JP3862326B2 - Hydrostatic air bearing spindle - Google Patents

Hydrostatic air bearing spindle Download PDF

Info

Publication number
JP3862326B2
JP3862326B2 JP25037596A JP25037596A JP3862326B2 JP 3862326 B2 JP3862326 B2 JP 3862326B2 JP 25037596 A JP25037596 A JP 25037596A JP 25037596 A JP25037596 A JP 25037596A JP 3862326 B2 JP3862326 B2 JP 3862326B2
Authority
JP
Japan
Prior art keywords
bearing
air supply
air
rows
hydrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25037596A
Other languages
Japanese (ja)
Other versions
JPH1096423A (en
Inventor
芳夫 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP25037596A priority Critical patent/JP3862326B2/en
Publication of JPH1096423A publication Critical patent/JPH1096423A/en
Application granted granted Critical
Publication of JP3862326B2 publication Critical patent/JP3862326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、精密加工機や精密検査装置等のワークスピンドルまたは工具スピンドル等として利用する静圧空気軸受スピンドルに関する。
【0002】
【従来の技術】
静圧空気軸受は主軸を軸受面に対して非接触で支持するため、回転精度が高く、精密加工機や精密検査装置のワークスピンドルまたは工具スピンドル等に使用される。このようなスピンドルでは外乱の侵入を防ぎ制御性を高めるために、ベルト等を使用せず主軸にモータのロータを直接取付けて駆動する場合が多い。
【0003】
このようなダイレクトドライブ型静圧空気軸受スピンドルの従来例を図9に例示している。このダイレクトドライブ型静圧空気軸受スピンドルは、ハウジング3に軸受スリーブ4,5,6を固定し、主軸1を軸受スリーブ4,5に設けたジャーナル軸受7,8および主軸1に一体に設けたスラスト板2を両面からはさみこむ形で軸受スリーブ5,6に設けられた一対のスラスト軸受9,10によって、微小な軸受隙間を介してハウジング3に対して非接触で支持している。
【0004】
主軸1にはモータロータ11が一体に取り付けられ、ハウジング3に取付けられたモータステータ12との間の励磁により回転力を発生する。モータは様々な形式のものを利用できるが、非接触支持という静圧空気軸受の特色を生かすために、同期型または誘導型のACモータ等、ブラシを用いないモータが用いられる場合が多い。ACサーボモータを使用する場合には主軸1の回転角を検出するセンサが必要であり、例えば主軸1を図の右側に延長してロータリーエンコーダを取り付ける等の方法がとられる。
【0005】
ジャーナル軸受7,8には、軸受スリーブ5,6の軸方向両端部近傍に、軸受面に開口する複数個の微細な絞り穴を円周方向に配置した2列の給気列13が設けられており、主軸1の外径面の前記2列の給気列13に対向する位置に円周溝18を設けてある。このような構成により、比較的単純な構造でジャーナル軸受7,8の静剛性を大きくすることができる。また、スラスト軸受9,10には、円周上1列に、軸受面に開口する複数個の微細な絞り穴を配置した給気列14が設けてある。このスラスト軸受9,10の軸受面にも静剛性を上げる目的で、給気列14に対向して円周溝を設ける場合がある。
【0006】
軸受給気口15から圧縮空気を供給すると、圧縮空気はハウジング3に設けた給気通路16を経由して給気列13および14からジャーナル軸受7,8およびスラスト軸受9,10の軸受隙間に流入し、軸受隙間内の空気の圧力によって主軸1の自重や外部負荷に釣り合う軸受反力を生じる。ジャーナル軸受7,8およびスラスト軸受9,10から流出される空気は、軸受端部から直接、または排気通路17を通ってスピンドルの外部に排出される。
【0007】
前記静圧空気軸受スピンドルにおいて、主軸1の振れ回りの原因となる加振力は、主軸1とワークまたは工具等を含む回転体の不釣合いに起因するものであり、従って、その周波数は回転数と等しい。通常、主軸−軸受系の固有振動数は回転数よりもかなり高めに設計できるので、図9に示す2列給気円周溝付きジャーナル軸受7,8のような形で軸受の静剛性を高めることによって主軸1の振れ精度を改善することができた。
【0008】
【発明が解決しようとする課題】
前述したように、静圧空気軸受スピンドルにおいては、主軸1とワークまたは工具等を含む回転体の不釣合いによって発生する回転数と等しい周波数の振れに対しては、ジャーナル軸受7,8の静剛性の向上と不釣合い修正の精度向上によって対策がなされてきた。その結果、回転数と等しい周波数の振れはかなり小さくなったが、さらに振れ精度を改善するためには、モータのトルク変動や磁石の着磁むら、駆動電流波形の乱れ等が原因となって、モータの極数等に関連する回転数の整倍数の周波数で発生する振動が問題となっている。このモータに起因する加振力は主軸1の回転数よりも周波数が高く、主軸−軸受系の固有振動数に近い成分を含んでおり、固有振動数での主軸1の振動が問題になる場合が多い。
【0009】
主軸−軸受系の固有振動数での振幅を小さくするには軸受の剛性ではなく、減衰係数を大きくする必要がある。さらに、静圧空気軸受の剛性および減衰係数は周波数によって変化するので、従来のように静剛性だけに着目していたのでは、振動低減の効果は上がらない。
【0010】
そこで、本発明は、ダイレクトドライブ型静圧空気軸受スピンドルの動特性を改善し、主軸−軸受系の固有振動数で加振された場合の主軸1の振れを低減することを課題とする。
【0011】
【課題を解決するための手段】
前述した目的を達成するため、本発明は、静圧空気ジャーナル軸受および静圧空気スラ静圧空気ジャーナル軸受および静圧空気スラスト軸受によって、固定部に対して非接触で支持される主軸に、モータロータを取付けて直接駆動するダイレクトドライブ型静圧空気軸受スピンドルにおいて、前記ジャーナル軸受の軸方向両端部近傍の軸受面に開口する複数個の絞り穴を円周方向配置した2列の給気列を設けるとともに、該2列の給気列に対応する円周溝を主軸または該軸受の軸受面に設け、かつ、該軸受の軸方向中央部の圧力が両端部よりも高い圧力分布となるように、前記2列の給気列の中間部に、軸受面に開口する複数個の絞り穴を円周方向に配置した1列または複数列の給気列を設け、前記ジャーナル軸受の中間部の給気列の各列毎の絞り出口面積の総和が、軸受の中央寄りの給気列ほど小さくなるように、前記ジャーナル軸受の中央寄りの給気列の絞り穴の数を隣接する端部側の給気列の絞り穴の数より少なくし、または、前記ジャーナル軸受の中央寄りの給気列の円周溝の深さを隣接する端部側の給気列の円周溝の深さより浅くし、あるいは、中央寄りの給気列には円周溝を設けないこととした。
【0012】
ジャーナル軸受の軸方向両端部近傍の円周上に設けた2列の給気列に加えて、前記2列の給気列の中間部の円周上にも1列または複数列の給気列を設けたことにより、ジャーナル軸受の軸方向中央部の圧力が両端部よりも高い圧力分布となって軸受隙間の平均圧力が高くなり、ジャーナル軸受の高周波領域での減衰性能が改善され、主軸−軸受系の固有振動数付近の加振力に対する静圧軸受スピンドルの振れを低減することができる。この結果、ダイレクトドライブ型静圧空気軸受スピンドルの動特性を改善し、更に精度の高いスピンドルを実現できる。
【0013】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。尚、図7に示す従来構成と実質的に同一の部材ないし部分にはすべての図を通じて同一の参照符号を付して示すこととし、重複する説明は省略する。
【0014】
図1はこの実施例に係わるダイレクトドライブ型静圧空気軸受スピンドルを示している。この実施例のダイレクトドライブ型静圧空気軸受スピンドルは、従来構成と同様、主軸1を2個のジャーナル軸受7,8および主軸1に一体に設けたスラスト板2の両面に対向するスラスト軸受9,10によってハウジング3に対して非接触で支持している。主軸1にはモータロータ11が一体に取り付けられ、ステータ12に通電すると主軸1が回転するようになっている。
【0015】
図2は、この実施例に係わる静圧空気軸受スピンドルに属するジャーナル軸受7,8の拡大図を示している。ジャーナル軸受7,8は、軸受スリーブ5,6の軸方向両端部近傍に、軸受面に開口する複数個の微細な絞り穴を円周方向に配置した2列の給気列13aを設けるとともに、主軸1の外径面の前記2列の給気列13aに対向する位置に円周溝18aを設け、かつ、前記2列の給気列13aの中間部(軸受スリーブ5,6の軸方向中央部)に、軸受面に開口する複数個の微細な絞り穴を円周方向に配置した1列の給気列13bを設けるとともに、主軸1の外径面の前記中央部の給気列13bに対向する位置に円周溝18bを設けたものである。更に、前記中間部の給気列13bの絞り出口面積の総和を、隣接する端部側の給気列13aの絞り出口面積の総和よりも小さくしている。ここで給気列の絞り出口面積とは、圧縮空気が絞り穴を通過する際に、圧縮空気の流路断面積がもっとも小さくなり、実際に絞りとして作用する部分の面積であり、通常は図3に示すように、絞り穴41の断面43の面積(所謂オリフィス絞り)と、絞り穴41の外周とそれと対向する軸受面または円周溝の底面42で区切られる円筒面44の面積(所謂自成絞り)のうち、小さい方の面積である。従って、ジャーナル軸受7,8の軸方向中央部の給気列13bの絞り出口面積の総和を、隣接する端部側の給気列13aの絞り出口面積の総和よりも小さくするには、給気列13bの絞り穴の直径を小さくする、給気列13bの絞り穴の数を減らす、また、自成絞りの場合は、それに対向する円周溝18bを浅くするか円周溝18bをなくすという3つの方法がある。
【0016】
この実施例のジャーナル軸受7,8は、従来からある軸方向両端部近傍の2列の給気列13aに加えて、軸方向中央部の円周上に給気列13bを設けたことにより、軸受隙間における空気の流れの様子が、図4(a)のようになるので(尚、図4(b)に従来のジャーナル軸受の軸受隙間における空気の流れの様子を比較として示す。)、図5に示すように、軸方向中央部の圧力が両端部よりも高い圧力分布となって軸受隙間の平均圧力が従来のジャーナル軸受よりも高くなり、下記のような理由でジャーナル軸受7,8の高周波領域での減衰性能が改善され、主軸−軸受系の固有振動数付近の加振力に対する静圧空気軸受スピンドルの振れを低減することができる。
【0017】
即ち、主軸1が振動すると、給気列13a,13bの絞り穴の作用で軸受隙間の圧力が変化し、主軸1の変化に応じた軸受反力を発生する。静圧空気軸受では軸受隙間が小さいので、軸受隙間内の空気は軸受面とほとんど同じ温度になり、等温変化を行なうので、圧力と密度は比例関係にある。主軸1の振動に伴う軸受隙間内の局所的な空気の移動は、軸受隙間の容積の変化分に対応する部分と、圧力変化に連動した空気の密度の変化に対応する部分に分けられる。局所的な圧力(空気の密度)の変化速度は、局所的な空気の質量流量と比例関係にあるから、体積流量が一定の場合には、軸受隙間の圧力(空気の密度)が高いほど質量流量が大きく、圧力の変化が速い。従って、軸受隙間の圧力が高いほど、ある圧力変化を短時間で終了することができる。これは軸受反力の軸変位に対する遅れが小さいということであり、言い換えれば減衰に対するマイナスの効果が小さいということになる。
【0018】
また、軸受隙間の圧力が変化する際に、軸受隙間内で空気の流動が生じ、この時の空気の粘性抵抗によって軸の振動に対する減衰力となる。振動の周波数が高くなると、軸受隙間の変化が速くなり、軸受の中央付近の空気は追従できず、流動せずにその場で圧縮・膨張するようになる。従って、空気の流動に伴う粘性力は小さくなり、減衰係数が小さくなる。特にジャーナル軸受の軸方向中央部分ではこの傾向が強い。
【0019】
本実施例においては、ジャーナル軸受7,8の軸方向中央部に給気列13bや円周溝18bを設けたため、軸受の中央付近の空気が給気列13bの絞り穴や円周溝18bに出入りすることによって比較的周波数の高い振動に対しても流動を生じやすくなり、高周波領域でのジャーナル軸受7,8の減衰係数が大きくなる。また、給気列13a,13bの数や円周溝18a,18bの深さによって空気の流動し易さが変化するので、主軸−軸受系の固有振動数に応じて給気列13a,13bの数や円周溝18a,18bの深さを設定することができる。
【0020】
一方、静剛性については、静剛性が最大となる最適な給気列13a,13bの絞り穴の出口圧力と軸受給気圧との圧力比が存在し、給気圧に対して給気列13a,13bの絞り穴の出口圧力が高すぎると、軸受隙間全体の圧力が上がり、上記の圧力比を実現することができなくなり、静剛性が低下する。このため、圧力の上がり易い軸受の軸方向中央部の圧力上昇を必要最低限に押える必要がある。この点、本発明の実施例においては、圧力の上がり易い軸受の軸方向中央部の給気列13bの絞り出口面積の総和を、隣接する端部側の給気列13aよりも小さくしたため、2列給気の場合の給気列間の圧力の落ち込みを補って、高周波領域での減衰係数を高めるために最小限度の軸受隙間平均圧力の上昇を実現することができる。従って、静圧空気軸受スピンドルの静剛性を維持しながら動特性を改善することができる。
【0021】
以上のように、本発明の実施例に係るダイレクトドライブ型静圧空気軸受スピンドルにおいては、ジャーナル軸受7,8の減衰性能が改善され、モータに起因する主軸−軸受系の固有振動数に近い比較的高周波領域での振動が発生しても、十分な主軸の振れ精度を実現できる。
【0022】
図6は、同一の主軸1を用いた従来のダイレクトドライブ型静圧空気軸受スピンドルと本発明の実施例に係るダイレクトドライブ型静圧空気軸受スピンドルのコンプライアンス(剛性の逆数で、加振力の大きさに対する主軸1の振れの大きさの比を表す。)を、加振力の周波数を横軸にとって比較したものである。コンプライアンスが小さいほど、同一の加振力に対して主軸1の振れが小さく、高精度なスピンドルである。本発明の実施例に関するスピンドルは、ジャーナル軸受7,8に3列の給気列13a,13bを設け、中央部の給気列13bにも円周溝18bを設けたもの(3列給気3列円周溝)と、中央部の給気列13bには円周溝18bを設けないもの(3列給気2列円周溝)のコンプライアンスを示す。固有振動数は、従来のスピンドルでは900Hz〜1500Hz付近、本発明のスピンドルでは1100Hz〜1600Hz付近である。本発明のスピンドルは、0Hz近傍のコンプライアンス(静剛性の逆数)は従来のものに比べて十数%小さいだけだが、固有振動数での最大値を比較すると従来のものの約1/2になっており、高周波領域での本発明の効果があらわれている。また、本発明の2種類を比較すると、中央の給気列13bに円周溝18bを設けることにより、コンプライアンスは約1600Hzを境としてそれ以上の高周波領域では小さくなり、低周波領域では大きくなる。つまり、主要な加振力や固有振動数の周波数に応じて円周溝18bの諸元を変更してその周波数でのコンプライアンスを小さくすることができる。
【0023】
また、本発明ではジャーナル軸受7,8の軸方向中央部に給気列13bを設けることによって軸受空気流量が増加する。このため、外部から供給される空気による軸受部の冷却効果が大きくなり、軸を高速で回転させた場合でも、軸受部の温度上昇が小さくなる。
【0024】
尚、前記実施例に係る静圧空気軸受スピンドルでは、ジャーナル軸受7,8に3列の給気列13a,13bを設けているが、本発明の静圧空気軸受スピンドルに属するジャーナル軸受7,8の給気列は3列に限定されるものではなく、3列以上、例えば図7に示すように、5列の給気列13c,13d,13eを設け、かつ、主軸1の外径面に5列の給気列13c,13d,13eに対向する5列の円周溝18c,18d,18eを設けることも可能である。この場合、中央の給気列13eの絞り出口面積の総和を隣接する端部側の給気列13dの絞り出口面積の総和よりも小さくするとともに、給気列13dの絞り出口面積の総和を隣接する端部側の給気列13cの絞り出口面積の総和よりも小さくする。但し、給気列の数が奇数の場合、中央の給気列からは軸方向両側に向かって圧縮空気が流れるので、中央の給気列の絞り出口面積の総和は、その端部側に隣接する給気列の絞り出口面積の総和よりも小さくする。
【0025】
図8は、本発明のダイレクトドライブ型静圧空気軸受スピンドルの他の実施例を示している。この実施例のダイレクトドライブ型静圧空気軸受スピンドルは、ハウジング3の両端にスラスト軸受9,10を設け、それぞれのスラスト軸受9,10に対向する2枚のスラスト板2を主軸1に固定している。また、ジャーナル軸受7,8の円周溝18fは軸方向両端部の2列の給気列13fにのみ設け、中央部の2列の給気列13gには溝を設けていない。この実施例は、主軸−軸受系の固有振動数が比較的小さい場合に適している。
【0026】
また、以上実施例ではジャーナル軸受7,8の内径側の軸受面に給気列13a〜13gを設け、かつ、主軸1の外周面に円周溝18a〜18fを設けているが、給気列を主軸1の外周面に設けたり、或いは、円周溝をジャーナル軸受7,8の内径側の軸受面に設けても良い。
【0027】
【発明の効果】
以上説明したように、本発明によれば、ジャーナル軸受の軸方向両端部近傍の円周上に設けた2列の給気列に加えて、前記2列の給気列の中間部の円周上にも1列または複数列の給気列を設けたので、ジャーナル軸受の軸方向中央部の圧力が両端部よりも高い圧力分布となって軸受隙間の平均圧力が高くなり、ジャーナル軸受の高周波領域での減衰性能が改善され、主軸−軸受系の固有振動数付近の加振力に対する静圧軸受スピンドルの振れを低減することができ、これによりダイレクトドライブ型静圧軸受スピンドルの動特性を改善し、高い精度のスピンドルを実現できる。しかも、中間部の各給気列の絞り出口面積の総和を軸受の中央寄りの給気列ほど小さくしたので、高周波領域での減衰係数を高めるために最小限度の軸受隙間平均圧力の上昇を実現することができ、これによりダイレクトドライブ型静圧軸受スピンドルの静剛性を低下させることなく動特性を改善し、更に高い精度のスピンドルを実現できる。また、ジャーナル軸受の圧縮空気流量が増加し、軸受の冷却効果が高まる。更に、軸受部の温度上昇を低減できるとともに、必要な加工技術は従来のものとまったく同じであり、上記の効果を低コストで実現できる。
【図面の簡単な説明】
【図1】本発明の実施例に係わるダイレクトドライブ型静圧空気軸受スピンドルの縦断面図である。
【図2】本発明の実施例に係わる静圧空気軸受スピンドルに属するジャーナル軸受の拡大図である。
【図3】絞り出口面積の説明図である。
【図4】本発明(3列給気)と従来(2列給気)の空気の流れの様子を示す軸受面(半分)の展開図である。
【図5】本発明(3列給気)と従来(2列給気)の軸受隙間(半分)における圧力分布を示す線図である。
【図6】本発明(3列給気)と従来(2列給気)のコンプライアンスを比較する線図である。
【図7】本発明の実施例に係わる静圧空気軸受スピンドルに属するジャーナル軸受の他の例の拡大図である。
【図8】本発明の他の実施例の縦断面図である。
【図9】従来のダイレクトドライブ型静圧空気軸受スピンドルの縦断面図である。
【符号の説明】
1 主軸
2 スラスト板
3 ハウジング
4〜6 軸受スリーブ
7,8 ジャーナル軸受
9,10 スラスト軸受
11 モータロータ
12 モータステータ
13,13a〜13g ジャーナル軸受の給気列
14 スラスト軸受の給気列
15 軸受給気口
16 給気通路
17 排気通路
18,18a〜18f 円周溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrostatic air bearing spindle used as a work spindle or a tool spindle of a precision processing machine, a precision inspection apparatus, or the like.
[0002]
[Prior art]
Since the hydrostatic air bearing supports the main shaft in a non-contact manner with respect to the bearing surface, it has high rotational accuracy and is used for a work spindle or a tool spindle of a precision processing machine or a precision inspection device. In such a spindle, in order to prevent intrusion of disturbance and improve controllability, the motor rotor is often directly attached to the main shaft without using a belt or the like.
[0003]
A conventional example of such a direct drive type hydrostatic air bearing spindle is illustrated in FIG. In this direct drive type hydrostatic air bearing spindle, bearing sleeves 4, 5, 6 are fixed to a housing 3, journal bearings 7, 8 provided on the bearing sleeves 4, 5 and a thrust shaft provided integrally with the spindle 1. The plate 2 is supported in a non-contact manner with respect to the housing 3 through a minute bearing gap by a pair of thrust bearings 9 and 10 provided on the bearing sleeves 5 and 6 so as to be sandwiched from both sides.
[0004]
A motor rotor 11 is integrally attached to the main shaft 1, and a rotational force is generated by excitation with the motor stator 12 attached to the housing 3. Although various types of motors can be used, motors that do not use brushes such as synchronous or induction type AC motors are often used in order to take advantage of the non-contact support static pressure air bearing. In the case of using an AC servo motor, a sensor for detecting the rotation angle of the main shaft 1 is necessary. For example, a method of extending the main shaft 1 to the right side in the figure and attaching a rotary encoder is used.
[0005]
The journal bearings 7 and 8 are provided in the vicinity of both axial ends of the bearing sleeves 5 and 6 with two air supply rows 13 in which a plurality of fine throttle holes opened in the bearing surface are arranged in the circumferential direction. In addition, a circumferential groove 18 is provided at a position facing the two air supply rows 13 on the outer diameter surface of the main shaft 1. With such a configuration, the static rigidity of the journal bearings 7 and 8 can be increased with a relatively simple structure. Further, the thrust bearings 9 and 10 are provided with an air supply row 14 in which a plurality of fine throttle holes opened in the bearing surface are arranged in one row on the circumference. A circumferential groove may be provided on the bearing surfaces of the thrust bearings 9 and 10 to face the air supply row 14 for the purpose of increasing the static rigidity.
