JPH1096423A - Static pressure air bearing spindle - Google Patents

Static pressure air bearing spindle

Info

Publication number
JPH1096423A
JPH1096423A JP25037596A JP25037596A JPH1096423A JP H1096423 A JPH1096423 A JP H1096423A JP 25037596 A JP25037596 A JP 25037596A JP 25037596 A JP25037596 A JP 25037596A JP H1096423 A JPH1096423 A JP H1096423A
Authority
JP
Japan
Prior art keywords
bearing
air
spindle
supply line
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25037596A
Other languages
Japanese (ja)
Other versions
JP3862326B2 (en
Inventor
Yoshio Fujikawa
芳夫 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP25037596A priority Critical patent/JP3862326B2/en
Publication of JPH1096423A publication Critical patent/JPH1096423A/en
Application granted granted Critical
Publication of JP3862326B2 publication Critical patent/JP3862326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a swing a main spindle when excited in a natural frequency of a main spindle-bearing system by arranging air supply rows of a single row or plural rows, where plural orifice holes opening in a bearing surface are arranged in the circumferential direction, in an air supply row intermediate part of two rows. SOLUTION: A main spindle 1 is supported in a noncontact condition to a housing 3 by thrust bearings 9 and 10 opposed to both surfaces of a thrust plate 2 integrally arranged on two journal bearings 7 and 8 and the main spindle 1. When an air supply row 13b is arranged on the circumference of a shaft directional central part besides air supply rows 13a of two rows in the vicinity of the shaft directional both ends in the journal bearings 7 and 8, pressure of the shaft directional central part becomes the pressure distribution higher than both end parts, and average pressure between bearing clearances becomes higher than an ordinary journal bearing. Therefore, damping performance in a high frequency area of the journal bearings 7 and 8 is improved, and a swing of a static pressure air bearing spindle to exciting force in the vicinity of a natural frequency of a main spindle-bearing system can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、精密加工機や精密
検査装置等のワークスピンドルまたは工具スピンドル等
として利用する静圧空気軸受スピンドルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrostatic air bearing spindle used as a work spindle or a tool spindle of a precision machine or a precision inspection device.

【0002】[0002]

【従来の技術】静圧空気軸受は主軸を軸受面に対して非
接触で支持するため、回転精度が高く、精密加工機や精
密検査装置のワークスピンドルまたは工具スピンドル等
に使用される。このようなスピンドルでは外乱の侵入を
防ぎ制御性を高めるために、ベルト等を使用せず主軸に
モータのロータを直接取付けて駆動する場合が多い。
2. Description of the Related Art A hydrostatic air bearing supports a main shaft in a non-contact manner with respect to a bearing surface, and therefore has a high rotational accuracy and is used for a work spindle or a tool spindle of a precision machine or a precision inspection device. Such a spindle is often driven by directly attaching a rotor of a motor to a main shaft without using a belt or the like in order to prevent intrusion of disturbance and enhance controllability.

【0003】このようなダイレクトドライブ型静圧空気
軸受スピンドルの従来例を図9に例示している。このダ
イレクトドライブ型静圧空気軸受スピンドルは、ハウジ
ング3に軸受スリーブ4,5,6を固定し、主軸1を軸
受スリーブ4,5に設けたジャーナル軸受7,8および
主軸1に一体に設けたスラスト板2を両面からはさみこ
む形で軸受スリーブ5,6に設けられた一対のスラスト
軸受9,10によって、微小な軸受隙間を介してハウジ
ング3に対して非接触で支持している。
FIG. 9 shows a conventional example of such a direct drive type hydrostatic air bearing spindle. In this direct-drive type hydrostatic air bearing spindle, a bearing sleeve 4,5,6 is fixed to a housing 3, and a journal 1 and a journal bearing 7,8 provided on a bearing sleeve 4,5 and a thrust integrally provided on the spindle 1. The plate 2 is supported by the pair of thrust bearings 9 and 10 provided on the bearing sleeves 5 and 6 in such a manner that the plate 2 is sandwiched from both sides in a non-contact manner with the housing 3 via a minute bearing gap.

【0004】主軸1にはモータロータ11が一体に取り
付けられ、ハウジング3に取付けられたモータステータ
12との間の励磁により回転力を発生する。モータは様
々な形式のものを利用できるが、非接触支持という静圧
空気軸受の特色を生かすために、同期型または誘導型の
ACモータ等、ブラシを用いないモータが用いられる場
合が多い。ACサーボモータを使用する場合には主軸1
の回転角を検出するセンサが必要であり、例えば主軸1
を図の右側に延長してロータリーエンコーダを取り付け
る等の方法がとられる。
[0004] A motor rotor 11 is integrally attached to the main shaft 1, and generates a rotational force by excitation with a motor stator 12 attached to the housing 3. Although various types of motors can be used, a motor that does not use a brush, such as a synchronous type or induction type AC motor, is often used in order to take advantage of the characteristics of the static pressure air bearing of non-contact support. When using the AC servomotor, the main spindle 1
A sensor for detecting the rotation angle of the main shaft 1 is required.
Is extended to the right side of the figure and a rotary encoder is attached.

【0005】ジャーナル軸受7,8には、軸受スリーブ
5,6の軸方向両端部近傍に、軸受面に開口する複数個
の微細な絞り穴を円周方向に配置した2列の給気列13
が設けられており、主軸1の外径面の前記2列の給気列
13に対向する位置に円周溝18を設けてある。このよ
うな構成により、比較的単純な構造でジャーナル軸受
7,8の静剛性を大きくすることができる。また、スラ
スト軸受9,10には、円周上1列に、軸受面に開口す
る複数個の微細な絞り穴を配置した給気列14が設けて
ある。このスラスト軸受9,10の軸受面にも静剛性を
上げる目的で、給気列14に対向して円周溝を設ける場
合がある。
The journal bearings 7 and 8 are provided with two air supply rows 13 in the vicinity of both ends in the axial direction of the bearing sleeves 5 and 6 in which a plurality of fine throttle holes opened in the bearing surface are arranged in the circumferential direction.
A circumferential groove 18 is provided on the outer diameter surface of the main shaft 1 at a position facing the two supply lines 13. With such a configuration, the static rigidity of the journal bearings 7, 8 can be increased with a relatively simple structure. Further, the thrust bearings 9 and 10 are provided with an air supply line 14 in which a plurality of fine throttle holes opening on the bearing surface are arranged in one line on the circumference. A circumferential groove may be provided on the bearing surfaces of the thrust bearings 9 and 10 so as to face the air supply row 14 in order to increase static rigidity.

【0006】軸受給気口15から圧縮空気を供給する
と、圧縮空気はハウジング3に設けた給気通路16を経
由して給気列13および14からジャーナル軸受7,8
およびスラスト軸受9,10の軸受隙間に流入し、軸受
隙間内の空気の圧力によって主軸1の自重や外部負荷に
釣り合う軸受反力を生じる。ジャーナル軸受7,8およ
びスラスト軸受9,10から流出される空気は、軸受端
部から直接、または排気通路17を通ってスピンドルの
外部に排出される。
[0006] When compressed air is supplied from the bearing supply port 15, the compressed air is supplied from the supply rows 13 and 14 to the journal bearings 7 and 8 through the supply passage 16 provided in the housing 3.
And, it flows into the bearing gaps of the thrust bearings 9 and 10 and generates a bearing reaction force balanced by the own weight of the main shaft 1 and the external load by the pressure of the air in the bearing gaps. The air flowing out of the journal bearings 7, 8 and the thrust bearings 9, 10 is discharged directly from the bearing ends or through the exhaust passage 17 to the outside of the spindle.

【0007】前記静圧空気軸受スピンドルにおいて、主
軸1の振れ回りの原因となる加振力は、主軸1とワーク
または工具等を含む回転体の不釣合いに起因するもので
あり、従って、その周波数は回転数と等しい。通常、主
軸−軸受系の固有振動数は回転数よりもかなり高めに設
計できるので、図9に示す2列給気円周溝付きジャーナ
ル軸受7,8のような形で軸受の静剛性を高めることに
よって主軸1の振れ精度を改善することができた。
In the above-mentioned hydrostatic air bearing spindle, the exciting force causing whirling of the main shaft 1 is caused by an unbalance between the main shaft 1 and a rotating body including a work or a tool, and therefore, its frequency Is equal to the number of revolutions. Normally, the natural frequency of the main shaft-bearing system can be designed to be considerably higher than the rotational speed. Therefore, the static stiffness of the bearing is increased in the form of the journal bearings 7 and 8 with the double-row air circumferential groove shown in FIG. As a result, the runout accuracy of the spindle 1 could be improved.

【0008】[0008]

【発明が解決しようとする課題】前述したように、静圧
空気軸受スピンドルにおいては、主軸1とワークまたは
工具等を含む回転体の不釣合いによって発生する回転数
と等しい周波数の振れに対しては、ジャーナル軸受7,
8の静剛性の向上と不釣合い修正の精度向上によって対
策がなされてきた。その結果、回転数と等しい周波数の
振れはかなり小さくなったが、さらに振れ精度を改善す
るためには、モータのトルク変動や磁石の着磁むら、駆
動電流波形の乱れ等が原因となって、モータの極数等に
関連する回転数の整倍数の周波数で発生する振動が問題
となっている。このモータに起因する加振力は主軸1の
回転数よりも周波数が高く、主軸−軸受系の固有振動数
に近い成分を含んでおり、固有振動数での主軸1の振動
が問題になる場合が多い。
As described above, in a hydrostatic air bearing spindle, a run-out of a frequency equal to the number of revolutions caused by an imbalance between the main shaft 1 and a rotating body including a work or a tool, etc., is avoided. , Journal bearing 7,
Measures have been taken by improving the static rigidity and improving the accuracy of the unbalance correction. As a result, the vibration at the frequency equal to the rotation speed became considerably small.However, in order to further improve the vibration accuracy, the torque fluctuation of the motor, the uneven magnetization of the magnet, the disturbance of the driving current waveform, etc. Vibration generated at a frequency of an integral multiple of the number of revolutions related to the number of poles of the motor or the like has become a problem. When the excitation force caused by this motor has a frequency higher than the rotation speed of the main shaft 1 and includes a component close to the natural frequency of the main shaft-bearing system, the vibration of the main shaft 1 at the natural frequency becomes a problem. There are many.

【0009】主軸−軸受系の固有振動数での振幅を小さ
くするには軸受の剛性ではなく、減衰係数を大きくする
必要がある。さらに、静圧空気軸受の剛性および減衰係
数は周波数によって変化するので、従来のように静剛性
だけに着目していたのでは、振動低減の効果は上がらな
い。
To reduce the amplitude at the natural frequency of the main shaft-bearing system, it is necessary to increase the damping coefficient, not the rigidity of the bearing. Further, since the rigidity and damping coefficient of the static pressure air bearing change depending on the frequency, the effect of reducing vibration cannot be improved by focusing only on the static rigidity as in the related art.

【0010】そこで、本発明は、ダイレクトドライブ型
静圧空気軸受スピンドルの動特性を改善し、主軸−軸受
系の固有振動数で加振された場合の主軸1の振れを低減
することを課題とする。
Accordingly, an object of the present invention is to improve the dynamic characteristics of a direct drive type hydrostatic air bearing spindle and to reduce the run-out of the main shaft 1 when vibrated at the natural frequency of the main shaft-bearing system. I do.

【0011】[0011]

【課題を解決するための手段】前述した目的を達成する
ため、本発明は、静圧空気ジャーナル軸受および静圧空
気スラスト軸受によって、固定部に対して非接触で支持
される主軸に、モータロータを取付けて直接駆動するダ
イレクトドライブ型静圧空気軸受スピンドルにおいて、
前記ジャーナル軸受の軸方向両端近傍に、軸受面に開口
する複数個の絞り穴を円周方向配置した2列の給気列を
設けるとともに、該2列の給気列に対応する円周溝を主
軸または該軸受の軸受面に設け、かつ、該軸受の軸方向
中央部の圧力が両端部よりも高い圧力分布となるよう
に、前記2列の給気列の中間部に、軸受面に開口する複
数個の絞り穴を円周方向に配置した1列または複数列の
給気列を設けた。
In order to achieve the above-mentioned object, the present invention provides a motor rotor mounted on a main shaft which is supported by a static air journal bearing and a static air thrust bearing in a non-contact manner with respect to a fixed portion. In a direct drive hydrostatic air bearing spindle that is mounted and driven directly,
In the vicinity of both ends in the axial direction of the journal bearing, there are provided two supply lines in which a plurality of throttle holes opened in the bearing surface are arranged in the circumferential direction, and circumferential grooves corresponding to the two supply lines are provided. An opening is provided in the bearing surface at the middle of the two supply lines so that the pressure is provided on the main shaft or the bearing surface of the bearing, and the pressure at the central portion in the axial direction of the bearing has a higher pressure distribution than the both ends. One or more supply lines in which a plurality of throttle holes are arranged in the circumferential direction are provided.

【0012】ジャーナル軸受の軸方向両端部近傍の円周
上に設けた2列の給気列に加えて、前記2列の給気列の
中間部の円周上にも1列または複数列の給気列を設けた
ことにより、ジャーナル軸受の軸方向中央部の圧力が両
端部よりも高い圧力分布となって軸受隙間の平均圧力が
高くなり、ジャーナル軸受の高周波領域での減衰性能が
改善され、主軸−軸受系の固有振動数付近の加振力に対
する静圧軸受スピンドルの振れを低減することができ
る。この結果、ダイレクトドライブ型静圧空気軸受スピ
ンドルの動特性を改善し、更に精度の高いスピンドルを
実現できる。
[0012] In addition to the two supply lines provided on the circumference in the vicinity of both ends in the axial direction of the journal bearing, one or more rows are provided on the circumference of the middle part of the two supply lines. By providing the air supply line, the pressure in the central part in the axial direction of the journal bearing becomes a pressure distribution higher than that at both ends, the average pressure in the bearing gap increases, and the damping performance of the journal bearing in the high frequency region is improved. In addition, it is possible to reduce the runout of the hydrostatic bearing spindle with respect to the exciting force near the natural frequency of the main shaft-bearing system. As a result, the dynamic characteristics of the direct drive type hydrostatic air bearing spindle can be improved, and a spindle with higher accuracy can be realized.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。尚、図7に示す従来構成と実質的に同
一の部材ないし部分にはすべての図を通じて同一の参照
符号を付して示すこととし、重複する説明は省略する。
Embodiments of the present invention will be described below with reference to the drawings. It is to be noted that substantially the same members or portions as those of the conventional configuration shown in FIG. 7 are denoted by the same reference numerals throughout all the drawings, and redundant description will be omitted.

【0014】図1はこの実施例に係わるダイレクトドラ
イブ型静圧空気軸受スピンドルを示している。この実施
例のダイレクトドライブ型静圧空気軸受スピンドルは、
従来構成と同様、主軸1を2個のジャーナル軸受7,8
および主軸1に一体に設けたスラスト板2の両面に対向
するスラスト軸受9,10によってハウジング3に対し
て非接触で支持している。主軸1にはモータロータ11
が一体に取り付けられ、ステータ12に通電すると主軸
1が回転するようになっている。
FIG. 1 shows a direct drive type hydrostatic air bearing spindle according to this embodiment. The direct drive type hydrostatic air bearing spindle of this embodiment is
As in the conventional configuration, the main shaft 1 is connected to two journal bearings 7, 8
In addition, the housing 3 is supported in a non-contact manner by thrust bearings 9 and 10 facing both surfaces of a thrust plate 2 provided integrally with the main shaft 1. The main shaft 1 has a motor rotor 11
Are attached integrally, and when the stator 12 is energized, the main shaft 1 rotates.

【0015】図2は、この実施例に係わる静圧空気軸受
スピンドルに属するジャーナル軸受7,8の拡大図を示
している。ジャーナル軸受7,8は、軸受スリーブ5,
6の軸方向両端部近傍に、軸受面に開口する複数個の微
細な絞り穴を円周方向に配置した2列の給気列13aを
設けるとともに、主軸1の外径面の前記2列の給気列1
3aに対向する位置に円周溝18aを設け、かつ、前記
2列の給気列13aの中間部(軸受スリーブ5,6の軸
方向中央部)に、軸受面に開口する複数個の微細な絞り
穴を円周方向に配置した1列の給気列13bを設けると
ともに、主軸1の外径面の前記中央部の給気列13bに
対向する位置に円周溝18bを設けたものである。更
に、前記中間部の給気列13bの絞り出口面積の総和
を、隣接する端部側の給気列13aの絞り出口面積の総
和よりも小さくしている。ここで給気列の絞り出口面積
とは、圧縮空気が絞り穴を通過する際に、圧縮空気の流
路断面積がもっとも小さくなり、実際に絞りとして作用
する部分の面積であり、通常は図3に示すように、絞り
穴41の断面43の面積(所謂オリフィス絞り)と、絞
り穴41の外周とそれと対向する軸受面または円周溝の
底面42で区切られる円筒面44の面積(所謂自成絞
り)のうち、小さい方の面積である。従って、ジャーナ
ル軸受7,8の軸方向中央部の給気列13bの絞り出口
面積の総和を、隣接する端部側の給気列13aの絞り出
口面積の総和よりも小さくするには、給気列13bの絞
り穴の直径を小さくする、給気列13bの絞り穴の数を
減らす、また、自成絞りの場合は、それに対向する円周
溝18bを浅くするか円周溝18bをなくすという3つ
の方法がある。
FIG. 2 is an enlarged view of the journal bearings 7 and 8 belonging to the hydrostatic air bearing spindle according to this embodiment. The journal bearings 7, 8 are
In the vicinity of both ends in the axial direction of No. 6, two rows of air supply rows 13a in which a plurality of fine throttle holes opening in the bearing surface are arranged in the circumferential direction are provided. Supply line 1
A circumferential groove 18a is provided at a position opposing the outer surface 3a, and a plurality of fine grooves opening in the bearing surface are provided at an intermediate portion (axial center portion of the bearing sleeves 5, 6) of the two supply lines 13a. One supply line 13b in which throttle holes are arranged in the circumferential direction is provided, and a circumferential groove 18b is provided on the outer diameter surface of the main spindle 1 at a position facing the supply line 13b at the center. . Further, the sum of the throttle outlet areas of the supply line 13b at the intermediate portion is smaller than the sum of the throttle outlet areas of the adjacent supply line 13a at the end. Here, the throttle outlet area of the air supply train is the area of the portion where the compressed air flow path cross-sectional area becomes the smallest when the compressed air passes through the throttle hole and actually acts as a throttle. As shown in FIG. 3, the area of the cross section 43 of the throttle hole 41 (so-called orifice throttle) and the area of the cylindrical surface 44 divided by the outer periphery of the throttle hole 41 and the bearing surface or the bottom surface 42 of the circumferential groove opposed thereto (so-called self-diaphragm). (Smaller stop). Therefore, in order to make the sum of the throttle outlet areas of the air supply rows 13b at the axially central portions of the journal bearings 7 and 8 smaller than the sum of the throttle outlet areas of the adjacent air supply rows 13a, To reduce the diameter of the throttle holes in the row 13b, reduce the number of throttle holes in the air supply row 13b, and in the case of self-generated throttle, make the circumferential groove 18b facing it shallow or eliminate the circumferential groove 18b. There are three ways.

【0016】この実施例のジャーナル軸受7,8は、従
来からある軸方向両端部近傍の2列の給気列13aに加
えて、軸方向中央部の円周上に給気列13bを設けたこ
とにより、軸受隙間における空気の流れの様子が、図4
(a)のようになるので(尚、図4(b)に従来のジャ
ーナル軸受の軸受隙間における空気の流れの様子を比較
として示す。)、図5に示すように、軸方向中央部の圧
力が両端部よりも高い圧力分布となって軸受隙間の平均
圧力が従来のジャーナル軸受よりも高くなり、下記のよ
うな理由でジャーナル軸受7,8の高周波領域での減衰
性能が改善され、主軸−軸受系の固有振動数付近の加振
力に対する静圧空気軸受スピンドルの振れを低減するこ
とができる。
In the journal bearings 7 and 8 of this embodiment, in addition to the conventional two supply lines 13a near both ends in the axial direction, an supply line 13b is provided on the circumference at the center in the axial direction. As a result, the state of the air flow in the bearing gap is shown in FIG.
4 (a) (FIG. 4 (b) shows a comparison of the state of air flow in the bearing gap of the conventional journal bearing), and as shown in FIG. Has a higher pressure distribution than both ends, so that the average pressure in the bearing gap is higher than that of the conventional journal bearing. For the following reasons, the damping performance of the journal bearings 7 and 8 in the high frequency region is improved, It is possible to reduce the run-out of the hydrostatic air bearing spindle due to the exciting force near the natural frequency of the bearing system.

【0017】即ち、主軸1が振動すると、給気列13
a,13bの絞り穴の作用で軸受隙間の圧力が変化し、
主軸1の変化に応じた軸受反力を発生する。静圧空気軸
受では軸受隙間が小さいので、軸受隙間内の空気は軸受
面とほとんど同じ温度になり、等温変化を行なうので、
圧力と密度は比例関係にある。主軸1の振動に伴う軸受
隙間内の局所的な空気の移動は、軸受隙間の容積の変化
分に対応する部分と、圧力変化に連動した空気の密度の
変化に対応する部分に分けられる。局所的な圧力(空気
の密度)の変化速度は、局所的な空気の質量流量と比例
関係にあるから、体積流量が一定の場合には、軸受隙間
の圧力(空気の密度)が高いほど質量流量が大きく、圧
力の変化が速い。従って、軸受隙間の圧力が高いほど、
ある圧力変化を短時間で終了することができる。これは
軸受反力の軸変位に対する遅れが小さいということであ
り、言い換えれば減衰に対するマイナスの効果が小さい
ということになる。
That is, when the main shaft 1 vibrates, the supply train 13
The pressure in the bearing gap changes due to the action of the throttle holes a and 13b,
A bearing reaction force corresponding to the change of the main shaft 1 is generated. In a static pressure air bearing, since the bearing gap is small, the air in the bearing gap has almost the same temperature as the bearing surface and changes isothermally.
Pressure and density are in a proportional relationship. The local movement of air in the bearing gap due to the vibration of the main shaft 1 is divided into a part corresponding to a change in the volume of the bearing gap and a part corresponding to a change in the density of air in conjunction with a change in pressure. Since the rate of change of the local pressure (air density) is proportional to the local mass flow rate of the air, if the volume flow rate is constant, the higher the pressure (air density) in the bearing gap, the higher the mass High flow rate and fast pressure change. Therefore, the higher the pressure in the bearing gap,
A certain pressure change can be completed in a short time. This means that the delay of the bearing reaction force with respect to the axial displacement is small, in other words, the negative effect on the damping is small.

【0018】また、軸受隙間の圧力が変化する際に、軸
受隙間内で空気の流動が生じ、この時の空気の粘性抵抗
によって軸の振動に対する減衰力となる。振動の周波数
が高くなると、軸受隙間の変化が速くなり、軸受の中央
付近の空気は追従できず、流動せずにその場で圧縮・膨
張するようになる。従って、空気の流動に伴う粘性力は
小さくなり、減衰係数が小さくなる。特にジャーナル軸
受の軸方向中央部分ではこの傾向が強い。
When the pressure in the bearing gap changes, air flows in the bearing gap, and the viscous resistance of the air at this time becomes a damping force against vibration of the shaft. When the frequency of the vibration increases, the change in the bearing gap becomes faster, and air near the center of the bearing cannot follow, and is compressed and expanded in place without flowing. Therefore, the viscous force associated with the flow of the air decreases, and the damping coefficient decreases. This tendency is particularly strong in the axial center portion of the journal bearing.

【0019】本実施例においては、ジャーナル軸受7,
8の軸方向中央部に給気列13bや円周溝18bを設け
たため、軸受の中央付近の空気が給気列13bの絞り穴
や円周溝18bに出入りすることによって比較的周波数
の高い振動に対しても流動を生じやすくなり、高周波領
域でのジャーナル軸受7,8の減衰係数が大きくなる。
また、給気列13a,13bの数や円周溝18a,18
bの深さによって空気の流動し易さが変化するので、主
軸−軸受系の固有振動数に応じて給気列13a,13b
の数や円周溝18a,18bの深さを設定することがで
きる。
In this embodiment, the journal bearings 7,
8, the air supply line 13b and the circumferential groove 18b are provided at the axial center, so that air near the center of the bearing flows into and out of the throttle hole and the circumferential groove 18b of the air supply line 13b, so that vibration having a relatively high frequency is generated. Therefore, the flow tends to occur, and the damping coefficient of the journal bearings 7 and 8 in the high frequency region increases.
Further, the number of the supply lines 13a, 13b and the circumferential grooves 18a, 18
Since the ease of air flow changes depending on the depth of b, the air supply trains 13a and 13b are set according to the natural frequency of the main shaft-bearing system.
And the depth of the circumferential grooves 18a and 18b can be set.

【0020】一方、静剛性については、静剛性が最大と
なる最適な給気列13a,13bの絞り穴の出口圧力と
軸受給気圧との圧力比が存在し、給気圧に対して給気列
13a,13bの絞り穴の出口圧力が高すぎると、軸受
隙間全体の圧力が上がり、上記の圧力比を実現すること
ができなくなり、静剛性が低下する。このため、圧力の
上がり易い軸受の軸方向中央部の圧力上昇を必要最低限
に押える必要がある。この点、本発明の実施例において
は、圧力の上がり易い軸受の軸方向中央部の給気列13
bの絞り出口面積の総和を、隣接する端部側の給気列1
3aよりも小さくしたため、2列給気の場合の給気列間
の圧力の落ち込みを補って、高周波領域での減衰係数を
高めるために最小限度の軸受隙間平均圧力の上昇を実現
することができる。従って、静圧空気軸受スピンドルの
静剛性を維持しながら動特性を改善することができる。
On the other hand, regarding the static rigidity, there is an optimal pressure ratio between the outlet pressure of the throttle hole of the air supply line 13a, 13b and the air supply pressure of the bearing at which the static rigidity is maximum. If the outlet pressure of the throttle holes 13a and 13b is too high, the pressure in the entire bearing gap increases, and the above-described pressure ratio cannot be realized, and the static rigidity decreases. For this reason, it is necessary to suppress the pressure rise at the axial center of the bearing, where the pressure tends to rise, to the minimum necessary. In this respect, in the embodiment of the present invention, the supply line 13 at the axial center portion of the bearing in which the pressure tends to rise
b, the sum of the throttle outlet areas is calculated by dividing
Since it is smaller than 3a, it is possible to compensate for the pressure drop between the air supply lines in the case of two-line air supply and realize a minimum increase in the average bearing clearance pressure in order to increase the damping coefficient in the high frequency region. . Therefore, the dynamic characteristics can be improved while maintaining the static rigidity of the hydrostatic air bearing spindle.

【0021】以上のように、本発明の実施例に係るダイ
レクトドライブ型静圧空気軸受スピンドルにおいては、
ジャーナル軸受7,8の減衰性能が改善され、モータに
起因する主軸−軸受系の固有振動数に近い比較的高周波
領域での振動が発生しても、十分な主軸の振れ精度を実
現できる。
As described above, in the direct drive type hydrostatic air bearing spindle according to the embodiment of the present invention,
The damping performance of the journal bearings 7 and 8 is improved, and sufficient vibration accuracy of the main shaft can be realized even when vibration occurs in a relatively high frequency range near the natural frequency of the main shaft-bearing system due to the motor.

【0022】図6は、同一の主軸1を用いた従来のダイ
レクトドライブ型静圧空気軸受スピンドルと本発明の実
施例に係るダイレクトドライブ型静圧空気軸受スピンド
ルのコンプライアンス(剛性の逆数で、加振力の大きさ
に対する主軸1の振れの大きさの比を表す。)を、加振
力の周波数を横軸にとって比較したものである。コンプ
ライアンスが小さいほど、同一の加振力に対して主軸1
の振れが小さく、高精度なスピンドルである。本発明の
実施例に関するスピンドルは、ジャーナル軸受7,8に
3列の給気列13a,13bを設け、中央部の給気列1
3bにも円周溝18bを設けたもの(3列給気3列円周
溝)と、中央部の給気列13bには円周溝18bを設け
ないもの(3列給気2列円周溝)のコンプライアンスを
示す。固有振動数は、従来のスピンドルでは900Hz
〜1500Hz付近、本発明のスピンドルでは1100
Hz〜1600Hz付近である。本発明のスピンドル
は、0Hz近傍のコンプライアンス(静剛性の逆数)は
従来のものに比べて十数%小さいだけだが、固有振動数
での最大値を比較すると従来のものの約1/2になって
おり、高周波領域での本発明の効果があらわれている。
また、本発明の2種類を比較すると、中央の給気列13
bに円周溝18bを設けることにより、コンプライアン
スは約1600Hzを境としてそれ以上の高周波領域で
は小さくなり、低周波領域では大きくなる。つまり、主
要な加振力や固有振動数の周波数に応じて円周溝18b
の諸元を変更してその周波数でのコンプライアンスを小
さくすることができる。
FIG. 6 shows the compliance between the conventional direct-drive type hydrostatic air bearing spindle using the same spindle 1 and the direct-drive type hydrostatic air bearing spindle according to the embodiment of the present invention. The ratio of the magnitude of the deflection of the main shaft 1 to the magnitude of the force.) Is compared with the frequency of the exciting force on the horizontal axis. The smaller the compliance, the more the spindle 1 for the same excitation force
This is a high-precision spindle with small runout. In the spindle according to the embodiment of the present invention, three supply lines 13a and 13b are provided on the journal bearings 7 and 8, and the supply line 1 in the center is provided.
3b is also provided with a circumferential groove 18b (three-row air supply three-row circumferential groove), and is provided with a circumferential groove 18b in the central air supply row 13b (three-row air supply two-row circumferential groove). Groove) compliance. The natural frequency is 900Hz with the conventional spindle
Around 1500 Hz, 1100 for the spindle of the present invention.
Hz to around 1600 Hz. The spindle of the present invention has a compliance (reciprocal of static stiffness) near 0 Hz that is only 10% smaller than that of the conventional one, but is about half that of the conventional one when the maximum value at the natural frequency is compared. Thus, the effect of the present invention in a high-frequency region is exhibited.
Also, comparing the two types of the present invention, it is found that the central air supply line 13
By providing the circumferential groove 18b in b, the compliance becomes smaller in a high frequency region above about 1600 Hz and becomes larger in a low frequency region. In other words, the circumferential groove 18b depends on the frequency of the main excitation force and the natural frequency.
Can be changed to reduce the compliance at that frequency.

【0023】また、本発明ではジャーナル軸受7,8の
軸方向中央部に給気列13bを設けることによって軸受
空気流量が増加する。このため、外部から供給される空
気による軸受部の冷却効果が大きくなり、軸を高速で回
転させた場合でも、軸受部の温度上昇が小さくなる。
Further, in the present invention, by providing the air supply line 13b at the axial center of the journal bearings 7, 8, the bearing air flow rate is increased. For this reason, the cooling effect of the bearing part by the air supplied from the outside is increased, and the temperature rise of the bearing part is reduced even when the shaft is rotated at a high speed.

【0024】尚、前記実施例に係る静圧空気軸受スピン
ドルでは、ジャーナル軸受7,8に3列の給気列13
a,13bを設けているが、本発明の静圧空気軸受スピ
ンドルに属するジャーナル軸受7,8の給気列は3列に
限定されるものではなく、3列以上、例えば図7に示す
ように、5列の給気列13c,13d,13eを設け、
かつ、主軸1の外径面に5列の給気列13c,13d,
13eに対向する5列の円周溝18c,18d,18e
を設けることも可能である。この場合、中央の給気列1
3eの絞り出口面積の総和を隣接する端部側の給気列1
3dの絞り出口面積の総和よりも小さくするとともに、
給気列13dの絞り出口面積の総和を隣接する端部側の
給気列13cの絞り出口面積の総和よりも小さくする。
但し、給気列の数が奇数の場合、中央の給気列からは軸
方向両側に向かって圧縮空気が流れるので、中央の給気
列の絞り出口面積の総和は、その端部側に隣接する給気
列の絞り出口面積の総和よりも小さくする。
Incidentally, in the hydrostatic air bearing spindle according to the above-described embodiment, three supply lines 13 are provided in the journal bearings 7 and 8.
a and 13b are provided, but the supply line of the journal bearings 7 and 8 belonging to the hydrostatic air bearing spindle of the present invention is not limited to three lines, but three or more lines, for example, as shown in FIG. , Five supply lines 13c, 13d, 13e are provided,
In addition, five supply lines 13c, 13d,
13e, five rows of circumferential grooves 18c, 18d, 18e
It is also possible to provide. In this case, the central supply line 1
3e is the sum of the throttle outlet areas and the adjacent end-side supply line 1
While making it smaller than the sum of the 3d throttle exit areas,
The total sum of the throttle outlet areas of the air supply line 13d is made smaller than the total sum of the throttle outlet areas of the adjacent end side air supply line 13c.
However, if the number of supply lines is odd, compressed air flows from the center supply line toward both sides in the axial direction, so that the sum of the throttle outlet areas of the center supply line is adjacent to the end side. To be smaller than the total sum of the throttle outlet areas of the supply air trains.

【0025】図8は、本発明のダイレクトドライブ型静
圧空気軸受スピンドルの他の実施例を示している。この
実施例のダイレクトドライブ型静圧空気軸受スピンドル
は、ハウジング3の両端にスラスト軸受9,10を設
け、それぞれのスラスト軸受9,10に対向する2枚の
スラスト板2を主軸1に固定している。また、ジャーナ
ル軸受7,8の円周溝18fは軸方向両端部の2列の給
気列13fにのみ設け、中央部の2列の給気列13gに
は溝を設けていない。この実施例は、主軸−軸受系の固
有振動数が比較的小さい場合に適している。
FIG. 8 shows another embodiment of the direct drive type hydrostatic air bearing spindle of the present invention. In the direct drive type hydrostatic air bearing spindle of this embodiment, thrust bearings 9 and 10 are provided at both ends of a housing 3, and two thrust plates 2 facing the respective thrust bearings 9 and 10 are fixed to the main shaft 1. I have. Further, the circumferential grooves 18f of the journal bearings 7, 8 are provided only in the two supply lines 13f at both ends in the axial direction, and no grooves are provided in the two supply lines 13g at the center. This embodiment is suitable when the natural frequency of the main shaft-bearing system is relatively small.

【0026】また、以上実施例ではジャーナル軸受7,
8の内径側の軸受面に給気列13a〜13gを設け、か
つ、主軸1の外周面に円周溝18a〜18fを設けてい
るが、給気列を主軸1の外周面に設けたり、或いは、円
周溝をジャーナル軸受7,8の内径側の軸受面に設けて
も良い。
In the above embodiment, the journal bearings 7,
8, air supply rows 13 a to 13 g are provided on the bearing surface on the inner diameter side, and circumferential grooves 18 a to 18 f are provided on the outer peripheral surface of the main spindle 1. Alternatively, a circumferential groove may be provided on the bearing surface on the inner diameter side of the journal bearings 7 and 8.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
ジャーナル軸受の軸方向両端部近傍の円周上に設けた2
列の給気列に加えて、前記2列の給気列の中間部の円周
上にも1列または複数列の給気列を設けたので、ジャー
ナル軸受の軸方向中央部の圧力が両端部よりも高い圧力
分布となって軸受隙間の平均圧力が高くなり、ジャーナ
ル軸受の高周波領域での減衰性能が改善され、主軸−軸
受系の固有振動数付近の加振力に対する静圧軸受スピン
ドルの振れを低減することができ、これによりダイレク
トドライブ型静圧軸受スピンドルの動特性を改善し、高
い精度のスピンドルを実現できる。また、中間部の各給
気列の絞り出口面積の総和を軸受の中央寄りの給気列ぼ
と小さくしたので、高周波領域での減衰係数を高めるた
めに最小限度の軸受隙間平均圧力の上昇を実現すること
ができ、これによりダイレクトドライブ型静圧軸受スピ
ンドルの静剛性を低下させることなく動特性を改善し、
更に高い精度のスピンドルを実現できる。また、ジャー
ナル軸受の圧縮空気流量が増加し、軸受の冷却効果が高
まる。更に、軸受部の温度上昇を低減できるとともに、
必要な加工技術は従来のものとまったく同じであり、上
記の効果を低コストで実現できる。
As described above, according to the present invention,
2 provided on the circumference near the both ends in the axial direction of the journal bearing
In addition to the two supply lines, one or more supply lines are also provided on the circumference of the middle part of the two supply lines, so that the pressure at the axial center of the journal bearing is increased at both ends. The pressure distribution is higher than that of the bearing part, the average pressure in the bearing gap increases, the damping performance in the high frequency region of the journal bearing is improved, and the hydrostatic bearing spindle responds to the excitation force near the natural frequency of the main shaft-bearing system. Runout can be reduced, thereby improving the dynamic characteristics of the direct drive type hydrostatic bearing spindle and realizing a spindle with high accuracy. Also, the total sum of the throttle outlet area of each air supply line in the middle part is made smaller than that of the air supply line near the center of the bearing, so the minimum increase in the bearing gap average pressure must be minimized in order to increase the damping coefficient in the high frequency range. The dynamic characteristics can be improved without reducing the static rigidity of the direct drive type hydrostatic bearing spindle,
A spindle with higher accuracy can be realized. Further, the compressed air flow rate of the journal bearing increases, and the cooling effect of the bearing increases. Furthermore, the temperature rise of the bearing can be reduced,
The required processing technology is exactly the same as the conventional one, and the above effects can be realized at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係わるダイレクトドライブ型
静圧空気軸受スピンドルの縦断面図である。
FIG. 1 is a longitudinal sectional view of a direct-drive type hydrostatic air bearing spindle according to an embodiment of the present invention.

【図2】本発明の実施例に係わる静圧空気軸受スピンド
ルに属するジャーナル軸受の拡大図である。
FIG. 2 is an enlarged view of a journal bearing belonging to the hydrostatic air bearing spindle according to the embodiment of the present invention.

【図3】絞り出口面積の説明図である。FIG. 3 is an explanatory diagram of a throttle exit area.

【図4】本発明(3列給気)と従来(2列給気)の空気
の流れの様子を示す軸受面(半分)の展開図である。
FIG. 4 is a developed view of a bearing surface (half) showing an air flow state of the present invention (three-row air supply) and a conventional (two-row air supply).

【図5】本発明(3列給気)と従来(2列給気)の軸受
隙間(半分)における圧力分布を示す線図である。
FIG. 5 is a diagram showing a pressure distribution in a bearing gap (half) of the present invention (three-row air supply) and a conventional (two-row air supply).

【図6】本発明(3列給気)と従来(2列給気)のコン
プライアンスを比較する線図である。
FIG. 6 is a diagram comparing the compliance between the present invention (three-row air supply) and the conventional (two-row air supply) compliance.

【図7】本発明の実施例に係わる静圧空気軸受スピンド
ルに属するジャーナル軸受の他の例の拡大図である。
FIG. 7 is an enlarged view of another example of the journal bearing belonging to the hydrostatic air bearing spindle according to the embodiment of the present invention.

【図8】本発明の他の実施例の縦断面図である。FIG. 8 is a longitudinal sectional view of another embodiment of the present invention.

【図9】従来のダイレクトドライブ型静圧空気軸受スピ
ンドルの縦断面図である。
FIG. 9 is a longitudinal sectional view of a conventional direct-drive type hydrostatic air bearing spindle.

【符号の説明】[Explanation of symbols]

1 主軸 2 スラスト板 3 ハウジング 4〜6 軸受スリーブ 7,8 ジャーナル軸受 9,10 スラスト軸受 11 モータロータ 12 モータステータ 13,13a〜13g ジャーナル軸受の給気列 14 スラスト軸受の給気列 15 軸受給気口 16 給気通路 17 排気通路 18,18a〜18f 円周溝 DESCRIPTION OF SYMBOLS 1 Main shaft 2 Thrust plate 3 Housing 4-6 Bearing sleeve 7,8 Journal bearing 9,10 Thrust bearing 11 Motor rotor 12 Motor stator 13,13a-13g Supply line of journal bearing 14 Supply line of thrust bearing 15 Bearing supply port 16 air supply passage 17 exhaust passage 18, 18a-18f circumferential groove

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 静圧空気ジャーナル軸受および静圧空気
スラスト軸受によって、固定部に対して非接触で支持さ
れる主軸に、モータロータを取付けて直接駆動するダイ
レクトドライブ型静圧空気軸受スピンドルにおいて、前
記ジャーナル軸受の軸方向両端部近傍の軸受面に開口す
る複数個の絞り穴を円周方向配置した2列の給気列を設
けるとともに、該2列の給気列に対応する円周溝を主軸
または該軸受の軸受面に設け、かつ、該軸受の軸方向中
央部の圧力が両端部よりも高い圧力分布となるように、
前記2列の給気列の中間部に、軸受面に開口する複数個
の絞り穴を円周方向に配置した1列または複数列の給気
列を設けたことを特徴とする静圧空気軸受スピンドル。
1. A direct-drive type hydrostatic air bearing spindle, wherein a motor rotor is mounted directly on a main shaft supported by a static pressure air journal bearing and a static pressure air thrust bearing in a non-contact manner with respect to a fixed portion, and Two supply lines are provided in which a plurality of throttle holes are circumferentially arranged in the bearing surface near both ends in the axial direction of the journal bearing, and circumferential grooves corresponding to the two supply lines are provided on the main shaft. Or provided on the bearing surface of the bearing, and such that the pressure in the axial center portion of the bearing has a higher pressure distribution than both ends,
A hydrostatic air bearing having one or a plurality of air supply rows in which a plurality of throttle holes opening in a bearing surface are arranged in a circumferential direction at an intermediate portion between the two air supply rows. spindle.
【請求項2】 前記ジャーナル軸受の中間部の給気列に
対向する円周溝を主軸または該軸受の軸受面に設けたこ
とを特徴とする請求項1の静圧空気軸受スピンドル。
2. The hydrostatic air bearing spindle according to claim 1, wherein a circumferential groove facing the air supply line at an intermediate portion of said journal bearing is provided on a main shaft or a bearing surface of said bearing.
【請求項3】 前記ジャーナル軸受の中間部の給気列の
各列毎の絞り出口面積の総和が、軸受の中央寄りの給気
列ほど小さいことを特徴とする請求項1または2の静圧
空気軸受スピンドル。
3. The static pressure of claim 1 or 2, wherein the sum of the throttle outlet areas of each supply line in the middle portion of the journal bearing is smaller in the supply line closer to the center of the bearing. Air bearing spindle.
【請求項4】 前記ジャーナル軸受の中央寄りの給気列
の絞り穴の直径が隣接する端部側の給気列の絞り穴の直
径より小さいことを特徴とする請求項3の静圧空気軸受
スピンドル。
4. The hydrostatic air bearing according to claim 3, wherein the diameter of the throttle hole of the air supply line near the center of the journal bearing is smaller than the diameter of the throttle hole of the air supply line on the adjacent end side. spindle.
【請求項5】 前記ジャーナル軸受の中央寄りの給気列
の絞り穴の数が隣接する端部側の給気列の絞り穴の数よ
り少ないことを特徴とする請求項3の静圧空気軸受スピ
ンドル。
5. The hydrostatic air bearing according to claim 3, wherein the number of throttle holes in the supply line near the center of the journal bearing is smaller than the number of throttle holes in the supply line at the adjacent end. spindle.
【請求項6】 前記ジャーナル軸受の中央寄りの給気列
の円周溝の深さが隣接する端部側の給気列の円周溝の深
さより浅いか、中央寄りの給気列には円周溝を設けない
ことを特徴とする請求項3の静圧空気軸受スピンドル。
6. A method according to claim 1, wherein the depth of the circumferential groove of the air supply line closer to the center of the journal bearing is smaller than the depth of the circumferential groove of the air supply line on the adjacent end portion. 4. The hydrostatic air bearing spindle according to claim 3, wherein no circumferential groove is provided.
JP25037596A 1996-09-20 1996-09-20 Hydrostatic air bearing spindle Expired - Fee Related JP3862326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25037596A JP3862326B2 (en) 1996-09-20 1996-09-20 Hydrostatic air bearing spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25037596A JP3862326B2 (en) 1996-09-20 1996-09-20 Hydrostatic air bearing spindle

Publications (2)

Publication Number Publication Date
JPH1096423A true JPH1096423A (en) 1998-04-14
JP3862326B2 JP3862326B2 (en) 2006-12-27

Family

ID=17206989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25037596A Expired - Fee Related JP3862326B2 (en) 1996-09-20 1996-09-20 Hydrostatic air bearing spindle

Country Status (1)

Country Link
JP (1) JP3862326B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099523A (en) * 2009-11-06 2011-05-19 Mitaka Koki Co Ltd Rotary encoder control type air spindle
CN107725592A (en) * 2017-09-30 2018-02-23 中国工程物理研究院机械制造工艺研究所 A kind of air-float turntable of narrow annular channel throttling
CN108194507A (en) * 2018-01-26 2018-06-22 中国计量大学 A kind of non-uniform Distribution variable orifice diameter is radial gas bearing provided
CN111120512A (en) * 2020-01-10 2020-05-08 中国工程物理研究院机械制造工艺研究所 Throttle air bearing and fast axle servo based on this bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099523A (en) * 2009-11-06 2011-05-19 Mitaka Koki Co Ltd Rotary encoder control type air spindle
CN107725592A (en) * 2017-09-30 2018-02-23 中国工程物理研究院机械制造工艺研究所 A kind of air-float turntable of narrow annular channel throttling
CN108194507A (en) * 2018-01-26 2018-06-22 中国计量大学 A kind of non-uniform Distribution variable orifice diameter is radial gas bearing provided
CN111120512A (en) * 2020-01-10 2020-05-08 中国工程物理研究院机械制造工艺研究所 Throttle air bearing and fast axle servo based on this bearing

Also Published As

Publication number Publication date
JP3862326B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
JP4146151B2 (en) Hydrostatic gas bearing and spindle device using the same
US7388308B2 (en) Spindle device
CN105108180A (en) Motorized spindle structure of numerical control lathe
US7078839B2 (en) Self-bearing step motor and its control method
JP3652187B2 (en) Fluid bearing
JP3448416B2 (en) Built-in motor
CN107263215A (en) A kind of eccentricity compensation system for electrical spindle for machine tool
JPH1096423A (en) Static pressure air bearing spindle
JPH09163677A (en) Spindle motor
EP0794344B1 (en) High speed rotor assembly
JP2562456B2 (en) Air bearing electric motor
JPH0220733B2 (en)
Morrison Bearingless switched reluctance motor
JPH085373Y2 (en) Air turbine driven static pressure gas bearing spindle
JP2531837Y2 (en) High-speed hydrostatic gas bearing device
JP2004114254A (en) Spindle device
JP2544876Y2 (en) Hydrostatic gas bearing device
JPH0610945A (en) Dynamic pressure bearing and rotating polygon mirror device using this
GB2235259A (en) Spindle assembly with externally pressurised gas bearing
JP3056495B2 (en) Rotating device
Tsunoda et al. Combination of Oil Film Bearing and Bearingless Motor for High Load Capacity and Stable Rotation
JPH03292414A (en) Air bearing for high speed revolution
JPH10239102A (en) Spindle device with encoder
JP2517557Y2 (en) Hydrostatic bearing for spindle device
JP3100346B2 (en) Turbo molecular pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060227

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060302

A521 Written amendment

Effective date: 20060427

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060825

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060926

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20121006

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees