZ softening. In order to acquire this effect, N needs to contain 0.001% or more. However, since it is an element that is not preferable for improving the Rankford value, the N content is set to 0.001% or more and 0.01% or less.
B:
B is added to prevent secondary processing cracks. However, the addition of less than 0.0003% has no effect, and even if added over 0.002%, the effect is saturated. Therefore, the addition amount of B is set to 0.0003% or more and 0.002% or less.
[0030]
Ti, Nb:
Ti and Nb secure the moldability by fixing N, C and S as precipitates within a range satisfying the relationship of {(Ti / 48 + Nb / 93)> (C / 12 + N / 14 + S / 32)}. In particular, Ti is necessary for forming an oxide and composite oxide of Mg and Ti that have an effect of preventing HAZ softening. Further, Ti precipitates as TiN in the high temperature region of the γ phase. However, when Ti / 48 ≦ N / 14, not only solid solution N is sufficiently fixed as TiN but the remaining solid solution N deteriorates deep drawability. , BN precipitates as B and effective B for secondary workability is not ensured. Further, when Ti is added in an amount of 0.03% or more, the adhesion of hot dip galvanizing is deteriorated, and powdering occurs during press molding. On the other hand, when Nb is added in an amount of 0.03% or more, the recrystallization temperature is raised, so that the recrystallization cannot be sufficiently completed at the time of annealing, and the Rankford value is degraded. Therefore, the content of Ti and Nb is limited to a range satisfying Ti / 48> N / 14, {(Ti / 48 + Nb / 93)> (C / 12 + N / 14 + S / 32)}. Preferably, both Ti and Nb are 0.03% or less.
In the present invention, the component other than the above is Fe, but the inclusion of inevitable impurities mixed from the melting raw material such as scrap is allowed.
[0031]
Next, the existence state of oxides and composite oxides of Mg and Ti contained in the steel plate of the present invention will be described.
Here, the oxides and composite oxides of Mg and Ti are not only Mg single particles such as MgO and Ti single oxide particles such as Ti 2 O 3 and composite oxide particles thereof, but also other oxidations. And composite particles that contain precipitates such as TiN and MnS. However, if the diameter of these particles is less than 0.005 μm in terms of average particle size, grain growth during recrystallization annealing is hindered, and good Rankford values cannot be obtained. On the other hand, if it exceeds 0.1 μm, it is insufficient to suppress the growth of ferrite grains during spot welding, so that sufficient HAZ strength cannot be obtained, and improvement in fatigue characteristics of the spot welded joint cannot be expected. Therefore, in order to satisfy both the Rankford value and the HAZ strength, the average particle diameter of the Mg and Ti oxide and the composite oxide is set to 0.005 μm or more and 0.1 μm or less.
[0032]
In addition, if the areal density of Mg and Ti oxide and composite oxide is less than 40 / mm 2 , the number of these particles is small, and it is insufficient to suppress the ferrite grain growth during spot welding. The strength of the HAZ cannot be obtained, and the fatigue characteristics of the spot welded joint cannot be improved. Therefore, the surface density of the oxide of Mg and Ti and the composite oxide is set to 40 pieces / mm 2 or more. The upper limit of the surface density of the oxides and composite oxides of Mg and Ti was set to 95 pieces / mm 2 or less based on 95 pieces / mm 2 of steel J in Table 5 of the examples .
[0033]
【Example】
The following examples further illustrate the present invention.
After the steel components shown in Table 4 were melted in a converter and continuously cast, the slab was reheated at a heating temperature of 1150 ° C., and 6.0 mm in the temperature range of finish rolling from 910 ° C. to 930 ° C. And rolled up at 710 ° C. After pickling, it was cold rolled to 0.8 mm and passed through a continuous annealing line (maximum heating temperature 810 ° C., skin pass rolling rate 0.8%). However, the steel H was passed through a hot dip galvanizing line (maximum heating temperature 820 ° C., hot dip galvanizing 460 ° C., alloying treatment 520 ° C. × 20 seconds, skin pass rolling rate 0.8%) after cold rolling.
[0034]
[Table 4]
Figure 0003866852
[0035]
The mechanical properties of the thus obtained annealed plate were measured by a tensile test method described in JIS Z 2241 using a No. 5 test piece described in JIS Z 2201. The fatigue characteristics of the spot welded joints are shown in Table 2 in accordance with the fatigue test method for spot welded joints of JIS Z 3138 using test plates having a thickness of 0.8 mm, a length of 140 mm, and a width of 40 mm as shown in FIG. It was created by welding under the indicated spot welding conditions. The tensile shear fatigue test was performed using a 10-t test star electrohydraulic servo type fatigue tester manufactured by MTS, USA, with a stress ratio R = 0.05, a repetition rate of 7 to 15 Hz, and a load waveform under sine wave test conditions. It was. Details of the test conditions are shown in Table 3.
[0036]
During the test, in order to confirm whether or not a predetermined stress was applied to the test piece, strain gauges were attached to the front and back of the test piece, and the load waveform was monitored during the test. The test results are shown in Table 5. In the symbols in the table, YP is the yield strength, TS is the tensile strength, El is the elongation at break, Hv is the average value of the Vickers hardness of HAZ, FL is the fatigue limit rm of the spot welded portion, and the Rankford value.
[0037]
[Table 5]
Figure 0003866852
[0038]
On the other hand, the state of the oxide and composite oxide of Mg and Ti is obtained by taking a transmission electron microscope sample from a thickness of 1/4 of the test steel, and energy dispersive X-ray spectroscopy (Energy Dispersive X-ray Spectroscope: Observation was made with a transmission electron microscope equipped with a field emission electron gun (Field Emission Gun: FEG) with an acceleration voltage of 200 kV, which was added with a composition analysis function of EDS (Electron Energy Loss Spectroscope: EELS). The observed particle composition was confirmed to be MgO alone or a composite grain of MgO and TiN in a crystallographic parallel relationship by the EDS and EELS.
[0039]
Moreover, the average particle diameter of the oxides and composite oxides of Mg and Ti defined in the present invention is an average value in one field of view of the observed particles. The surface density of Mg and Ti oxides and composite oxides (number per 1 mm 2 ) was sampled from 1/4 thickness of the test steel using CMA (computer microanalyzer). A surface of 5 mm × 0.5 mm on the surface was irradiated with a 1 μm diameter beam, and the number per unit area was calculated. The measurement results are shown in Table 5. In the symbols in the table, d is the average particle diameter, and ρ is the surface density of the particles.
[0040]
In accordance with the present invention, there are six steel types: Steels A, D, E, G, H 2 and J. Steels other than the above have chemical compositions other than the scope of the present invention. The comparative steels are outside the scope of the present invention with respect to fatigue limit, Rankford value, or both, for the reasons described below. Since steel B does not contain Mg, the fatigue strength of the spot welded joint is low. Steel C has a low Lankford value, which is an index of deep drawability, because the C content is outside the scope of the present invention. Steel F has an O content outside the range of the present invention, so the particle diameters of the oxides and composite oxides of Mg and Ti are large, and the fatigue strength of the spot welded joint is low.
[0041]
In steel I, the Al content is outside the range of the present invention, so the surface density of the oxides and composite oxides of Mg and Ti is low, and the fatigue strength of the spot welded joint is low. Since steel K has a low O content, the surface density of the oxides and composite oxides of Mg and Ti is low, and the fatigue strength of the spot welded joint is low. Steel L has a low Rankford value, which is an index of deep drawability, because Ti * is negative. Steel M has a low Rankford value, which is an index of deep drawability, because Ti * Nb * is negative.
[0042]
【The invention's effect】
As described above in detail, the present invention provides a cold-rolled steel sheet having excellent fatigue characteristics and formability of a spot welded joint and a method for producing the same. By using these steel sheets, fatigue durability in automotive parts and the like is provided. Great improvement in sex can be expected.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating the occurrence and propagation of fatigue cracks in a spot welded portion tensile shear fatigue test piece.
FIG. 2 is a diagram showing the shape of a spot welded joint tensile shear joint fatigue test piece.
FIG. 3 is a diagram showing a Vickers hardness distribution near a spot weld.
FIG. 4 is an LN curve showing fatigue characteristics of a spot welded tensile shear joint of the cold-rolled steel sheet of the present invention.
FIG. 5 is a diagram showing the scope of the present invention in relation to the average Vickers hardness and rank ford value of HAZ and the particle diameters of Mg and Ti oxides and composite oxides.

Claims (2)

質量%にて、
C:≦0.005%、
Si:≦0.1%、
Mn:≦0.5%、
P:≦0.05%、
S:≦0.02%、
Al:≦0.004%、
Mg:0.0001〜0.01%、
O:0.001〜0.01%、
N:0.001〜0.01%、
を含み、さらにTiをTi/48>N/14、かつTi、Nbの一方あるいは双方を
{(Ti/48+Nb/93)>(C/12+N/14+S/32)}
であるように含み、残部がFe及び不可避的不純物から成り、平均粒子径で0.005μm以上、0.1μm以下であるMgとTiの酸化物および/または複合酸化物をミクロ組織中に、面密度で40〜95個/mm2含有することを特徴とするスポット溶接継手の疲労特性と成形性に優れた冷延鋼板。
In mass%
C: ≦ 0.005%
Si: ≦ 0.1%,
Mn: ≦ 0.5%,
P: ≦ 0.05%
S: ≦ 0.02%,
Al: ≦ 0.004%,
Mg: 0.0001 to 0.01%
O: 0.001 to 0.01%,
N: 0.001 to 0.01%,
Further, Ti is Ti / 48> N / 14, and one or both of Ti and Nb is {(Ti / 48 + Nb / 93)> (C / 12 + N / 14 + S / 32)}
In the microstructure, an oxide of Mg and Ti and / or a composite oxide having an average particle diameter of 0.005 μm or more and 0.1 μm or less is formed in the microstructure. A cold-rolled steel sheet excellent in fatigue characteristics and formability of a spot welded joint, characterized by containing 40 to 95 pieces / mm 2 in density.
前記鋼板が、さらに、質量%にて、
B:0.0003〜0.002%
を含むことを特徴とする請求項1に記載のスポット溶接継手の疲労特性と成形性に優れた冷延鋼板。
The steel sheet is further in mass%,
B: 0.0003 to 0.002%
A cold-rolled steel sheet having excellent fatigue characteristics and formability of the spot welded joint according to claim 1.
JP08657398A 1998-03-31 1998-03-31 Cold-rolled steel sheet with excellent fatigue characteristics and formability of spot welded joints Expired - Fee Related JP3866852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08657398A JP3866852B2 (en) 1998-03-31 1998-03-31 Cold-rolled steel sheet with excellent fatigue characteristics and formability of spot welded joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08657398A JP3866852B2 (en) 1998-03-31 1998-03-31 Cold-rolled steel sheet with excellent fatigue characteristics and formability of spot welded joints

Publications (2)

Publication Number Publication Date
JPH11279689A JPH11279689A (en) 1999-10-12
JP3866852B2 true JP3866852B2 (en) 2007-01-10

Family

ID=13890765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08657398A Expired - Fee Related JP3866852B2 (en) 1998-03-31 1998-03-31 Cold-rolled steel sheet with excellent fatigue characteristics and formability of spot welded joints

Country Status (1)

Country Link
JP (1) JP3866852B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2459756B1 (en) * 2009-07-30 2016-05-11 Tata Steel IJmuiden BV Process for producing an ultra-low-carbon steel slab, strip or sheet

Also Published As

Publication number Publication date
JPH11279689A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP6354909B2 (en) High-strength steel sheet, high-strength galvanized steel sheet, and production methods thereof
WO2020045219A1 (en) High-strength steel plate and method for producing same
EP3476963A1 (en) High strength cold-rolled steel sheet and method for manufacturing same
JP2014019928A (en) High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
WO2020045220A1 (en) High-strength steel plate and method for producing same
EP4316718A1 (en) Automotive member and resistance-spot-welding method therefor
WO2017168958A1 (en) Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
JP2004204326A (en) High-strength hot-rolled steel sheet excellent in hole expandability, ductility, and chemical conversion treatment amenability and method for producing the same
JP5092481B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP6753204B2 (en) Steel plate and steel plate manufacturing method
KR101335826B1 (en) High-strength cold-rolled steel sheet excellent in weldability and process for production of same
JP4258215B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP6753203B2 (en) Steel plate and manufacturing method of the steel plate
JP2018003114A (en) High strength steel sheet and manufacturing method therefor
JP3866852B2 (en) Cold-rolled steel sheet with excellent fatigue characteristics and formability of spot welded joints
JP4818710B2 (en) Deep drawing high strength cold-rolled steel sheet, deep drawing high strength hot-dip galvanized steel sheet and method for producing the same
JP4336020B2 (en) Cold-rolled steel sheet that prevents material deterioration in welds and weld heat-affected zones
JP2001020033A (en) Non-heattreated high tensile strength steel excellent in toughness of base material and weld heat-affected zone
JP2018003115A (en) High strength steel sheet and manufacturing method therefor
JP2011102434A (en) Method for manufacturing high-strength hot-rolled steel sheet
JP3872595B2 (en) Cold rolled steel sheet with low in-plane anisotropy and excellent formability
JP2002020838A (en) Low corrosion rate and high strength hot rolled steel sheet excellent in hole expansibility and ductility, and its production method
JP2000256786A (en) Cold rolled steel sheet minimal in inplane anisotropy and excellent in baking hardenability and aging resistance
JP7315129B1 (en) Hot press parts and steel sheets for hot press
JP7311808B2 (en) Steel plate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees