JP3861149B2 - Geological structure and hydraulic modeling equipment - Google Patents

Geological structure and hydraulic modeling equipment Download PDF

Info

Publication number
JP3861149B2
JP3861149B2 JP2002346636A JP2002346636A JP3861149B2 JP 3861149 B2 JP3861149 B2 JP 3861149B2 JP 2002346636 A JP2002346636 A JP 2002346636A JP 2002346636 A JP2002346636 A JP 2002346636A JP 3861149 B2 JP3861149 B2 JP 3861149B2
Authority
JP
Japan
Prior art keywords
plate
loading
rectangular
geological structure
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002346636A
Other languages
Japanese (ja)
Other versions
JP2004177358A (en
Inventor
銘 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002346636A priority Critical patent/JP3861149B2/en
Publication of JP2004177358A publication Critical patent/JP2004177358A/en
Application granted granted Critical
Publication of JP3861149B2 publication Critical patent/JP3861149B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は地下地質の特性を考慮した地層変形と流体移動の相互作用のメカニズムを高精度に解明しうるモデリング試験技術に係り、詳しくは、地下水の存在が地下の亀裂や断層などの形成に及ぼす影響、地殻変動速度が断層の形成に及ぼす影響、並びに、亀裂や断層附近の地層における流体移動特性の相対的変化と空間分布をも評価することが可能となる地質構造及び水理のモデリング装置に関するものである。
この装置は、構造地質、石油地質、地質工学、水理および廃棄物地層処分等多分野において地下地質構造および地下流体の移動を適切に予測・評価するためのモデリング試験に有用である。
【0002】
【従来の技術】
地層の変形構造をモデリングするための従来技術として、図1に示すようなサンドボックス(砂箱)法と呼ばれるものがある(例えば非特許文献1参照。)。この方法は、側壁がコ型状をした2つの箱部材を向かい合わせて底板の上に載せ、これらの箱部材を相互に水平方向に入れ子式に移動可能に構成してサンドボックスを形成する。形成されたサンドボックスの中で層状の模型地層を作製する。模型地層を変形させるためには、一方のコ型状側壁を固定し、他方のコ型状側壁を底板にそって水平方向に移動させる。変形後の地層構造を観測するためには、コ型状側壁を透明な材料で形成しサンドボックスの横から直接観測するか、あるいは地層の試料を樹脂などの固化剤で固め、評価したい断面に沿って切断・研磨し、観察を行う。近年ではX線スキャナーを利用し、試料内部の観察も可能となっている。地層をモデリングするための試料として、乾燥した砂、粘土、ガラスビーズおよび剛球等が使用されている。
一方、地層における流体移動状態をモデリングするために、図2に示すような土槽若しくは水槽を用いた水理試験が実施されている(例えば特許文献1参照。)。この装置は、透明な正面および背面板から構成されるセルの両端に空気を流入および真空を引くための小孔を有するケーシング井戸をそれぞれ最低一本ずつ設置する。その後、セルにポーラス材料を充填し、少なくとも一種類の液体で飽和させる。セルの上部を閉鎖した後、片方のケーシング井戸から真空を引き、セルの正面と背面の間にγ線若しくはX線を透過して計測し、複数点の計測結果をマッピングすることによって含水比の空間分布を評価する。
【0003】
【非特許文献1】
Ph. Davy and P. R. Cobbold(1991): Experiments on Shortening of A 4- Layer Model of the Continental Lithosphere、 Tectonophysics、 Vol. 188、 pp. 1-25.
【特許文献1】
米国特許第5,789,662号明細書
【0004】
【発明が解決しようとする課題】
上記のようなサンドボックス法は地層のマクロ的な変形構造をモデリングするための唯一かつ有効な室内試験法として構造地質および石油地質などの分野で広く利用されてきている。しかし近年、環境保全や核廃棄物を含む各種廃棄物の地層処分施設の長期的安全性評価においては、地下地質の構造のみならず、それにおける流体移動特性も同時に測定・評価することが要求されるようになってきており、従来のモデリング試験装置では以下のような点で、このような新しいニーズに応えることができない。
(1) 流体の存在が地層の変形に及ぼす影響を評価することができない。実際に地下では地下水が存在し、地層の変形、特に流体移動を支配するマイクロ的構造の形成に強く影響を与える。
(2)変形を受けた地層は構造的に非均質および異方性をもっている。従来のモデリング試験技術ではこれらの特性が地層の浸透流特性に及ぼす影響を評価することができない。
(3) 土槽を用いた従来の水理モデリング試験では均質に充填した模型地層における流体の流れ試験しかできない。実際の地層は理想的でなく、長年の地殻変動を受けたものである。特に高レベル放射性廃棄物地層処分の場合では、施設建設後でも十万年に及ぶ超長期的安全性を評価しなければならないが、地殻変動の影響を考慮した地下水移動の予測が必要不可欠となっている。
【0005】
本発明は、上述した従来技術の問題点を解消し、地下水の存在を考慮した地層変形のモデリング試験装置を提供することを第1の目的とする。
また、本発明は変形させた模型地層をその場で水平または垂直の何れの方向にも浸透流試験ができる装置を提供することを第2の目的とする。
また、本発明は変形試験後の模型地層を崩さずにサンプリングし、その浸透率の空間分布をも測定できる装置を提供することを第3の目的とする。
【0006】
【課題を解決するための手段】
上記のような目的を達成するため本発明の地質構造及び水理のモデリング装置は、底板、側板、正面透明板及び背面透明板で構成される矩形土槽と、矩形土槽内の模擬地層に水平の力を載荷するために矩形土槽内に設置する載荷板と、前記模擬地層の変形および変形された模擬地層における試験流体の流れを測定・観測する手段を具備することを特徴とする。
また、本発明の地質構造及び水理のモデリング装置は、矩形土槽を固定底板、前方固定側板、後方固定側板、組立式の正面透明板及び背面透明板で構成し、前記固定底板及び前方固定側板の内側にはスペーサーを介して有孔剛性板及び多孔質フィルター板又は不透過性板を設けることを特徴とする。
また、本発明の地質構造及び水理のモデリング装置は、組立式の正面透明板及び背面透明板の内側には透明なライナー板を設けることを特徴とする。
また、本発明の地質構造及び水理のモデリング装置は、載荷板は矩形土槽内壁との間に止水構造を有し、その内側にはスペーサーを介して有孔剛性板及び多孔質フィルター板又は不透過性板を設けるとともに偏荷重による傾斜を防止する傾斜防止機構を設けることを特徴とする。
また、本発明の地質構造及び水理のモデリング装置は、載荷板に荷重を載荷または除荷する載荷・除荷装置を接続するとともに、載荷板を介して模擬地層の変形速度を制御する載荷・除荷制御装置を設けたことを特徴とする。
また、本発明の地質構造及び水理のモデリング装置は、矩形土槽内に作製された模擬地層の垂直方向の浸透流試験を行うため、矩形土槽の下部及び上部に透過孔を設け、該透過孔から注入される試験流体をスペーサーにより形成される槽状空間及び多孔質フィルター板を介して模擬地層の下部あるいは上部から供給可能とすることを特徴とする。
また、本発明の地質構造及び水理のモデリング装置は、矩形土槽内に作製された模擬地層の水平方向の浸透流試験を行うため、載荷板に透過孔を設け、該透過孔から注入される試験流体をスペーサーにより形成される槽状空間、有孔性剛性板及び多孔質フィルター板の下部を介して供給可能とすることを特徴とする。
また、本発明の地質構造及び水理のモデリング装置は、矩形土槽を組立式の正面透明板又は背面透明板の側に傾斜可能な傾斜機構を備え、矩形土槽を傾斜させた状態で正面透明板又は背面透明板を分解し模擬地層の任意の場所においてサンプリング可能とすることを特徴とする。
また、本発明の地質構造及び水理のモデリング装置は、サンプル容器の挿入可能な多数のガイド孔を穿設したサンプリング用透明ガイド板を備えることを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明による実施の形態を図面に基づき説明する。
図3は、本発明の実施の形態に係る地質構造及び水理のモデリング装置の構成を示す正面図、図4は、同平面図、図5は、図4のA−A断面図、図6は、図3のB−B断面図である。
【0008】
矩形土槽T内に収容・作製される模型地層Gは測定評価の対象であり、目的に応じて矩形土槽T内で単層または多層に作製される。模型試験によく利用される試料としては、例えば、砂や粘土などがあげられるが、目的に応じてガラスビーズ及びシリコンパウダー等種々のものを利用できる。
【0009】
矩形土槽Tは底板1、前方固定側板2、後方固定側板3、目盛付き正面剛性透明板4および目盛付き背面剛性透明板5から構成される。正面および背面の剛性透明板4、5の劣化防止および透明度を保つためにはそれぞれの内側に簡易に取り替えられる透明なライナー板L1、L2を付設する。具体的に、本実施例では、正面および背面剛性透明板4、5に厚さ20mmのアクリル板を使用し、その中央および周辺をステンレス板で補強した。また、ライナー板L1、L2として厚さ5mmのアクリル板を採用した。
【0010】
載荷板8は模型地層Gに水平な力を加え、模型地層Gを変形させるためのものであり、図5及び図6に示すように矩形土槽Tのライナー板L1、L2及び底板1に密着して左右方向に摺動できるように設けられている。載荷板8には追随式二重止水パッキング6、偏荷重による傾斜を防止するための載荷板傾斜防止機構7、模型地層Gの水平方向における浸透流試験を行うためのスペーサーS3、有孔剛性板P3、多孔質フィルター板(または不透過性板)F3、浸透流試験用透過孔及び付随配管V3が備えられている。追随式二重止水パッキング6は載荷板8が移動しても常に止水できる構造となり、高弾性ゴムが使用されている。
【0011】
載荷板8に荷重を載荷又は除荷するための載荷・除荷装置9は、載荷・除荷制御装置10によって自動的に、または手動ハンドル11による手動で載荷又は除荷が任意に切り替えられる。載荷・除荷装置9で発生した荷重は荷重計12を介して載荷板8に伝えられる。載荷・除荷制御装置10は自動および手動で載荷/除荷の切換、載荷速度の制御が行える。例えば、本実施例では、長さ100cm模型地層を最大50cmまで圧縮される場合、載荷時間を1時間から10時間の間で任意に設定できる。また、載荷・除荷装置は最大50KN(5トン)の推力を発生することができる。普通模型地層の高さは土槽高さ60cmの半分程度であり、幅11.4cmの土槽に対して、模型地層に約1400kPaの圧力を加えることが可能である。載荷・除荷用手動ハンドル11は試験前若しくは試験後に載荷板の位置を調整する際に利用される。
荷重計12及び変位計13は試験時の荷重及び変位量を検出するものであり、これらの出力は監視計測装置14により表示、必要であれば、他の記録媒体に転送することも可能である。
【0012】
剛性ガイド板15は載荷板傾斜防止機構7を水平方向に沿ってガイドを行うものであり、ステンレス板が使用されている。
保持具16は正面および背面の目盛り付透明板4、5の補強枠に装着し、試験時矩形土槽の横変形を防げるとともに、剛性ガイド板15を抑える役割をも果たす。
蓋17は必要のある場合のみ使用し、スペーサーS4、有孔剛性板P4および浸透流試験用透過孔V4が備えられている。
二本のタイロット18は矩形土槽全体の剛性を高めるためのものである。
台座19は矩形土槽Tおよび載荷・除荷装置9などを設置するためのものであり、高さは試験作業の便利さを考慮して決められている。
【0013】
図7及び図8は、矩形土槽Tを傾斜させる機構を示す側面図である。
土槽傾斜用ハンドル20を回転させることによって、主動土槽傾斜機構21と受動土槽傾斜機構22が連動チェーン23によって連動され、矩形土槽T全体を最大45°まで傾斜させることができる。これによって、正面剛性透明板4および正面透明ライナー板L1を取り外し、土槽から任意の場所でサンプリングを行う際、自重による模型地層Gの崩れを防止することが可能である。
【0014】
複数の押さえネジ24は目盛り付剛性透明板4、5および透明ライナー板L1、L2を土槽として組み立て、または分解するときに使用するものであり、目盛り付剛性透明板4、5の周辺に取り付けた金属補強枠を介して剛性透明板4、5に均等に当てる。
複数の土槽底板固定ネジ25は矩形土槽Tを台座19の上にしっかりと固定するためのものである。
スペーサーS1〜S4はそれぞれの処で狭い槽状の空間を構築し、浸透流試験用の流体を迅速かつ抵抗なく全槽状空間に行き渡るための構造である。
有孔剛性板P1〜P4はそれぞれの処で構築した槽状空間から流入してきた流体を比較的均等に模型地層Gの透過性を調査しようとする断面に分散させ、また、それぞれの多孔質フィルター板もしくは不透過性板F1〜F3の支え構造にもなる。多孔質フィルター板との接触面を除いた不透過性板の周囲には止水のためのゴムシートを貼り付けられている。
【0015】
多孔質フィルター板F1〜F2は浸透流体をさらに均等に模型地層の透過性を調査しようとする断面に分散させ、また、模型地層G試料の流失を防げる役割を果たすものである。具体的にはパールコーンなどが利用される。
止水パッキングR1〜R4は矩形土槽T全体を止水構造としてく組み立てるためのものである。
浸透流試験用透過孔および付随配管V1〜V4はそれぞれの処で構築した槽状空間に浸透流体を流入又は流出させるためのものである。
透明なライナー板L1、L2は模型地層Gと矩形土槽Tの側面との間で発生する擦り合いが目盛り付けの正面および背面剛性透明板4、5に損傷を与えないようにし、土槽正面および背面の透明度を保つ役割をする。
【0016】
次に、試験の準備段階としての矩形土槽Tの組立手順について述べる。
先ず、矩形土槽Tの前方固定側板2の内側にスペーサーS2、有孔剛性板P2および多孔質フィルターF2を順番にセットする。模型地層Gの垂直方向の浸透流試験を行う場合には多孔質フィルターF2を使用せず、代わりに不透過性板を使用する。その後、土槽の底板1にスペーサーS1、有孔剛性板P1および多孔質フィルターF1を順番にセットする。多孔質フィルターF1の長さは模型地層Gが最終的に圧縮された長さに見合ったものを使用し、残りの部分は多孔質フィルターと同じ厚さの不透過性板を使用する。同様、模型地層Gの水平方向の浸透流を行う場合には、有孔剛性板P1の上を不透過性板のみ使用する。その後、目盛付き正面剛性透明板4および目盛付き背面剛性透明板5および正、背面透明ライナーL1、L2をそれぞれ所定の位置にはめ込む。その後、載荷板8を矩形土槽B内に装着し、載荷板8の位置を載荷・除荷用手動ハンドル11によって所定の位置まで調整する。その後、複数の押さえネジ24を均等に締め付けて矩形土槽Tの組立を完了する。その後、載荷・除荷制御装置10によって載荷・除荷装置を作動させ、載荷板8が負荷しない状態での摩擦力を測定しておく。この場合、摩擦力は荷重計12により検出し、監視計測装置14によって表示される。
【0017】
次に、組み立てられた矩形土槽T内で模型地層Gを作製する手順を述べる。
乾燥状態の模型地層を作製するためには、乾燥した試料を用い、矩形土槽T内で層毎に均等に入れ、タンパーで所定の密度と所定の高さまで締め固める。このとき、模型地層の密度は入れた試料の重量と土槽内での容積から計算される。湿潤状態の模型地層を作製するためには、事前に試料に所定の含水比で試料を用意し、同様な手順で所定の密度まで締め固める。完全飽和状態の模型地層を作製するためには、矩形土槽内に予め適当な深度の水を入れて、その中に試料を均等に充填し、同じく所定の密度と高さまで締め固めるか、乾燥または湿潤状態の模型地層を飽和させることによっても作製が可能である。模型地層の作製が完了した後、剛性ガイド板15を土槽Tの上部に載せ、保持具によって固定する。土槽Tの残りの開口部には蓋17をかける。その後、タイロット18をセットし、適度に締め付ける。
【0018】
次に、模型地層Gを変形させる過程について説明する。
上記の通り作製した模型地層Gに載荷板8を介して、水平方向に力を加えて圧縮させる。これは自然界における地殻変動の主な要因として、プレート間の相対的水平移動によるものと認識されているためである。この場合、載荷速度は載荷・除荷制御装置10によって所定のレベルに制御できる。また、載荷荷重と水平変形量はそれぞれ荷重計12と変位計13で検出され、監視計測装置14によって表示される。なお、実際に模型地層に加えられた荷重は変形試験時の測定値と準備段階で計測した載荷板8と土槽内部との摩擦力との差である。圧縮されている模型地層Gの変形様子、即ち、模型地層Gに発生する褶曲やクラック及び断層等の様子を観測し、記録を行う。具体的には、ビデオカメラを用い、連続的に撮影を行う。また、カメラやデジカメなどを用い、代表的な変形状態の様子をも撮影できる。模型地層Gが所定の長さまで圧縮された時点で圧縮変形試験が終了する。当然なことでありながら、圧縮変形試験の途中でも、必要に応じて変形試験を一旦停止させたりすることも可能である。
【0019】
次に、前述のように変形させた模型地層Gをその場で垂直方向の浸透流試験を行う際の手順について説明する。
垂直方向における浸透流試験を行い、模型地層Gにおける流体の流れ様子を観測、撮影するためには、矩形土槽T底部で構築した狭い槽状空間とつながっている透過孔V1から試験流体、例えば、着色流体を注入させ、流体がスペーサーS1により構築した槽状空間、有孔剛性板P1および多孔質フィルター板F1を介して模型地層Gの下部に均等に浸透させる。模型地層Gを透過し、地層の上部に達していたら浸透流試験を終了する。この場合、自然界おける地下深部からの上昇水の流れをシミュレートすることができる。高レベル放射性廃棄物地層処分の場合でも、基本的に地下深部で汚染された水がどのように地表の付近である生活圏まで到達することを評価しなければならない。逆に、蓋17にある浸透流試験用透過孔V4から着色流体を注入し、流体がスペーサーS4により構築した槽状空間および有孔剛性板P4を介して、模型地層Gの上部に均等に吹きかける。模型地層Gを透過し、地層の下部に到達した流体は土槽の下部に敷設した多孔質フィルター板F1、有孔剛性板P1、スペーサーS1により構築した槽状空間を通して、浸透流試験用透過孔V1によって排出される。この場合では、地表水が地下深部に浸透していく流れをシミュレートすることができる。その際、ビデオカメラ等の測定・観測手段を用いて地表水が地下深部に浸透していく流れを測定・観測し、記録する。なお、垂直方向における浸透流試験を行うためには、試験準備段階において事前に前方固定側板2の内側に設置する多孔質フィルター板F2および載荷板8の内側に設置する多孔質フィルター板F3を不透過性板に交換しておく必要がある。
【0020】
次に、模型地層Gにおける水平方向の浸透流試験について説明を行う。
この場合、事前に矩形土槽Tの底部に敷設する多孔質フィルター板F1を不透過性板に交換しておく必要があるが、蓋17は使用する必要がない。前述した垂直方向における浸透試験と同じ条件で模型地層Gを作製し、同じ載荷条件で変形をさせる。その後、模型地層Gの上部に露出した多孔質フィルター板F2およびF3の表面に止水ゲールシートを貼り付ける。また、模型地層Gの上部に止水シートをかけ、適度な重みを加える。例えば、薄い粘土ケーキで被覆を行う。水平方向の浸透流試験を行い、模型地層Gにおける流体移動様子を可視し、撮影するためには、載荷板8に付設した浸透流試験用透過孔V3から試験流体、例えば、着色流体を流入させる。この浸透流体はスペーサーS3で構築した槽状空間、有孔剛性板P3および多孔質フィルター板F3の下部を介して模型地層Gに均等に浸透させる。模型地層Gを透過した流体は前方側の多孔質フィルター板F2、有孔剛性板P2およびスペーサーS2で構築した槽状空間の下部を経由し、浸透流試験用透過孔V2によって流出する。その際、ビデオカメラ等の測定・観測手段を用いて浸透流体の浸透していく状態を測定・観測し、記録する。地層の水平方向における流体移動を正確に予測評価することは石油や地熱などに代表される地下流体資源開発分野において極めて重要である。
【0021】
最後に、目盛付き正面剛性透明板4および目盛付き背面剛性透明板5に直交した方向の浸透性を評価するために試験体をサンプリングする方法について述べる。
垂直または水平方向の浸透流試験を終了した後、14個の土槽底板固定ネジ25を外す。その後、順番にタイロット18、蓋17、保持具16、剛性ガイド板15を取り外す。その後、土槽傾斜用ハンドル20を回転させ、連動チェーン23によって主動傾斜機構21および受動傾斜機構22が同じように動作させ、矩形土槽T全体を最大45°まで傾斜させる(図7、図8)。その後、正面剛性透明板4の押さえネジ24をゆるめ、正面剛性透明板4およびライナーL1を順番に取り外す。このように傾斜させた土槽からは、自重による模型地層試料の崩れを防止した状態で、必要とする個数分を順次に採取することが可能である。
図9は、試験体をサンプリングする際に便利なサンプリング用透明ガイド板26の斜視図である。試料採取に当たっては、サンプリング用透明ガイド板26を模型地層試料の表面に沿わせて固定し、サンプリング用透明ガイド板26に穿設された多数のガイド孔27に図示しない円筒状をしたサンプル容器を挿入して試料をサンプル容器内に採取する。
採取された試験体は従来の室内透水または透気試験法を用い、浸透性を評価することができる。通常、地層の内部では変形を与える力に直交した方向に亀裂や断層を発生し、この亀裂や断層に沿った方向の流体の流れやすさが最も大きい。各種廃棄物地層処分施設の安全性評価では、この最大流れやすさを正確に予測評価することが肝要である。これは汚染物質の到達範囲を評価する際に必要とされるためである。
【0022】
前述したように同じ条件下で模型地層を2回作製し、同じ載荷条件で変形させ、変形されたそれぞれの模型地層に対して垂直方向、水平方向、さらに目盛付き正面剛性透明板4および目盛付き背面剛性透明板5に直交した方向の浸透性を三次元的に評価することが可能である。
【0023】
【発明の効果】
本発明によれば、従来の地層変形のモデリング試験技術で評価ができていなかった地下水の存在が地下の亀裂や断層などの形成に及ぼす影響を評価できるようになった。また、変形された模型地層における浸透流特性の三次元的空間分布も評価できるようになった。
本装置は地層における流体移動を予測評価するあらゆる分野において有用であり、特に天然バリアとして期待されている地層の隔離性や遮蔽性を正確に予測評価する必要のある廃棄物地層処分などに関連する環境制御技術分野において極めて重要なものとなる。
また、作製した模型地層に載荷板を介して水平方向に力を加えて圧縮させようにしたため、模擬地層を最大50パーセント以上水平に圧縮させることができ、しかも自由に移動することができる。
さらに、試験目的に応じて変形させた地層をその場で垂直または水平方向の浸透流試験ができる。
また、試験装置の矩形土槽全体を傾斜させて正面の板を分解し、模擬地層の崩れを防止した状態で、任意の場所おいてサンプリングホルダによるサンプリングができる。
【図面の簡単な説明】
【図1】地層の変形構造をモデリングするためのサンドボックス(砂箱)法と呼ばれる従来の技術を示す図である。
【図2】地層における流体移動状態をモデリングするため、土槽若しくは水槽を用いた従来の水理試験を示す図である。
【図3】本発明の実施の形態に係る地質構造及び水理のモデリング装置の構成を示す正面図である。
【図4】本発明の実施の形態に係る地質構造及び水理のモデリング装置の構成を示す平面図である。
【図5】図4のA−A断面図である。
【図6】図3のB−B断面図である。
【図7】矩形土槽を傾斜させる機構を示す側面図である。
【図8】傾斜させた矩形土槽の状態を示す側面図である。
【図9】サンプリング用透明ガイド板を示す図である。
【符号の説明】
1 底板
2 前方固定側板
3 後方固定側板
4 目盛り付正面剛性透明板
5 目盛り付背面剛性透明板
6 二重止水パッキング
7 載荷板傾斜防止機構
8 載荷板
9 載荷・除荷装置
10 載荷・除荷制御装置
11 載荷・除荷用手動ハンドル
12 荷重計
13 変位計
14 監視・計測装置
15 剛性ガイド板
16 保持具
17 蓋
18 タイロット
19 台座
20 矩形土槽傾斜用ハンドル
21 主動土槽傾斜機構
22 受動土槽傾斜機構
23 連動チェーン
24 押さえネジ
25 土槽底板固定ネジ
G 模型地層
T 矩形土槽
S1〜S4 スペーサー
P1〜P4 有孔剛性板
F1〜F3 多孔質フィルター板または不透過性板
R1〜R4 止水パッキング
V1〜V4 浸透流試験用透過孔及び付随配管
L1、L2正面および背面透明ライナー板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a modeling test technique capable of accurately elucidating the mechanism of the interaction between formation deformation and fluid movement in consideration of the characteristics of underground geology. Specifically, the presence of groundwater affects the formation of cracks and faults in the underground. The geological structure and hydraulic modeling device that can evaluate the influence, the influence of crustal deformation rate on fault formation, and the relative change and spatial distribution of fluid movement characteristics in the formation near cracks and faults Is.
This equipment is useful for modeling tests to properly predict and evaluate subsurface geological structures and subsurface fluid movements in various fields such as structural geology, petroleum geology, geotechnical engineering, hydraulics and waste geological disposal.
[0002]
[Prior art]
As a prior art for modeling the deformation structure of the formation, there is a so-called sandbox method as shown in FIG. 1 (see, for example, Non-Patent Document 1). In this method, two box members having a U-shaped side wall face each other and placed on a bottom plate, and these box members are configured to be movable in a nested manner in the horizontal direction to form a sandbox. A layered model geological formation is produced in the formed sandbox. In order to deform the model stratum, one U-shaped side wall is fixed, and the other U-shaped side wall is moved in the horizontal direction along the bottom plate. In order to observe the deformed geological structure, the U-shaped side wall is made of a transparent material and observed directly from the side of the sandbox, or the sample of the geological layer is solidified with a solidifying agent such as resin, and the cross section to be evaluated Cut, polish, and observe along. In recent years, the inside of a sample can be observed using an X-ray scanner. Dry sand, clay, glass beads, hard spheres, etc. are used as samples for modeling the formation.
On the other hand, in order to model the fluid movement state in the formation, a hydraulic test using a soil tank or a water tank as shown in FIG. 2 is performed (for example, refer to Patent Document 1). In this apparatus, at least one casing well having a small hole for inflowing air and drawing a vacuum is installed at both ends of a cell constituted by transparent front and back plates. The cell is then filled with a porous material and saturated with at least one liquid. After closing the top of the cell, draw a vacuum from one casing well, transmit gamma rays or X-rays between the front and back of the cell, and measure the moisture content by mapping the measurement results at multiple points. Evaluate the spatial distribution.
[0003]
[Non-Patent Document 1]
Ph. Davy and PR Cobbold (1991): Experiments on Shortening of A 4- Layer Model of the Continental Lithosphere, Tectonophysics, Vol. 188, pp. 1-25.
[Patent Document 1]
US Pat. No. 5,789,662 specification
[Problems to be solved by the invention]
The sandbox method as described above has been widely used in the fields of structural geology and petroleum geology as the only and effective laboratory test method for modeling the macroscopic deformation structure of the formation. However, in recent years, in the long-term safety assessment of geological disposal facilities for various types of waste including environmental conservation and nuclear waste, it has been required to measure and evaluate not only the structure of underground geology but also the fluid movement characteristics in it. The conventional modeling test apparatus cannot meet such new needs in the following points.
(1) The influence of fluid on the deformation of the formation cannot be evaluated. In fact, underground water is present underground, which strongly influences the formation of micro-structures that govern the deformation of the formation, especially fluid movement.
(2) The deformed formation is structurally inhomogeneous and anisotropic. Conventional modeling test techniques cannot evaluate the effect of these characteristics on the infiltration flow characteristics of the formation.
(3) In the conventional hydraulic modeling test using a soil tank, only a fluid flow test can be performed in a homogeneously filled model formation. The actual strata are not ideal and have undergone many years of crustal deformation. Especially in the case of geological disposal of high-level radioactive waste, it is necessary to evaluate the ultra-long-term safety for 100,000 years after the construction of the facility, but it is indispensable to predict the movement of groundwater considering the impact of crustal deformation. ing.
[0005]
A first object of the present invention is to provide a modeling test apparatus for formation deformation that solves the above-described problems of the prior art and considers the presence of groundwater.
It is a second object of the present invention to provide an apparatus capable of performing an osmotic flow test on a deformed model formation in the horizontal or vertical direction on the spot.
It is a third object of the present invention to provide an apparatus that can sample a model stratum after a deformation test without damaging it and also measure the spatial distribution of the permeability.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the geological structure and hydraulic modeling apparatus of the present invention includes a rectangular earth basin composed of a bottom plate, a side plate, a front transparent plate and a rear transparent plate, and a simulated stratum in the rectangular earth basin. A loading plate installed in a rectangular soil tank for loading a horizontal force, and means for measuring and observing the deformation of the simulated formation and the flow of the test fluid in the deformed simulated formation.
Further, the geological structure and hydraulic modeling apparatus of the present invention comprises a rectangular earth basin composed of a fixed bottom plate, a front fixed side plate, a rear fixed side plate, an assembly-type front transparent plate and a rear transparent plate, and the fixed bottom plate and the front fixed plate A perforated rigid plate and a porous filter plate or an impermeable plate are provided inside the side plate through a spacer.
The geological structure and hydraulic modeling apparatus of the present invention is characterized in that a transparent liner plate is provided inside the assembly-type front transparent plate and the back transparent plate.
Further, in the geological structure and hydraulic modeling device of the present invention, the loading plate has a water stop structure between the inner wall of the rectangular earthen basin, and a perforated rigid plate and a porous filter plate are interposed inside the loading plate via a spacer. Alternatively, an impervious plate is provided, and an inclination preventing mechanism for preventing inclination due to an uneven load is provided.
In addition, the geological structure and hydraulic modeling device of the present invention connects a loading / unloading device for loading or unloading a load on the loading plate, and controls the deformation rate of the simulated stratum via the loading plate. An unloading control device is provided.
In addition, the geological structure and hydraulic modeling apparatus of the present invention is provided with permeation holes in the lower and upper portions of the rectangular soil tank in order to conduct a vertical seepage flow test of the simulated formation created in the rectangular soil tank. The test fluid injected from the permeation holes can be supplied from the lower part or the upper part of the simulated formation through a tank-like space formed by a spacer and a porous filter plate.
In addition, the geological structure and hydraulic modeling device of the present invention is provided with a permeation hole in the loading plate and injected from the permeation hole in order to perform a horizontal seepage flow test of the simulated stratum formed in the rectangular soil tank. The test fluid can be supplied through a tank-shaped space formed by a spacer, a porous rigid plate, and a lower portion of a porous filter plate.
Further, the geological structure and hydraulic modeling apparatus of the present invention includes a tilting mechanism capable of tilting the rectangular soil tank toward the assembly-type front transparent plate or the rear transparent plate, and the rectangular soil tank is tilted in front. The transparent plate or the back transparent plate is disassembled so that sampling can be performed at any place in the simulated stratum.
In addition, the geological structure and hydraulic modeling apparatus of the present invention includes a sampling transparent guide plate having a large number of guide holes into which a sample container can be inserted.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
3 is a front view showing the configuration of the geological structure and hydraulic modeling apparatus according to the embodiment of the present invention, FIG. 4 is a plan view thereof, FIG. 5 is a cross-sectional view taken along line AA of FIG. These are BB sectional drawing of FIG.
[0008]
The model geological layer G accommodated and produced in the rectangular earthen tank T is an object of measurement and evaluation, and is produced in a single layer or multiple layers in the rectangular earthen tank T according to the purpose. Examples of the sample often used for the model test include sand and clay, but various types such as glass beads and silicon powder can be used depending on the purpose.
[0009]
The rectangular soil tank T is composed of a bottom plate 1, a front fixed side plate 2, a rear fixed side plate 3, a scaled front rigid transparent plate 4 and a scaled rear rigid transparent plate 5. In order to prevent deterioration and transparency of the rigid transparent plates 4 and 5 on the front and back sides, transparent liner plates L1 and L2 that can be easily replaced are attached to the inside of each. Specifically, in this example, acrylic plates having a thickness of 20 mm were used for the front and back rigid transparent plates 4 and 5, and the center and periphery thereof were reinforced with stainless plates. Moreover, the acrylic board of thickness 5mm was employ | adopted as liner board L1 and L2.
[0010]
The loading plate 8 applies a horizontal force to the model formation G to deform the model formation G, and is in close contact with the liner plates L1 and L2 and the bottom plate 1 of the rectangular soil tank T as shown in FIGS. Thus, it can be slid in the left-right direction. The loading plate 8 includes a followable double water-stop packing 6, a loading plate tilt prevention mechanism 7 for preventing tilting due to an uneven load, a spacer S3 for conducting a seepage flow test in the horizontal direction of the model formation G, and a perforated rigidity. A plate P3, a porous filter plate (or impervious plate) F3, a permeation hole for permeation flow test, and an accompanying pipe V3 are provided. The followable double water-stop packing 6 has a structure that can always stop water even when the loading plate 8 moves, and uses highly elastic rubber.
[0011]
The loading / unloading device 9 for loading or unloading the load on the loading plate 8 can be switched arbitrarily by the loading / unloading control device 10 or manually by the manual handle 11. The load generated by the loading / unloading device 9 is transmitted to the loading plate 8 through the load meter 12. The loading / unloading control device 10 can automatically and manually switch loading / unloading and control the loading speed. For example, in this embodiment, when a 100 cm long model geological formation is compressed to a maximum of 50 cm, the loading time can be arbitrarily set between 1 hour and 10 hours. Further, the loading / unloading device can generate a maximum thrust of 50 KN (5 tons). The height of the normal model formation is about half of the height of the soil tank of 60 cm, and it is possible to apply a pressure of about 1400 kPa to the model formation with respect to the soil tank having a width of 11.4 cm. The loading / unloading manual handle 11 is used when adjusting the position of the loading plate before or after the test.
The load meter 12 and the displacement meter 13 detect the load and displacement during the test, and these outputs can be displayed by the monitoring / measuring device 14 and transferred to another recording medium if necessary. .
[0012]
The rigid guide plate 15 guides the loading plate tilt prevention mechanism 7 along the horizontal direction, and a stainless plate is used.
The holder 16 is attached to the reinforcing frame of the transparent plates 4 and 5 with the scales on the front and back sides, and prevents the lateral deformation of the rectangular soil tank during the test and also serves to suppress the rigid guide plate 15.
The lid 17 is used only when necessary, and includes a spacer S4, a perforated rigid plate P4, and a permeation hole V4 for osmotic flow test.
The two tie lots 18 are for increasing the rigidity of the entire rectangular soil tank.
The pedestal 19 is for installing the rectangular soil tank T and the loading / unloading device 9, and the height is determined in consideration of the convenience of the test work.
[0013]
7 and 8 are side views showing a mechanism for inclining the rectangular soil tank T. FIG.
By rotating the soil tank tilting handle 20, the main soil tank tilting mechanism 21 and the passive soil tank tilting mechanism 22 are interlocked by the interlocking chain 23, and the entire rectangular soil tank T can be tilted up to 45 °. Thus, when the front rigid transparent plate 4 and the front transparent liner plate L1 are removed and sampling is performed at an arbitrary place from the soil tank, it is possible to prevent the model formation G from collapsing due to its own weight.
[0014]
The plurality of holding screws 24 are used when assembling or disassembling the scaled rigid transparent plates 4 and 5 and the transparent liner plates L1 and L2 as a soil tank, and are attached around the scaled rigid transparent plates 4 and 5. It is equally applied to the rigid transparent plates 4 and 5 through the metal reinforcing frame.
The plurality of soil tank bottom plate fixing screws 25 are for firmly fixing the rectangular soil tank T on the pedestal 19.
Each of the spacers S1 to S4 is a structure for constructing a narrow tank-like space at each place, and for quickly spreading the fluid for the osmotic flow test to the entire tank-like space without resistance.
The perforated rigid plates P1 to P4 disperse the fluid flowing in from the tank-like spaces constructed in the respective sections relatively evenly in the cross section to be examined for permeability of the model formation G, and each porous filter It becomes a support structure of a board or impermeable board F1-F3. A rubber sheet for water stop is attached around the impervious plate excluding the contact surface with the porous filter plate.
[0015]
The porous filter plates F1 to F2 serve to disperse the osmotic fluid more evenly in the cross section where the permeability of the model formation is to be investigated, and to prevent the model formation G sample from being lost. Specifically, pearl corn or the like is used.
The water-stop packings R1 to R4 are for assembling the entire rectangular soil tank T as a water-stop structure.
The permeation flow test permeation holes and the associated pipes V1 to V4 are for allowing the permeation fluid to flow into or out of the tank-shaped space constructed in each place.
The transparent liner plates L1 and L2 prevent the friction generated between the model strata G and the side surface of the rectangular soil tank T from damaging the scaled front and back rigid transparent plates 4 and 5, and the front surface of the soil tank. And keep the transparency of the back.
[0016]
Next, an assembly procedure of the rectangular earthen basin T as a preparation stage for the test will be described.
First, the spacer S2, the perforated rigid plate P2, and the porous filter F2 are set in order inside the front fixed side plate 2 of the rectangular soil tank T. When conducting the vertical seepage flow test of the model formation G, the porous filter F2 is not used, but an impermeable plate is used instead. Thereafter, the spacer S1, the porous rigid plate P1, and the porous filter F1 are set in order on the bottom plate 1 of the earth tub. The porous filter F1 has a length corresponding to the final compressed length of the model formation G, and the remaining portion uses an impervious plate having the same thickness as the porous filter. Similarly, when performing the horizontal seepage flow of the model formation G, only the impervious plate is used on the perforated rigid plate P1. Thereafter, the front rigid transparent plate 4 with scale, the rear rigid transparent plate 5 with scale, and the positive and rear transparent liners L1 and L2 are fitted into predetermined positions, respectively. Thereafter, the loading plate 8 is mounted in the rectangular soil tank B, and the position of the loading plate 8 is adjusted to a predetermined position by the loading / unloading manual handle 11. Thereafter, the plurality of holding screws 24 are uniformly tightened to complete the assembly of the rectangular soil tank T. Thereafter, the loading / unloading device 10 is operated by the loading / unloading control device 10 to measure the frictional force when the loading plate 8 is not loaded. In this case, the frictional force is detected by the load meter 12 and displayed by the monitoring measurement device 14.
[0017]
Next, the procedure for producing the model strata G in the assembled rectangular soil tank T will be described.
In order to produce a dry model ground layer, a dry sample is used, and the layers are evenly placed in the rectangular clay tank T and compacted to a predetermined density and a predetermined height with a tamper. At this time, the density of the model formation is calculated from the weight of the sample and the volume in the soil tank. In order to prepare a wet model ground layer, a sample is prepared in advance with a predetermined water content ratio and is compacted to a predetermined density in the same procedure. In order to create a fully saturated model geological formation, water in an appropriate depth is placed in a rectangular soil tank in advance, and the sample is uniformly filled in it, and then compacted to the prescribed density and height, or dried. Alternatively, it can also be produced by saturating a wet model formation. After the production of the model stratum is completed, the rigid guide plate 15 is placed on the upper part of the soil tank T and fixed with a holder. The lid 17 is put on the remaining opening of the earth tub T. Thereafter, the tie lot 18 is set and tightened appropriately.
[0018]
Next, the process of deforming the model formation G will be described.
The model strata G produced as described above is compressed by applying a force in the horizontal direction via the loading plate 8. This is because it is recognized that this is due to the relative horizontal movement between the plates as the main cause of crustal deformation in nature. In this case, the loading speed can be controlled to a predetermined level by the loading / unloading control device 10. Further, the loaded load and the horizontal deformation amount are detected by the load meter 12 and the displacement meter 13, respectively, and are displayed by the monitoring measurement device 14. In addition, the load actually applied to the model formation is a difference between the measured value at the time of the deformation test and the friction force between the loading plate 8 and the inside of the earth tub measured in the preparation stage. The deformation state of the model stratum G being compressed, that is, the state of folds, cracks, faults, etc. occurring in the model strata G is observed and recorded. Specifically, continuous shooting is performed using a video camera. In addition, using a camera or a digital camera, a typical deformed state can be photographed. The compression deformation test ends when the model formation G is compressed to a predetermined length. Of course, even during the compression deformation test, it is possible to temporarily stop the deformation test if necessary.
[0019]
Next, a procedure for performing a vertical seepage flow test on the model strata G deformed as described above will be described.
In order to conduct an osmotic flow test in the vertical direction and observe and photograph the flow of fluid in the model stratum G, the test fluid, for example, from the permeation hole V1 connected to the narrow tank-like space constructed at the bottom of the rectangular earthen tank T The colored fluid is injected, and the fluid is uniformly permeated into the lower part of the model formation G through the tank-shaped space constructed by the spacer S1, the perforated rigid plate P1, and the porous filter plate F1. If it passes through the model formation G and reaches the upper part of the formation, the osmotic flow test is terminated. In this case, it is possible to simulate the flow of rising water from the deep underground in the natural world. Even in the case of geological disposal of high-level radioactive waste, it must be evaluated how the water contaminated in the deep underground basically reaches the living area near the surface of the earth. On the contrary, the colored fluid is injected from the permeation flow test hole V4 in the lid 17, and the fluid is sprayed evenly on the upper part of the model formation G through the tank-shaped space constructed by the spacer S4 and the perforated rigid plate P4. . The fluid that permeates the model formation G and reaches the lower part of the formation passes through the tank-shaped space constructed by the porous filter plate F1, the perforated rigid plate P1, and the spacer S1 laid at the lower part of the soil tank. Discharged by V1. In this case, it is possible to simulate the flow of surface water penetrating deep underground. At that time, measure and observe the flow of surface water penetrating deep underground using a measurement and observation means such as a video camera, and record it. In order to perform the osmotic flow test in the vertical direction, the porous filter plate F2 installed inside the front fixed side plate 2 and the porous filter plate F3 installed inside the loading plate 8 in advance are not used in the test preparation stage. It is necessary to replace the permeable plate.
[0020]
Next, the horizontal seepage flow test in the model formation G will be described.
In this case, it is necessary to replace the porous filter plate F1 laid on the bottom of the rectangular soil tank T in advance with an impermeable plate, but the lid 17 does not need to be used. A model formation G is produced under the same conditions as the penetration test in the vertical direction described above, and is deformed under the same loading conditions. Then, a water stop galle sheet is affixed on the surface of the porous filter plates F2 and F3 exposed at the upper part of the model formation G. Moreover, a waterproof sheet is put on the upper part of the model stratum G, and appropriate weight is added. For example, coating with a thin clay cake. In order to perform a seepage flow test in the horizontal direction and visualize and photograph the fluid movement in the model formation G, a test fluid, for example, a colored fluid, is introduced from the seepage hole V3 for the seepage flow test provided in the loading plate 8. . This osmotic fluid is uniformly permeated into the model formation G through the tank-shaped space constructed by the spacer S3, the perforated rigid plate P3, and the lower part of the porous filter plate F3. The fluid that has permeated the model formation G flows out through the permeation hole V2 for the osmotic flow test via the lower part of the tank-like space constructed by the porous filter plate F2, the porous rigid plate P2, and the spacer S2 on the front side. At that time, the measurement and observation means such as a video camera is used to measure, observe and record the state of penetration of the osmotic fluid. Accurate prediction and evaluation of fluid movement in the horizontal direction of the formation is extremely important in the field of underground fluid resources development represented by oil and geothermal.
[0021]
Finally, a method of sampling the test specimen to evaluate the permeability in the direction orthogonal to the scaled front rigid transparent plate 4 and scaled rear rigid transparent plate 5 will be described.
After the vertical or horizontal osmotic flow test is completed, the 14 soil tank bottom plate fixing screws 25 are removed. Thereafter, the tie-lot 18, the lid 17, the holder 16, and the rigid guide plate 15 are removed in order. Thereafter, the soil tank tilting handle 20 is rotated, and the main tilt mechanism 21 and the passive tilt mechanism 22 are operated in the same manner by the interlocking chain 23, so that the entire rectangular soil tank T is tilted up to 45 ° (FIGS. 7 and 8). ). Thereafter, the holding screw 24 of the front rigid transparent plate 4 is loosened, and the front rigid transparent plate 4 and the liner L1 are removed in order. From the soil tank tilted in this way, it is possible to sequentially collect the necessary number of samples while preventing the collapse of the model stratum sample due to its own weight.
FIG. 9 is a perspective view of a sampling transparent guide plate 26 that is convenient when sampling a specimen. In collecting the sample, a sampling transparent guide plate 26 is fixed along the surface of the model stratum sample, and a cylindrical sample container (not shown) is inserted into a number of guide holes 27 formed in the sampling transparent guide plate 26. Insert and collect sample in sample container.
The collected specimen can be evaluated for permeability using a conventional indoor water permeability or air permeability test method. Usually, cracks and faults occur in the direction perpendicular to the force that gives deformation inside the formation, and the fluid flow along the cracks and faults is most likely to flow. In the safety assessment of various waste geological disposal facilities, it is important to accurately predict and evaluate this maximum ease of flow. This is necessary when evaluating the reach of pollutants.
[0022]
As described above, a model strata is prepared twice under the same conditions, deformed under the same loading conditions, and each deformed model strata is vertically, horizontally, further graduated with the front rigid transparent plate 4 and graduated. It is possible to three-dimensionally evaluate the permeability in the direction orthogonal to the back rigid transparent plate 5.
[0023]
【The invention's effect】
According to the present invention, it has become possible to evaluate the influence of the presence of groundwater, which has not been evaluated by the conventional modeling test technique for deformation of the formation, on the formation of underground cracks and faults. In addition, the three-dimensional spatial distribution of the seepage flow characteristics in the deformed model strata can be evaluated.
This device is useful in all fields for predicting and evaluating fluid movement in geological formations, especially related to waste geological disposal that needs to accurately predict and evaluate the isolation and shielding properties of geological formations expected as natural barriers. This is extremely important in the field of environmental control technology.
In addition, since the produced model formation is compressed by applying a force in the horizontal direction via the loading plate, the simulated formation can be compressed horizontally by up to 50% or more and can be moved freely.
In addition, vertical or horizontal osmotic flow tests can be performed on the formations deformed according to the test purpose.
In addition, it is possible to perform sampling with a sampling holder at an arbitrary place in a state where the entire rectangular soil tank of the test apparatus is tilted to disassemble the front plate and prevent the simulated stratum from collapsing.
[Brief description of the drawings]
FIG. 1 is a diagram showing a conventional technique called a sandbox method for modeling a deformation structure of a formation.
FIG. 2 is a diagram showing a conventional hydraulic test using a soil tank or a water tank in order to model the fluid movement state in the formation.
FIG. 3 is a front view showing a configuration of a geological structure and hydraulic modeling apparatus according to an embodiment of the present invention.
FIG. 4 is a plan view showing a configuration of a geological structure and hydraulic modeling apparatus according to an embodiment of the present invention.
5 is a cross-sectional view taken along the line AA in FIG.
6 is a cross-sectional view taken along line BB in FIG.
FIG. 7 is a side view showing a mechanism for inclining a rectangular soil tank.
FIG. 8 is a side view showing a state of an inclined rectangular earth tub.
FIG. 9 is a view showing a transparent guide plate for sampling.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bottom plate 2 Front fixed side plate 3 Rear fixed side plate 4 Scaled front rigid transparent plate 5 Scaled rear rigid transparent plate 6 Double waterstop packing 7 Loading plate tilt prevention mechanism 8 Loading plate 9 Loading / unloading device 10 Loading / unloading Control device 11 Manual handle for loading / unloading 12 Load meter 13 Displacement meter 14 Monitoring / measuring device 15 Rigid guide plate 16 Holder 17 Lid 18 Tylot 19 Pedestal 20 Rectangular soil tank tilting handle 21 Main soil tank tilting mechanism 22 Passive soil Tank tilting mechanism 23 Interlocking chain 24 Holding screw 25 Earth tank bottom plate fixing screw G Model base layer T Rectangular earth tanks S1 to S4 Spacers P1 to P4 Perforated rigid plates F1 to F3 Porous filter plates or impermeable plates R1 to R4 Packing V1-V4 Permeation hole for osmotic flow test and associated piping L1, L2 front and back transparent liner plates

Claims (9)

底板、側板、正面透明板及び背面透明板で構成される矩形土槽と、矩形土槽内の模擬地層に水平の力を載荷するために矩形土槽内に設置する載荷板と、前記模擬地層の変形および変形された模擬地層における試験流体の流れを測定・観測する手段を具備することを特徴とする地質構造及び水理のモデリング装置。A rectangular earth basin composed of a bottom plate, a side plate, a front transparent plate and a rear transparent plate, a loading plate installed in the rectangular earth basin in order to load a horizontal force on the simulated earth in the rectangular earth basin, and the simulated earth layer An apparatus for modeling geological structure and hydraulics , comprising means for measuring and observing the flow of the test fluid in the deformation layer and the deformed simulated formation. 矩形土槽を固定底板、前方固定側板、後方固定側板、組立式の正面透明板及び背面透明板で構成し、前記固定底板及び前方固定側板の内側にはスペーサーを介して有孔剛性板及び多孔質フィルター板又は不透過性板を設けることを特徴とする請求項1記載の地質構造及び水理のモデリング装置。The rectangular soil tank is composed of a fixed bottom plate, a front fixed side plate, a rear fixed side plate, an assembly-type front transparent plate and a rear transparent plate. Inside the fixed bottom plate and the front fixed side plate, a perforated rigid plate and a porous plate are provided via spacers. The geological structure and hydraulic modeling device according to claim 1 , wherein a quality filter plate or an impermeable plate is provided. 組立式の正面透明板及び背面透明板の内側には透明なライナー板を設けることを特徴とする請求項1又は請求項2記載の地質構造及び水理のモデリング装置。3. The geological structure and hydraulic modeling apparatus according to claim 1 , wherein a transparent liner plate is provided inside the assembly-type front transparent plate and the back transparent plate. 載荷板は矩形土槽内壁との間に止水構造を有し、その内側にはスペーサーを介して有孔剛性板及び多孔質フィルター板又は不透過性板を設けるとともに偏荷重による傾斜を防止する傾斜防止機構を設けることを特徴とする請求項1乃至請求項3のいずれか1項に記載の地質構造及び水理のモデリング装置。The loading plate has a water blocking structure between the inner wall of the rectangular earthen basin, and a perforated rigid plate and a porous filter plate or impervious plate are provided on the inner side of the loading plate via a spacer, and tilting due to uneven load is prevented. and providing a anti-tilt mechanism, geological structure and hydraulic modeling apparatus according to any one of claims 1 to 3. 載荷板に荷重を載荷または除荷する載荷・除荷装置を接続するとともに、載荷板を介して模擬地層の変形速度を制御する載荷・除荷制御装置を設けたことを特徴とする請求項1乃至請求項4のいずれか1項に記載の地質構造及び水理のモデリング装置。With connecting loading-unloading device for loading or unloading a load to loading plate, characterized in that a loading-unloading control device for controlling the deformation rate of the simulated formation through the loading plate, claim The geological structure and hydraulic modeling apparatus according to any one of claims 1 to 4. 矩形土槽内に作製された模擬地層の垂直方向の浸透流試験を行うため、矩形土槽の下部及び上部に透過孔を設け、該透過孔から注入される試験流体をスペーサーにより形成される槽状空間、有孔剛性板又は多孔質フィルター板を介して模擬地層の下部あるいは上部から供給可能とすることを特徴とする請求項1乃至請求項5のいずれか1項に記載の地質構造及び水理のモデリング装置。In order to conduct a vertical seepage flow test of a simulated stratum formed in a rectangular earthen basin, a tank is provided with permeation holes in the lower and upper parts of the rectangular earthen basin, and the test fluid injected from the permeation hole is formed by a spacer. Jo space, characterized in that it can be supplied from the bottom or top of the simulated formation through the perforated rigid plate or a porous filter plate, geological structure of any one of claims 1 to 5 and Hydraulic modeling device. 矩形土槽内に作製された模擬地層の水平方向の浸透流試験を行うため、載荷板に透過孔を設け、該透過孔から注入される試験流体をスペーサーにより形成される槽状空間、有孔性剛性板及び多孔質フィルター板の下部を介して供給可能とすることを特徴とする請求項1乃至請求項5のいずれか1項に記載の地質構造及び水理のモデリング装置。In order to conduct a horizontal seepage test of a simulated stratum formed in a rectangular soil tank, a perforated hole is provided in the loading plate, and a test space injected from the permeate hole is formed into a tank-like space formed by a spacer, a perforated hole characterized in that it can be supplied through the lower sexual rigid plate and the porous filter plate, geological structure and hydraulic modeling apparatus according to any one of claims 1 to 5. 矩形土槽を組立式の正面透明板又は背面透明板の側に傾斜可能な傾斜機構を備え、矩形土槽を傾斜させた状態で正面透明板又は背面透明板を分解し模擬地層の任意の場所においてサンプリング可能とすることを特徴とする請求項1乃至請求項7のいずれか1項に記載の地質構造及び水理のモデリング装置。It is equipped with a tilting mechanism that can tilt the rectangular soil tank toward the assembly-type front transparent plate or the back transparent plate, and the front transparent plate or the rear transparent plate is disassembled in a state where the rectangular soil tank is tilted. characterized in that to enable sampling at, geological structure and hydraulic modeling apparatus according to any one of claims 1 to 7. サンプル容器の挿入可能な多数のガイド孔を穿設したサンプリング用透明ガイド板を備えることを特徴とする請求項1乃至請求項8のいずれか1項に記載の地質構造及び水理のモデリング装置。The geological structure and hydraulic modeling device according to any one of claims 1 to 8 , further comprising a sampling transparent guide plate having a plurality of guide holes into which a sample container can be inserted. .
JP2002346636A 2002-11-29 2002-11-29 Geological structure and hydraulic modeling equipment Expired - Lifetime JP3861149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002346636A JP3861149B2 (en) 2002-11-29 2002-11-29 Geological structure and hydraulic modeling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002346636A JP3861149B2 (en) 2002-11-29 2002-11-29 Geological structure and hydraulic modeling equipment

Publications (2)

Publication Number Publication Date
JP2004177358A JP2004177358A (en) 2004-06-24
JP3861149B2 true JP3861149B2 (en) 2006-12-20

Family

ID=32707451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002346636A Expired - Lifetime JP3861149B2 (en) 2002-11-29 2002-11-29 Geological structure and hydraulic modeling equipment

Country Status (1)

Country Link
JP (1) JP3861149B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949790A (en) * 2010-09-08 2011-01-19 中国科学院武汉岩土力学研究所 Device for preparing multi interbedding rock-soil modeling materials

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432651C (en) * 2005-11-30 2008-11-12 山东大学 Three-qimension geomechanics model exporiment system
CN102661910B (en) * 2012-05-21 2014-01-29 中国石油大学(华东) Experimental device for measuring friction of fluid body in fractured fractures and working method thereof
CN102866241B (en) * 2012-09-29 2015-04-15 重庆大学 Three-directionally-loaded large-scale three-dimensional similarity simulation test method
CN103293172B (en) * 2013-05-16 2016-01-06 中国石油天然气股份有限公司 Based on the CT scan rotating by multiple angles core holding unit of crestal gas injection
CN104614242A (en) * 2015-02-01 2015-05-13 东华理工大学 Excavation and surrounding rock stress and strain monitoring model testing device for rock-soil chamber under complicated conditions, and method thereof
CN104614151A (en) * 2015-02-05 2015-05-13 中国地质大学(北京) Device and method for utilizing sand launder seepage to simulate coastal zone salt-fresh water abrupt interface
CN104569322B (en) * 2015-02-15 2016-02-10 中国地质科学院水文地质环境地质研究所 A kind of construction method of groundwater dynamic simulation experiment platform
CN104655816B (en) * 2015-02-15 2016-03-09 中国地质科学院水文地质环境地质研究所 A kind of method of the water-bearing zone redox environment simulated experiment based on groundwater dynamic simulation experiment platform
CN104569323B (en) * 2015-02-15 2016-02-03 中国地质科学院水文地质环境地质研究所 A kind of natural precipitation analogue experiment method based on groundwater dynamic simulation experiment platform
CN104569321B (en) * 2015-02-15 2016-02-17 中国地质科学院水文地质环境地质研究所 A kind of earth's surface based on groundwater dynamic simulation experiment platform and pollution of underground aquifers source analogue experiment method
CN104833537B (en) * 2015-02-17 2016-03-30 北京交通大学 A kind of similar model test device of simulation tunnel construction
CN104833538B (en) * 2015-02-17 2017-03-01 北京交通大学 A kind of layer during similar model test method of simulation tunnel construction
CN104596895B (en) * 2015-02-26 2016-10-12 中国地质科学院水文地质环境地质研究所 Underground water pollution Transport And Transformation and final home to return to integrated mobile analog platform and analogue experiment method
CN105136507B (en) * 2015-09-16 2016-08-24 长安大学 The experimental provision of a kind of lab simulation tunnel excavation and method
KR101658895B1 (en) * 2016-03-28 2016-09-22 한국해양과학기술원 Apparatus and Method for Track Model Test for Evaluating Tractive Performance of Off-road Tracked Vehicle
CN105862652A (en) * 2016-04-06 2016-08-17 山东大学 Physical model test device for studying piping failure process and test method
CN107421874B (en) * 2017-09-08 2023-10-10 湘潭大学 Horizontal seepage test device and use method thereof
CN108414347B (en) * 2018-04-28 2024-01-05 山东科技大学 Multifunctional test system capable of simulating deep fault formation and crack development
CN108982271A (en) * 2018-07-20 2018-12-11 河海大学 A kind of experimental rig and test method for simulating soil body contact scour development process
CN109859557B (en) * 2018-12-27 2020-11-17 中国石油大学(北京) Experimental device for simulating crustal stress deformation
CN109754697B (en) * 2019-01-18 2021-01-12 安徽理工大学 Three-dimensional similar physical test device for simulating fault dislocation
CN110702878A (en) * 2019-10-14 2020-01-17 中国地震局工程力学研究所 Test box for sandy soil geotechnical model
CN110940792B (en) * 2019-11-26 2023-01-06 中铁西北科学研究院有限公司 Bidirectional inverted trapezoidal cutting slope landslide model test method
CN112700704B (en) * 2020-12-02 2023-10-31 中国石油天然气股份有限公司 Knee fold structure simulation method and device
CN113976820B (en) * 2021-10-30 2023-11-21 中国地质科学院地质力学研究所 Device for presetting faults in sand box experiment and fault forming method
CN114965962A (en) * 2022-06-01 2022-08-30 桂林理工大学 Visualization method for applying transparent soil technology to composite aquifer structure and evolution thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949790A (en) * 2010-09-08 2011-01-19 中国科学院武汉岩土力学研究所 Device for preparing multi interbedding rock-soil modeling materials
CN101949790B (en) * 2010-09-08 2012-07-04 中国科学院武汉岩土力学研究所 Device for preparing multi interbedding rock-soil modeling materials

Also Published As

Publication number Publication date
JP2004177358A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP3861149B2 (en) Geological structure and hydraulic modeling equipment
Ke et al. Triaxial erosion test for evaluation of mechanical consequences of internal erosion
Indiketiya et al. Evaluation of defective sewer pipe–induced internal erosion and associated ground deformation using laboratory model test
Gens et al. Hydromechanical behaviour of a heterogeneous compacted soil: experimental observations and modelling
Castellanos et al. Chemical impact on the hydro-mechanical behaviour of high-density FEBEX bentonite
Bouazza et al. Unsaturated geotechnics applied to geoenvironmental engineering problems involving geosynthetics
CN108088982B (en) Simulate the Experimental Method in Laboratory of fine grained seepage inflow erosion inside deep aquifers sand
Takai et al. Evaluating the hydraulic barrier performance of soil-bentonite cutoff walls using the piezocone penetration test
Sadeghi et al. Saturated hydraulic conductivity of problematic soils measured by a newly developed low-compliance triaxial permeameter
Parsa-Pajouh et al. Experimental and numerical investigations to evaluate two-dimensional modeling of vertical drain–assisted preloading
Han et al. Measuring fluid flow properties of waste and assessing alternative conceptual models of pore structure
Meguid et al. Investigation of tunnel-soil-pile interaction in cohesive soils
Rawat et al. Swelling behavior of compacted bentonite-sand mixture during water infiltration
Luo et al. Effect of open-framework gravel on suffusion in sandy gravel alluvium
Otter The influence of suction changes on the stiffness of railway formation
Toupiol et al. Long-term tritium transport through field-scale compacted soil liner
Ho Experimental and numerical investigation of infiltration ponding in one-dimensional sand-geotextile columns
Musso et al. Hydro-mechanical behaviour of a cement–bentonite mixture along evaporation and water-uptake controlled paths
Tehrani Developing a new instrumented soil column to study climate-induced ground movement in expansive soil
CN114279934B (en) Island reef water-rich calcareous sandy soil stratum grouting simulation and permeability test device and method
Babcock Permeability and Porosity of Loose Granular Salt
TW200403381A (en) A simulation system and method of a grouting test body
Heyerdahl et al. Comparison of experimental and predictive approaches for determination of water retention curves of intact samples of quaternary soils
Gurumoorthy et al. Experimental methodology to assess migration of iodide ion through bentonite-sand backfill in a near surface disposal facility
Choi Analysis of slug tests to determine hydraulic conductivity of vertical cutoff walls

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Ref document number: 3861149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term