[0006]
When compressed air is supplied from the bearing air inlet 15, the compressed air passes from the air supply rows 13 and 14 to the bearing gaps of the journal bearings 7 and 8 and the thrust bearings 9 and 10 via the air supply passage 16 provided in the housing 3. The bearing reaction force that flows in and balances with the weight of the main shaft 1 and the external load is generated by the pressure of the air in the bearing gap. The air flowing out from the journal bearings 7 and 8 and the thrust bearings 9 and 10 is discharged to the outside of the spindle directly from the bearing end portion or through the exhaust passage 17.
[0007]
In the hydrostatic air bearing spindle, the excitation force causing the swing of the main shaft 1 is due to the unbalance between the main shaft 1 and a rotating body including a work or a tool, and therefore the frequency is the number of rotations. Is equal to Usually, the natural frequency of the main shaft-bearing system can be designed to be considerably higher than the rotational speed, so that the static rigidity of the bearing is increased in the form of journal bearings 7 and 8 with two-row air supply circumferential grooves shown in FIG. As a result, the deflection accuracy of the spindle 1 could be improved.
[0008]
[Problems to be solved by the invention]
As described above, in the hydrostatic air bearing spindle, the static stiffness of the journal bearings 7 and 8 against the vibration of the frequency equal to the rotational speed generated by the unbalance between the main shaft 1 and the rotating body including the workpiece or the tool. Measures have been taken by improving the accuracy of unbalance and correcting unbalance. As a result, the fluctuation of the frequency equal to the rotation speed has become considerably small, but in order to further improve the fluctuation accuracy, the torque fluctuation of the motor, magnet magnetization unevenness, disturbance of the drive current waveform, etc. There is a problem of vibration that occurs at a frequency that is a multiple of the number of rotations related to the number of poles of the motor. The excitation force resulting from this motor has a frequency higher than the rotational speed of the main shaft 1 and contains a component close to the natural frequency of the main shaft-bearing system, and vibration of the main shaft 1 at the natural frequency becomes a problem. There are many.
[0009]
In order to reduce the amplitude at the natural frequency of the main shaft-bearing system, it is necessary to increase the damping coefficient, not the rigidity of the bearing. Furthermore, since the rigidity and damping coefficient of the hydrostatic air bearing change depending on the frequency, if attention is paid only to the static rigidity as in the prior art, the effect of reducing the vibration does not increase.
[0010]
Therefore, an object of the present invention is to improve the dynamic characteristics of a direct drive hydrostatic air bearing spindle and to reduce the vibration of the main shaft 1 when it is vibrated at the natural frequency of the main shaft-bearing system.
[0011]
[Means for Solving the Problems]
In order to achieve the above-described object, the present invention provides a motor rotor on a main shaft supported in a non-contact manner with respect to a fixed portion by a hydrostatic air journal bearing, a hydrostatic air thrust hydrostatic air journal bearing, and a hydrostatic air thrust bearing. In a direct drive type hydrostatic air bearing spindle that is directly driven by mounting a plurality of throttle holes that are open in the bearing surface in the vicinity of both axial ends of the journal bearing are arranged in a circumferential direction. In addition, a circumferential groove corresponding to the two air supply rows is provided on the main shaft or the bearing surface of the bearing, and the pressure in the axial central portion of the bearing has a pressure distribution higher than both ends. One or a plurality of air supply rows in which a plurality of throttle holes opened in the bearing surface are arranged in the circumferential direction are provided in the middle portion of the two air supply rows, and the air supply in the intermediate portion of the journal bearing is provided . For each column The number of throttle holes in the air supply row near the center of the journal bearing is set to be equal to the number of throttle holes in the adjacent air supply row so that the sum of the throttle outlet areas becomes smaller as the air supply row closer to the center of the bearing. Or the depth of the circumferential groove of the air supply row near the center of the journal bearing is shallower than the depth of the circumferential groove of the air supply row on the adjacent end side, or The air train was not provided with a circumferential groove.
[0012]
In addition to the two air supply rows provided on the circumference in the vicinity of both axial ends of the journal bearing, one or more air supply rows are also provided on the circumference of the intermediate portion of the two air supply rows. The journal bearing has a higher pressure distribution at the center in the axial direction than the both ends, resulting in a higher average pressure in the bearing gap, improving the damping performance in the high frequency region of the journal bearing, The vibration of the hydrostatic bearing spindle with respect to the excitation force near the natural frequency of the bearing system can be reduced. As a result, the dynamic characteristics of the direct drive type hydrostatic air bearing spindle can be improved, and a spindle with higher accuracy can be realized.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. Note that members and portions that are substantially the same as those in the conventional configuration shown in FIG. 7 are denoted by the same reference numerals throughout the drawings, and redundant description is omitted.
[0014]
FIG. 1 shows a direct drive type hydrostatic air bearing spindle according to this embodiment. In the direct drive type hydrostatic air bearing spindle of this embodiment, the main shaft 1 has two journal bearings 7 and 8 and a thrust bearing 9 opposed to both surfaces of a thrust plate 2 provided integrally with the main shaft 1, as in the conventional configuration. 10 supports the housing 3 in a non-contact manner. A motor rotor 11 is integrally attached to the main shaft 1, and the main shaft 1 rotates when the stator 12 is energized.
[0015]
FIG. 2 shows an enlarged view of the journal bearings 7 and 8 belonging to the hydrostatic air bearing spindle according to this embodiment. The journal bearings 7 and 8 are provided with two air supply rows 13a in the vicinity of both axial ends of the bearing sleeves 5 and 6, in which a plurality of fine throttle holes opened in the bearing surface are arranged in the circumferential direction. A circumferential groove 18a is provided at a position facing the two air supply rows 13a on the outer diameter surface of the main shaft 1, and an intermediate portion of the two air supply rows 13a (the axial center of the bearing sleeves 5 and 6). Part) is provided with a row of air supply rows 13b in which a plurality of fine throttle holes opening in the bearing surface are arranged in the circumferential direction, and the air supply row 13b in the central portion of the outer diameter surface of the main shaft 1 is provided. Circumferential grooves 18b are provided at opposing positions. Further, the total sum of the throttle outlet areas of the intermediate air supply row 13b is made smaller than the sum of the throttle outlet areas of the adjacent air supply rows 13a on the end portion side. Here, the throttle outlet area of the air supply row is the area of the portion where the compressed air passage sectional area is the smallest when compressed air passes through the throttle hole and actually acts as a throttle. 3, the area of the cross-sectional 43 of the throttle hole 41 (so-called orifice throttle) and the area of the cylindrical surface 44 divided by the outer periphery of the throttle hole 41 and the bearing surface or the circumferential groove bottom face 42 (so-called self-restricted). The area of the smaller one of the apertures). Therefore, in order to make the sum of the throttle outlet areas of the air supply row 13b in the axial center of the journal bearings 7 and 8 smaller than the sum of the throttle outlet areas of the adjacent air supply rows 13a on the end portion side, The diameter of the throttle holes in the row 13b is reduced, the number of throttle holes in the air supply row 13b is reduced, and in the case of a self-contained throttle, the circumferential groove 18b facing it is shallowed or the circumferential groove 18b is eliminated. There are three ways.
[0016]
In the journal bearings 7 and 8 of this embodiment, in addition to the conventional two rows of air supply rows 13a in the vicinity of both axial end portions, the air supply row 13b is provided on the circumference in the central portion in the axial direction. FIG. 4A shows the state of air flow in the bearing gap (FIG. 4B shows the state of air flow in the bearing gap of the conventional journal bearing as a comparison). As shown in FIG. 5, the pressure in the central portion in the axial direction is higher than that at both ends, and the average pressure in the bearing gap is higher than that in the conventional journal bearing. The damping performance in the high frequency region is improved, and the vibration of the hydrostatic air bearing spindle with respect to the exciting force near the natural frequency of the main shaft-bearing system can be reduced.
[0017]
That is, when the main shaft 1 vibrates, the pressure in the bearing gap changes by the action of the throttle holes of the air supply rows 13a and 13b, and a bearing reaction force corresponding to the change in the main shaft 1 is generated. In the hydrostatic air bearing, since the bearing gap is small, the air in the bearing gap has almost the same temperature as the bearing surface and undergoes an isothermal change, so the pressure and density are in a proportional relationship. The local movement of air in the bearing gap due to the vibration of the main shaft 1 is divided into a part corresponding to a change in the volume of the bearing gap and a part corresponding to a change in the air density in conjunction with the pressure change. The rate of change in local pressure (air density) is proportional to the local air mass flow rate, so if the volumetric flow rate is constant, the higher the bearing clearance pressure (air density), the higher the mass. The flow rate is large and the pressure changes quickly. Therefore, a certain pressure change can be completed in a short time as the pressure in the bearing gap increases. This means that the delay of the bearing reaction force with respect to the axial displacement is small, in other words, the negative effect on the damping is small.
[0018]
Further, when the pressure in the bearing gap changes, air flows in the bearing gap, and a damping force against the shaft vibration is generated by the viscous resistance of the air at this time. When the frequency of vibration increases, the change in the bearing clearance becomes faster, and the air near the center of the bearing cannot follow and compresses and expands on the spot without flowing. Therefore, the viscous force accompanying the air flow is reduced, and the damping coefficient is reduced. This tendency is particularly strong in the axial center portion of the journal bearing.
[0019]
In the present embodiment, since the air supply row 13b and the circumferential groove 18b are provided in the axial center of the journal bearings 7 and 8, the air near the center of the bearing enters the throttle hole and the circumferential groove 18b of the air supply row 13b. By entering and exiting, it becomes easy for flow to occur even with vibrations having a relatively high frequency, and the damping coefficient of the journal bearings 7 and 8 in the high frequency region increases. In addition, since the ease of air flow varies depending on the number of air supply rows 13a and 13b and the depth of the circumferential grooves 18a and 18b, the air supply rows 13a and 13b have different characteristics depending on the natural frequency of the main shaft-bearing system. The number and the depth of the circumferential grooves 18a and 18b can be set.
[0020]
On the other hand, as for the static stiffness, there is an optimum pressure ratio between the outlet pressure of the throttle hole of the supply air train 13a, 13b and the bearing supply air pressure at which the static rigidity is maximized, and the air supply train 13a, 13b with respect to the supply air pressure. If the outlet pressure of the throttle hole is too high, the pressure of the entire bearing gap increases, the above pressure ratio cannot be realized, and the static rigidity decreases. For this reason, it is necessary to suppress the pressure increase at the axial center portion of the bearing, where the pressure is likely to increase, to the minimum necessary. In this regard, in the embodiment of the present invention, since the sum of the throttle outlet areas of the air supply row 13b in the axial central portion of the bearing that is likely to increase in pressure is smaller than the air supply row 13a on the adjacent end side, 2 In order to compensate for the drop in pressure between the air supply trains in the case of the row air supply, and to increase the damping coefficient in the high frequency region, it is possible to realize a minimum increase in the bearing gap average pressure. Accordingly, the dynamic characteristics can be improved while maintaining the static rigidity of the hydrostatic air bearing spindle.
[0021]
As described above, in the direct drive type hydrostatic air bearing spindle according to the embodiment of the present invention, the damping performance of the journal bearings 7 and 8 is improved, and the comparison is close to the natural frequency of the main shaft-bearing system caused by the motor. Even if vibration occurs in a high frequency region, sufficient swing accuracy of the spindle can be realized.
[0022]
FIG. 6 shows the compliance of the conventional direct drive hydrostatic air bearing spindle using the same main shaft 1 and the direct drive hydrostatic air bearing spindle according to the embodiment of the present invention (reciprocal of rigidity, large excitation force). Is a comparison of the frequency of the excitation force with respect to the horizontal axis. The smaller the compliance, the smaller the deflection of the spindle 1 with respect to the same excitation force, and the higher the precision of the spindle. In the spindle according to the embodiment of the present invention, the journal bearings 7 and 8 are provided with three air supply rows 13a and 13b, and the central air supply row 13b is also provided with a circumferential groove 18b (three rows of air supply 3 (Line circumferential groove) and the air supply line 13b in the center portion are not provided with the circumferential groove 18b (three-line air supply and two-line circumferential groove). The natural frequency is about 900 Hz to 1500 Hz for the conventional spindle and about 1100 Hz to 1600 Hz for the spindle of the present invention. The spindle of the present invention has a compliance (reciprocal of static stiffness) in the vicinity of 0 Hz that is only about 10% smaller than that of the conventional one, but the maximum value at the natural frequency is about ½ that of the conventional one. Thus, the effect of the present invention in the high frequency region is exhibited. Further, when the two types of the present invention are compared, by providing the circumferential groove 18b in the central air supply row 13b, the compliance becomes small in a high frequency region above about 1600 Hz and becomes large in a low frequency region. That is, the specification of the circumferential groove 18b can be changed in accordance with the frequency of the main excitation force or natural frequency to reduce the compliance at that frequency.
[0023]
Further, in the present invention, the air flow rate of the bearing is increased by providing the air supply row 13b in the central portion of the journal bearings 7 and 8 in the axial direction. For this reason, the cooling effect of the bearing part by the air supplied from the outside becomes large, and the temperature rise of the bearing part becomes small even when the shaft is rotated at a high speed.
[0024]
In the hydrostatic air bearing spindle according to the above embodiment, the journal bearings 7 and 8 are provided with three air supply rows 13a and 13b, but the journal bearings 7 and 8 belonging to the hydrostatic air bearing spindle of the present invention. The air supply row is not limited to three rows, but three or more rows, for example, as shown in FIG. 7, five air supply rows 13c, 13d, 13e are provided, and the outer diameter surface of the main shaft 1 is provided. It is also possible to provide five rows of circumferential grooves 18c, 18d, 18e facing the five rows of air supply rows 13c, 13d, 13e. In this case, the sum of the throttle outlet areas of the central air supply row 13e is made smaller than the sum of the throttle outlet areas of the adjacent end side air supply rows 13d, and the sum of the throttle outlet areas of the air supply rows 13d is adjacent. It is made smaller than the sum total of the throttle outlet area of the air supply row 13c on the end side. However, if the number of air supply rows is an odd number, the compressed air flows from the central air supply row toward both sides in the axial direction, so the total throttle outlet area of the central air supply row is adjacent to the end side. To be smaller than the sum of the throttle outlet areas of the air supply train.
[0025]
FIG. 8 shows another embodiment of the direct drive hydrostatic air bearing spindle of the present invention. The direct drive type hydrostatic air bearing spindle of this embodiment is provided with thrust bearings 9 and 10 at both ends of the housing 3, and two thrust plates 2 facing the thrust bearings 9 and 10 are fixed to the main shaft 1. Yes. Further, the circumferential grooves 18f of the journal bearings 7 and 8 are provided only in the two air supply rows 13f at both ends in the axial direction, and no grooves are provided in the two air supply rows 13g in the central portion. This embodiment is suitable when the natural frequency of the main shaft-bearing system is relatively small.
[0026]
In the above embodiment, the air supply rows 13a to 13g are provided on the bearing surfaces on the inner diameter side of the journal bearings 7 and 8, and the circumferential grooves 18a to 18f are provided on the outer peripheral surface of the main shaft 1. May be provided on the outer peripheral surface of the main shaft 1 or a circumferential groove may be provided on the bearing surface on the inner diameter side of the journal bearings 7 and 8.
[0027]
【The invention's effect】
As described above, according to the present invention, in addition to the two air supply rows provided on the circumference in the vicinity of both axial ends of the journal bearing, the circumference of the intermediate portion of the two air supply rows is provided. Since one or more air supply rows are also provided on the upper side, the pressure in the central portion of the journal bearing in the axial direction is higher than that at both ends, and the average pressure in the bearing gap is increased. The damping performance in the region is improved, and the vibration of the hydrostatic bearing spindle against the excitation force near the natural frequency of the main shaft-bearing system can be reduced, thereby improving the dynamic characteristics of the direct drive hydrostatic bearing spindle. In addition, a highly accurate spindle can be realized. In addition , the sum of the throttle outlet areas of each air supply row in the middle is smaller for the air supply row closer to the center of the bearing, so the minimum bearing clearance average pressure is increased to increase the damping coefficient in the high frequency range. Thus, the dynamic characteristics can be improved without lowering the static rigidity of the direct drive hydrostatic bearing spindle, and a spindle with higher accuracy can be realized. Further, the compressed air flow rate of the journal bearing is increased, and the bearing cooling effect is enhanced. Furthermore, while the temperature rise of a bearing part can be reduced, the required processing technique is exactly the same as the conventional one, the above effects can be realized at a low cost.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a direct-drive hydrostatic air bearing spindle according to an embodiment of the present invention.
FIG. 2 is an enlarged view of a journal bearing belonging to a hydrostatic air bearing spindle according to an embodiment of the present invention.
FIG. 3 is an explanatory diagram of a throttle outlet area.
FIG. 4 is a development view of a bearing surface (half) showing a state of air flow of the present invention (three-row air supply) and a conventional (two-row air supply).
FIG. 5 is a diagram showing a pressure distribution in a bearing gap (half) between the present invention (three-row air supply) and the conventional (two-row air supply).
FIG. 6 is a diagram comparing the compliance of the present invention (3-row air supply) and the conventional (2-row air supply).
FIG. 7 is an enlarged view of another example of a journal bearing belonging to a hydrostatic air bearing spindle according to an embodiment of the present invention.
FIG. 8 is a longitudinal sectional view of another embodiment of the present invention.
FIG. 9 is a longitudinal sectional view of a conventional direct drive type hydrostatic air bearing spindle.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main shaft 2 Thrust board 3 Housing 4-6 Bearing sleeve 7, 8 Journal bearing 9, 10 Thrust bearing 11 Motor rotor 12 Motor stator 13, 13a-13g Journal bearing air supply row 14 Thrust bearing air supply row 15 Bearing air supply port 16 Air supply passage 17 Exhaust passage 18, 18a-18f Circumferential groove

Claims (3)

静圧空気ジャーナル軸受および静圧空気スラスト軸受によって、固定部に対して非接触で支持される主軸に、モータロータを取付けて直接駆動するダイレクトドライブ型静圧空気軸受スピンドルにおいて、
前記ジャーナル軸受の軸方向両端部近傍の軸受面に開口する複数個の絞り穴を円周方向配置した2列の給気列を設けるとともに、該2列の給気列に対応する円周溝を主軸または該軸受の軸受面に設け、かつ、該軸受の軸方向中央部の圧力が両端部よりも高い圧力分布となるように、前記2列の給気列の中間部に、軸受面に開口する複数個の絞り穴を円周方向に配置した1列または複数列の給気列を設け
前記ジャーナル軸受の中間部の給気列の各列毎の絞り出口面積の総和が、軸受の中央寄りの給気列ほど小さくなるように、前記ジャーナル軸受の中央寄りの給気列の絞り穴の数を隣接する端部側の給気列の絞り穴の数より少なくしたことを特徴とする静圧空気軸受スピンドル。
In a direct drive type hydrostatic air bearing spindle that is directly driven by attaching a motor rotor to a main shaft supported in a non-contact manner with respect to a fixed portion by a hydrostatic air journal bearing and a hydrostatic air thrust bearing.
The journal bearing is provided with two rows of air supply rows in which a plurality of throttle holes opened in the bearing surface in the vicinity of both axial ends of the journal bearing are arranged in the circumferential direction, and circumferential grooves corresponding to the two rows of air supply rows are provided. Provided on the main shaft or the bearing surface of the bearing, and open to the bearing surface in the middle of the two air supply rows so that the pressure in the axial central portion of the bearing has a higher pressure distribution than both ends. Providing one or a plurality of air supply rows in which a plurality of throttle holes are arranged in the circumferential direction ;
The sum of the throttle outlet areas for each of the air supply rows in the middle portion of the journal bearing becomes smaller as the air supply row closer to the center of the bearing reduces the throttle hole of the air supply row closer to the center of the journal bearing. A hydrostatic air bearing spindle characterized in that the number thereof is smaller than the number of throttle holes in the air supply row on the adjacent end side .
前記ジャーナル軸受の中間部の給気列に対向する円周溝を主軸または該軸受の軸受面に設けたことを特徴とする請求項1の静圧空気軸受スピンドル。  2. The hydrostatic air bearing spindle according to claim 1, wherein a circumferential groove facing an air supply row at an intermediate portion of the journal bearing is provided on a main shaft or a bearing surface of the bearing. 静圧空気ジャーナル軸受および静圧空気スラスト軸受によって、固定部に対して非接触で支持される主軸に、モータロータを取付けて直接駆動するダイレクトドライブ型静圧空気軸受スピンドルにおいて、
前記ジャーナル軸受の軸方向両端部近傍の軸受面に開口する複数個の絞り穴を円周方向配置した2列の給気列を設けるとともに、該2列の給気列に対応する円周溝を主軸または該軸受の軸受面に設け、かつ、該軸受の軸方向中央部の圧力が両端部よりも高い圧力分布となるように、前記2列の給気列の中間部に、軸受面に開口する複数個の絞り穴を円周方向に配置した1列または複数列の給気列を設け、
前記ジャーナル軸受の中間部の給気列の各列毎の絞り出口面積の総和が、軸受の中央寄りの給気列ほど小さくなるように、前記ジャーナル軸受の中央寄りの給気列の円周溝の深さを隣接する端部側の給気列の円周溝の深さより浅くするか、中央寄りの給気列には円周溝を設けないことを特徴とする静圧空気軸受スピンドル。
In a direct drive type hydrostatic air bearing spindle that is directly driven by attaching a motor rotor to a main shaft supported in a non-contact manner with respect to a fixed portion by a hydrostatic air journal bearing and a hydrostatic air thrust bearing.
The journal bearing is provided with two rows of air supply rows in which a plurality of throttle holes opened in the bearing surface in the vicinity of both axial ends of the journal bearing are arranged in the circumferential direction, and circumferential grooves corresponding to the two rows of air supply rows are provided. Provided on the main shaft or the bearing surface of the bearing, and open to the bearing surface in the middle of the two air supply rows so that the pressure in the axial central portion of the bearing has a higher pressure distribution than both ends. Providing one or a plurality of air supply rows in which a plurality of throttle holes are arranged in the circumferential direction;
The sum of the aperture exit area of each column of the charge air column in the middle portion of the journal bearing, the inboard air supply column as small Kunar so the bearing, circumferential air supply column close to the center of the journal bearing A hydrostatic air bearing spindle characterized in that the groove depth is shallower than the circumferential groove depth of the air supply row on the adjacent end side, or no circumferential groove is provided in the central air supply row .
JP25037596A 1996-09-20 1996-09-20 Hydrostatic air bearing spindle Expired - Fee Related JP3862326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25037596A JP3862326B2 (en) 1996-09-20 1996-09-20 Hydrostatic air bearing spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25037596A JP3862326B2 (en) 1996-09-20 1996-09-20 Hydrostatic air bearing spindle

Publications (2)

Publication Number Publication Date
JPH1096423A JPH1096423A (en) 1998-04-14
JP3862326B2 true JP3862326B2 (en) 2006-12-27

Family

ID=17206989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25037596A Expired - Fee Related JP3862326B2 (en) 1996-09-20 1996-09-20 Hydrostatic air bearing spindle

Country Status (1)

Country Link
JP (1) JP3862326B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5253358B2 (en) * 2009-11-06 2013-07-31 三鷹光器株式会社 Rotary encoder controlled air spindle
CN107725592A (en) * 2017-09-30 2018-02-23 中国工程物理研究院机械制造工艺研究所 A kind of air-float turntable of narrow annular channel throttling
CN108194507A (en) * 2018-01-26 2018-06-22 中国计量大学 A kind of non-uniform Distribution variable orifice diameter is radial gas bearing provided
CN111120512A (en) * 2020-01-10 2020-05-08 中国工程物理研究院机械制造工艺研究所 Throttle air bearing and fast axle servo based on this bearing

Also Published As

Publication number Publication date
JPH1096423A (en) 1998-04-14

Similar Documents

Publication Publication Date Title
JP4146151B2 (en) Hydrostatic gas bearing and spindle device using the same
JP3602732B2 (en) motor
CN102071979A (en) Locating mechanism for turbocharger bearing
JP3862326B2 (en) Hydrostatic air bearing spindle
JP3448416B2 (en) Built-in motor
US5821647A (en) Spindle motor
US5717264A (en) Concentric-double-shaft simultaneously rotating apparatus
CN207043865U (en) A kind of eccentricity compensation system for electrical spindle for machine tool
JPH085373Y2 (en) Air turbine driven static pressure gas bearing spindle
JPH0220733B2 (en)
Morrison Bearingless switched reluctance motor
JP2562456B2 (en) Air bearing electric motor
JP4211046B2 (en) Spindle device
JP2531837Y2 (en) High-speed hydrostatic gas bearing device
JP2544876Y2 (en) Hydrostatic gas bearing device
JP2004324895A (en) Static pressure magnetic combined bearing
JPH0610945A (en) Dynamic pressure bearing and rotating polygon mirror device using this
JP4030131B2 (en) Bearing plate especially for rotating electrical machines
JP2892364B2 (en) Control method of spindle using hydrostatic gas bearing
JPH10239102A (en) Spindle device with encoder
JPH1113762A (en) Hydrostatic magnetic composite bearing and spindle device
Tsunoda et al. Combination of Oil Film Bearing and Bearingless Motor for High Load Capacity and Stable Rotation
JPH033629A (en) Rotating device
JPS63318315A (en) Bearing device
JP2003127041A (en) Main spindle apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees