JP4023031B2 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
JP4023031B2
JP4023031B2 JP15155799A JP15155799A JP4023031B2 JP 4023031 B2 JP4023031 B2 JP 4023031B2 JP 15155799 A JP15155799 A JP 15155799A JP 15155799 A JP15155799 A JP 15155799A JP 4023031 B2 JP4023031 B2 JP 4023031B2
Authority
JP
Japan
Prior art keywords
hydrostatic bearing
stator
rotor
peripheral surface
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15155799A
Other languages
Japanese (ja)
Other versions
JP2000341908A (en
Inventor
光郎 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP15155799A priority Critical patent/JP4023031B2/en
Publication of JP2000341908A publication Critical patent/JP2000341908A/en
Application granted granted Critical
Publication of JP4023031B2 publication Critical patent/JP4023031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は回転電機に関し、特に、極低慣性高速回転電機に適用して有用なものである。
【0002】
【従来の技術】
回転子の慣性は回転子径の4乗に比例し、回転子の軸方向長さの1乗に比例する。よって、極低慣性高速回転電機では回転子を極低慣性にするために回転子径を極力小さく設計するが、このことにより、コイル部の発熱密度が極端に大きくなる。そこで、かかる極低慣性高速回転電機においては、固定子部では固定子外周のフレームをウォータジャケットにし、また、回転子部では回転軸の中心に設けた流路にシール装置を介して冷却水を流すことにより、コイル部の高発熱密度に対応している。
【0003】
特に、自動車関連製品の開発、試験においては、エンジンと同等の低慣性、高速、大トルクの回転電機(ダイナモメータ)の出現が望まれている。図13にはその一例を示す。同図に示す回転電機1は三相誘導電動機であり、固定子2の外周のフレーム3は流路3aが形成されてウォータジャケットとなっており、冷却水が流路3aの一端側から供給されて他端側から排出されるようになっている。また、回転子4の回転軸5の中心部には2重の流路5a,5bが設けられており、冷却水が内側の流路5bを左端側から右端側へと流れた後、外側の流路5aを右端側から左端側へと流れて排出されるようになっている。
【0004】
また、直接冷却式の回転電機としては、図14に示すような構成のものが従来から知られている。即ち、図14に示す回転電機11では、固定子12に流路13が形成されており、冷却液(水又は油)が、フレーム14の一端側から機内へ供給され、固定子12と回転子15との間のギャップ部16と流路13とに分流して軸方向にそれぞれ流れた後、合流して、フレーム14の他端側から排出されるようになっている。また、回転軸19の両端部を回転自在に支持する軸受17,18に対しても、潤滑油を循環させるようになっている。
【0005】
【発明が解決しようとする課題】
しかしながら、図13に示す回転電機1では、次の▲1▼〜▲4▼の問題点を有している。
【0006】
▲1▼ 回転子4の冷却水(流路5a,5bを流れる冷却水)と回転子4との接触面積が小さくて、熱伝達抵抗が大きい。
▲2▼ 固定子2の冷却水(フレーム3の流路3aを流れる冷却水)から発熱源である固定子コイル6までの距離が長くて、熱伝導抵抗が大きい。
▲3▼ 上記▲1▼,▲2▼の理由により冷却能力が低いため、回転電機1の高出力化が図れない。
▲4▼ 低慣性にするために回転子4を細長くしているため、回転子4の曲げ剛性が小さくて回転子4のクリチカル、即ち、危険速度(固有振動数)が低くなる。このため、回転数使用範囲の制約を受けて高回転とすることができない。換言すれば、高回転とするには曲げ剛性を維持するために回転軸5をあまり細長くすることができず、低慣性化の限界をきたしていた。
【0007】
一方、図14に示す回転電機11では、冷却液(水又は油)と回転子16との接触面積が大きく、また、固定子コイル20を直接冷却するため、上記▲1▼〜▲3▼の問題点は概ね解決することができるが、上記▲4▼の問題点は有している。また、次の▲1▼,▲2▼の問題点も有している。
【0008】
▲1▼ 機内の冷却液はギャップ部16と流路13とに分流されて固定子側と回転子側とをそれぞれ冷却するため、機内の冷却効率が悪い。
▲2▼ 機内の冷却油系統と軸受17,18の冷却油(潤滑油)系統とが完全に分離されているため、冷却油系統の構成が複雑である。
【0009】
従って本発明は上記従来技術に鑑み、回転子の曲げ剛性を高めて回転子のクリチカルを上げること、機内の冷却効率を高めること、潤滑液系統の構成を簡単にすることなどが可能な回転電機を提供することを課題とする。
【0011】
【課題を解決するための手段】
上記課題を解決する第1発明の回転電機は、固定子と回転子とを有し、回転軸の軸方向両端部を軸受により回転自在に支持した回転電機において、
固定子鉄心の軸方向中間部に、前記回転子の軸方向中間部を回転自在に支持する中間静圧軸受を設け、
前記中間静圧軸受に対して外部から供給される潤滑液が、前記中間静圧軸受の外周面側から前記中間静圧軸受に形成した流路を通って前記中間静圧軸受の内周面側へと供給された後、分流して、前記固定子と前記回転子とのギャップ部を軸方向両側へとそれぞれ流れ、固定子コイルの両端部をそれぞれ通って前記固定子鉄心の外周部へと至り、フレーム内周部と前記固定子鉄心外周部との間に形成した戻り流路を通って軸方向中間部へと流れ、ここで合流して、外部へと排出されるように構成したことを特徴とする。
【0012】
また、第発明の回転電機は、第発明の回転電機において、
前記軸方向両端部の軸受は静圧軸受であり、これらの静圧軸受に対して外部から供給される潤滑油が、同静圧軸受の外周面側から同静圧軸受に形成した流路を通って同静圧軸受の内周面側へと供給された後、前記固定子コイルの両端部へとそれぞれ流入し、ここで前記中間静圧軸受に供給された潤滑液と合流して、この潤滑液とともに流れるように構成したことを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき詳細に説明する。
【0017】
[実施の形態1]
図1は本発明の実施の形態1に係る回転電機の断面図、図2は図1のA部拡大図、図3は図1のB部拡大図、図4は図1のC部拡大図、図5は中間静圧軸受の正面図、図6(a)は図5のD−D線矢視断面図、図6(b)は図5のE−E線矢視断面図、図7は固定子コイルの斜視図である。
【0018】
<構成>
図1に示す回転電機1は三相誘導電動機であり、固定子22と回転子23とを有している。回転子23は、回転軸26に固定された回転子鉄心(積層鉄心)25のスロット(貫通孔)29に回転子バー24を貫通させ、この回転子バー24の両端をエンドリング59,60で短絡してなるかご形の回転子である。そして、図1及び図2に示すように、回転子鉄心25の軸方向中間部には回転子鉄心25と同芯、同径に製作された静圧軸受ジャーナル27が設けられている。回転子バー24は静圧軸受ジャーナル27のスロット(貫通孔)28も貫通している。
【0019】
また、図1に示すように、回転軸26の軸方向両端部にも静圧軸受ジャーナル30,31がそれぞれ設けられており、これの静圧軸受ジャーナル30,31を介して、回転軸26の軸方向両端部が直結側静圧軸受32と反直結側静圧軸受33とにより回転自在に支持されている。
【0020】
図3に示すように、直結側静圧軸受32には、外周面側から内周面側へと通じる径方向の流路34が形成され、直結側のブラケット57には、外側から内側へと通じる軸方向の流路35が形成されている。また、ブラケット57には直結側静圧軸受32の流路34に通じる給油孔37が設けられている。図4に示すように、反直結側静圧軸受33には、外周面側から内周面側へと通じる径方向の流路38が形成され、反直結側のブラケット58には、外側から内側へと通じる軸方向の流路39が形成されている。また、ブラケット58には反直結静圧軸受33の流路38に通じる給油孔41が設けられている。
【0021】
一方、図1に示すように、固定子22は固定子鉄心(積層鉄心)44に形成されたオープンスロット(コイル幅とほぼ同じ開口幅のスロット)43に固定子コイル42を嵌合してなるものである。固定子コイル42は、図7に示すように予め亀甲形に形成されたフルコイル式のものであり、固定子鉄心44の内側からオープンスロット43に嵌め込まれる。このオープンスロット43に嵌め込んだ固定子コイル42は図示しないクサビをオープンスロット43に軸方向から打ち込んで固定する。
【0022】
そして、図1及び図2に示すように、固定子鉄心44の軸方向中間部には、回転子23の軸方向中間部を回転自在に支持する中間静圧軸受45が設けられている。この中間静圧軸受45にもオープンスロット46が形成されており、固定子コイル42は、このオープンスロット46にも嵌合されている。なお、中間静圧軸受45及び静圧軸受ジャーナル27は、これらが交番磁界中にあるため材質を非磁性(銅合金、テフロン等)とし、且つ、中間静圧軸受45の内周面と静圧軸受ジャーナル27の外周面とを平滑にして万一接触しても大事に至らないように配慮されている。
【0023】
また、図5及び図6に示すように、中間静圧軸受45は裏金部である外輪47と軸受ブッシュ部である内輪48とに分割されている。外輪47の内周部には前述のオープンスロット46が形成されている。一方、内輪48は周方向に4つのセグメント48a,48a,48c,48dに分割され、且つ、これらのセグメント48a,48b,48c,48dの分割面48a−1,48b−1,48c−1,48d−1はそれぞれ平行を成している。このため、内輪48は固定子鉄心44の内側から装着することができる。
【0024】
つまり、内輪48を外輪47に装着する場合、固定子鉄心44と外輪47のオープンスロット43,46に固定子コイル42を嵌合した後、固定子鉄心44の内側(外輪47の内側)から、まず、セグメント48a,48bを装着し、その後、他のセグメント48c,48dも、セグメント48a,48bと干渉することなく、図5中に一点鎖線で示す状態から実線で示す状態に装着することができる。また、内輪48の内周面には図6に示すように油圧ポケット(凹部)54が形成されている。
【0025】
なお、内輪48の各セグメント48a,48b,48c,48dの分割面同士及び内輪48と外輪47は、オープンスロット43,46に嵌合した固定子コイル42に樹脂を含浸させるときに同樹脂によって接着される。
【0026】
また、中間静圧軸受45には、外周面側から内周面側へと通じる径方向の流路49が4箇所に形成されている。これらの流路49は、図1に示すようにフレーム50に設けられた給油孔51に通じている。なお、図1中の53は油漏れを防ぐためのOリングである。
【0027】
また、図1及び図2に示すように、フレーム50の内周部と固定子鉄心44の外周部との間には潤滑油の戻り流路(溝)52が軸方向に沿って複数形成されている。この戻り流路52はフレーム50に設けられた排油孔55に通じている。なお、戻り流路52は、図示例ではフレーム50側に形成しているが、固定子鉄心44側に形成してもよい。
【0028】
また、図1及び図2に示すように、中間静圧軸受45の内周には油圧ポケット54が設けられていて、その両端部は固定子鉄心44の内周面よりも回転子側に僅かに突出している。従って、この部分が固定子22と回転子23とのギャップ部56において最も狭くなっており、同部分で静圧を維持している。但し、同部分の隙間は直結側静圧軸受32及び反直結側静圧軸受33のクリアランス部36,40よりも広くしておくほうがよい。これは、直結側静圧軸受側及び反直結側静圧軸受側の流路抵抗よりも、中間静圧軸受側の流路抵抗の方が小さくなるようにして、中間静圧軸受側に供給される潤滑油のほうが多くなるようにすることにより、機内の冷却に必要な流量を確保するためである。
【0029】
また、固定子鉄心44の内周面及び回転子鉄心25の外周面は、潤滑油の粘性による動力損を低減するために極力凹凸をなくして平滑にする。
【0030】
また、油圧ポケット54内の油圧を一定値以上に保持するため、供給する潤滑油の量を必要に応じて増減する。このため、フレーム50の給油孔51及び中間静圧軸受45の流路49は4箇所に限らず、予備も設けておくことが望ましい。
【0031】
<作用・効果>
上記構成の回転電機1によれば、固定子鉄心44の軸方向中間部に、回転子23の軸方向中間部を回転自在に支持する中間静圧軸受45を設けたため、両側の直結側静圧軸受32と反直結静圧軸受33のみによって回転子23を支持する場合に比べて、回転子23の曲げ剛性が著しく高くなり、回転子23のクリチカルを上げることができる。このため、回転子23は従来の回転子よりも細長くすることができ、更なる低慣性化と高速化とを実現することができる。
【0032】
また、図1、図2、図3、図4に矢印で示すように外部の図示しないポンプから直結側静圧軸受32、反直結静圧軸受33及び中間静圧軸受45に潤滑油(圧油)が供給される。
【0033】
直結側静圧軸受32に供給された潤滑油(圧油)は、給油孔37から流入し、直結側静圧軸受32の外周面側から流路34を通って直結側静圧軸受32の内周面側へと供給された後、分流して、直結側静圧軸受32と静圧軸受ジャーナル30との間の僅かなクリアランス部36を周方向に旋回しながら軸方向両側にそれぞれ流れ、その一方が直接固定子コイル42の端部へと流入し、他方も流路35を経て固定子コイル42の端部へと流入する。
【0034】
反直結静圧軸受33に供給された潤滑油は、給油孔41から流入し、反直結静圧軸受33の外周面側から流路38を通って反直結静圧軸受33の内周面側へと供給された後、分流して、反直結側静圧軸受33と静圧軸受ジャーナル31との間の僅かなクリアランス部40を周方向に旋回しながら軸方向両側にそれぞれ流れ、その一方が直接固定子コイル42の端部へと流入し、他方も流路39を経て固定子コイル42の他端部へと流入する。
【0035】
そして、中間静圧軸受45に供給された潤滑油は、給油孔51から流入し、中間静圧軸受45の外周面側から流路49を通って中間静圧軸受45の内周面側へと供給された後、分流して、固定子22と回転子23とのギャップ部56を周方向に旋回しながら軸方向両側へと流れ、固定子コイル42の両端部をそれぞれ通って固定子鉄心44の外周部へと至る。このとき、直結側静圧軸受32及び反直結側静圧軸受33に供給された潤滑油も、中間静圧軸受45に供給された潤滑油と固定子コイル42に両端部において合流し、固定子コイル42の両端部をそれぞれ通って固定子鉄心44の外周部へと至る。
【0036】
その後、これらの潤滑油は、フレーム50の内周部と固定子鉄心44の外周部との間の戻り流路52を通って軸方向中間部へと流れ、ここで合流して、排油孔55から外部へと排出される。排出された潤滑油は図示しない空冷等の冷却装置で冷却された後、再び上記ポンプによって中間静圧軸受45、直結側静圧軸受32及び反直結側静圧軸受33に供給される。勿論、この中間静圧軸受45等に供給される潤滑油の流量は、軸受部の潤滑以外に固定子コイル42等の冷却を行うのに十分な流量とする。
【0037】
このように、本回転電機21は、発熱源である固定子コイル42や発熱部近傍の固定子鉄心44及び回転子鉄心25を潤滑油によって直接冷却するため、冷却能力が高い。しかも、中間静圧軸受45に供給された潤滑油全体によって固定子コイル42等を直接冷却することができる。更には、潤滑油が軸方向中間部から軸方向両側へと流れた後、軸方向中間部へと戻る系統構成であることから、潤滑油との接触面積も大きい。このため、冷却効率が高くなって、冷却能力が更に向上する。
【0038】
また、直結側静圧軸受32及び反直結側静圧軸受33の潤滑油を機内(固定子コイル42の端部)に排出し、この潤滑油でも固定子コイル42等を直接冷却する構成であるため、機内の冷却能力が更に高まるとともに、冷却油(潤滑油)系統の構成が極めて簡単となる。なお、この場合には中間静圧軸受45に供給する潤滑油と直結側静圧軸受32及び反直結側静圧軸受33に供給する潤滑油とを同一種のものにする必要があり、且つ、機内で攪拌される際の動力損の低減を図るために低粘度の潤滑油を用いる必要がある。
【0039】
ところで、潤滑油としては高粘度のもののほうが望ましいことから、直結側静圧軸受32及び反直結側静圧軸受33には高粘度の潤滑油を用いたい場合には、これらの潤滑油系統と、中間静圧軸受45の潤滑油系統とを分離してもよい。換言すれば、直結側静圧軸受32及び反直結側静圧軸受33にも低粘度の潤滑油を用いることができる場合には、上記のように構成することによって冷却能力の向上と冷却油(潤滑油)系統の構成の簡単化とを図ることができる。
【0040】
また、中間静圧軸受45を外輪47と内輪48とに分割するとともに、内輪48は4つのセグメント48a,48b,48c,48dに分割し、且つ、これらのセグメント48a,48b,48c,48dの分割面48a−1,48b−1,48c−1,48d−1はそれぞれ平行を成すようして、内輪48を外輪47の内側から外輪47に装着することができるようにしたため、固定子鉄心44のスロットをオープンスロット46にして、これらのオープンスロット46にフルコイル式の固定子コイル42を固定子鉄心44の内側から嵌め込むことができる。このため、ハーフコイル式の固定子コイルを軸方向から挿入する場合(詳細は実施の形態3参照)に比べて、コイル装着作業が非常に容易である。
【0041】
[実施の形態2]
図8は本発明の実施の形態2に係る中間静圧軸受の正面図である。
【0042】
<構成>
図8に示すように、中間静圧軸受61は、裏金部である外輪62と軸受ブッシュ部である内輪63とに分割されている。外輪62の内周部にはオープンスロット64が形成されている。一方、内輪63は周方向に4つのセグメント63a,63a,63c,63dに分割され、且つ、これらのセグメント63a,63a,63c,63dの分割面63a−1,63a−1,63c−1,63d−1は、径方向に沿った放射状とするとともに、同セグメント63a,63a,63c,63dを外輪62の内側から外輪62に装着する際に同63a,63a,63c,63d同士が相互に干渉しない程度の間隔を有している。また、中間静圧軸受61には、外周面側から内周面側へと通じる径方向の流路66が4箇所に形成されている。
【0043】
つまり、本実施の形態2の中間静圧軸受61は上記実施の形態1の中間静圧軸受45と比べて内輪63の分割の仕方が異なっており、その他は同様の構成である。そして、内輪63の各セグメント63a,63a,63c,63dを外輪62に装着する場合には、例えば、外輪62の内側から、まず、セグメント63a,63bを装着し、その後、他のセグメント63c,63dも、セグメント63a,63bと干渉することなく、図8中に一点鎖線で示す状態から実線で示す状態に装着することができる。
【0044】
各セグメント63a,63b,63c,63dの分割面同士及び内輪63と外輪62は、オープンスロットに嵌合した固定子コイルに樹脂を含浸させるときに同樹脂によって接着される。図8中の65はコイル含浸時にセグメント間にモールドされた樹脂である。
【0045】
なお、この中間静圧軸受61は上記実施の形態1の中間静圧軸受45に代えて設けることができ、回転電機全体の構成については上記実施の形態1と同様であるため、ここでの説明及び図示は省略する(図1参照)。
【0046】
<作用・効果>
従って、上記構成の中間静圧軸受61を備えた回転電機においても、上記実施の形態1と同様の作用・効果を奏する。
【0047】
即ち、中間静圧軸受61を外輪62と内輪63とに分割するとともに、内輪63は周方向に4つのセグメント63a,63b,63c,63dに分割し、且つ、これらのセグメント63a,63b,63c,63dの分割面63a−1,63b−1,63c−1,63d−1は、径方向に沿った放射状とするとともに、同セグメント63a,63b,63c,63dを外輪62の内側から外輪62に装着する際に同セグメント63a,63b,63c,63d同士が相互に干渉しない程度の間隔を有することにより、内輪63を外輪62の内側から装着することができるようにしたため、固定子鉄心のスロットをオープンスロットにして、これらのオープンスロットにフルコイル式の固定子コイルを固定子鉄心の内側から嵌め込むことができる。このため、ハーフコイル式の固定子コイルを軸方向から挿入する場合(詳細は実施の形態3参照)に比べて、コイル装着作業が非常に容易である。
【0048】
なお、中間静圧軸受の内輪の分割方法は、必ずしも上記実施の形態1,2に限定するものではなく、内輪を外輪の内側から外輪に装着することが可能な分割方法であればよい。
【0049】
[実施の形態3]
図9は本発明の実施の形態3に係る回転電機の要部断面図(図2に相当する断面図)、図10は中間静圧軸受の斜視図、図11及び図12は固定子コイルの装着作業の説明図である。
【0050】
<構成>
図9及び図10に示すように、固定子鉄心44の軸方向中間部には中間静圧軸受71が設けられているが、この中間静圧軸受71は銅合金やテフロン等を用いて一体的に形成されたものである。中間静圧軸受71には外周面側から内周面側へと通じる径方向の流路73が4箇所に形成されており、これらの流路73はフレーム50の給油孔51に通じている。また、中間静圧軸受71の内周面には油圧ポット74が形成されている
【0051】
そして、この中間静圧軸受71にはトンネル式のスロット(貫通孔)72が形成されるとともに、固定子鉄心44には半開放スロット82が形成されており、これらのスロット72,82には図11に示すようなハーフコイル式の固定子コイル80が装着される。
【0052】
即ち、図11に示すように、固定子鉄心44の軸方向中間部に中間静圧軸受71を挟み込み、カシメ板83で強固に一体化した後、ハーフコイル式の固定子コイル80を、固定子鉄心44の半開放スロット82及び中間静圧軸受71のスロット72に軸方向から挿入する。そして、図12に示すように、半開放スロット82から突き出た固定子コイル80のエナメル線81を、渡り線を残して全て一本一本接続した後、絶縁を施してコイル装着が完了する。
【0053】
なお、図中のその他の構成については上記実施の形態1と同様であるため、同一の符号を付し、重複する詳細な説明は省略する。また、回転電機全体の構成についても、上記実施の形態1と同様であるため、ここでの説明及び図示は省略する(図1参照)。
【0054】
<作用・効果>
従って、本実施の形態3の回転電機においても、上記実施の形態1と同様の作用・効果を得ることができる。
【0055】
即ち、中間静圧軸受71を設けたため、回転子23の曲げ剛性が著しく高くなり、回転子23のクリチカルを上げることができる。このため、回転子23は従来の回転子よりも更に細長くすることができ、更なる低慣性化と高速化とを実現することができる。
【0056】
また、発熱源である固定子コイル80や発熱部近傍の固定子鉄心44及び回転子鉄心25を潤滑油によって直接冷却するため、冷却能力が高く、しかも、中間静圧軸受71に供給された潤滑油全体によって固定子コイル80等を直接冷却することができ、更には、潤滑油が軸方向中間部から軸方向両側へと流れた後、軸方向中間部へと戻る系統構成であることから、潤滑油との接触面積も大きいため、冷却効率が高くなり、冷却能力が更に向上する。
【0057】
また、直結側静圧軸受32及び反直結側静圧軸受33の潤滑油を機内(固定子コイル42の端部)に排出し、この潤滑油でも固定子コイル80等を直接冷却する構成であるため、機内の冷却能力が更に高まるとともに、冷却油(潤滑油)系統の構成が極めて簡単となる。
【0058】
但し、本実施の形態3の回転電機では一体成形された中間静圧軸受71を用いているため、コイル装着の際にはハーフコイル式の固定子コイル80を用いなければならず、エナメル線81の接続作業に手間がかかる。従って、この点では上記実施の形態1の回転電機21の方が、フルコイル式の固定子コイル42を用いることができてエナメル線の接続作業が不要となるため、コイル装着の作業性が改善されて非常に有利である。
【0059】
【発明の効果】
以上、発明の実施の形態と共に具体的に説明したように、第1発明の回転電機によれば、固定子鉄心の軸方向中間部に、回転子の軸方向中間部を回転自在に支持する中間静圧軸受を設けたため、軸方向両側の軸受のみによって回転子を支持する場合に比べて、回転子の曲げ剛性が著しく高くなり、回転子のクリチカルを上げることができる。このため、本回転子は従来の回転子よりも細長くすることができ、更なる低慣性化を実現することができる。
【0060】
また、第発明の回転電機によれば、中間静圧軸受に対して外部から供給される潤滑液が、中間静圧軸受の外周面側から中間静圧軸受に形成した流路を通って中間静圧軸受の内周面側へと供給された後、分流して、固定子と回転子とのギャップ部を軸方向両側へとそれぞれ流れ、固定子コイルの両端部をそれぞれ通って固定子鉄心の外周部へと至り、フレーム内周部と固定子鉄心外周部との間に形成した戻り流路を通って軸方向中間部へと流れ、ここで合流して、外部へと排出されるように構成したことにより、発熱源である固定子コイルや発熱部近傍の固定子鉄心及び回転子鉄心を潤滑液によって直接冷却するため、冷却能力が高い。しかも、中間静圧軸受に供給された潤滑液全体によって固定子コイル等を直接冷却することができ、更には、潤滑液が軸方向中間部から軸方向両側へと流れた後、軸方向中間部へと戻る系統構成であることから、潤滑液との接触面積も大きいため、冷却効率が高くなって、冷却能力が更に向上する。
【0061】
また、第発明の回転電機によれば、軸方向両側の静圧軸受に対して外部から供給される潤滑液も、同静圧軸受の外周面側から同静圧軸受に形成した流路を通って同静圧軸受の内周面側へと供給された後、固定子コイルの両端部へとそれぞれ流入し、ここで中間静圧軸受に供給された潤滑液と合流して、この潤滑液とともに流れるように構成したことにより、機内の冷却能力が更に高まるとともに、冷却液(潤滑液)系統の構成が極めて簡単となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る回転電機の断面図である。
【図2】図1のA部拡大図である。
【図3】図1のB部拡大図である。
【図4】図1のC部拡大図である。
【図5】中間静圧軸受の正面図である。
【図6】(a)は図5のD−D線矢視断面図、(b)は図5のE−E線矢視断面図である。
【図7】固定子コイルの斜視図である。
【図8】本発明の実施の形態2に係る中間静圧軸受の正面図である。
【図9】本発明の実施の形態3に係る回転電機の要部断面図である。
【図10】中間静圧軸受の斜視図である。
【図11】固定子コイルの装着作業の説明図である。
【図12】固定子コイルの装着作業の説明図である。
【図13】従来の回転電機の断面図である。
【図14】従来の他の回転電機の断面図である。
【符号の説明】
21 回転電機
22 固定子
23 回転子
24 回転子バー
25 回転子鉄心
26 回転軸
27,30,31 静圧軸受ジャーナル
28,29,72 スロット(貫通孔)
32 直結側静圧軸受
33 反直結側静圧軸受
34,35,38,39,49,66,73 流路
36,40 クリアランス部
37,41,51 給油孔
42,80 固定子コイル
43,46,64 オープンスロット
44 固定子鉄心
45,61,71 中間静圧軸受
47,62 外輪
48,63 内輪
48a,48b,48c,48d セグメント
48a−1,48b−1,48c−1,48d−1 分割面
63a,63a,63c,63d セグメント
63a−1,63a−1,63c−1,63d−1 分割面
50 フレーム
52 戻り流路
53 Oリング
54,74 油圧ポケット
55 排油孔
56 ギャップ部
57,58 ブラケット
59,60 エンドリング
65 モールド樹脂
81 エナメル線
82 半開放スロット
83 カシメ板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotating electrical machine, and is particularly useful when applied to an extremely low inertia high speed rotating electrical machine.
[0002]
[Prior art]
The inertia of the rotor is proportional to the fourth power of the rotor diameter, and is proportional to the first power of the axial length of the rotor. Therefore, in a very low inertia high speed rotating electrical machine, the rotor diameter is designed to be as small as possible in order to make the rotor have a very low inertia, but this greatly increases the heat generation density of the coil portion. Therefore, in such an extremely low inertia high-speed rotating electrical machine, the stator outer frame is used as a water jacket in the stator section, and cooling water is supplied to the flow path provided at the center of the rotating shaft through a seal device in the rotor section. By flowing, it corresponds to the high heat generation density of the coil part.
[0003]
In particular, in the development and testing of automobile-related products, the emergence of rotating electrical machines (dynamometers) that have the same low inertia, high speed, and large torque as engines. An example is shown in FIG. The rotating electrical machine 1 shown in the figure is a three-phase induction motor. The frame 3 on the outer periphery of the stator 2 is formed with a flow path 3a to form a water jacket, and cooling water is supplied from one end side of the flow path 3a. And is discharged from the other end side. In addition, double flow paths 5a and 5b are provided at the center of the rotating shaft 5 of the rotor 4, and after the coolant flows from the left end side to the right end side through the inner flow path 5b, It flows through the flow path 5a from the right end side to the left end side and is discharged.
[0004]
Further, as a direct cooling type rotating electrical machine, one having a configuration as shown in FIG. 14 is conventionally known. That is, in the rotating electrical machine 11 shown in FIG. 14, the flow path 13 is formed in the stator 12, and the coolant (water or oil) is supplied into the machine from one end side of the frame 14. 15 is divided into the gap portion 16 and the flow path 13 and flows in the axial direction, and then merges and is discharged from the other end side of the frame 14. The lubricating oil is also circulated to the bearings 17 and 18 that rotatably support both end portions of the rotary shaft 19.
[0005]
[Problems to be solved by the invention]
However, the rotating electrical machine 1 shown in FIG. 13 has the following problems (1) to (4).
[0006]
(1) The contact area between the cooling water of the rotor 4 (cooling water flowing through the flow paths 5a and 5b) and the rotor 4 is small, and the heat transfer resistance is large.
(2) The distance from the cooling water of the stator 2 (cooling water flowing through the flow path 3a of the frame 3) to the stator coil 6 as a heat source is long, and the heat conduction resistance is large.
(3) Since the cooling capacity is low due to the reasons (1) and (2) above, the output of the rotating electrical machine 1 cannot be increased.
(4) Since the rotor 4 is elongated for low inertia, the bending rigidity of the rotor 4 is small, and the critical of the rotor 4, that is, the critical speed (natural frequency) becomes low. For this reason, it is not possible to achieve high rotation due to restrictions on the rotational speed usage range. In other words, in order to maintain a high rigidity, the rotating shaft 5 cannot be made very long in order to maintain the bending rigidity, and the limit of the low inertia has been reached.
[0007]
On the other hand, in the rotating electrical machine 11 shown in FIG. 14, the contact area between the coolant (water or oil) and the rotor 16 is large, and the stator coil 20 is directly cooled. The problem can be generally solved, but has the problem (4). In addition, there are the following problems (1) and (2).
[0008]
(1) The cooling liquid in the machine is divided into the gap portion 16 and the flow path 13 to cool the stator side and the rotor side, respectively.
(2) Since the cooling oil system in the machine and the cooling oil (lubricating oil) system of the bearings 17 and 18 are completely separated, the configuration of the cooling oil system is complicated.
[0009]
Therefore, in view of the above prior art, the present invention provides a rotating electrical machine that can increase the bending rigidity of the rotor to increase the criticality of the rotor, increase the cooling efficiency in the machine, and simplify the configuration of the lubricating liquid system. It is an issue to provide.
[0011]
[Means for Solving the Problems]
  The rotating electrical machine of the first invention that solves the above-mentioned problems is a rotating electrical machine that has a stator and a rotor, and that rotatably supports both axial ends of the rotating shaft by bearings.
  An intermediate hydrostatic bearing that rotatably supports the axial intermediate portion of the rotor is provided in the axial intermediate portion of the stator core;
  Lubricating liquid supplied from the outside to the intermediate hydrostatic bearing passes through a flow passage formed in the intermediate hydrostatic bearing from the outer peripheral surface side of the intermediate hydrostatic bearing, and is on the inner peripheral surface side of the intermediate hydrostatic bearing. After being supplied to the stator, the flow is divided and flows through the gaps between the stator and the rotor to both sides in the axial direction, respectively, and passes through both ends of the stator coil to the outer periphery of the stator core. At the end, it flows through the return flow path formed between the inner periphery of the frame and the outer periphery of the stator core and flows to the intermediate portion in the axial direction, where it merges and is discharged to the outside. It is characterized by.
[0012]
  The second2The rotating electrical machine of the invention is the first1In the rotating electrical machine of the invention,
  The bearings at both ends in the axial direction are hydrostatic bearings, and the lubricating oil supplied from the outside to these hydrostatic bearings has a flow path formed in the hydrostatic bearing from the outer peripheral surface side of the hydrostatic bearing. After being supplied to the inner peripheral surface side of the same hydrostatic bearing, it flows into both ends of the stator coil, where it merges with the lubricating liquid supplied to the intermediate hydrostatic bearing. It is configured to flow with the lubricating liquid.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
[Embodiment 1]
1 is a cross-sectional view of a rotating electrical machine according to Embodiment 1 of the present invention, FIG. 2 is an enlarged view of part A of FIG. 1, FIG. 3 is an enlarged view of part B of FIG. 5 is a front view of the intermediate hydrostatic bearing, FIG. 6A is a cross-sectional view taken along the line D-D in FIG. 5, FIG. 6B is a cross-sectional view taken along the line E-E in FIG. FIG. 3 is a perspective view of a stator coil.
[0018]
<Configuration>
A rotating electrical machine 1 illustrated in FIG. 1 is a three-phase induction motor, and includes a stator 22 and a rotor 23. In the rotor 23, the rotor bar 24 is passed through a slot (through hole) 29 of a rotor core (laminated core) 25 fixed to the rotary shaft 26, and both ends of the rotor bar 24 are end rings 59 and 60. This is a squirrel-cage rotor. As shown in FIGS. 1 and 2, a hydrostatic bearing journal 27 made concentrically and with the same diameter as the rotor core 25 is provided at an axially intermediate portion of the rotor core 25. The rotor bar 24 also penetrates a slot (through hole) 28 of the hydrostatic bearing journal 27.
[0019]
Further, as shown in FIG. 1, hydrostatic bearing journals 30 and 31 are also provided at both axial ends of the rotating shaft 26, and the rotating shaft 26 is provided via the hydrostatic bearing journals 30 and 31. Both ends in the axial direction are rotatably supported by a direct connection side hydrostatic bearing 32 and an anti-direct connection side hydrostatic bearing 33.
[0020]
As shown in FIG. 3, the direct connection side hydrostatic bearing 32 is formed with a radial flow path 34 leading from the outer peripheral surface side to the inner peripheral surface side, and the direct connection side bracket 57 is formed from the outer side to the inner side. An axial flow path 35 is formed. The bracket 57 is provided with an oil supply hole 37 that communicates with the flow path 34 of the direct connection side hydrostatic bearing 32. As shown in FIG. 4, a radial flow path 38 extending from the outer peripheral surface side to the inner peripheral surface side is formed in the anti-direct coupling side hydrostatic bearing 33, and the anti-direct coupling side bracket 58 is formed from the outer side to the inner side. An axial flow path 39 leading to is formed. The bracket 58 is provided with an oil supply hole 41 that communicates with the flow path 38 of the anti-directly coupled hydrostatic bearing 33.
[0021]
On the other hand, as shown in FIG. 1, the stator 22 is formed by fitting a stator coil 42 into an open slot (a slot having an opening width substantially the same as the coil width) 43 formed in a stator core (laminated core) 44. Is. As shown in FIG. 7, the stator coil 42 is a full coil type formed in a turtle shell shape in advance, and is fitted into the open slot 43 from the inside of the stator core 44. The stator coil 42 fitted into the open slot 43 fixes a wedge (not shown) into the open slot 43 from the axial direction.
[0022]
As shown in FIGS. 1 and 2, an intermediate hydrostatic bearing 45 that rotatably supports the axial intermediate portion of the rotor 23 is provided at the axial intermediate portion of the stator core 44. An open slot 46 is also formed in the intermediate hydrostatic bearing 45, and the stator coil 42 is also fitted into the open slot 46. The intermediate hydrostatic bearing 45 and the hydrostatic bearing journal 27 are made of a non-magnetic material (copper alloy, Teflon, etc.) because they are in an alternating magnetic field, and the inner peripheral surface of the intermediate hydrostatic bearing 45 and the static pressure. Even if the outer surface of the bearing journal 27 is made smooth and comes into contact with the bearing journal 27, consideration is given so as not to be important.
[0023]
As shown in FIGS. 5 and 6, the intermediate hydrostatic bearing 45 is divided into an outer ring 47 that is a back metal part and an inner ring 48 that is a bearing bush part. The aforementioned open slot 46 is formed in the inner periphery of the outer ring 47. On the other hand, the inner ring 48 is divided into four segments 48a, 48a, 48c, 48d in the circumferential direction, and the dividing surfaces 48a-1, 48b-1, 48c-1, 48d of these segments 48a, 48b, 48c, 48d. -1 is parallel to each other. For this reason, the inner ring 48 can be mounted from the inside of the stator core 44.
[0024]
That is, when the inner ring 48 is attached to the outer ring 47, after the stator coil 42 is fitted into the stator core 44 and the open slots 43, 46 of the outer ring 47, from the inside of the stator core 44 (inside the outer ring 47), First, the segments 48a and 48b are mounted, and then the other segments 48c and 48d can be mounted from the state shown by the one-dot chain line in FIG. 5 to the state shown by the solid line without interfering with the segments 48a and 48b. . Further, as shown in FIG. 6, a hydraulic pocket (concave portion) 54 is formed on the inner peripheral surface of the inner ring 48.
[0025]
The split surfaces of the segments 48a, 48b, 48c, 48d of the inner ring 48 and the inner ring 48 and the outer ring 47 are bonded by the same resin when the stator coil 42 fitted in the open slots 43, 46 is impregnated with resin. Is done.
[0026]
The intermediate hydrostatic bearing 45 is formed with four radial flow passages 49 that lead from the outer peripheral surface side to the inner peripheral surface side. These flow paths 49 communicate with oil supply holes 51 provided in the frame 50 as shown in FIG. In addition, 53 in FIG. 1 is an O-ring for preventing oil leakage.
[0027]
As shown in FIGS. 1 and 2, a plurality of lubricating oil return flow paths (grooves) 52 are formed between the inner periphery of the frame 50 and the outer periphery of the stator core 44 along the axial direction. ing. The return flow path 52 communicates with an oil drain hole 55 provided in the frame 50. Although the return flow path 52 is formed on the frame 50 side in the illustrated example, it may be formed on the stator core 44 side.
[0028]
Further, as shown in FIGS. 1 and 2, a hydraulic pocket 54 is provided on the inner periphery of the intermediate hydrostatic bearing 45, and both end portions thereof are slightly closer to the rotor side than the inner peripheral surface of the stator core 44. Protruding. Accordingly, this portion is the narrowest in the gap portion 56 between the stator 22 and the rotor 23, and the static pressure is maintained in this portion. However, it is better to make the gap in the same part wider than the clearance portions 36 and 40 of the direct connection side hydrostatic bearing 32 and the anti-direct connection side hydrostatic bearing 33. This is supplied to the intermediate hydrostatic bearing side such that the flow resistance on the intermediate hydrostatic bearing side is smaller than the flow resistance on the direct coupling hydrostatic bearing side and the anti-direct coupling hydrostatic bearing side. This is to secure a flow rate necessary for cooling in the machine by increasing the amount of lubricating oil.
[0029]
Further, the inner peripheral surface of the stator core 44 and the outer peripheral surface of the rotor core 25 are made smooth by eliminating irregularities as much as possible in order to reduce power loss due to the viscosity of the lubricating oil.
[0030]
Further, in order to maintain the hydraulic pressure in the hydraulic pocket 54 at a certain value or more, the amount of lubricating oil to be supplied is increased or decreased as necessary. For this reason, the oil supply holes 51 of the frame 50 and the flow paths 49 of the intermediate hydrostatic bearing 45 are not limited to four locations, and it is desirable to provide spares.
[0031]
<Action and effect>
According to the rotating electrical machine 1 configured as described above, since the intermediate hydrostatic bearing 45 that rotatably supports the axial intermediate portion of the rotor 23 is provided at the axial intermediate portion of the stator core 44, the direct connection side static pressure on both sides is provided. Compared with the case where the rotor 23 is supported only by the bearing 32 and the anti-direct coupled hydrostatic bearing 33, the bending rigidity of the rotor 23 is remarkably increased, and the criticality of the rotor 23 can be increased. For this reason, the rotor 23 can be made longer than the conventional rotor, and further lower inertia and higher speed can be realized.
[0032]
Further, as indicated by arrows in FIGS. 1, 2, 3, and 4, lubricating oil (pressure oil) is supplied from an external pump (not shown) to the direct connection side static pressure bearing 32, the anti-direct connection static pressure bearing 33, and the intermediate static pressure bearing 45. ) Is supplied.
[0033]
Lubricating oil (pressure oil) supplied to the direct connection side static pressure bearing 32 flows from the oil supply hole 37, passes through the flow path 34 from the outer peripheral surface side of the direct connection side static pressure bearing 32, and enters the inside of the direct connection side static pressure bearing 32. After being supplied to the circumferential surface side, the flow is divided and flows to both sides in the axial direction while turning the slight clearance portion 36 between the direct connection side hydrostatic bearing 32 and the hydrostatic bearing journal 30 in the circumferential direction. One directly flows into the end of the stator coil 42, and the other also flows into the end of the stator coil 42 through the flow path 35.
[0034]
Lubricating oil supplied to the anti-directly coupled hydrostatic bearing 33 flows from the oil supply hole 41 and passes from the outer peripheral surface side of the anti-directly coupled hydrostatic bearing 33 through the flow path 38 to the inner peripheral surface side of the anti-directly coupled hydrostatic bearing 33. After being supplied, the flow is divided and flows to both sides in the axial direction while turning the slight clearance 40 between the anti-direct connection side hydrostatic bearing 33 and the hydrostatic bearing journal 31 in the circumferential direction, one of which is directly It flows into the end portion of the stator coil 42, and the other also flows into the other end portion of the stator coil 42 through the flow path 39.
[0035]
Then, the lubricating oil supplied to the intermediate hydrostatic bearing 45 flows in from the oil supply hole 51 and passes from the outer peripheral surface side of the intermediate hydrostatic bearing 45 through the flow path 49 to the inner peripheral surface side of the intermediate hydrostatic bearing 45. After being supplied, the flow is divided and flows to both sides in the axial direction while turning the gap portion 56 between the stator 22 and the rotor 23 in the circumferential direction. The stator core 44 passes through both ends of the stator coil 42. To the outer periphery. At this time, the lubricating oil supplied to the direct coupling side hydrostatic bearing 32 and the anti-direct coupling side hydrostatic bearing 33 also merges with the lubricating oil supplied to the intermediate hydrostatic bearing 45 and the stator coil 42 at both ends. The coil 42 passes through both end portions to reach the outer peripheral portion of the stator core 44.
[0036]
Thereafter, these lubricating oils flow through the return flow path 52 between the inner peripheral portion of the frame 50 and the outer peripheral portion of the stator core 44 to the intermediate portion in the axial direction, where they merge and drain oil holes. It is discharged from 55 to the outside. The discharged lubricating oil is cooled by a cooling device (not shown) such as air cooling, and then supplied again to the intermediate hydrostatic bearing 45, the direct connection side static pressure bearing 32, and the anti-direct connection side static pressure bearing 33 by the pump. Of course, the flow rate of the lubricating oil supplied to the intermediate hydrostatic bearing 45 and the like is set to a flow rate sufficient for cooling the stator coil 42 and the like in addition to the lubrication of the bearing portion.
[0037]
As described above, the rotary electric machine 21 has a high cooling capacity because the stator coil 42 as a heat generation source, the stator core 44 and the rotor core 25 in the vicinity of the heat generating portion are directly cooled by the lubricating oil. In addition, the stator coil 42 and the like can be directly cooled by the entire lubricating oil supplied to the intermediate hydrostatic bearing 45. Furthermore, since the lubricating oil flows from the axially intermediate portion to both sides in the axial direction and then returns to the axially intermediate portion, the contact area with the lubricating oil is also large. For this reason, the cooling efficiency is increased and the cooling capacity is further improved.
[0038]
Further, the lubricating oil of the direct coupling side hydrostatic bearing 32 and the anti-direct coupling side hydrostatic bearing 33 is discharged into the machine (the end of the stator coil 42), and the stator coil 42 and the like are directly cooled by this lubricating oil. Therefore, the cooling capacity in the machine is further increased, and the configuration of the cooling oil (lubricating oil) system is extremely simplified. In this case, the lubricating oil supplied to the intermediate hydrostatic bearing 45 and the lubricating oil supplied to the direct coupling side hydrostatic bearing 32 and the anti-direct coupling side hydrostatic bearing 33 need to be the same type, and In order to reduce the power loss when stirring in the machine, it is necessary to use a low viscosity lubricating oil.
[0039]
By the way, since it is more desirable for the lubricating oil to have a high viscosity, when it is desired to use a high viscosity lubricating oil for the direct connection side static pressure bearing 32 and the anti-direct connection side static pressure bearing 33, these lubricating oil systems, The lubricating oil system of the intermediate hydrostatic bearing 45 may be separated. In other words, when low viscosity lubricating oil can be used for the direct connection side hydrostatic bearing 32 and the anti-direct connection side hydrostatic bearing 33, the cooling capacity can be improved and the cooling oil ( Lubricating oil) system configuration can be simplified.
[0040]
The intermediate hydrostatic bearing 45 is divided into an outer ring 47 and an inner ring 48, and the inner ring 48 is divided into four segments 48a, 48b, 48c, and 48d, and the segments 48a, 48b, 48c, and 48d are divided. Since the surfaces 48a-1, 48b-1, 48c-1, 48d-1 are parallel to each other so that the inner ring 48 can be attached to the outer ring 47 from the inner side of the outer ring 47, the stator core 44 The slots are made into open slots 46, and full coil type stator coils 42 can be fitted into these open slots 46 from the inside of the stator core 44. For this reason, compared with the case where a half-coil stator coil is inserted from the axial direction (see Embodiment 3 for details), the coil mounting operation is very easy.
[0041]
[Embodiment 2]
FIG. 8 is a front view of an intermediate hydrostatic bearing according to Embodiment 2 of the present invention.
[0042]
<Configuration>
As shown in FIG. 8, the intermediate hydrostatic bearing 61 is divided into an outer ring 62 that is a back metal part and an inner ring 63 that is a bearing bush part. An open slot 64 is formed on the inner periphery of the outer ring 62. On the other hand, the inner ring 63 is divided into four segments 63a, 63a, 63c, 63d in the circumferential direction, and the divided surfaces 63a-1, 63a-1, 63c-1, 63d of these segments 63a, 63a, 63c, 63d. -1 is radial along the radial direction, and the segments 63a, 63a, 63c, 63d do not interfere with each other when the segments 63a, 63a, 63c, 63d are attached to the outer ring 62 from the inside of the outer ring 62. Have a certain degree of spacing. The intermediate hydrostatic bearing 61 is formed with four radial flow paths 66 that lead from the outer peripheral surface side to the inner peripheral surface side.
[0043]
That is, the intermediate hydrostatic bearing 61 of the second embodiment is different from the intermediate hydrostatic bearing 45 of the first embodiment in the way of dividing the inner ring 63, and the other configuration is the same. When the segments 63a, 63a, 63c, and 63d of the inner ring 63 are mounted on the outer ring 62, for example, the segments 63a and 63b are first mounted from the inner side of the outer ring 62, and then the other segments 63c and 63d. Also, it can be mounted from the state shown by the one-dot chain line in FIG. 8 to the state shown by the solid line without interfering with the segments 63a and 63b.
[0044]
The split surfaces of the segments 63a, 63b, 63c, and 63d and the inner ring 63 and the outer ring 62 are bonded by the resin when the stator coil fitted in the open slot is impregnated with resin. In FIG. 8, 65 is a resin molded between the segments when the coil is impregnated.
[0045]
The intermediate hydrostatic bearing 61 can be provided in place of the intermediate hydrostatic bearing 45 of the first embodiment, and the configuration of the entire rotating electrical machine is the same as that of the first embodiment. And illustration is abbreviate | omitted (refer FIG. 1).
[0046]
<Action and effect>
Therefore, the rotating electrical machine provided with the intermediate hydrostatic bearing 61 having the above-described configuration also exhibits the same operations and effects as those of the first embodiment.
[0047]
That is, the intermediate hydrostatic bearing 61 is divided into an outer ring 62 and an inner ring 63, and the inner ring 63 is divided into four segments 63a, 63b, 63c, 63d in the circumferential direction, and these segments 63a, 63b, 63c, The split surfaces 63 a-1, 63 b-1, 63 c-1, 63 d-1 of 63 d are radial along the radial direction, and the segments 63 a, 63 b, 63 c, 63 d are attached to the outer ring 62 from the inside of the outer ring 62. Since the segments 63a, 63b, 63c, and 63d are spaced so as not to interfere with each other, the inner ring 63 can be mounted from the inside of the outer ring 62, so that the stator core slot is opened. Slots can be inserted into these open slots with full-coil stator coils from the inside of the stator core. . For this reason, compared with the case where a half-coil stator coil is inserted from the axial direction (see Embodiment 3 for details), the coil mounting operation is very easy.
[0048]
Note that the method of dividing the inner ring of the intermediate hydrostatic bearing is not necessarily limited to the first and second embodiments, and may be any dividing method that allows the inner ring to be attached to the outer ring from the inner side of the outer ring.
[0049]
[Embodiment 3]
9 is a cross-sectional view of a main part of a rotating electrical machine according to Embodiment 3 of the present invention (cross-sectional view corresponding to FIG. 2), FIG. 10 is a perspective view of an intermediate hydrostatic bearing, and FIGS. 11 and 12 are views of a stator coil. It is explanatory drawing of mounting work.
[0050]
<Configuration>
As shown in FIGS. 9 and 10, an intermediate hydrostatic bearing 71 is provided at an intermediate portion of the stator core 44 in the axial direction. The intermediate hydrostatic bearing 71 is integrally formed using a copper alloy, Teflon, or the like. It is formed. The intermediate hydrostatic bearing 71 is formed with four radial flow passages 73 communicating from the outer peripheral surface side to the inner peripheral surface side, and these flow passages 73 communicate with the oil supply holes 51 of the frame 50. A hydraulic pot 74 is formed on the inner peripheral surface of the intermediate hydrostatic bearing 71.
[0051]
The intermediate hydrostatic bearing 71 is provided with a tunnel-type slot (through hole) 72, and the stator core 44 is formed with a semi-open slot 82. A half coil type stator coil 80 as shown in FIG.
[0052]
That is, as shown in FIG. 11, the intermediate hydrostatic bearing 71 is sandwiched between the axially intermediate portions of the stator core 44 and firmly integrated with the caulking plate 83, and then the half coil type stator coil 80 is connected to the stator. The steel core 44 is inserted into the half-open slot 82 and the slot 72 of the intermediate hydrostatic bearing 71 from the axial direction. Then, as shown in FIG. 12, the enameled wires 81 of the stator coil 80 protruding from the half-open slot 82 are all connected one by one, leaving the jumper wires, and then the insulation is applied to complete the coil mounting.
[0053]
In addition, since it is the same as that of the said Embodiment 1 about the other structure in a figure, the same code | symbol is attached | subjected and the detailed description which overlaps is abbreviate | omitted. Moreover, since the configuration of the entire rotating electrical machine is the same as that of the first embodiment, description and illustration are omitted here (see FIG. 1).
[0054]
<Action and effect>
Therefore, also in the rotary electric machine of this Embodiment 3, the effect | action and effect similar to the said Embodiment 1 can be acquired.
[0055]
That is, since the intermediate hydrostatic bearing 71 is provided, the bending rigidity of the rotor 23 is remarkably increased, and the criticality of the rotor 23 can be increased. For this reason, the rotor 23 can be made longer and thinner than the conventional rotor, and further lower inertia and higher speed can be realized.
[0056]
Further, since the stator coil 80, which is a heat generation source, and the stator core 44 and the rotor core 25 in the vicinity of the heat generating portion are directly cooled by the lubricating oil, the cooling capacity is high and the lubrication supplied to the intermediate hydrostatic bearing 71 is also performed. The stator coil 80 and the like can be directly cooled by the whole oil, and further, since the lubricating oil flows from the axial middle part to both axial sides, the system configuration returns to the axial middle part. Since the contact area with the lubricating oil is large, the cooling efficiency is increased and the cooling capacity is further improved.
[0057]
Further, the lubricating oil of the direct coupling side hydrostatic bearing 32 and the anti-direct coupling side hydrostatic bearing 33 is discharged into the machine (the end of the stator coil 42), and the stator coil 80 and the like are directly cooled by this lubricating oil. Therefore, the cooling capacity in the machine is further increased, and the configuration of the cooling oil (lubricating oil) system is extremely simplified.
[0058]
However, since the rotary electric machine according to the third embodiment uses the intermediate hydrostatic bearing 71 integrally formed, a half-coil stator coil 80 must be used when the coil is mounted, and the enameled wire 81 Takes time to connect. Therefore, in this respect, the rotating electrical machine 21 of the first embodiment can use the full-coil stator coil 42 and the connection work of the enameled wire becomes unnecessary, so that the workability of the coil mounting is improved. Is very advantageous.
[0059]
【The invention's effect】
As described above in detail with the embodiment of the invention, according to the rotating electrical machine of the first invention, the intermediate axial portion of the rotor is rotatably supported on the axial intermediate portion of the stator core. Since the hydrostatic bearing is provided, the bending rigidity of the rotor is remarkably increased as compared with the case where the rotor is supported only by bearings on both axial sides, and the rotor can be raised critically. For this reason, this rotor can be made longer than the conventional rotor, and further lower inertia can be realized.
[0060]
  The second1According to the rotating electrical machine of the invention, the lubricant supplied from the outside to the intermediate hydrostatic bearing passes through the flow path formed in the intermediate hydrostatic bearing from the outer peripheral surface side of the intermediate hydrostatic bearing. After being supplied to the inner peripheral surface side, it is diverted to flow through the gaps between the stator and the rotor to both sides in the axial direction, and through both ends of the stator coil to the outer periphery of the stator core. And flow through the return flow path formed between the inner periphery of the frame and the outer periphery of the stator core to the intermediate portion in the axial direction, where it merges and is discharged to the outside. As a result, the stator coil, which is a heat generation source, and the stator core and rotor core in the vicinity of the heat generating portion are directly cooled by the lubricating liquid, so that the cooling capacity is high. Moreover, the stator coil and the like can be directly cooled by the entire lubricating liquid supplied to the intermediate hydrostatic bearing, and further, after the lubricating liquid flows from the axially intermediate part to both axial sides, the axially intermediate part Since the system configuration returns to the above, the contact area with the lubricating liquid is also large, so that the cooling efficiency is increased and the cooling capacity is further improved.
[0061]
  The second2According to the rotating electrical machine of the invention, the lubricating liquid supplied from the outside to the hydrostatic bearings on both axial sides also passes through the flow path formed in the hydrostatic bearing from the outer peripheral surface side of the hydrostatic bearing. After being supplied to the inner peripheral surface side of the pressure bearing, it flows into both ends of the stator coil, where it merges with the lubricating liquid supplied to the intermediate hydrostatic bearing and flows together with this lubricating liquid. With this configuration, the cooling capacity in the machine is further increased, and the configuration of the coolant (lubricating fluid) system is extremely simplified.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a rotating electrical machine according to a first embodiment of the present invention.
FIG. 2 is an enlarged view of a portion A in FIG.
FIG. 3 is an enlarged view of a part B in FIG. 1;
4 is an enlarged view of a portion C in FIG. 1. FIG.
FIG. 5 is a front view of an intermediate hydrostatic bearing.
6A is a cross-sectional view taken along line DD of FIG. 5, and FIG. 6B is a cross-sectional view taken along line EE of FIG.
FIG. 7 is a perspective view of a stator coil.
FIG. 8 is a front view of an intermediate hydrostatic bearing according to a second embodiment of the present invention.
FIG. 9 is a cross-sectional view of a main part of a rotary electric machine according to Embodiment 3 of the present invention.
FIG. 10 is a perspective view of an intermediate hydrostatic bearing.
FIG. 11 is an explanatory diagram of a stator coil mounting operation.
FIG. 12 is an explanatory diagram of a stator coil mounting operation.
FIG. 13 is a cross-sectional view of a conventional rotating electrical machine.
FIG. 14 is a cross-sectional view of another conventional rotating electrical machine.
[Explanation of symbols]
21 Rotating electric machine
22 Stator
23 Rotor
24 Rotor bar
25 Rotor core
26 Rotating shaft
27, 30, 31 Hydrostatic bearing journal
28, 29, 72 slots (through holes)
32 Direct connection side hydrostatic bearing
33 Anti-direct coupled hydrostatic bearing
34, 35, 38, 39, 49, 66, 73
36, 40 Clearance section
37, 41, 51 Refueling hole
42, 80 Stator coil
43, 46, 64 open slots
44 Stator core
45, 61, 71 Intermediate hydrostatic bearing
47, 62 Outer ring
48, 63 inner ring
48a, 48b, 48c, 48d segments
48a-1, 48b-1, 48c-1, 48d-1 Split surface
63a, 63a, 63c, 63d segments
63a-1, 63a-1, 63c-1, 63d-1 Dividing plane
50 frames
52 Return channel
53 O-ring
54, 74 Hydraulic pocket
55 Oil drain hole
56 Gap
57, 58 bracket
59,60 End ring
65 Mold resin
81 enameled wire
82 half-open slot
83 Caulking board

Claims (2)

固定子と回転子とを有し、回転軸の軸方向両端部を軸受により回転自在に支持した回転電機において、
固定子鉄心の軸方向中間部に、前記回転子の軸方向中間部を回転自在に支持する中間静圧軸受を設け、
前記中間静圧軸受に対して外部から供給される潤滑液が、前記中間静圧軸受の外周面側から前記中間静圧軸受に形成した流路を通って前記中間静圧軸受の内周面側へと供給された後、分流して、前記固定子と前記回転子とのギャップ部を軸方向両側へとそれぞれ流れ、固定子コイルの両端部をそれぞれ通って前記固定子鉄心の外周部へと至り、フレーム内周部と前記固定子鉄心外周部との間に形成した戻り流路を通って軸方向中間部へと流れ、ここで合流して、外部へと排出されるように構成したことを特徴とする回転電機。
In a rotating electrical machine having a stator and a rotor and rotatably supporting both axial ends of a rotating shaft by bearings,
An intermediate hydrostatic bearing that rotatably supports the axial intermediate portion of the rotor is provided in the axial intermediate portion of the stator core;
Lubricating liquid supplied from the outside to the intermediate hydrostatic bearing passes through a flow passage formed in the intermediate hydrostatic bearing from the outer peripheral surface side of the intermediate hydrostatic bearing, and is on the inner peripheral surface side of the intermediate hydrostatic bearing. After being supplied to the stator, the flow is divided and flows through the gaps between the stator and the rotor to both sides in the axial direction, respectively, and passes through both ends of the stator coil to the outer periphery of the stator core. At the end, it flows through the return flow path formed between the inner periphery of the frame and the outer periphery of the stator core and flows to the intermediate portion in the axial direction, where it merges and is discharged to the outside. Rotating electric machine.
請求項に記載する回転電機において、
前記軸方向両端部の軸受は静圧軸受であり、これらの静圧軸受に対して外部から供給される潤滑液も、同静圧軸受の外周面側から同静圧軸受に形成した流路を通って同静圧軸受の内周面側へと供給された後、前記固定子コイルの両端部へとそれぞれ流入し、ここで前記中間静圧軸受に供給された潤滑液と合流して、この潤滑液とともに流れるように構成したことを特徴とする回転電機。
In the rotating electrical machine according to claim 1 ,
The bearings at both ends in the axial direction are hydrostatic bearings, and the lubricant supplied from the outside to these hydrostatic bearings also has a flow path formed in the hydrostatic bearing from the outer peripheral surface side of the hydrostatic bearing. After being supplied to the inner peripheral surface side of the same hydrostatic bearing, it flows into both ends of the stator coil, where it merges with the lubricating liquid supplied to the intermediate hydrostatic bearing. A rotating electric machine characterized by being configured to flow together with a lubricating liquid.
JP15155799A 1999-05-31 1999-05-31 Rotating electric machine Expired - Fee Related JP4023031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15155799A JP4023031B2 (en) 1999-05-31 1999-05-31 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15155799A JP4023031B2 (en) 1999-05-31 1999-05-31 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2000341908A JP2000341908A (en) 2000-12-08
JP4023031B2 true JP4023031B2 (en) 2007-12-19

Family

ID=15521137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15155799A Expired - Fee Related JP4023031B2 (en) 1999-05-31 1999-05-31 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP4023031B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5231848B2 (en) * 2008-03-31 2013-07-10 日本電産コパル電子株式会社 Vacuum motor and optical deflector including the same
WO2019117229A1 (en) * 2017-12-15 2019-06-20 イーグル工業株式会社 Electric motor
JP6912028B1 (en) * 2020-03-18 2021-07-28 株式会社明電舎 Rotating machine
WO2021187166A1 (en) * 2020-03-18 2021-09-23 株式会社明電舎 Rotating machine

Also Published As

Publication number Publication date
JP2000341908A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
US6772504B2 (en) Rotating machine with cooled hollow rotor bars
US20070210655A1 (en) Electric machine with improved water cooling system
US6612163B2 (en) Device for testing transaxle
WO2004007982A1 (en) Magnetic bearing spindle
JP2015104214A (en) Rotary electric machine
JPS61131851A (en) Supporter for machine tool spindle with cooling device in spindle guide
US2462451A (en) Dynamoelectric machine
US20210265886A1 (en) Rotor assembly and method of cooling
JP4023031B2 (en) Rotating electric machine
WO1998042064A1 (en) Method and apparatus for reducing windage losses in rotating equipment and electric motor/generator employing same
US6927516B2 (en) Bearing lubricating structure of two rotor single stator type electric motor
EP0355171A1 (en) Pipe joint structure for cooling piping of liquid-cooled motor
CN113394937A (en) Axial flux electric machine including a system for circulating a coolant through an air gap
CN112636501A (en) Motor rotor and motor
CN100517923C (en) Rotor structure
JP3675363B2 (en) Rotating electric machine
JP3815274B2 (en) Can fixing method for high-speed rotating electric machine
JP4288838B2 (en) High speed rotating electric machine
JP3862326B2 (en) Hydrostatic air bearing spindle
CN221177449U (en) Rotor assembly, motor and electric vehicle axle
CN210120441U (en) Rotor and rotating electrical machine
EP4096066A1 (en) Electric motor with an improved cooling
US11489408B2 (en) Dual fluid rotating shaft
Csillag Experimental study of water flow in full-size test rig for water-cooled turbo-generator rotor
CN115133715A (en) Oil-cooled motor, motor cooling oil circuit and motor inner shell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees