JP3865351B2 - Magnetic circuit for actuator - Google Patents

Magnetic circuit for actuator Download PDF

Info

Publication number
JP3865351B2
JP3865351B2 JP24574299A JP24574299A JP3865351B2 JP 3865351 B2 JP3865351 B2 JP 3865351B2 JP 24574299 A JP24574299 A JP 24574299A JP 24574299 A JP24574299 A JP 24574299A JP 3865351 B2 JP3865351 B2 JP 3865351B2
Authority
JP
Japan
Prior art keywords
magnetic
magnet
permanent magnet
vcm
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24574299A
Other languages
Japanese (ja)
Other versions
JP2001076925A (en
Inventor
元治 清水
泰之 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP24574299A priority Critical patent/JP3865351B2/en
Publication of JP2001076925A publication Critical patent/JP2001076925A/en
Application granted granted Critical
Publication of JP3865351B2 publication Critical patent/JP3865351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • H01F41/028Radial anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Moving Of Heads (AREA)
  • Hard Magnetic Materials (AREA)
  • Electromagnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は改良されたアクチュエータ用磁気回路に関する。
【0002】
【従来の技術】
図10は従来のボイスコイルモータ(揺動型アクチュエータ)の例を示す要部説明図であり、(a)は一部破砕した平面、(b)は(a)におけるA方向矢視図を示す。
図10において、1はヨークであり、例えば軟鉄のような強磁性材料を平板状に加工し、端部に設けた支柱2を介して対向して設ける。3は永久磁石であり、略台形の平板状に形成するとともに厚さ方向に着磁し、表面にN、S磁極が現出したものを下側のヨーク1の表面に固着することにより磁気空隙4を形成している。5はアームであり、一端に偏平型の可動コイル6を、他端に磁気ヘッドのような機能部材(図示せず)を各々配設してある。そして、可動コイル6が磁気空隙4内に位置するように、支点である軸7を介して回動もしくは揺動自在になるように構成されている。この従来のボイスコイルモータ(以後、VCMと略す)の可動コイル6に電流を通電すると、フレミングの左手の法則に従って、可動コイル6に軸7まわりの駆動力が作用し、アーム5を回動もしくは揺動させて、アーム5の他端に設けた例えば磁気ヘッドを、磁気ディスク上の所定の記録トラックに位置決めすることができる。なお揺動方向の切り替えは可動コイル6への通電電流の向きを適宜反転させることによって行う。
【0003】
【発明が解決しようとする課題】
例えば、磁気ヘッドが円弧軌跡を描くように駆動する回転式(スイング式)アクチュエータでは、磁気ディスク面をヘッドがシークするシーク時間(アクセス時間)を短縮するための磁気回路上の有効な手段は装着されているVCMのトルク(推力)を向上することである。ここで、トルクとは、 VCM(アクチュエータ)のアームを支点(軸)を介して水平方向に揺動させるのに要するトルクである。
特公昭61−46901号公報には、磁界発生用永久磁石に沿って円弧軌跡を描く可動コイルを備えた磁気記録装置用アクチュエータにおいて、上記円弧軌跡の直角方向についての上記永久磁石の長さを上記可動コイルの移動範囲の中央部から外端部に向かって長くなるように形成したことにより、上記可動コイルに均一な力を作用できるようにした旨の記載がある。特公昭61−46901号公報の構成によれば可動コイルに作用する力の均一化(リニアリティの向上)を実現することができる。しかし、トルク(推力)を向上することは困難である。トルクを向上するために極力高性能の永久磁石材質を選択してVCMの磁気回路を構成すればトルクを高めることができる。しかし、永久磁石材料の高性能化には相応の時間を要するという問題があり、トルクを顕著に向上できるようにアクチュエータ(VCM)の磁気回路を改良することが懸案になっていた。
【0004】
本発明の課題は、トルクを顕著に向上したアクチュエータ(VCM)に好適な、改良されたアクチュエータ用磁気回路を提供することである。
【0005】
【課題を解決するための手段】
上記課題を解決した本発明のアクチュエータ用磁気回路は、上側ヨーク上に配設された板状永久磁石と、下側ヨーク上に配設された板状永久磁石とが、磁気空隙を介して対向しており、前記板状永久磁石は極異方性が付与された一体ものであり、前記板状永久磁石における前記磁気空隙に面した平面部に複数の磁極が形成されているとともに、前記磁極の上方の磁気空隙において前記板状永久磁石からの磁力線が収束していることを特徴とする。
【0006】
前記板状永久磁石が、R 14 B型金属間化合物(RはYを含む希土類元素の少なくとも1種であり、TはFeまたはFeとCoである)を主相とするR−T−B系焼結磁石からなることが好ましい。この場合は前記磁気空隙の磁束密度分布のピーク値を9320G以上に高めることができる。
本発明の磁気回路の採用により、従来に比べてトルクを顕著に向上することができ、シーク時間の短縮を実現できる。
【0007】
14B型金属間化合物を主相とするR−T−B系希土類焼結磁石を用いる場合は、主成分のRとBとTとの総計を100重量%として、R:27〜34%、B:0.5〜2%、残部Tとすることが好ましい。さらに、前記R−T−B系希土類焼結磁石の総重量を100重量%として、不可避不純物成分として0.6%以下の酸素、0.2%以下の炭素、0.08%以下の窒素、0.02%以下の水素、0.2%以下のCaの含有が許容される。
Rとして(Nd、Dy)またはDyまたは(Dy、Pr)または(Nd、Dy、Pr)が実用上選択される。R量は27〜34%が好ましい。 Rが27%未満では保磁力iHcが大きく低下し、34%を超えると残留磁束密度Brが大きく低下する。
B量は0.5〜2%が好ましく、0.8〜1.5%がより好ましい。B量が0.5%未満では十分なiHcが得られず、2%超ではBrが大きく低下する。
磁気特性を改善するために、Nb,Al,Co,Ga,Cuの少なくとも1種を適量含有することが好ましい。Nbの含有量は0.1〜2%とされる。Nbの添加により焼結過程でNbのほう化物が生成し、結晶粒の異常粒成長を抑制する。Nb含有量が0.1%未満では添加効果が認められず、2%超ではNbのほう化物の生成量が多くなりBrが大きく低下する。Alの含有量は0.02〜2%とされる。Al含有量が0.02%未満では添加効果が認められず、2%超ではBrが急激に低下する。Co含有量は0.3〜5%とされる。Co含有量が0.3%未満ではキュリー点、Niめっきとの密着性の向上効果が顕著でなく、5%超ではBr、iHcが低下する。Ga含有量は0.01〜0.5%とされる。Ga含有量が0.01%未満ではiHcの向上効果がほぼ認められず、0.5%超ではBrの低下が顕著になる。Cu含有量は0.01〜1%とされる。Cuの微量添加はiHcの向上をもたらすが、Cu含有量が1%を超えると添加効果は飽和し、0.01%未満では添加効果が認められない。
【0008】
R−T−B系希土類ボンド磁石いる場合は、R−T−B系磁石粉末(RはYを含む希土類元素の少なくとも1種であり、TはFeまたはFeとCoである)は磁気異方性を有し、 R14B型金属間化合物を主相とし、平均結晶粒径が0.01〜0.5μmであり、粉末の平均粒径が1〜1000μmであるR−T−B系合金粉末またはR−T−B−Ga系合金粉末が好適である。Rは不可避のR成分を除いてNdまたはNdとPrまたはNdとDyまたはNdとPrとDyとからなる場合が実用性に富んでいる。主成分は、R:11〜18at%、B:4〜11at%、必要に応じて30at%以下のCoおよび/または5at%以下のGa、残部Feからなるものが好ましい。さらに、磁気特性を改善するために、Nb,W,V,Ta,Mo,Si,Al,Zr,Hf,P,C,Znの少なくとも1種を合計で0.001〜3at%含有することがより好ましい。異方性を付与する手段としては温間の塑性加工による方法(特許第2530641号公報、特許第2731150号公報を参照)あるいは水素化・分解・再結合・再結晶により異方性を付与する方法(特公平6−82725号公報、特公平7−68561号公報等を参照)を用いることができる。
【0009】
R−T−N系磁石粉末を用いる場合は、at%で示される主成分が、Rα100−α−ββ、(RはYを含む希土類元素の1種または2種以上でありSmを必ず含み、TはFeまたはFeとCoである)、α、βはそれぞれ5≦α≦20、5≦β≦30である。前記磁石粉末としてThZn17型および/またはThNi17型の硬質磁性相を磁気特性発現相とするものがよい。
R含有量は5〜20at%が好ましい。5at%未満ではiHcが大きく低下し、20%超ではBrが劣化する。RにはSmを除いてYを含む希土類元素の少なくとも1種を不可避に含有することが許容されるが、5kOe以上の保磁力iHcを確保するために、RがSmとLaからなるのが好ましく、Rに占めるSm比率を50at%以上、さらに好ましくは90at%以上、特に好ましくは98at%以上にするのがよい。
窒素は5〜30at%が好ましい。5at%未満では実用に耐えるiHc、最大エネルギー積(BH)maxが得られず、30at%超でもiHc、(BH)maxが劣化する。
SmまたはFeの一部をCo、Ni、Ti、Cr、Mn、Zn、Cu、Zr、Nb、Mo、Ta、W、Ru、Rh、Hf、Re、Os、Irの少なくとも1種で置換できるが、
これらの総添加量はCoを除いてSmとFeの合計量に対して約10at%以下である。
これより多くなると飽和磁化が顕著に小さくなる。Co置換の場合は飽和磁化の低下は小さく、Fe量に対し0.1〜70at%の置換が可能で、キュリー温度を高めることができる。
また、Nの一部をC、P、Si、S、Al等に置換することも可能である。その添加量はN含有量に対し約10at%(原子%)以下であり、これより多い添加量では保磁力が低下するため好ましくない。
【0010】
前記R−T−B系磁石粉末および/または前記R−T−N系磁石粉末を用いて上記板状永久磁石(ボンド磁石)を作製する場合、異方性付与手段として異方性射出成形法または異方性圧縮成形法を用いることができる。このボンド磁石は前記磁石粉末と結着樹脂とを主体にして構成され(例えば磁石粉末:結着樹脂=50〜70体積%:50〜30体積%)、その他表面改質剤(シランカップリング剤等)、潤滑剤(金属石鹸等)、酸化防止剤等をボンド磁石の総重量に対して2重量%以下添加してもよい。
【0011】
【発明の実施の形態】
以下実施例により本発明を具体的に説明するが、それら実施例により本発明が限定されるものではない。
(実施例1)
主成分のNd,Dy,B,Feの総計を100重量%として、主成分組成が重量比率で30.5%Nd−1.5%Dy−1.1%B−残Feである合金を粗粉砕後、不活性ガス中でジェットミル微粉砕して平均粒径が4.5μmの原料粉を作製した。次に、図9(a)に示す成形装置の略台形の平板型キャビティ14に前記原料粉を充填後、図9(b)に示す上パンチ側に設けた偏平楕円型コイル15a,15bに通電してキャビティ14に平面2極異方性を付与する配向磁場を印加しつつ上パンチ12、下パンチ11により1ton/cmで圧縮成形した。得られた成形体を約5×10−4Torrの真空中で1100℃で2時間加熱して焼結後、室温まで冷却した。次に、所定寸法に機械加工後、Ar雰囲気中において900℃で2時間加熱後さらに600℃で2時間加熱する熱処理を行い、室温まで冷却した。こうしてR14B型金属間化合物を主相とする平面多極異方性焼結磁石体を得た。次に、Niめっきを施して本発明に用いる平面2極異方性を有するVCM用の永久磁石が得られた。
次に、磁気特性が飽和する条件で前記磁石を着磁し、磁力線の発生状況および磁気特性を調べた。その結果、図1(a)、(b)の模式図とほぼ同傾向の磁力線の発生が確認されて、平面2極異方性を有することが確認された。また、この磁石の厚み方向の室温の磁気特性を測定した結果、Br=12.0kG、iHc=17.0kOe、(BH)max=34.2MGOeだった。
次に、前記VCM用磁石を用いてVCMを構成した一例を以下に説明する。図3は本発明のアクチュエータの一態様を示す側面図であり、22は前記VCM用磁石(厚み:tm=4.15mm)、23は強磁性の上側ヨーク(厚み:ty=2.15mm)、25は強磁性の下側ヨーク(厚み:ty=2.15mm)、24は強磁性の支柱であり、いずれもSPCC製である。40は磁気空隙(厚みtg=2.9mm)であり、磁気空隙40内の所定位置を可動コイル(図示省略)が揺動するように構成されている。
図3のA−A線矢視断面図を図4(a)に示す。図4(a)において、26は可動コイル、27はアーム、30はアーム27の支点である軸、28は接続部材、29は力センサーである。可動コイル26の揺動角度:θは、VCM磁石22の磁極境界線20を平行に延長してその延長線32上に軸30の中心を配置したとき、軸30の中心と可動コイル26の中心とを結ぶ線31と延長線32とのなす角度で定義した。
トルクは、力センサー29により可動コイル26に作用する水平方向の推力を測定し、軸30の中心から接続部材28の中心までの距離(l)を乗じて算出した。トルクの測定結果を図8に示す。
磁気空隙40の磁束密度分布の測定は、VCM用磁石22の外円弧22aと内円弧22bとの中間の円弧軌跡35上を測定した。すなわち、図4(b)に示すように、円弧軌跡35と磁極境界20とが交差する位置を基準位置Q(γ=0°)とし、円弧軌跡35の中心角γを変化させたときの磁気空隙40の磁束密度分布との関係を測定した。測定結果を図7に示す。
【0012】
(比較例1)
略平行な配向磁場を印加する方式の成形装置(キャビティ形状は実施例1と略同様)のキャビティに実施例1で作製した原料粉を充填し、略平行な配向磁場(配向磁場強度は実施例1と略同様)を印加しつつ1ton/cmで圧縮成形した。以降は実施例1と同様にして比較例のVCM用永久磁石を作製した。この比較例のVCM用磁石に磁気特性が飽和する条件で平面2極着磁を施し、磁力線の発生状況を観察したところ、ほぼ図2(a)、(b)の模式図に示すようになっていた。また、この磁石の厚み方向の室温の磁気特性はBr=13.1kG、iHc= 16.2kOe、(BH)max= 40.9 MGOe だった。以降は、この比較例のVCM用磁石を用いた以外は実施例1と同様にして図3に示す構成のVCMを作製し、空隙磁束密度分布およびトルクを測定した。結果を図7、8にそれぞれ示す。
【0013】
(実施例2)
Tm=3.15mm、Ty=3.15mmとした以外は実施例1と同様にしてVCM用磁石を作製した。この磁石は実施例1と同様に平面2極異方性を有しており、この磁石の厚み方向の室温の磁気特性はBr=12.0kG、iHc=17.0kOe、(BH)max=34.2MGOe だった。この磁石を用いた以外は実施例1と同様にしてVCMを作製し、評価した結果を図7、8にそれぞれ示す。
(比較例2)
Tm=3.15mm、Ty=3.15mmとした以外は比較例1と同様にしてVCM用磁石を作製した。この磁石は比較例1と同様に略平行に配向しており、この磁石の厚み方向の室温の磁気特性はBr= 13.1kG、iHc=16.2kOe、(BH)max=41.0MGOe だった。この磁石を用いた以外は比較例1と同様にしてVCMを作製し、評価した結果を図7、8にそれぞれ示す。
【0014】
図7において、実施例1と比較例1、実施例2と比較例2との比較から、平面2極異方性の付与により、比較例1(ピーク値:7,900G)に比べて実施例1(ピーク値:10,190G)が、比較例2(ピーク値:7,700G)に比べて実施例2(ピーク値:9,320G)が顕著に向上していることがわかる。また、前記の通り、Tm=4.15mm、Ty=2.15mmである実施例1のVCM用磁石に比べてTm=3.15mm、Ty=3.15mmである実施例1のVCM用磁石ではピーク値がやや低下していた。
次に、図8より、θ=−10°〜+10°の範囲において、比較例1(ピーク値:0.0005972(Nm/A回数))、比較例2(ピーク値:0.0005821(Nm/A回数))に比べて実施例1のトルク(ピーク値:0.00065517(Nm/A回数))が顕著に向上していることがわかる。また、θ=−5°〜+5°の範囲において、比較例1、2に比べて実施例2のトルク(ピーク値:0.00060773(Nm/A回数))が向上していることがわかる。
図5は実施例1で作製したVCM50の磁力線が形成する磁路を、図6は比較例1で作製したVCM50’の磁力線が形成する磁路を、各々模式的に示す図である。図5、6に示されるように、図5のVCMは図6のVCMに比べて可動コイルが揺動する磁気空隙40の領域において可動コイルの推力の増大に寄与する有効な磁力線の密度が高いことが特徴である。
また、実施例1、2の磁石は比較例1、2の磁石に比べて厚み方向の単体磁気特性(Br、(BH)max)が低いがトルクが高くなっていることがわかる。
【0015】
(実施例3)
MQI社製の磁気異方性を有するボンド磁石用のNd−Fe−B系磁石粉末(商品名:MQA−T材)を用いて表1の配合で混合し、Ar雰囲気で所定の混練機により混練してコンパウンドを作製した。次に、略台形状平板型のキャビティに平面2極異方性磁場を発生させる射出成形用金型を有しておりAr雰囲気に保持されている射出成形機を用いて、そのホッパーに前記コンパウンドを投入し、ほぼ280℃で前記キャビティに射出成形し、冷却した。得られた射出成形品の表面を清浄化後、蒸着により平均厚み5μmのNiメッキを被覆した。こうして、略実施例1と同一形状を有し、平面2極異方性が付与されたVCM用ボンド磁石を得た。
次に、このVCM用ボンド磁石を用いた以外は実施例1と同様にしてVCMを作製し、評価した。結果を表1に示す。
(比較例3)
実施例3で作製したコンパウンドを用いて、ほぼ平行な磁場(印加磁場強度は実施例3と同等)とした以外は実施例3と同様にして射出成形を行、その後Niメッキして比較例のボンド磁石を作製した。次に、この比較例のボンド磁石に磁気特性が飽和する条件で平面2極着磁を施した後、実施例3と同様にしてVCMに組み込んだ。このVCMの評価結果を表1に示す。
【0016】
【表1】

Figure 0003865351
【0017】
表1より、平面2極異方性を付与したNd−Fe−B系異方性ボンド磁石を用いてVCMを構成すれば、従来の平行配向せしめたものよりもトルクを顕著に向上できることがわかる。
【0018】
(実施例4)
磁石粉末として平均粉末粒径が約15μmであり、かつat%でSm9.1Fe77.313.6 の主成分組成を有する窒化磁石粉末を準備した。続いて、ジェットミルにて平均粉末粒径4.0μmまで微粉砕し、さらにヘキサンを用いた湿式ボールミル微粉砕により平均粉末粒径1.9μmの微粉を得た。この微粉末100重量部に対し、2.6重量部の液状エポキシ樹脂および2.6重量部の硬化剤(DDS:ジアミノジフェニルスルフォン)、ならびに有機溶媒として液状エポキシ樹脂と同重量(2.6重量部)のメチルエチルケトン(沸点79.5℃)を配合して混練物を作製した。この混練物はミキサーの混練槽に前記重量部の液状エポキシ樹脂とDDSとメチルエチルケトンからなる混合液を投入後、前記重量部の磁石粉末を添加し20分間撹拌しスラリー化したものである。
このスラリーを用いて配向磁場強度10kOe、6ton/cmの成形圧力で室温で圧縮成形した。得られた成形体を85℃で1時間加熱保持して脱溶媒後、さらに120℃で1時間の加熱処理を施して結着樹脂をやや硬化させた。次に、このものを無磁場の乾式圧縮成形機の金型キャビティに投入後10ton/cmの成形圧力を約0.3秒間加圧するコイニング処理を行い高密度化した。その後、170℃で2時間加熱硬化して本発明の平面2極異方性を付与した磁気異方性ボンド磁石を得た。
次に、このボンド磁石を用いた以外は実施例1と同様にしてVCMを作製し、評価した、結果を表2に示す。
(比較例4)
実施例4で作製したスラリーを用いて、ほぼ平行な磁場(印加磁場強度は実施例4と同等)とした以外は実施例4と同様にして異方性ボンド磁石を作製した。次に、この比較例のボンド磁石の磁気特性が飽和する条件で平面2極着磁を施した後、実施例4と同様にしてVCMに組み込んだ。このVCMの評価結果を表2に示す。
【0019】
【表2】
Figure 0003865351
【0020】
表2より、平面2極異方性を付与したR−T−N系異方性ボンド磁石を用いてVCMを構成すると、比較例4の略平行配向せしめたものよりもトルクを顕著に向上できることがわかる。
【0021】
上記実施例では平面2極異方性の場合を記載したが、3極以上の平面多極異方性を付与した場合でも、従来に比べてトルクを顕著に向上したアクチュエータが実現できる。例えば2〜20極、より好ましくは2〜10極、特に好ましくは2〜8極の平面多極異方性を付与した一体ものの永久磁石は可動磁石型または可動コイル型のリニアモータ等に好適であり、上記以外の他のアクチュエータの用途にも有用である。
また、上記実施例の表面処理に限定されず、本発明の平面多極異方性を有する永久磁石には公知の表面処理を適用可能である。
【0022】
本発明に用いる板状永久磁石は上記実施例の永久磁石に限定されず一体構造でかつ板状のフェライト磁石等の公知の磁石材質に適用することができる。
【0023】
【発明の効果】
以上記述の通り、本発明によれば、従来に比べてトルクを顕著に向上したアクチュエータに好適な磁気回路を提供することができる。
【図面の簡単な説明】
【図1】 本発明に用いる板状永久磁石の配向度を模式的に示す斜視図(a)、断面図(b)である。
【図2】 従来の永久磁石の配向度を模式的に示す斜視図(a)、断面図(b)である。
【図3】 本発明によるVCMの一例を示す側面図である。
【図4】 図3のA−A線矢視断面図を示す図(a)、磁気空隙の磁束密度分布の測定方法を説明する図(b)である。
【図5】 本発明によるVCMの磁路を模式的に説明する図である。
【図6】 比較例のVCMの磁路を模式的に説明する図である。
【図7】 空隙磁束密度分布の測定結果の一例を示す図である。
【図8】 トルクの測定結果の一例を示す図である。
【図9】 成形装置の一例を示す要部断面図(a)、コイルの配置の一例を示す図(b)である。
【図10】 従来のVCMを示す一部破砕した図(a)、要部断面図(b)である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improved magnetic circuit for an actuator .
[0002]
[Prior art]
FIG. 10 is an explanatory view of a main part showing an example of a conventional voice coil motor (oscillating actuator), where (a) is a partially broken plane, and (b) is a view in the direction of arrow A in (a). .
In FIG. 10, reference numeral 1 denotes a yoke, which is made of, for example, a ferromagnetic material such as soft iron that is processed into a flat plate shape, and is provided so as to face each other through a support 2 provided at an end portion. Reference numeral 3 denotes a permanent magnet which is formed in a substantially trapezoidal flat plate shape, magnetized in the thickness direction, and a magnetic gap formed by fixing N and S magnetic poles appearing on the surface to the surface of the lower yoke 1. 4 is formed. Reference numeral 5 denotes an arm having a flat movable coil 6 at one end and a functional member (not shown) such as a magnetic head at the other end. The movable coil 6 is configured to be rotatable or swingable via a shaft 7 that is a fulcrum so that the movable coil 6 is positioned in the magnetic gap 4. When a current is applied to the movable coil 6 of this conventional voice coil motor (hereinafter abbreviated as VCM), a driving force around the shaft 7 acts on the movable coil 6 according to Fleming's left-hand rule, and the arm 5 rotates or For example, a magnetic head provided at the other end of the arm 5 by swinging can be positioned on a predetermined recording track on the magnetic disk. Note that the swing direction is switched by appropriately reversing the direction of the energization current to the movable coil 6.
[0003]
[Problems to be solved by the invention]
For example, in a rotary (swinging) actuator that drives the magnetic head to draw an arc locus, effective means on the magnetic circuit to shorten the seek time (access time) for the head to seek the magnetic disk surface is mounted. This is to improve the torque (thrust) of the VCM being used. Here, the torque is a torque required to swing the arm of the VCM (actuator) in the horizontal direction via a fulcrum (shaft).
Japanese Examined Patent Publication No. 61-46901 discloses the length of the permanent magnet in the direction perpendicular to the circular arc locus in the actuator for a magnetic recording apparatus having a moving coil that draws the circular arc locus along the magnetic field generating permanent magnet. There is a description that a uniform force can be applied to the moving coil by forming the moving coil so as to become longer from the center to the outer end of the moving range of the moving coil. According to the configuration of Japanese Examined Patent Publication No. 61-46901, the force acting on the movable coil can be made uniform (improvement of linearity). However, it is difficult to improve torque (thrust). In order to improve the torque, the torque can be increased by selecting a high performance permanent magnet material and configuring the magnetic circuit of the VCM. However, there is a problem that it takes a considerable time to improve the performance of the permanent magnet material, and it has been a concern to improve the magnetic circuit of the actuator (VCM) so that the torque can be remarkably improved.
[0004]
An object of the present invention is to provide an improved magnetic circuit for an actuator suitable for an actuator (VCM) having a significantly improved torque.
[0005]
[Means for Solving the Problems]
In the magnetic circuit for an actuator of the present invention that has solved the above problems, the plate-shaped permanent magnet disposed on the upper yoke and the plate-shaped permanent magnet disposed on the lower yoke are opposed to each other via a magnetic gap. The plate-shaped permanent magnet is an integral body provided with polar anisotropy, and a plurality of magnetic poles are formed in a plane portion facing the magnetic gap in the plate-shaped permanent magnet , and the magnetic pole it shall be the said magnetic field lines from the plate-like permanent magnet above the magnetic gap is converging.
[0006]
The plate-like permanent magnet has R 2 T 14 B type intermetallic compound (R is at least one rare earth element including Y, and T is Fe or Fe and Co) as a main phase. It is preferably made of a B-based sintered magnet. In this case, the peak value of the magnetic flux density distribution of the magnetic gap can be increased to 9320G or more.
Ri by the adoption of the magnetic circuit of the present invention, it is possible to significantly improve the torque as compared with the conventional can be realized to shorten the seek time.
[0007]
In the case of using an R-T-B rare earth sintered magnet having an R 2 T 14 B type intermetallic compound as a main phase, the total amount of R, B, and T as main components is 100% by weight. 34%, B: 0.5 to 2%, and the balance T is preferable. Furthermore, the total weight of the R-T-B rare earth sintered magnet is 100% by weight, the inevitable impurity component is 0.6% or less oxygen, 0.2% or less carbon, 0.08% or less nitrogen, It is acceptable to contain 0.02% or less of hydrogen and 0.2% or less of Ca.
As R, (Nd, Dy) or Dy or (Dy, Pr) or (Nd, Dy, Pr) is practically selected. The R amount is preferably 27 to 34%. If R is less than 27%, the coercive force iHc is greatly reduced, and if it exceeds 34%, the residual magnetic flux density Br is greatly reduced.
The B content is preferably 0.5 to 2%, more preferably 0.8 to 1.5%. If the amount of B is less than 0.5%, sufficient iHc cannot be obtained, and if it exceeds 2%, Br significantly decreases.
In order to improve the magnetic properties, it is preferable to contain an appropriate amount of at least one of Nb, Al, Co, Ga and Cu. The Nb content is 0.1 to 2%. By adding Nb, a boride of Nb is generated during the sintering process, and abnormal grain growth of the crystal grains is suppressed. If the Nb content is less than 0.1%, the effect of addition is not observed, and if it exceeds 2%, the amount of Nb boride produced increases and Br greatly decreases. The Al content is 0.02 to 2%. If the Al content is less than 0.02%, the effect of addition is not observed, and if it exceeds 2%, Br decreases rapidly. The Co content is set to 0.3 to 5%. If the Co content is less than 0.3%, the effect of improving the adhesion to the Curie point and Ni plating is not remarkable, and if it exceeds 5%, Br and iHc decrease. The Ga content is 0.01 to 0.5%. If the Ga content is less than 0.01%, the effect of improving iHc is hardly recognized, and if it exceeds 0.5%, the reduction of Br becomes remarkable. The Cu content is 0.01 to 1%. The addition of a small amount of Cu brings about an improvement in iHc, but the addition effect is saturated when the Cu content exceeds 1%, and the addition effect is not recognized when the Cu content is less than 0.01%.
[0008]
If you are use the R-T-B rare earth bonded magnet, the R-T-B-based magnet powder (R is at least one of rare earth elements including Y, T is Fe or Fe and Co) magnetic R-T having anisotropy, R 2 T 14 B type intermetallic compound as the main phase, an average crystal grain size of 0.01 to 0.5 μm, and an average particle size of powder of 1 to 1000 μm -B-based alloy powder or RTB-Ga-based alloy powder is preferred. Except for the inevitable R component, R is highly practical when it is composed of Nd, Nd and Pr, Nd and Dy, or Nd, Pr, and Dy. The main component is preferably composed of R: 11 to 18 at%, B: 4 to 11 at%, and, if necessary, 30 at% or less Co and / or 5 at% or less Ga and the balance Fe. Furthermore, in order to improve the magnetic properties, the total content of at least one of Nb, W, V, Ta, Mo, Si, Al, Zr, Hf, P, C, and Zn may be 0.001 to 3 at%. More preferred. As a means for imparting anisotropy, a method by warm plastic working (see Japanese Patent Nos. 2530641 and 2731150) or a method of imparting anisotropy by hydrogenation, decomposition, recombination, and recrystallization (See Japanese Patent Publication No. 6-82725, Japanese Patent Publication No. 7-68561, etc.).
[0009]
When using the R-T-N magnet powder, the main component represented by at%, R α T 100- α-β N β, (R is an at least one rare earth element including Y Sm is necessarily included, T is Fe or Fe and Co), α and β are 5 ≦ α ≦ 20 and 5 ≦ β ≦ 30, respectively. As the magnetic powder, a Th 2 Zn 17- type and / or Th 2 Ni 17- type hard magnetic phase may be used as a magnetic property developing phase.
The R content is preferably 5 to 20 at%. If it is less than 5 at%, iHc is greatly reduced, and if it exceeds 20%, Br is deteriorated. R is allowed to inevitably contain at least one rare earth element including Y except for Sm, but in order to ensure a coercive force iHc of 5 kOe or more, R is preferably composed of Sm and La. The Sm ratio in R is 50 at% or more, more preferably 90 at% or more, and particularly preferably 98 at% or more.
Nitrogen is preferably 5 to 30 at%. If it is less than 5 at%, iHc and maximum energy product (BH) max that can be practically used cannot be obtained, and iHc and (BH) max deteriorate even if it exceeds 30 at%.
A part of Sm or Fe can be substituted with at least one of Co, Ni, Ti, Cr, Mn, Zn, Cu, Zr, Nb, Mo, Ta, W, Ru, Rh, Hf, Re, Os, and Ir. ,
These total addition amounts are about 10 at% or less with respect to the total amount of Sm and Fe, excluding Co.
If it exceeds this, the saturation magnetization will be significantly reduced. In the case of Co substitution, the decrease in saturation magnetization is small, and substitution of 0.1 to 70 at% with respect to the amount of Fe is possible, and the Curie temperature can be increased.
It is also possible to substitute part of N with C, P, Si, S, Al, or the like. The addition amount is about 10 at% (atomic%) or less with respect to the N content, and an addition amount larger than this is not preferable because the coercive force decreases.
[0010]
When producing the plate-like permanent magnet (bonded magnet) using the RTB-based magnet powder and / or the RTN-based magnet powder, an anisotropic injection molding method is used as anisotropy imparting means. Alternatively, an anisotropic compression molding method can be used. This bonded magnet is composed mainly of the magnet powder and a binder resin (for example, magnet powder: binder resin = 50 to 70% by volume: 50 to 30% by volume), and other surface modifiers (silane coupling agents). Etc.), lubricant (metal soap, etc.), antioxidant, etc. may be added in an amount of 2% by weight or less based on the total weight of the bonded magnet.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Illustrate the present invention by the following examples, but the present invention is not limited by these examples.
Example 1
The total amount of Nd, Dy, B, and Fe as the main components is 100% by weight, and the alloy whose main component composition is 30.5% Nd-1.5% Dy-1.1% B-remaining Fe by weight ratio is coarse. After pulverization, a raw material powder having an average particle diameter of 4.5 μm was prepared by pulverizing in a jet mill in an inert gas. Next, after the raw material powder is filled in the substantially trapezoidal flat plate type cavity 14 of the molding apparatus shown in FIG. 9A, the flat elliptical coils 15a and 15b provided on the upper punch side shown in FIG. 9B are energized. Then, the cavity 14 was compression-molded at 1 ton / cm 2 with the upper punch 12 and the lower punch 11 while applying an orientation magnetic field for imparting planar bipolar anisotropy. The obtained molded body was heated at 1100 ° C. for 2 hours in a vacuum of about 5 × 10 −4 Torr and then cooled to room temperature. Next, after machining to a predetermined size, heat treatment was performed in an Ar atmosphere at 900 ° C. for 2 hours and then at 600 ° C. for 2 hours, and cooled to room temperature. Thus, a planar multipolar anisotropic sintered magnet body having the main phase of the R 2 T 14 B type intermetallic compound was obtained. Next, Ni plating was performed to obtain a permanent magnet for VCM having planar dipole anisotropy used in the present invention.
Next, the magnet was magnetized under the condition that the magnetic characteristics were saturated, and the state of generation of magnetic field lines and the magnetic characteristics were examined. As a result, the generation of magnetic field lines having almost the same tendency as in the schematic diagrams of FIGS. 1A and 1B was confirmed, and it was confirmed to have planar dipole anisotropy. As a result of measuring the magnetic properties at room temperature in the thickness direction of this magnet, it was Br = 12.0 kG, iHc = 17.0 kOe, (BH) max = 34.2 MGOe.
Next, an example in which a VCM is configured using the VCM magnet will be described below. FIG. 3 is a side view showing an embodiment of the actuator of the present invention, wherein 22 is the VCM magnet (thickness: tm = 4.15 mm), 23 is a ferromagnetic upper yoke (thickness: ty = 2.15 mm), 25 is a ferromagnetic lower yoke (thickness: ty = 2.15 mm) and 24 is a ferromagnetic support, both of which are made of SPCC. Reference numeral 40 denotes a magnetic gap (thickness tg = 2.9 mm), which is configured such that a movable coil (not shown) swings at a predetermined position in the magnetic gap 40.
FIG. 4A shows a cross-sectional view taken along line AA in FIG. In FIG. 4A, 26 is a movable coil, 27 is an arm, 30 is a shaft that is a fulcrum of the arm 27, 28 is a connection member, and 29 is a force sensor. The swing angle θ of the movable coil 26 is the center of the shaft 30 and the center of the movable coil 26 when the magnetic pole boundary 20 of the VCM magnet 22 is extended in parallel and the center of the shaft 30 is arranged on the extension line 32. Defined by an angle formed by a line 31 connecting the two and an extension line 32.
The torque was calculated by measuring the horizontal thrust acting on the movable coil 26 by the force sensor 29 and multiplying by the distance (l) from the center of the shaft 30 to the center of the connecting member 28. The measurement results of torque are shown in FIG.
The magnetic flux density distribution of the magnetic gap 40 was measured on an arc trajectory 35 intermediate between the outer arc 22a and the inner arc 22b of the VCM magnet 22. That is, as shown in FIG. 4B, the position at which the arc locus 35 and the magnetic pole boundary 20 intersect is set as the reference position Q (γ = 0 °), and the magnetism when the center angle γ of the arc locus 35 is changed. The relationship with the magnetic flux density distribution of the air gap 40 was measured. The measurement results are shown in FIG.
[0012]
(Comparative Example 1)
The raw material powder prepared in Example 1 is filled in a cavity of a molding apparatus (a cavity shape is substantially the same as in Example 1) that applies a substantially parallel orientation magnetic field. And compression molding at 1 ton / cm 2 . Thereafter, a VCM permanent magnet of a comparative example was produced in the same manner as in Example 1. When the two-pole magnetization was performed on the VCM magnet of this comparative example under the condition that the magnetic characteristics were saturated, and the state of generation of the magnetic field lines was observed, it was as shown in the schematic diagrams of FIGS. 2 (a) and 2 (b). It was. Further, the magnetic properties at room temperature in the thickness direction of the magnet were Br = 13.1 kG, iHc = 16.2 kOe, (BH) max = 40.9 MGOe. Thereafter, a VCM having the configuration shown in FIG. 3 was produced in the same manner as in Example 1 except that the VCM magnet of this comparative example was used, and the gap magnetic flux density distribution and torque were measured. The results are shown in FIGS.
[0013]
(Example 2)
A VCM magnet was produced in the same manner as in Example 1 except that Tm = 3.15 mm and Ty = 3.15 mm. This magnet has planar dipole anisotropy as in Example 1, and the magnetic properties at room temperature in the thickness direction of this magnet are Br = 12.0 kG, iHc = 17.0 kOe, (BH) max = 34. .2 MGOe. A VCM was prepared in the same manner as in Example 1 except that this magnet was used, and the evaluation results are shown in FIGS.
(Comparative Example 2)
A VCM magnet was produced in the same manner as in Comparative Example 1 except that Tm = 3.15 mm and Ty = 3.15 mm. This magnet was oriented substantially parallel as in Comparative Example 1, and the magnetic properties at room temperature in the thickness direction of this magnet were Br = 13.1 kG, iHc = 16.2 kOe, (BH) max = 41.0 MGOe. . A VCM was produced in the same manner as in Comparative Example 1 except that this magnet was used, and the evaluation results are shown in FIGS.
[0014]
In FIG. 7, comparison between Example 1 and Comparative Example 1 and Example 2 and Comparative Example 2 reveals that Example 1 is higher than Comparative Example 1 (peak value: 7,900 G) due to the application of planar bipolar anisotropy. It can be seen that (peak value: 10,190 G) is markedly improved in Example 2 (peak value: 9,320 G) compared to Comparative Example 2 (peak value: 7,700 G). Further, as described above, the peak value of the VCM magnet of Example 1 with Tm = 3.15 mm and Ty = 3.15 mm is slightly higher than that of the VCM magnet of Example 1 with Tm = 4.15 mm and Ty = 2.15 mm. It was falling.
Next, from FIG. 8, in the range of θ = −10 ° to + 10 °, Comparative Example 1 (peak value: 0.0005972 (Nm / A number)) and Comparative Example 2 (peak value: 0.0005821 (Nm / A) It can be seen that the torque (peak value: 0.00065517 (Nm / A number)) in Example 1 is significantly improved as compared to the number A). Further, it can be seen that in the range of θ = −5 ° to + 5 °, the torque (peak value: 0.00060773 (Nm / A number)) of Example 2 is improved as compared with Comparative Examples 1 and 2.
5 schematically shows a magnetic path formed by the magnetic lines of force of the VCM 50 manufactured in Example 1, and FIG. 6 schematically shows a magnetic path formed by the magnetic lines of force of the VCM 50 ′ manufactured in Comparative Example 1. As shown in FIGS. 5 and 6, the VCM in FIG. 5 has a higher density of effective magnetic field lines that contribute to an increase in the thrust of the movable coil in the region of the magnetic gap 40 where the movable coil oscillates than the VCM in FIG. 6. It is a feature.
In addition, it can be seen that the magnets of Examples 1 and 2 have lower single-piece magnetic properties (Br, (BH) max) in the thickness direction than the magnets of Comparative Examples 1 and 2, but the torque is higher.
[0015]
(Example 3)
Using an Nd-Fe-B-based magnet powder (trade name: MQA-T material) for magnetic bonded magnets manufactured by MQI and mixed in the composition shown in Table 1, using a predetermined kneader in an Ar atmosphere A compound was prepared by kneading. Next, an injection molding machine for generating a plane dipole anisotropic magnetic field in a substantially trapezoidal flat plate cavity is used, and the compound is placed in the hopper using an injection molding machine maintained in an Ar atmosphere. Was injected into the cavity at about 280 ° C. and cooled. After cleaning the surface of the obtained injection-molded product, Ni plating having an average thickness of 5 μm was coated by vapor deposition. Thus, a VCM bond magnet having substantially the same shape as in Example 1 and having planar dipolar anisotropy was obtained.
Next, a VCM was produced and evaluated in the same manner as in Example 1 except that this VCM bond magnet was used. The results are shown in Table 1.
(Comparative Example 3)
Using the compound prepared in Example 3, have rows of injection-molded in the same manner as in Example 3 except that the substantially parallel magnetic field (equivalent applied magnetic field strength as in Example 3) and Comparative Example followed by Ni plating A bonded magnet was prepared. Next, the bonded magnet of this comparative example was subjected to planar dipole magnetization under the condition that the magnetic characteristics were saturated, and then incorporated into the VCM in the same manner as in Example 3. The evaluation results of this VCM are shown in Table 1.
[0016]
[Table 1]
Figure 0003865351
[0017]
From Table 1, it can be seen that if a VCM is formed using an Nd-Fe-B anisotropic bonded magnet imparted with plane dipolar anisotropy, the torque can be significantly improved as compared with a conventional parallel oriented magnet. .
[0018]
Example 4
The magnet powder has an average powder particle size of about 15 μm and at% Sm 9.1 Fe 77.3 N 13.6. Nitride magnet powder having the following main component composition was prepared. Subsequently, the powder was finely pulverized to an average powder particle size of 4.0 μm by a jet mill, and fine powder having an average powder particle size of 1.9 μm was obtained by wet ball milling using hexane. For 100 parts by weight of this fine powder, 2.6 parts by weight of liquid epoxy resin and 2.6 parts by weight of curing agent (DDS: diaminodiphenyl sulfone) and the same weight as the liquid epoxy resin as organic solvent (2.6 weights) Part) methyl ethyl ketone (boiling point 79.5 ° C.) was blended to prepare a kneaded product. The kneaded product is a slurry obtained by adding a mixed liquid composed of the above-mentioned parts by weight of a liquid epoxy resin, DDS and methyl ethyl ketone to a mixer kneading tank, and then adding the above-mentioned parts by weight of magnet powder and stirring for 20 minutes.
Using this slurry, compression molding was performed at room temperature with an orientation magnetic field strength of 10 kOe and a molding pressure of 6 ton / cm 2 . The obtained molded body was heated and held at 85 ° C. for 1 hour to remove the solvent, and further heated at 120 ° C. for 1 hour to slightly cure the binder resin. Next, this was put into a mold cavity of a dry compression molding machine without a magnetic field and then subjected to coining treatment in which a molding pressure of 10 ton / cm 2 was applied for about 0.3 seconds to increase the density. Then, it heat-cured at 170 degreeC for 2 hours, and obtained the magnetic anisotropic bond magnet which provided the plane bipolar anisotropy of this invention.
Next, a VCM was prepared and evaluated in the same manner as in Example 1 except that this bonded magnet was used. The results are shown in Table 2.
(Comparative Example 4)
An anisotropic bonded magnet was produced in the same manner as in Example 4 except that the slurry produced in Example 4 was changed to a substantially parallel magnetic field (applied magnetic field strength was the same as in Example 4). Next, planar dipole magnetization was performed under the condition that the magnetic properties of the bond magnet of this comparative example were saturated, and then incorporated into the VCM in the same manner as in Example 4. The evaluation results of this VCM are shown in Table 2.
[0019]
[Table 2]
Figure 0003865351
[0020]
From Table 2, when the VCM is configured using an R—T—N system anisotropic bonded magnet imparted with plane dipole anisotropy, the torque can be remarkably improved as compared with that of the comparative example 4 which is substantially parallel-oriented. I understand.
[0021]
In the above embodiment, the case of plane bipolar anisotropy is described, but even when plane multipolar anisotropy of 3 poles or more is provided, an actuator with significantly improved torque as compared with the prior art can be realized. For example, an integral permanent magnet provided with planar multipolar anisotropy of 2 to 20 poles, more preferably 2 to 10 poles, particularly preferably 2 to 8 poles is suitable for a movable magnet type or a movable coil type linear motor or the like. Yes, it is also useful for other actuator applications than the above.
Moreover, it is not limited to the surface treatment of the said Example, A well-known surface treatment is applicable to the permanent magnet which has planar multipolar anisotropy of this invention.
[0022]
The plate-like permanent magnet used in the present invention is not limited to the permanent magnet of the above embodiment, and can be applied to a known magnet material such as an integral structure and a plate-like ferrite magnet.
[0023]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a magnetic circuit suitable for an actuator having a significantly improved torque as compared with the prior art.
[Brief description of the drawings]
FIG. 1 is a perspective view (a) and a sectional view (b) schematically showing the degree of orientation of a plate-like permanent magnet used in the present invention.
FIG. 2 is a perspective view (a) and a cross-sectional view (b) schematically showing the degree of orientation of a conventional permanent magnet.
3 is a side view showing an example of a VCM according to the present invention.
4A is a cross-sectional view taken along line AA in FIG. 3, and FIG. 4B is a diagram illustrating a method for measuring a magnetic flux density distribution in a magnetic gap.
FIG. 5 is a diagram schematically illustrating a magnetic path of a VCM according to the present invention.
FIG. 6 is a diagram schematically illustrating a magnetic path of a VCM of a comparative example.
FIG. 7 is a diagram illustrating an example of a measurement result of a gap magnetic flux density distribution.
FIG. 8 is a diagram showing an example of torque measurement results.
FIG. 9 is a main part sectional view (a) showing an example of a molding apparatus, and a diagram (b) showing an example of arrangement of coils.
FIG. 10A is a partially broken view showing a conventional VCM, and FIG.

Claims (3)

上側ヨーク上に配設された板状永久磁石と、下側ヨーク上に配設された板状永久磁石とが、磁気空隙を介して対向しているアクチュエータ用磁気回路であって、
前記板状永久磁石は極異方性が付与された一体ものであり、前記板状永久磁石における前記磁気空隙に面した平面部に複数の磁極が形成されているとともに、前記磁極の上方の磁気空隙において前記板状永久磁石からの磁力線が収束していることを特徴とするアクチュエータ用磁気回路
A magnetic circuit for an actuator in which a plate-shaped permanent magnet disposed on the upper yoke and a plate-shaped permanent magnet disposed on the lower yoke are opposed to each other via a magnetic gap,
The plate-like permanent magnet is an integral body provided with polar anisotropy, and a plurality of magnetic poles are formed in a plane portion facing the magnetic gap in the plate-like permanent magnet, and a magnetic field above the poles. a magnetic circuit for an actuator force lines from the plate-like permanent magnet is characterized that you have converged in the air gap.
前記板状永久磁石が、R14B型金属間化合物(RはYを含む希土類元素の少なくとも1種であり、TはFeまたはFeとCoである)を主相とするR−T−B系希土類焼結磁石からなることを特徴とする請求項1に記載のアクチュエータ用磁気回路 The plate-like permanent magnet has R 2 T 14 B type intermetallic compound (R is at least one rare earth element including Y, and T is Fe or Fe and Co) as a main phase. The magnetic circuit for an actuator according to claim 1, comprising a B-based rare earth sintered magnet. 前記磁気空隙の磁束密度分布のピーク値を9320G以上に高めたことを特徴とする請求項に記載のアクチュエータ用磁気回路 A magnetic circuit for an actuator according to claim 2 you characterized by increased peak value of the magnetic flux density distribution of the magnetic gap more than 9320G.
JP24574299A 1999-08-31 1999-08-31 Magnetic circuit for actuator Expired - Lifetime JP3865351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24574299A JP3865351B2 (en) 1999-08-31 1999-08-31 Magnetic circuit for actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24574299A JP3865351B2 (en) 1999-08-31 1999-08-31 Magnetic circuit for actuator

Publications (2)

Publication Number Publication Date
JP2001076925A JP2001076925A (en) 2001-03-23
JP3865351B2 true JP3865351B2 (en) 2007-01-10

Family

ID=17138135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24574299A Expired - Lifetime JP3865351B2 (en) 1999-08-31 1999-08-31 Magnetic circuit for actuator

Country Status (1)

Country Link
JP (1) JP3865351B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222131A (en) * 2005-02-08 2006-08-24 Neomax Co Ltd Permanent magnet body
US7541699B2 (en) * 2005-12-27 2009-06-02 Asml Netherlands B.V. Magnet assembly, linear actuator, planar motor and lithographic apparatus
JP5677832B2 (en) * 2010-12-24 2015-02-25 日亜化学工業株式会社 Field unit, bond magnet constituting the same, and method of manufacturing field unit
JP5856469B2 (en) * 2011-12-19 2016-02-09 ケイテック株式会社 Linear actuator and speaker
WO2014007122A1 (en) * 2012-07-02 2014-01-09 日立金属株式会社 Magnetic circuit
TWI682409B (en) * 2015-03-24 2020-01-11 日商日東電工股份有限公司 Rare earth magnet and linear motor using the magnet
JP6767675B2 (en) * 2016-11-21 2020-10-14 パナソニックIpマネジメント株式会社 A magnetic field generating member and a motor including the magnetic field generating member
WO2018186478A1 (en) * 2017-04-07 2018-10-11 日東電工株式会社 Rare earth sintered magnet, method for producing rare earth sintered body, method for producing rare earth sintered magnet, and linear motor using rare earth sintered magnet

Also Published As

Publication number Publication date
JP2001076925A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
US8072109B2 (en) Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, and iron core-equipped permanent magnet motor
JP3275882B2 (en) Magnet powder and isotropic bonded magnet
JP3593939B2 (en) Magnet powder and isotropic bonded magnet
JP4422953B2 (en) Method for manufacturing permanent magnet
JP3865351B2 (en) Magnetic circuit for actuator
JP2001196213A (en) Magnet powder and isotropic bond magnet
JP4243413B2 (en) Magnet powder manufacturing method and bonded magnet manufacturing method
JP2004146713A (en) Manufacturing methods of r-t-n-based magnetic powder and r-t-n-based bond magnet
JP3186746B2 (en) Magnet powder and isotropic rare earth bonded magnet
JP2001155911A (en) Thin-belt type magnet material, magnet powder and rare- earth bonded magnet
JPH11204319A (en) Rare-earth bonded magnet and its manufacture
JP2001267111A (en) Magnet powder and isotropic bonded magnet
JP2001196210A (en) Magnet powder and isotropic bond magnet
JP2001196211A (en) Magnet powder and isotropic bond magnet
JP3623564B2 (en) Anisotropic bonded magnet
JP3670424B2 (en) Method for manufacturing anisotropic bonded magnet
JP4710424B2 (en) Manufacturing method of radial magnetic anisotropic magnet motor
JP3646777B2 (en) Magnet powder and isotropic bonded magnet
JP3703903B2 (en) Anisotropic bonded magnet
JP3795056B2 (en) Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet
JP3623583B2 (en) Anisotropic bonded magnet
JP2001267110A (en) Magnet powder and isotropic bounded magnet
JP2996749B2 (en) Magnetostrictive material
JPH0669010A (en) Manufacture method of r-t-m-n based bonded magnet
JP3032385B2 (en) Fe-BR bonded magnet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Ref document number: 3865351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

EXPY Cancellation because of completion of term