JP3865588B2 - Ceramic member having fine protrusions formed on its surface, and method for producing the same - Google Patents
Ceramic member having fine protrusions formed on its surface, and method for producing the same Download PDFInfo
- Publication number
- JP3865588B2 JP3865588B2 JP2001033102A JP2001033102A JP3865588B2 JP 3865588 B2 JP3865588 B2 JP 3865588B2 JP 2001033102 A JP2001033102 A JP 2001033102A JP 2001033102 A JP2001033102 A JP 2001033102A JP 3865588 B2 JP3865588 B2 JP 3865588B2
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- crystal
- ceramic member
- etching
- etching solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は表面の形態を制御したセラミックス部材およびその製造方法に係り、さらに詳しくは異種物質が付着・接着しやすいように表面に微細な突起状の部分を形成したセラミックス部材、およびその製造方法に関する。
【0002】
【従来の技術】
たとえば半導体デバイスの製造プロセスのうち、PVDやCVDのような成膜工程、あるいは腐食性ガスを使用するエッチング工程で、一般的に、微細加工の工程が構成されている。そして、製造プロセスに占める割合は、半導体デバイスの加工度の微細化、複雑化に伴って増加傾向にある。なお、上記成膜工程やエッチング工程などは、真空あるいはプラズマ雰囲気、高温というような厳しい条件で行われるため、プラズマに曝される処理容器としては、耐食性を有するセラミックス材料が使用されている。
【0003】
図5は、ヘリコン波プラズマエッチング装置の概略構成を示す断面図である。図5において、1はエッチングガス供給口2および真空排気口3を有するエッチング処理室であり、その処理室1の外周部にはアンテナ4、電磁石5および永久磁石6が設置されている。また、前記処理室1内には、被処理体となる半導体ウエハー7を支持する下部電極8が配置されている。さらに、前記アンテナ4は、第1のマッチングネットワーク9を介して第1の高周波電源10に接続し、下部電極8は、第2のマッチングネットワーク11を介して第2の高周波電源12に接続している。
【0004】
そして、このエッチング装置によるエッチング加工は、次のように行われる。すなわち、下部電極8面に半導体ウエハー7をセットし、エッチング処理室1内を真空化した後に、エッチングガス供給口2からエッチングガスを供給する。その後、アンテナ4および下部電極8に、対応するマッチングネットワーク9,11を介して第1の高周波電源10,12から、たとえば周波数13.56MHzの高周波電流を流す。一方、電磁石5に所要の電流を流して磁界を発生させることにより、エッチング処理室1内に高密度のプラズマを発生させる。そして、このプラズマエネルギーによって、エッチングガスを原子状態に分解し、半導体ウエハー7面に形成された膜のエッチング加工が行われる。
【0005】
ところで、この種の製造装置では、エッチングガスとして、たとえば四塩化炭素(CCl4)、塩化ホウ素(BCl3)などの塩素系ガス、もしくはフッ化炭素(CF4,C4F8)、フッ化窒素(NF3)、フッ化硫黄(SF6)などのフッ素系ガスを使用する。したがって、エッチング処理室1の内壁面など、腐食性ガス雰囲気下でプラズマに曝される構成部材については、耐プラズマ性が要求される所以である。
【0006】
上記耐プラズマ性を要求される構成部材として、たとえば周期律表第2A族,第3A族のうち少なくとも1種を含む化合物を主体とし、表面粗さ(Ra)1μm以下、気孔率3%以下のセラミックス焼結体(特開平10−45461号公報)が知られている。また、プラズマに曝される表面を気孔率が3%以下のイットリウムアルミニウムガーネット焼結体で形成するとともに、表面を中心線平均粗さ(Ra)1μm以下としたセラミックス焼結体(特開平10−236871号公報)が提案されている。なお、耐プラズマ性部材は、使用箇所が真空系、高温度下などであるため、雰囲気に悪影響を与えないこととなども重要で、たとえばガス放出性などは不具合に作用する。ここで、ガスの吸着は部材表面におけるガス分子の吸着であり、また、ガス吸着量は表面積に比例するので、ガス放出性を考慮すると平坦面状態が望ましいことになる。
【0007】
【発明が解決しようとする課題】
ところで、上記プラズマエネルギーを利用する成膜手段やエッチング手段においては、次のような問題がある。たとえば成膜過程で、被成膜面だけでなく、プラズマに曝される処理室内壁面や被成膜基体を支持する支持体面などにも、成膜成分粒子が付随的に付着・堆積して成膜する。そして、これら処理室内壁面や支持体面などに付着・堆積した成膜成分の一部が、前記付着面から剥離ないし離脱して、小さな粒子(パーティクル)が被成膜面に付着する現象がある。
【0008】
ここで、処理室内壁面などから離脱した小さな粒子(パーティクル)の再付着は、たとえば形成中の回路パターンなど成膜の遮断や品質低下などとなって、成膜製品の信頼性ないし歩留まり低下を招来する。このパーティクル離脱防止能を付与するため、処理室内壁面などを構成する耐プラズマ性部材の表面を粗面化する手段が提案されている(特開2000−191370号公報)。すなわち、ブラスト処理によって、表面粗さ(Ra)が1μmを超えるように表面を粗面化し、付着・堆積する膜との物理的な結合を強めて剥離し難くする(アンカー効果の付与)手段が知られている。
【0009】
しかしながら、上記ブラスト処理による粗面化手段では、ガス放出性の問題を抱える一方、充分なアンカー効果を付与できず、依然としてパーティクル離脱の問題が残されている。すなわち、上記粗面化手段による粗面は、溝状もしくは波状の表面積が大幅に拡大化する凹凸面であり、外側に向かって広開する形状(断面V字形)を呈しているため、アンカー効果を示すとはいえ、そのアンカー効果が不十分であり、パーティクル離脱防止機能の向上・改善が望まれている。また、上記凹凸面化による表面積の広大化、及びブラスト処理によって生じる微細な傷の存在による表面積の広大化は、処理室内でのガス吸着、吸着したガスの離脱・放出に作用するため、成膜などに悪影響を及ぼす恐れもある。さらに、ブラスト処理により剥落寸前までダメージを受けている表面は、使用時の温度変化により剥離し、セラミックス部材表面自身がパーティクルの原因となる不具合がある。
【0010】
本発明は、上記事情に鑑みてなされたもので、ガス放出性が抑制・防止されながら、一方では、表面に付着・堆積する異種物に対してすぐれたアンカー効果を呈する表面に微細な突起状部分を形成させたセラミックス部材、およびその製造方法の提供を目的とする。
【0011】
【課題を解決するための手段】
【0012】
第1の発明は、多数の結晶粒子で構成され、それぞれの結晶粒子が異なった方位をもっている表面を有する純度が99重量%以上で、理論密度の90%を超える緻密質セラミックス基材の表面を100℃以上に加熱し、かつ、0.1MPa以上に加圧した酸性エッチング液中で侵食処理することにより、結晶粒子の表面に、その結晶粒子径よりも小さい径の複数の突起状部分を形成し、当該突起状部分が結晶粒子毎にいろいろな方向を向くように形成することを特徴とする半導体製造装置用セラミックス部材の製造方法である。
【0013】
第2の発明は、前記第1の発明の製造方法によって製造されたセラミックス部材であって、純度が99重量%以上で、理論密度の90%を超える緻密質セラミックス基材の結晶粒子の表面に、その結晶粒子径よりも小さい径の複数の突起状部分が形成され、当該突起状部分が結晶粒子毎にいろいろな方向を向いていることを特徴とする半導体製造装置用セラミックス部材である。
【0015】
上記第2の発明のエッチング処理において、酸性エッチング液として硫酸またはその水溶液もしくはリン酸またはその水溶液を用いることが好ましい。
【0016】
【発明の実施の形態】
第1および第2の発明において、緻密質セラミックス(基材)としては、たとえばアルミナを用いることができる。なお緻密質セラミックスは純度が99重量%以上である。つまり、純度が95重量%未満好ましくは99重量%未満であると、表面を酸性エッチング液中で処理したとき、粒界の侵食が優先的に生じ、所要の結晶粒子の表面に突起状の部分を複数持つ構造を形成できないためである。
【0017】
第1の発明において、エッチング処理にあたりエッチング液を100℃以上に加熱、および0.1MPa以上に加圧することによって、前記結晶表面に複数の突起状部分を形成する処理が、より容易ないし確実に進行し、歩留まりよく、かつ量産的な結晶粒子の表面に複数の突起状の部分を持つセラミックス部材を提供できる。かかるエッチング処理においてより好ましい加圧条件は、0.2MPa以上である。
つまり、温度が100℃未満、または圧力が0.1MPa未満では、エッチング液の侵食作用が弱く、所要の表面を形成できないためである。
ここで、酸性エッチング液としては、一般的に硫酸またはその水溶液もしくはリン酸またはその水溶液である。なお、酸性エッチング液の加熱温度の上限は、硫酸などの熱分解が起こらない範囲内に設定される。
【0018】
第1および第2の発明では、セラミックス基材表面を構成する結晶粒子の表面にその結晶粒子よりも小さい複数の突起状の部分が存在する、すなわち、セラミック基材表面には微細な突起状の部分がセラミックス基材表面を構成する結晶粒子の数よりも多数存在し、またその方向は結晶粒子の方向に応じた色々な方向を向いている。このセラミックス基材の表面に一旦付着した膜状などの異種物質は突起状の部分によって保持されるために容易に離脱・飛散しない状態が維持される。したがって、たとえば、蒸着やスパッタリングなどの処理において、処理室内壁面などに付着・堆積した成膜成分膜の部分的な離脱・飛散に起因する不都合・不具合を回避することができる。
またセラミックス基材の表面またはその近傍は化学的に平滑に侵食されているため、サンドブラスト処理など物理的な表面粗面化処理を受けて表層部分に微細なきれつや傷を持つ場合に比べてガスの吸着が少ないため、処理容器内壁材として使用した場合のガス放出性が抑制され、信頼性の高いセラミックス部材を提供できる。また、セラミックスとしては、アルミナが最も理想的なエッチングが可能で好ましい。
【0019】
第1および第2の発明において、上記特定の形状を有する構造体が生成する理由は必ずしも明確になっていないが、次のような理由ないしは現象によって特定の構造を有することとなっているものと考えられる。
【0020】
第1に、多結晶セラミックス(焼結体)は、粒子同士が粒界を介して接合・一体化した微細構造をなしており、一般的に、結晶粒子内部に比べて結晶粒子間に偏析する不純物の存在量が多い粒界部の方が侵食されやすい。しかしながら、その理由・作用は明確ではないが、多結晶セラミックスの構成成分の純度が、95重量%以上、より好ましくは99重量%以上の場合、粒子自体の侵食速度と粒子間(粒界)の侵食速度の差が小さくなって、ほとんど同時的な侵食が進行する。
【0021】
第2に、上記侵食は、粒子自体および粒界の差別なくほぼ同時に行われる。さらに加熱・加圧したエッチング液の使用など、エッチング条件をより厳しく設定すると、この現象はさらに顕著になる。
【0022】
第3に、セラミックス粒子がエッチング液と反応して侵食される場合、反応生成物が生成するが、それはエッチング液中での溶解度を上回る量になると微小な結晶子としてセラミックス結晶粒子の表面に析出する。反応生成物の結晶はエッチング液によるセラミックス粒子の侵食を遮るので、セラミックス結晶粒子の表面には反応生成物の析出部分を頂点とする突起状の部分が形成される。
セラミックスと酸性エッチング液の反応生成物を析出させる上で、酸性エッチング液の濃度は、重要な因子になる。エッチング液の濃度が低いと、反応生成物がエッチング液中に溶解してしまい、結晶として析出しにくくなるためである。エッチング液の濃度の下限は反応量、反応速度、セラミックスとエッチング液の量比、エッチング温度などを考慮して決定できるが、実際にはエッチング場所と反応生成物の析出場所が非常に近接していることなどからエッチング液中の濃度むらが生ずるために理論的に算出するよりも低いエッチング液濃度でも反応生成物の析出が起こりうる。したがってエッチング液の濃度を一義的に決定することは困難で、実際には実験的に反応生成物の結晶が析出する濃度を決定すればよい。たとえば、セラミックスがアルミナでありエッチング液が硫酸の場合、濃度は90重量%以上であることが好ましく、95重量%以上であればより好ましい。たとえば、セラミックスがアルミナでありエッチング液がリン酸の場合、濃度は80重量%であることが好ましく、85重量%以上であればより好ましい。ただし、エッチング液に反応生成物またはその化合物を予め溶解または混入しておくことで、上記の濃度はより低い濃度であってもその目的を達成することはできる。
【0023】
第4に、突起状の部分が形成される上で、突起の長さ方向の侵食速度が突起の直径方向の侵食速度よりも大きいことも重要な因子である。セラミックスの結晶は一般に結晶方位によって侵食速度が異なるので、特に上記第2に記載したような厳しい侵食条件の下では、突起状の部分が侵食速度の速い方向を向いて形成される。セラミックス(基材)の表面は多数の結晶粒子で構成されているが、それぞれの結晶粒子は異なる方位を持って存在する。したがって、結晶の表面に形成された突起状の部分は結晶粒子ごとに色々な方向を向いている。
【0024】
第5に、突起状の部分が形成される上で、セラミックス基材の表面状態は突起状の形態を左右する要因と成り得る。すなわち、侵食速度の大きさが突起状の形態を左右するが、セラミックス基材の表面が侵食されやすい状態か、より侵食され難い状態かによって同一のエッチング液、温度、圧力条件で侵食を行っても、異なる形態を呈する。
たとえば、研削加工などを施したセラミックスの表面には微細な加工傷などを伴うので侵食を受けやすく、相対的に柱状に近い突起状の形態を呈しやすい。一方焼結したままのセラミック表面などは加工面などに比べて侵食され難いので、よりなだらかな山形などの形態を呈しやすい。
【0025】
【実施例】
以下、図面に代わる電子顕微鏡写真を参照して実施例を説明する。
【0026】
純度99.5重量%、かさ密度3.97g/cm3、平均粒子径40μmのアルミナセラミックス板を用意する。一方、硫酸濃度96重量%の硫酸を酸性エッチング液として用意する。次いで、アルミナセラミックス板を酸性エッチング液中に浸漬し、所定の時間、所定の圧力下で処理を行って、結晶粒子の表面にその結晶粒子よりも小さい突起状の部分を形成させた。なお、エッチング処理に当たっては、表1に示すように、エッチング液の温度を50〜100℃に維持し、また、エッチング液に0.1〜10MPaの圧力を加え、エッチング液の温度、圧力を考慮したエッチング時間を設定した。
【0027】
【表1】
【0028】
上記エッチング処理したアルミナセラミックス板の表面を電子顕微鏡で観察評価したところ、本発明の条件では、セラミックス基材の表面を構成する結晶粒子の表面に、結晶粒子よりも小さい複数の突起状の部分を持つセラミックスであった。
この電子顕微鏡写真を、図1、図2、図3ないし図4に示す。なお、図1及び図2は表面を研削加工したアルミナセラミックスの表面をエッチング液温度230℃、圧力1MPaで処理した場合であり、図1は倍率1000倍で撮影したものであり、図2は倍率5000倍で撮影したものである。さらに、図3及び図4は表面が焼結面のアルミナセラミックスをエッチング液温度230℃、圧力1MPaで処理した場合であり、図3は倍率350倍で撮影したものであり、図4は倍率1000倍で撮影したものである。何れも、形態は若干異なるが、大部分の結晶粒子の表面に複数の突起状の部分を持つもので、突起状部分は基材の結晶粒子と構造的に一体であった。
【0029】
また、上記表面に微細な突起部を有するアルミナセラミックスで、プラズマCVD装置の処理室を構成し、成膜時における処理室系への影響(ガス放出)、成膜成分粒子の付着・離脱の状況を評価したところ、正常な操作が可能であった。つまり、成膜条件への影響もなく、処理室壁面などに付随的に付着した成膜成分粒子の離脱・剥離も認められず、すぐれたアンカー効果を有し、正常な成膜を持続できることを確認した。
【0030】
なお、上記ではエッチング液として硫酸を使用したが、リン酸またはその水溶液であってもよい。つまり、濃度やエッチング性能などを考慮して、エッチング液温度および圧力、エッチング時間などを適宜選択すれば、同様に結晶粒子表面にそれよりも小さい複数の突起状の部分を有するアルミナセラミックスを得ることができる。
【0031】
【発明の効果】
請求項1ないし4の発明によれば、セラミック基材の表面が、色々な方向を向いた多数の微細な突起状の部分を持つ構造をとっている。この表面に一旦付着した異種物質の膜類などは、突起状部分との結合によって離脱し難い状態に保たれる。したがって、本発明のセラミックスを成膜容器などの処理室内壁面などの構成部材として使用すれば、歩留まりがよく、信頼性の高い成膜処理などが可能になる。
【0032】
また、請求項3ないし4の発明によれば、すぐれたアンカー効果を有するだけでなく、ガス放出特性も抑制されて、信頼性の高い処理が可能な成膜処理装置などに使用するセラミックス構造部材を歩留まりよく、かつ量産的に提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施例に係るセラミックス部材であって、表面を研削加工したセラミックス基材から製造された部材の電子顕微鏡写真である。
【図2】本発明の実施例に係るセラミックス部材であって、表面を研削加工したセラミックス基材から製造された部材の電子顕微鏡写真であり、図1とは異なる倍率で撮影したものである。
【図3】本発明の実施例に係るセラミックス部材であって、表面が焼結面であるセラミックス基材から製造された部材の電子顕微鏡写真である。
【図4】本発明の実施例に係るセラミックス部材であって、表面が焼結面であるセラミックス基材から製造された部材の電子顕微鏡写真であり、図1とは異なる倍率で撮影したものである。
【図5】プラズマエッチング装置の概略構成例を示す断面図である。
【符号の説明】
1……エッチング処理室
2……エッチングガス供給口
3……真空排気口
4……アンテナ
5……電磁石
6……永久磁石
7……半導体ウエハー
8……下部電極
9、11……マッチングネットワーク
10、12……高周波電源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic member having a controlled surface form and a method for manufacturing the same, and more particularly to a ceramic member having a surface having fine protrusions so that different substances can easily adhere and adhere to the surface, and a method for manufacturing the same. .
[0002]
[Prior art]
For example, in a semiconductor device manufacturing process, a film forming process such as PVD or CVD, or an etching process using a corrosive gas generally constitutes a microfabrication process. And the ratio which occupies for a manufacturing process has the increasing tendency with the refinement | miniaturization and complexity of the processing degree of a semiconductor device. In addition, since the said film-forming process, an etching process, etc. are performed on severe conditions, such as a vacuum or a plasma atmosphere, and high temperature, the ceramic material which has corrosion resistance is used as a processing container exposed to a plasma.
[0003]
FIG. 5 is a sectional view showing a schematic configuration of the helicon wave plasma etching apparatus. In FIG. 5, reference numeral 1 denotes an etching processing chamber having an etching gas supply port 2 and a vacuum exhaust port 3, and an antenna 4, an
[0004]
And the etching process by this etching apparatus is performed as follows. That is, after setting the semiconductor wafer 7 on the surface of the lower electrode 8 and evacuating the etching chamber 1, the etching gas is supplied from the etching gas supply port 2. Thereafter, a high-frequency current having a frequency of, for example, 13.56 MHz is supplied to the antenna 4 and the lower electrode 8 from the first high-
[0005]
By the way, in this type of manufacturing apparatus, as an etching gas, for example, a chlorine-based gas such as carbon tetrachloride (CCl 4 ) or boron chloride (BCl 3 ), or fluorocarbon (CF 4 , C 4 F 8 ), fluoride A fluorine-based gas such as nitrogen (NF 3 ) or sulfur fluoride (SF 6 ) is used. Therefore, plasma resistance is required for components exposed to plasma in a corrosive gas atmosphere, such as the inner wall surface of the etching chamber 1.
[0006]
As the constituent member requiring plasma resistance, for example, the main component is a compound containing at least one of groups 2A and 3A of the periodic table, surface roughness (Ra) of 1 μm or less, and porosity of 3% or less. A ceramic sintered body (Japanese Patent Laid-Open No. 10-45461) is known. Further, the surface exposed to plasma is formed of a yttrium aluminum garnet sintered body having a porosity of 3% or less, and the surface of the ceramic sintered body having a center line average roughness (Ra) of 1 μm or less (Japanese Patent Laid-Open No. 10-101). No. 236871) has been proposed. Since the plasma resistant member is used in a vacuum system, at a high temperature, etc., it is also important that the atmosphere is not adversely affected. For example, the gas release property acts on a problem. Here, the gas adsorption is the adsorption of gas molecules on the surface of the member, and the gas adsorption amount is proportional to the surface area.
[0007]
[Problems to be solved by the invention]
By the way, the film forming means and the etching means using the plasma energy have the following problems. For example, during the film formation process, film formation component particles are attached and deposited incidentally on not only the film formation surface but also the wall surface of the processing chamber exposed to plasma and the support surface that supports the film formation substrate. Film. Then, there is a phenomenon in which a part of the film forming component adhering / depositing on the processing chamber wall surface or the support surface is peeled or detached from the adhering surface, and small particles (particles) adhere to the film forming surface.
[0008]
Here, the reattachment of small particles (particles) detached from the wall surface of the processing chamber, for example, interrupts the film formation such as the circuit pattern being formed or deteriorates the quality, leading to the reliability of the film formation product or the decrease in the yield. To do. In order to impart this particle detachment preventing ability, means for roughening the surface of the plasma-resistant member constituting the wall surface of the processing chamber has been proposed (Japanese Patent Laid-Open No. 2000-191370). That is, there is a means for roughening the surface so that the surface roughness (Ra) exceeds 1 μm by blasting, and strengthening the physical bond with the deposited / deposited film to make it difficult to peel (providing the anchor effect). Are known.
[0009]
However, the roughening means by the blast treatment has a problem of gas releasing property, but cannot provide a sufficient anchor effect, and still has a problem of particle detachment. That is, the rough surface by the roughening means is an uneven surface having a groove-like or wavy surface area that is greatly enlarged, and has a shape (cross-section V-shaped) that widens outward, thus providing an anchor effect. However, the anchor effect is insufficient, and improvement / improvement of the particle detachment preventing function is desired. In addition, the surface area widening due to the uneven surface and the surface area widening due to the presence of fine scratches caused by the blasting process affect the gas adsorption in the processing chamber and the separation / release of the adsorbed gas. There is also a risk of adversely affecting the above. Further, the surface that has been damaged to the extent of peeling off by blasting is peeled off due to a temperature change during use, and the ceramic member surface itself has a problem of causing particles.
[0010]
The present invention has been made in view of the above circumstances. On the other hand, while the gas releasing property is suppressed / prevented, fine protrusions on the surface exhibit an excellent anchoring effect against foreign substances adhering to and depositing on the surface. It is an object of the present invention to provide a ceramic member formed with a portion and a method for manufacturing the same.
[0011]
[Means for Solving the Problems]
[0012]
According to a first aspect of the present invention, there is provided a surface of a dense ceramic substrate having a purity of 99% by weight or more and having a surface having different orientations, each crystal particle having a different orientation, and exceeding 90% of the theoretical density. was heated to 100 ° C. or higher, and formed by the erosion process above 0.1MPa pressurized acidic etching liquid, on the surface of the crystal grains, a plurality of protruding portions having a diameter smaller than the crystal grain size In the method of manufacturing a ceramic member for a semiconductor manufacturing apparatus , the protruding portion is formed so as to face various directions for each crystal particle .
[0013]
The second invention is a ceramic member produced by the production method of the first invention, wherein the purity is 99% by weight or more and the surface of the crystal particles of the dense ceramic substrate exceeding 90% of the theoretical density is provided. A ceramic member for a semiconductor manufacturing apparatus , wherein a plurality of projecting portions having a diameter smaller than the crystal particle diameter are formed, and the projecting portions are directed in various directions for each crystal particle .
[0015]
In the etching process of the second invention, it is preferable to use sulfuric acid or an aqueous solution thereof or phosphoric acid or an aqueous solution thereof as the acidic etching solution .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In the first and second inventions , for example, alumina can be used as the dense ceramic (base material). The dense ceramic has a purity of 99% by weight or more . That is, when the surface is treated in an acidic etching solution with a purity of less than 95% by weight, preferably less than 99% by weight , grain boundary erosion occurs preferentially, and protrusions are formed on the surface of the required crystal grains. This is because a structure having a plurality of can not be formed.
[0017]
In the first aspect of the invention, the etching solution is heated to 100 ° C. or higher and pressurized to 0.1 MPa or higher, whereby the process of forming a plurality of protrusions on the crystal surface is easier or more reliable. In addition, it is possible to provide a ceramic member having a plurality of protruding portions on the surface of crystal grains with high yield and mass production. In such an etching process, a more preferable pressure condition is 0.2 MPa or more.
That is, when the temperature is less than 100 ° C. or the pressure is less than 0.1 MPa, the erosion action of the etching solution is weak and a required surface cannot be formed.
Here, the acidic etching solution is generally sulfuric acid or an aqueous solution thereof or phosphoric acid or an aqueous solution thereof. Note that the upper limit of the heating temperature of the acidic etching solution is set within a range in which thermal decomposition of sulfuric acid or the like does not occur.
[0018]
In the first and second inventions, the surface of the crystal particles constituting the surface of the ceramic substrate has a plurality of protrusions smaller than the crystal particles, that is, the surface of the ceramic substrate has fine protrusions. There are more portions than the number of crystal particles constituting the surface of the ceramic substrate, and the direction is in various directions according to the direction of the crystal particles. Since the foreign substance such as a film once adhering to the surface of the ceramic substrate is held by the protruding portion, the state where it is not easily detached and scattered is maintained. Therefore, for example, in processes such as vapor deposition and sputtering, inconveniences and problems caused by partial detachment / scattering of the film-forming component film adhering / depositing on the wall surface of the processing chamber can be avoided.
Also, since the surface of the ceramic substrate or its vicinity is chemically eroded smoothly, the surface of the ceramic substrate is subjected to physical surface roughening treatment such as sandblasting, compared to the case where fine cracks or scratches are present on the surface layer portion. Since there is little adsorption | suction, the gas release property at the time of using as a processing container inner wall material is suppressed, and a highly reliable ceramic member can be provided. As the ceramic, alumina is preferable because it allows the most ideal etching.
[0019]
In the first and second inventions , the reason why the structure having the specific shape is not necessarily clarified. However, the structure has a specific structure for the following reason or phenomenon. Conceivable.
[0020]
First, a polycrystalline ceramic (sintered body) has a fine structure in which particles are bonded and integrated via grain boundaries, and generally segregates between crystal grains compared to the inside of the crystal grains. Grain boundary parts with a large amount of impurities are more likely to be eroded. However, although the reason and action are not clear, when the purity of the constituent components of the polycrystalline ceramic is 95% by weight or more, more preferably 99% by weight or more, the erosion rate of the particles themselves and the interparticle (grain boundary) The difference in erosion rate is reduced, and almost simultaneous erosion proceeds.
[0021]
Secondly, the erosion occurs almost simultaneously without discrimination between the particles themselves and the grain boundaries. Furthermore, this phenomenon becomes even more prominent if the etching conditions are set more severely, such as using a heated / pressurized etching solution.
[0022]
Thirdly, when ceramic particles react with the etching solution and are eroded, a reaction product is formed. When the amount exceeds the solubility in the etching solution, it precipitates on the surface of the ceramic crystal particle as a fine crystallite. To do. Since the crystal of the reaction product blocks the erosion of the ceramic particles by the etching solution, a protrusion-like portion having a vertex of the reaction product precipitation portion is formed on the surface of the ceramic crystal particle.
The concentration of the acidic etching solution is an important factor in precipitating the reaction product of the ceramic and the acidic etching solution. This is because when the concentration of the etching solution is low, the reaction product is dissolved in the etching solution and is difficult to precipitate as crystals. The lower limit of the concentration of the etchant can be determined in consideration of the reaction amount, reaction rate, amount ratio of ceramics to etchant, etching temperature, etc., but in reality, the etching site and the reaction product deposition site are very close to each other. Therefore, since the concentration unevenness in the etching solution occurs, the reaction product can be precipitated even at a lower etching solution concentration than theoretically calculated. Therefore, it is difficult to uniquely determine the concentration of the etching solution, and in practice, the concentration at which crystals of the reaction product precipitate may be determined experimentally. For example, when the ceramic is alumina and the etching solution is sulfuric acid, the concentration is preferably 90% by weight or more, and more preferably 95% by weight or more. For example, when the ceramic is alumina and the etching solution is phosphoric acid, the concentration is preferably 80% by weight, more preferably 85% by weight or more. However, by dissolving or mixing the reaction product or its compound in the etchant in advance, the object can be achieved even if the above concentration is lower.
[0023]
Fourthly, when the protrusion-like portion is formed, it is an important factor that the erosion rate in the length direction of the protrusion is larger than the erosion rate in the diameter direction of the protrusion. Ceramic crystals generally have different erosion rates depending on crystal orientations. Therefore, particularly under the severe erosion conditions as described in the second aspect, the protrusion-like portion is formed in a direction in which the erosion rate is high. The surface of the ceramic (base material) is composed of a large number of crystal particles, but each crystal particle has a different orientation. Therefore, the protruding portion formed on the surface of the crystal is directed in various directions for each crystal particle.
[0024]
Fifth, when the protrusion-like portion is formed, the surface state of the ceramic substrate can be a factor that affects the protrusion-like shape. That is, the magnitude of the erosion rate affects the shape of the protrusions, but the erosion is performed under the same etching solution, temperature, and pressure conditions depending on whether the surface of the ceramic substrate is easily eroded or less eroded. Also take on different forms.
For example, the surface of a ceramic that has been subjected to grinding or the like is susceptible to erosion because it is accompanied by fine processing flaws and the like, and tends to exhibit a protrusion-like form that is relatively close to a columnar shape. On the other hand, the as-sintered ceramic surface and the like are less likely to be eroded than the processed surface and so on, and thus tend to take on a gentler mountain shape.
[0025]
【Example】
Examples will be described below with reference to electron micrographs in place of the drawings.
[0026]
An alumina ceramic plate having a purity of 99.5% by weight, a bulk density of 3.97 g / cm 3 , and an average particle diameter of 40 μm is prepared. On the other hand, sulfuric acid having a sulfuric acid concentration of 96% by weight is prepared as an acidic etching solution. Next, the alumina ceramic plate was immersed in an acidic etching solution, and a treatment was performed for a predetermined time under a predetermined pressure, so that a projection-like portion smaller than the crystal particle was formed on the surface of the crystal particle. In the etching process, as shown in Table 1, the temperature of the etching solution is maintained at 50 to 100 ° C., and a pressure of 0.1 to 10 MPa is applied to the etching solution, and the temperature and pressure of the etching solution are taken into consideration. Etching time was set.
[0027]
[Table 1]
[0028]
When the surface of the etched alumina ceramic plate was observed and evaluated with an electron microscope, under the conditions of the present invention, a plurality of protruding portions smaller than the crystal particles were formed on the surface of the crystal particles constituting the surface of the ceramic substrate. It was ceramics.
The electron micrographs are shown in FIGS. 1, 2, 3 to 4. 1 and 2 show the case where the surface of the alumina ceramic whose surface was ground was processed at an etching solution temperature of 230 ° C. and a pressure of 1 MPa. FIG. 1 was taken at a magnification of 1000 times, and FIG. The picture was taken at a magnification of 5000 times. Further, FIGS. 3 and 4 show a case where alumina ceramic whose surface is sintered is processed at an etching solution temperature of 230 ° C. and a pressure of 1 MPa. FIG. 3 is a photograph taken at a magnification of 350 times, and FIG. Taken at double magnification. In either case, the shape is slightly different, but the surface of most crystal grains has a plurality of protruding portions, and the protruding portions are structurally integrated with the crystal particles of the base material.
[0029]
In addition, the alumina ceramics with fine protrusions on the surface constitute the processing chamber of the plasma CVD device, which affects the processing chamber system during film formation (gas release), and the state of deposition / detachment of film-forming component particles As a result, normal operation was possible. In other words, there is no influence on the film formation conditions, and there is no separation or separation of film formation component particles adhering to the wall surface of the processing chamber, etc., and it has an excellent anchor effect and can maintain normal film formation. confirmed.
[0030]
In the above, sulfuric acid is used as an etching solution, but phosphoric acid or an aqueous solution thereof may be used. In other words, if the etching solution temperature and pressure, the etching time, etc. are appropriately selected in consideration of the concentration, etching performance, etc., an alumina ceramic having a plurality of projections smaller than that on the crystal particle surface can be obtained. Can do.
[0031]
【The invention's effect】
According to the first to fourth aspects of the present invention, the surface of the ceramic substrate has a structure having a large number of fine protrusions facing in various directions. The films of different substances once adhered to the surface are kept in a state in which they are difficult to be detached due to the bonding with the protruding portions. Therefore, when the ceramic of the present invention is used as a constituent member such as a processing chamber wall such as a film forming container, a high yield and highly reliable film forming process can be performed.
[0032]
In addition, according to the inventions of claims 3 to 4, the ceramic structural member used for a film forming apparatus which has not only an excellent anchor effect but also has a suppressed gas discharge characteristic and can perform a highly reliable process. Can be provided with high yield and mass production.
[Brief description of the drawings]
FIG. 1 is an electron micrograph of a ceramic member according to an embodiment of the present invention, which is manufactured from a ceramic base material whose surface is ground.
FIG. 2 is an electron micrograph of a ceramic member according to an example of the present invention, which is manufactured from a ceramic base material whose surface is ground, and is taken at a magnification different from that in FIG.
FIG. 3 is an electron micrograph of a ceramic member according to an embodiment of the present invention, the member manufactured from a ceramic base material whose surface is a sintered surface.
FIG. 4 is an electron micrograph of a ceramic member according to an embodiment of the present invention, which is manufactured from a ceramic substrate whose surface is a sintered surface, taken at a magnification different from that of FIG. is there.
FIG. 5 is a cross-sectional view showing a schematic configuration example of a plasma etching apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Etching chamber 2 ... Etching gas supply port 3 ... Vacuum exhaust port 4 ...
Claims (3)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001033102A JP3865588B2 (en) | 2001-02-09 | 2001-02-09 | Ceramic member having fine protrusions formed on its surface, and method for producing the same |
KR1020020004418A KR100712715B1 (en) | 2001-01-31 | 2002-01-25 | Ceramics member of which fine projections are formed in the surface and method for producing it |
US10/059,133 US6861122B2 (en) | 2001-01-31 | 2002-01-31 | Ceramic member with fine protrusions on surface and method of producing the same |
CNB021031320A CN1288113C (en) | 2001-01-31 | 2002-01-31 | Ceramic parts formed micro crowning on its surface and its mfg. method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001033102A JP3865588B2 (en) | 2001-02-09 | 2001-02-09 | Ceramic member having fine protrusions formed on its surface, and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002241187A JP2002241187A (en) | 2002-08-28 |
JP3865588B2 true JP3865588B2 (en) | 2007-01-10 |
Family
ID=18896909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001033102A Expired - Fee Related JP3865588B2 (en) | 2001-01-31 | 2001-02-09 | Ceramic member having fine protrusions formed on its surface, and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3865588B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7083256B2 (en) | 2018-02-19 | 2022-06-10 | 富士電機株式会社 | Semiconductor module and its manufacturing method |
-
2001
- 2001-02-09 JP JP2001033102A patent/JP3865588B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002241187A (en) | 2002-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107287545B (en) | Yttrium fluoride spray coating, spray material for the same, and corrosion-resistant coating including the spray coating | |
JP5660748B2 (en) | Low temperature aerosol deposition method and article | |
US6861122B2 (en) | Ceramic member with fine protrusions on surface and method of producing the same | |
KR101304082B1 (en) | Corrosion resistant multilayer member | |
JP4739368B2 (en) | Sputtering target with less generation of particles, backing plate, apparatus in sputtering apparatus, and roughening method | |
TWI457454B (en) | Method for manufacturing sputtering target, cleaning method for sputtering target, sputtering target, and sputtering device | |
CN105247662A (en) | Plasma erosion resistant rare-earth oxide based thin film coatings | |
TW200524833A (en) | Methods of finishing quartz glass surfaces and components made by the methods | |
JP2008160097A (en) | Electrostatic chuck and manufacturing method thereof, and substrate-treating device | |
KR20070043670A (en) | Corrosion resistant member | |
TW201030891A (en) | Plasma resistant coatings for plasma chamber components | |
JP7306490B2 (en) | Yttrium fluoride-based thermal spray coating, thermal sprayed member, and method for producing yttrium fluoride-based thermal spray coating | |
JP3164559B2 (en) | Processing container material | |
JP2005158933A (en) | Member of manufacturing apparatus of semiconductor or liquid crystal, and manufacturing method thereof | |
JP4785834B2 (en) | Manufacturing method of semiconductor coated substrate | |
JP2002308683A (en) | Ceramic member with roughened surface and method for manufacturing the same | |
JP3865588B2 (en) | Ceramic member having fine protrusions formed on its surface, and method for producing the same | |
JP2007321183A (en) | Plasma resistant member | |
KR100725670B1 (en) | Method of producing diamond film for lithography | |
JP2007063595A (en) | Ceramic gas nozzle made of y2o3 sintered compact | |
JP5365165B2 (en) | Wafer | |
JP2005225745A (en) | Plasma resistant member and its producing method | |
JP2002241971A (en) | Plasma resistant member | |
JP5077573B2 (en) | Wafer | |
JP2006008474A (en) | Member for semiconductor manufacturing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050809 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060317 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060509 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060710 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061003 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061003 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091013 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091013 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091013 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101013 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111013 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |