JP3861099B1 - Heat treatment furnace - Google Patents

Heat treatment furnace Download PDF

Info

Publication number
JP3861099B1
JP3861099B1 JP2005206962A JP2005206962A JP3861099B1 JP 3861099 B1 JP3861099 B1 JP 3861099B1 JP 2005206962 A JP2005206962 A JP 2005206962A JP 2005206962 A JP2005206962 A JP 2005206962A JP 3861099 B1 JP3861099 B1 JP 3861099B1
Authority
JP
Japan
Prior art keywords
gas
cooling
heat treatment
duct
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005206962A
Other languages
Japanese (ja)
Other versions
JP2007023336A (en
Inventor
良幸 藤田
英人 藤田
良雄 松村
多英 波多野
良治 藤野
Original Assignee
エジソンハード株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エジソンハード株式会社 filed Critical エジソンハード株式会社
Priority to JP2005206962A priority Critical patent/JP3861099B1/en
Application granted granted Critical
Publication of JP3861099B1 publication Critical patent/JP3861099B1/en
Publication of JP2007023336A publication Critical patent/JP2007023336A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

【課題】熱処理対象物全体をできる限り均一にガス冷却する熱処理炉を、簡易な構成で実現する。
【解決手段】ガス冷却空間20に導入される冷却ガスを吸込み吐出する攪拌機3と、前記攪拌機3が吐出する冷却ガスを導いてガス冷却空間20に配置した熱処理対象物Wに向けて吹出させる第一の吹出ダクト23と、同じ攪拌機3が吐出する冷却ガスを導いて前記第一の吹出ダクト23とは異なる方向から熱処理対象物Wに向けて吹出させる第二の吹出ダクト24とを具備する熱処理炉を構成した。
【選択図】図3
A heat treatment furnace that gas-cools the entire object to be heat-treated as uniformly as possible is realized with a simple configuration.
A stirrer that sucks and discharges a cooling gas introduced into a gas cooling space, and a cooling gas discharged from the stirrer that guides the gas toward a heat treatment target W disposed in the gas cooling space. A heat treatment including one blowout duct 23 and a second blowout duct 24 that guides the cooling gas discharged from the same stirrer 3 and blows it toward the heat treatment object W from a direction different from that of the first blowout duct 23. A furnace was constructed.
[Selection] Figure 3

Description

本発明は、熱処理対象物を焼き入れ処理等するための熱処理炉に関する。   The present invention relates to a heat treatment furnace for quenching a heat treatment object.

例えば金型等の熱処理対象物を焼き入れ処理する装置として、真空熱処理炉(下記特許文献を参照)が公知である。この種の真空熱処理炉では、炉内を真空引きした状態で熱処理対象物を所定時間加熱した後、低温の冷却ガスを導入したり、その熱処理対象物を油槽に投入したりして急冷処理することが通例となっている。
特開平10−183236号公報
For example, a vacuum heat treatment furnace (see the following patent document) is known as an apparatus for quenching a heat treatment object such as a mold. In this type of vacuum heat treatment furnace, the object to be heat treated is heated for a predetermined time in a state where the inside of the furnace is evacuated, and then a low-temperature cooling gas is introduced or the object to be heat treated is put into an oil bath for rapid cooling treatment. It is customary.
JP-A-10-183236

上記の如き熱処理炉にあって、加熱した熱処理対象物をガス冷却する際には、内室に導入した冷却ガスを攪拌機で攪拌して循環させる。一般に、攪拌機、即ちターボファン及びターボファンを駆動する原動機は、1基設けられる。回転駆動されたターボファンは、冷却ガスをスラスト方向に吸込んでラジアル方向に送風する。この冷却ガスは、ファンから離れた側から熱処理対象物に向けて吹出し、その後再びファンに吸込まれる。故に、熱処理対象物は、ファンに向かって流れる一方向的な冷却ガスの風を受け続けることになる。   In the heat treatment furnace as described above, when the heated object to be heat treated is gas-cooled, the cooling gas introduced into the inner chamber is circulated while being stirred by the stirrer. Generally, one stirrer, that is, a turbofan and a prime mover that drives the turbofan is provided. The rotationally driven turbofan sucks the cooling gas in the thrust direction and blows it in the radial direction. This cooling gas is blown out toward the heat treatment object from the side away from the fan, and then sucked into the fan again. Therefore, the heat treatment object continues to receive the unidirectional cooling gas wind flowing toward the fan.

一方向的な風の流れで熱処理対象物を冷却する状況下では、熱処理対象物の温度降下に局地差が生じる。熱処理対象物に向けて吹出した冷却ガスの温度は高温の熱処理対象物の熱量を奪って漸次上昇することから、熱処理対象物において冷却ガスが最初に接触する部位と昇温した冷却ガスが接触する部位とでは冷却効果に差異が発生し、熱処理対象物の中で冷却が非均一になる。結果、熱処理対象物の中で寸法変化の差(歪み)、硬さのばらつき、内部組織や結晶粒度のばらつきが発生する原因となる。その影響は熱処理対象物の材質、質量によって異なるが、大形の対象物あるいは質量の相異なる複数の対象物を混載して熱処理する場合には看過できないものとなる。また、特定の工具鋼のように所定温度まで分・秒単位の短時間で冷却しなければならない対象物を処理する場合、局地的な冷却速度の鈍化が重大な損失につながる可能性がある。   Under the situation where the heat treatment object is cooled by the unidirectional wind flow, a local difference occurs in the temperature drop of the heat treatment object. The temperature of the cooling gas blown out toward the heat treatment object gradually increases by taking the heat amount of the high temperature heat treatment object, so that the portion of the heat treatment object where the cooling gas first comes into contact with the raised cooling gas contacts There is a difference in the cooling effect from the part, and the cooling becomes non-uniform in the heat treatment object. As a result, a difference (distortion) in dimensional change, variation in hardness, variation in internal structure and crystal grain size occurs in the heat treatment target. The influence varies depending on the material and mass of the heat treatment object, but cannot be overlooked when heat treatment is performed by mounting a large object or a plurality of objects having different masses. In addition, when processing an object that must be cooled to a predetermined temperature in a short time, such as a specific tool steel, in a short time in minutes / seconds, a slowing of the local cooling rate may lead to a serious loss. .

以上の問題に鑑みてなされた本発明は、熱処理対象物全体をできる限り均一に冷却する熱処理炉を、簡易な構成で実現しようとするものである。   The present invention made in view of the above problems is intended to realize a heat treatment furnace that cools the entire object to be heat treated as uniformly as possible with a simple configuration.

本発明では、熱処理対象物を加熱し、しかる後にガス冷却処理、油冷却処理、またはガス冷却処理後に油冷却処理できる熱処理炉であって、上下方向に拡張し、その上部領域にガス冷却のためのガス冷却空間を設け、下部領域に油冷却のための油槽を設けた冷却室と、熱処理対象物を持ち上げて前記ガス冷却空間に移送し、または熱処理対象物を下降させて前記油槽に移送するリフトと、前記ガス冷却空間に導入される冷却ガスを吸込み吐出する攪拌機と、前記攪拌機が吐出する冷却ガスを導いて前記ガス冷却空間に配置した熱処理対象物に対し下方から吹出させる第一の吹出ダクトと、同じ攪拌機が吐出する冷却ガスを導いて前記ガス冷却空間に配置した熱処理対象物に対し上方から吹出させる第二の吹出ダクトとを具備してなり、前記第一の吹出ダクトは、冷却ガスを上向きに吹出させる吹出部を有し、その吹出部が、前記リフトで熱処理対象物を移送する際の移送経路近傍において前記ガス冷却空間に配置した熱処理対象物に下方より臨む位置と、移送経路を開通する位置との間で変位可能であるものを構成した。 In the present invention, a heat treatment furnace capable of heating an object to be heat-treated and then oil-cooling after gas-cooling, oil-cooling, or gas-cooling, and extending in the vertical direction for gas cooling in the upper region. And a cooling chamber provided with an oil tank for oil cooling in the lower region, and a heat treatment object is lifted and transferred to the gas cooling space, or a heat treatment object is lowered and transferred to the oil tank. A lift, a stirrer that sucks and discharges the cooling gas introduced into the gas cooling space, and a first blowout that blows the cooling gas discharged from the stirrer from below to the heat treatment target disposed in the gas cooling space A duct, and a second blowing duct that guides a cooling gas discharged from the same stirrer and blows the heat treatment object disposed in the gas cooling space from above. The blowout duct has a blowout portion for blowing the cooling gas upward, and the blowout portion is below the heat treatment target disposed in the gas cooling space in the vicinity of the transfer path when the heat treatment target is transferred by the lift. What can be displaced between the position which faces more and the position which opens a transfer path | route was comprised.

つまり、攪拌機が吐出する冷却ガスを各吹出ダクトを介して複数方向から吹出させることにより、熱処理対象物に与える冷却効果の均一化を図ったのである。このようなものであれば、熱処理対象物の温度降下に局地差が生じる問題を実効的に解消でき、熱処理対象物の歪みや冶金的効果のばらつきを軽減ないし回避できる。また、複数基の攪拌機を熱処理炉に装備する必要がないことも、本発明の特長である。熱処理対象物全体を均一にガス冷却するべく、複数基の攪拌機を相異なる方位に設けることも考えられるが、実用上最も多く使用される熱処理炉の構造、即ちガス冷却空間の下方に冷却油槽を配置する構造様式においてはガス冷却空間の上下に攪拌機を対をなして設けることは不可能である。複数基の攪拌機が熱処理炉の他の構成要素、例えば油槽や熱処理対象物の搬送機構等と干渉し合うことを避けるためには熱処理炉の大形化が必須であり、建造コストの高騰とともに占有スペースの増大を招く。のみならず、熱処理炉の大形化に伴い熱処理対象物を加熱空間からガス冷却空間に移送する際の移送距離が延長し、加熱後冷却を開始するまでのタイムラグが大きくなって、目的とする冶金的効果に本質的な問題を惹起するおそれもある。本発明ではそのような不都合が発生しない。   In other words, the cooling gas discharged from the stirrer is blown from a plurality of directions through the blowout ducts, so that the cooling effect given to the heat treatment object is made uniform. With such a configuration, the problem of local differences in the temperature drop of the heat treatment object can be effectively solved, and distortion of the heat treatment object and variations in metallurgical effects can be reduced or avoided. It is also a feature of the present invention that it is not necessary to equip a heat treatment furnace with a plurality of stirrers. In order to uniformly cool the entire object to be heat-treated, it may be possible to provide a plurality of stirrers in different orientations, but the structure of the heat treatment furnace that is most frequently used in practice, that is, a cooling oil tank below the gas cooling space. It is impossible to provide a stirrer in pairs above and below the gas cooling space in the arrangement structure. To avoid the interference of multiple agitators with other components of the heat treatment furnace, such as the oil tank and the transfer mechanism of the heat treatment object, it is essential to increase the size of the heat treatment furnace and occupy it as the construction cost increases. Increases space. In addition to the increase in the size of the heat treatment furnace, the transfer distance when the heat treatment object is transferred from the heating space to the gas cooling space is extended, and the time lag until the cooling after heating is increased, which is the purpose. There is also the possibility of causing intrinsic problems in the metallurgical effect. Such inconvenience does not occur in the present invention.

熱処理対象物全体を均一に冷却するという所期の目的を充分に達成するためには、前記第一の吹出ダクト及び前記第二の吹出ダクトを、互いに略対向する二方に設け、そこから熱処理対象物に向けて冷却ガスを吹出させるものとする。   In order to sufficiently achieve the intended purpose of uniformly cooling the entire object to be heat treated, the first blowing duct and the second blowing duct are provided in two substantially opposite directions, and heat treatment is performed therefrom. The cooling gas is blown out toward the object.

さらに、熱処理対象物に向けて吹出した冷却ガスを、前記第一の吹出ダクト及び前記第二の吹出ダクトによる冷却ガスの吹出方向とは交差する方向に流入させて前記攪拌機へと導く還流ダクトを具備するものとすれば、ガス冷却空間における冷却ガスの循環を円滑にして熱処理対象物全体の均一な冷却に寄与し得る。   Further, a reflux duct for introducing the cooling gas blown toward the heat treatment object into a direction crossing the blowing direction of the cooling gas by the first blowing duct and the second blowing duct and leading to the stirrer If it has, it can contribute to uniform cooling of the whole heat processing target object by smooth circulation of the cooling gas in the gas cooling space.

攪拌機が吐出する冷却ガスを第一の吹出ダクトと第二の吹出ダクトとに好適に分流させるには、前記攪拌機のファンを、所定方向から冷却ガスを吸込み周囲に送風するものとし、このファンの周囲を複数区域に区画することによって前記第一の吹出ダクト、前記第二の吹出ダクトの各々に流入する冷却ガスを分かつようにする。   In order to appropriately divert the cooling gas discharged from the stirrer to the first blowout duct and the second blowout duct, the fan of the stirrer sucks the cooling gas from a predetermined direction and blows the air around the fan. The cooling gas flowing into each of the first blowout duct and the second blowout duct is divided by dividing the periphery into a plurality of sections.

また、前記第一の吹出ダクトが、熱処理対象物をガス冷却空間に移送する際の移送経路近傍に吹出部を有し、移送経路に対し略平行に冷却ガスを吹出させるものである場合、その吹出部が移送経路に干渉して熱処理対象物の搬出入の妨げとなり得るので、吹出部を移送経路に干渉しない位置に退避させられるよう可動とすることが好ましい。   Further, when the first blowing duct has a blowing portion in the vicinity of the transfer path when transferring the heat treatment object to the gas cooling space, and the cooling gas is blown out substantially parallel to the transfer path, Since the blow-out part can interfere with the transfer path by interfering with the transfer path, it is preferable that the blow-out part is movable so as to be retracted to a position that does not interfere with the transfer path.

本発明によれば、熱処理対象物全体を均一にガス冷却し得る熱処理炉を簡易な構成で実現可能である。   ADVANTAGE OF THE INVENTION According to this invention, the heat processing furnace which can carry out gas cooling of the whole heat processing target object uniformly can be implement | achieved by simple structure.

以下、本発明の一実施形態を、図面を参照して説明する。但し、説明の便宜上、熱処理対象物Wを搬出入するための搬出入口212を設けている側を前方と定義している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. However, for convenience of explanation, the side on which the carry-in / out entrance 212 for carrying in / out the heat treatment object W is defined as the front.

本実施形態の熱処理炉は、熱処理対象物Wを真空中または大気圧以下の減圧雰囲気中で加熱し、しかる後にガス冷却空間20に移送してガス冷却処理でき、また必要に応じてガス冷却後に油槽22に投入して油冷却処理でき、並びに熱処理対象物Wの種類、熱処理目的によっては加熱後直ちに油槽22に投入することもできる真空熱処理炉である。この熱処理炉は、図1に示すように、熱処理対象物Wを加熱する加熱室1と、加熱室1で加熱した熱処理対象物Wを冷却する冷却室2とを有する二室型のもので、加熱室1側に断熱本体12及びヒータ14、真空排気系4等を備え、冷却室2側に冷却ガス導入系5、攪拌機3、油槽22等を備えている。   The heat treatment furnace of the present embodiment heats the heat treatment object W in a vacuum or a reduced-pressure atmosphere of atmospheric pressure or less, and then transfers it to the gas cooling space 20 to perform gas cooling treatment. This is a vacuum heat treatment furnace that can be put into the oil tank 22 and can be cooled with oil, and can also be put into the oil tank 22 immediately after heating depending on the type of heat treatment object W and the purpose of heat treatment. As shown in FIG. 1, this heat treatment furnace is a two-chamber type having a heating chamber 1 for heating the heat treatment object W and a cooling chamber 2 for cooling the heat treatment object W heated in the heating chamber 1. A heat insulating body 12 and a heater 14, a vacuum exhaust system 4 and the like are provided on the heating chamber 1 side, and a cooling gas introduction system 5, a stirrer 3, an oil tank 22 and the like are provided on the cooling chamber 2 side.

具体的には、加熱室1の外殻となる炉胴11内に略箱体状をなす断熱本体12を配し、その内周にヒータ14を設置して、熱処理対象物Wを加熱する加熱空間15を構築している。断熱本体12の冷却室2側には、開閉動作可能な断熱蓋13を設けてある。断熱本体12及び断熱蓋13は、例えばグラファイトフェルト等を素材として作製する。真空排気系4は、例えば拡散ポンプ、メカニカルブースタポンプや油回転真空ポンプ等を直列に連接してなるもので、バルブを介して断接切替可能であるように炉胴11に接続している。   Specifically, a heat insulating body 12 having a substantially box shape is disposed in a furnace body 11 serving as an outer shell of the heating chamber 1, and a heater 14 is installed on the inner periphery thereof to heat the heat treatment object W. A space 15 is constructed. A heat insulating lid 13 that can be opened and closed is provided on the cooling chamber 2 side of the heat insulating main body 12. The heat insulating body 12 and the heat insulating lid 13 are made of, for example, graphite felt or the like as a material. The evacuation system 4 is formed by connecting, for example, a diffusion pump, a mechanical booster pump, an oil rotary vacuum pump, or the like in series, and is connected to the furnace body 11 so that connection / disconnection can be switched through a valve.

炉胴11は、冷却室2の外殻となるハウジング21に連通している。炉胴11とハウジング21との境界は、断熱蓋13と一体的に動作する仕切扉211によって隔てられる。ハウジング21は上下方向に拡張しており、上部領域に低温の冷却ガスを導入する冷却ガス導入系5、導入された冷却ガスを攪拌し循環させる攪拌機3、冷却ガスを導くダクト23、24、25、26、冷却ガスを冷却する熱交換器27等を設けて、ガス冷却空間20を構築している。冷却ガス導入系5は、加熱した対象物を急冷するN2等の不活性ガスをガスボンベから送り込むものであり、バルブを介して断接切替可能であるようにハウジング21に接続している。攪拌機3は、冷却ガスを吸込み吐出するターボファン31と、ターボファン31を回転駆動する原動機(モータまたはエンジン)32とを要素とし、ハウジング21の上端に配設してある。原動機32はハウジング21外にあり、その駆動軸をハウジング21内に貫入してファン31に接続している。原動機32の駆動軸がハウジング21を貫通する部位には、回転真空シールを施す。また、ガス冷却空間20より下方、加熱室1内の加熱空間15と略同じ高さ位置に、熱処理対象物Wを搬出入する搬出入口212を設けている。この搬出入口212は、開閉する扉212によって密閉される。加えて、ハウジング21の下部領域に、焼き入れ用の油を蓄える油槽22を配している。油槽22は、冶金的特性上ガス冷後に油冷の必要がある場合、熱処理対象物Wが大形でガス冷後に搬出可能となる温度まで冷ます時間を短縮したい場合、加熱後直ちに油焼き入れする場合等に使用する。尤も、ガス急冷処理専用の炉とするのであれば油槽22は必須でなくなる。 The furnace shell 11 communicates with a housing 21 that is an outer shell of the cooling chamber 2. The boundary between the furnace body 11 and the housing 21 is separated by a partition door 211 that operates integrally with the heat insulating lid 13. The housing 21 is expanded in the vertical direction, a cooling gas introduction system 5 for introducing a low-temperature cooling gas into the upper region, a stirrer 3 for stirring and circulating the introduced cooling gas, and ducts 23, 24 and 25 for introducing the cooling gas. , 26, a heat exchanger 27 for cooling the cooling gas is provided, and the gas cooling space 20 is constructed. The cooling gas introduction system 5 feeds an inert gas such as N 2 that rapidly cools a heated object from a gas cylinder, and is connected to the housing 21 so that connection / disconnection can be switched via a valve. The stirrer 3 includes a turbo fan 31 that sucks and discharges cooling gas and a prime mover (motor or engine) 32 that rotationally drives the turbo fan 31, and is disposed at the upper end of the housing 21. The prime mover 32 is outside the housing 21, and its drive shaft penetrates into the housing 21 and is connected to the fan 31. A rotary vacuum seal is applied to a portion where the drive shaft of the prime mover 32 penetrates the housing 21. In addition, a loading / unloading port 212 for loading / unloading the heat treatment object W is provided below the gas cooling space 20 and at substantially the same height as the heating space 15 in the heating chamber 1. The carry-in / out entrance 212 is sealed by a door 212 that opens and closes. In addition, an oil tank 22 for storing quenching oil is disposed in the lower region of the housing 21. Oil tank 22 is oil-quenched immediately after heating when oil cooling is necessary after gas cooling due to metallurgical characteristics, or when it is desired to shorten the time for cooling to a temperature at which heat treatment object W is large and can be carried out after gas cooling. Use it when you want to. However, if the furnace is dedicated to the gas quenching process, the oil tank 22 is not essential.

本実施形態の熱処理炉による焼き入れ処理のプロセスの概要を述べると、熱処理対象物Wを搬出入口212から加熱室1の加熱空間15に搬入した後、真空排気系4を稼働して炉内を減圧し、断熱本体12の断熱蓋13及び仕切扉211を閉止して、ヒータ14で熱処理対象物Wを加熱する。加熱が完了したならば、断熱蓋13及び仕切扉211を開放し、熱処理対象物Wを取り出して冷却室2において冷却するが、その際にガス冷却または油冷却を選択できる。熱処理対象物Wをガス冷却する場合、加熱が完了した時点で原動機32を起動してファン31を回転させる。炉内が真空または減圧状態にあることから、ファン31は極短時間(通常、50秒以内)に所要の回転数に達する。熱処理対象物Wを加熱室1から取り出した後、断熱蓋13及び仕切扉211を閉止し、リフト214によって熱処理対象物Wを持ち上げてガス冷却空間20に移送する。そして、熱処理対象物Wがガス冷却空間20に到達したら、冷却ガス導入系5を介して冷却室2に冷却ガスを導入充填し、これを攪拌、循環させて熱処理対象物Wを冷却する。冷却ガスの圧力は、冷却室2が第一種圧力容器であるならば0.02MPa以下、高圧容器として認定されていれば0.1MPa以下とする。冷却が完了したら、冷却ガスを排気して冷却室2の内圧を大気圧まで下げつつ、リフト214を駆動して熱処理対象物Wを搬出入口212付近まで下降させる。熱処理対象物Wを油冷却する場合には、熱処理対象物Wを油槽22に投入することは言うまでもない。   The outline of the quenching process by the heat treatment furnace of the present embodiment will be described. After the heat treatment object W is carried into the heating space 15 of the heating chamber 1 from the carry-in / out entrance 212, the vacuum exhaust system 4 is operated to move the inside of the furnace. The pressure is reduced, the heat insulating lid 13 and the partition door 211 of the heat insulating main body 12 are closed, and the heat treatment object W is heated by the heater 14. When the heating is completed, the heat insulating lid 13 and the partition door 211 are opened, and the heat treatment object W is taken out and cooled in the cooling chamber 2. At this time, gas cooling or oil cooling can be selected. When gas-cooling the heat treatment target object W, the motor 32 is started and the fan 31 is rotated when heating is completed. Since the inside of the furnace is in a vacuum or a reduced pressure state, the fan 31 reaches the required number of revolutions in a very short time (usually within 50 seconds). After the heat treatment object W is taken out of the heating chamber 1, the heat insulating lid 13 and the partition door 211 are closed, and the heat treatment object W is lifted by the lift 214 and transferred to the gas cooling space 20. When the heat treatment object W reaches the gas cooling space 20, the cooling gas is introduced and filled into the cooling chamber 2 through the cooling gas introduction system 5, and this is stirred and circulated to cool the heat treatment object W. The pressure of the cooling gas is 0.02 MPa or less if the cooling chamber 2 is a first type pressure vessel, and 0.1 MPa or less if it is certified as a high pressure vessel. When the cooling is completed, the cooling gas is exhausted to lower the internal pressure of the cooling chamber 2 to the atmospheric pressure, and the lift 214 is driven to lower the heat treatment object W to the vicinity of the carry-in / out port 212. Needless to say, when oil-cooling the heat treatment object W, the heat treatment object W is put into the oil tank 22.

しかして、本実施形態では、図2ないし図4に示すように、攪拌機3が吐出する冷却ガスを第一の吹出ダクト23及び第二の吹出ダクト24によって導き、ガス冷却空間20に配置された熱処理対象物Wに向けて複数方向から吹出させるようにしている。詳述すると、回転駆動されたターボファン31は、冷却ガスをスラスト方向即ち下方より吸込み、ラジアル方向即ち水平方位に送風する。第一の吹出ダクト23、第二の吹出ダクト24は、それぞれこのファン31の周囲に開口してファン31が送風する冷却ガスを呑み込む。言うなれば、各吹出ダクト23、24の開口部231、241によってファン31の周囲を前後左右の四つの区域に区画しており、左右に向かう冷却ガスは第一の吹出ダクト23に、前後に向かう冷却ガスは第二の吹出ダクト24に、分かれて流入する。   Therefore, in this embodiment, as shown in FIGS. 2 to 4, the cooling gas discharged from the stirrer 3 is guided by the first blowing duct 23 and the second blowing duct 24 and is arranged in the gas cooling space 20. The heat treatment object W is blown out from a plurality of directions. Specifically, the rotationally driven turbo fan 31 sucks the cooling gas from the thrust direction, that is, from below, and blows it in the radial direction, that is, the horizontal direction. The first blowout duct 23 and the second blowout duct 24 are opened around the fan 31 so as to swallow the cooling gas blown by the fan 31. In other words, the periphery of the fan 31 is divided into four areas, front, rear, left, and right, by the openings 231, 241 of the blowout ducts 23, 24. The cooling gas that flows is divided and flows into the second outlet duct 24.

第一の吹出ダクト23は、熱処理対象物Wに対し下方から冷却ガスを吹出させる役割を担う。第一の吹出ダクト23は、ファン31の左右に面する開口部231から下方に屈曲し、ハウジング21の左右の外壁に沿ってガス冷却空間20を回り込むように延伸しており、その下端で互いに相寄る吹出部232を内側方に突出させている。吹出部232の上面には複数のノズル234を設けてあり、第一の吹出ダクト23に流入した冷却ガスは最終的にノズル234から上向きに吹出す。因みに、複数のノズル234の一部にキャップを装着する等して、冷却ガスの吹出位置を調整することが可能である。なお、第一の吹出ダクト23の吹出部232は、熱処理対象物Wをリフト214でガス冷却空間20に移送する際の移送経路に干渉するため、熱処理対象物Wの移送時には移送の妨げとならない位置に退避させる必要がある。故に、吹出部232を可動に構成している。本実施形態では、吹出部232の基端側を水平軸233周りに回動可能に軸支しており、熱処理対象物Wの移送時には先端側を下方に回動させて吹出部232を略鉛直姿勢とし、移送経路を開通することができる。そして、熱処理対象物Wをガス冷却空間20に移送した後、先端側を上方に回動させて吹出部232を再び略水平姿勢とし、熱処理対象物Wに下方より臨ませる。吹出部232の回動は、アクチュエータ215によって惹起する。   The 1st blowing duct 23 bears the role which blows off cooling gas with respect to the heat processing target object W from the downward direction. The first blowing duct 23 is bent downward from the opening 231 facing the left and right of the fan 31 and extends so as to wrap around the gas cooling space 20 along the left and right outer walls of the housing 21. The blowing part 232 which approaches is protruded inward. A plurality of nozzles 234 are provided on the upper surface of the blowing part 232, and the cooling gas flowing into the first blowing duct 23 is finally blown upward from the nozzle 234. Incidentally, it is possible to adjust the blowing position of the cooling gas by attaching a cap to some of the plurality of nozzles 234. In addition, since the blowing part 232 of the 1st blowing duct 23 interferes with the transfer path | route at the time of transferring the heat processing target object W to the gas cooling space 20 with the lift 214, at the time of transfer of the heat processing target object W, it does not become a hindrance to transfer. Must be retracted to position. Therefore, the blowing part 232 is configured to be movable. In the present embodiment, the base end side of the blowing part 232 is pivotally supported around the horizontal axis 233, and when the heat treatment object W is transferred, the tip side is turned downward to make the blowing part 232 substantially vertical. The posture can be taken and the transfer path can be opened. Then, after the heat treatment object W is transferred to the gas cooling space 20, the tip end side is rotated upward to bring the blowing part 232 into a substantially horizontal posture again so that the heat treatment object W faces from below. The rotation of the blowing part 232 is caused by the actuator 215.

第二の吹出ダクト24は、熱処理対象物Wに対し上方から冷却ガスを吹出させる役割を担う。第二の吹出ダクト24は、ファン31の前後に面する開口部241から下方に屈曲し、さらにそこからガス冷却空間20の上方を覆うように相寄る吹出部242を前後方向に伸張させている。吹出部242の下面にもやはり複数のノズル243を設けてあり、第二の吹出ダクト24に流入した冷却ガスは最終的にノズル243から下向きに吹出す。   The 2nd blowing duct 24 bears the role which blows off cooling gas with respect to the heat processing target object W from upper direction. The second blowing duct 24 bends downward from the opening 241 facing the front and rear of the fan 31, and further extends the blowing part 242 that covers the gas cooling space 20 in the front-rear direction. . A plurality of nozzles 243 are also provided on the lower surface of the blowing part 242, and the cooling gas flowing into the second blowing duct 24 is finally blown downward from the nozzle 243.

上下の吹出部232、242から熱処理対象物Wに向けて吹出した冷却ガスは、第一の還流ダクト25または第二の還流ダクト26を経由して再び攪拌機3に吸込まれる。本実施形態では、これら還流ダクト25、26によって、冷却ガスをその吹出方向とは交差する複数方向に流通させるようにしている。   The cooling gas blown out from the upper and lower blowing portions 232 and 242 toward the heat treatment object W is sucked into the stirrer 3 again via the first reflux duct 25 or the second reflux duct 26. In the present embodiment, the recirculation ducts 25 and 26 allow the cooling gas to flow in a plurality of directions intersecting the blowing direction.

第一の還流ダクト25は、ガス冷却空間20において上下から吹出した冷却ガスを右方に流す役割を担う。第一の還流ダクト25は、ガス冷却空間20の右側を閉塞しつつ、正断面視略逆L字型をなす還流路を形成する。ガス冷却空間20に面し、ガス冷却空間20と第一の還流ダクト25とを隔てる隔壁251には、冷却ガスを流入させるガス流入口252を穿設してある。図示例では、前後及び上下に間欠的に複数のガス流入口252を穿っている。かつ、周辺寄りにあるガス流入口252の開口寸法を、中央寄りにあるガス流入口252の開口寸法よりも小さく設定している。また、隔壁251に略沿って、熱交換器27(の冷却パイプまたはフィン)を前後及び上下に亘り配設している。図示例では、熱交換器27を還流ダクト25、26内に収めている。   The first reflux duct 25 plays a role of flowing the cooling gas blown from the top and bottom in the gas cooling space 20 to the right. The first reflux duct 25 closes the right side of the gas cooling space 20 and forms a reflux path having a substantially inverted L shape in front sectional view. A gas inlet 252 through which cooling gas flows is formed in a partition wall 251 that faces the gas cooling space 20 and separates the gas cooling space 20 and the first reflux duct 25. In the illustrated example, a plurality of gas inlets 252 are bored intermittently in the front-rear and top-bottom directions. In addition, the opening size of the gas inlet 252 near the periphery is set smaller than the opening size of the gas inlet 252 near the center. Further, a heat exchanger 27 (a cooling pipe or a fin thereof) is disposed substantially along the partition 251 in the front-rear direction and the upper-lower direction. In the illustrated example, the heat exchanger 27 is accommodated in the reflux ducts 25 and 26.

第二の還流ダクト26は、ガス冷却空間20において上下から吹出した冷却ガスを左方に流す役割を担う。第二の還流ダクト26は、第一の還流ダクト25に対向して、ガス冷却空間20の左側を閉塞しつつ、正断面視略逆L字型をなす還流路を形成する。ガス冷却空間20に面し、ガス冷却空間20と第二の還流ダクト26とを隔てる隔壁261には、前後及び上下に間欠的に複数のガス流入口262を穿設してあって、周辺寄りにあるガス流入口262の開口寸法を、中央寄りにあるガス流入口262の開口寸法よりも小さく設定している。また、隔壁262に略沿って、熱交換器27を前後及び上下に亘り配設している。   The second reflux duct 26 plays a role of flowing the cooling gas blown from the top and bottom in the gas cooling space 20 to the left. The second reflux duct 26 is opposed to the first reflux duct 25 and forms a reflux path having a substantially inverted L shape in front sectional view while closing the left side of the gas cooling space 20. A partition wall 261 facing the gas cooling space 20 and separating the gas cooling space 20 and the second reflux duct 26 is provided with a plurality of gas inlets 262 intermittently in the front and rear and upper and lower sides, and close to the periphery. The opening size of the gas inlet 262 is set to be smaller than the opening size of the gas inlet 262 near the center. Further, the heat exchanger 27 is disposed along the partition wall 262 in the front-rear direction and the upper-lower direction.

第一の還流ダクト25と第二の還流ダクト26とは、上端で相互に連接している。両還流ダクト25、26を連接する管路は、ちょうどファン31の直下、第二の吹出ダクト24の吹出部の直上に位置し、その中間で攪拌機3のファン31に向けて開口する。ガス流入口252、262を介して還流ダクト25、26に流入した冷却ガスは、熱交換器27によって冷やされつつ還流ダクト25、26内を上昇し、両還流ダクト25、26を連接する管路からファン31に吸込まれる。   The first reflux duct 25 and the second reflux duct 26 are connected to each other at the upper end. The pipeline connecting both the reflux ducts 25 and 26 is located immediately below the fan 31 and immediately above the blowing portion of the second blowing duct 24 and opens toward the fan 31 of the stirrer 3 in the middle thereof. The cooling gas that has flowed into the reflux ducts 25 and 26 through the gas inlets 252 and 262 rises in the reflux ducts 25 and 26 while being cooled by the heat exchanger 27, and is a pipe line that connects both the reflux ducts 25 and 26. Is sucked into the fan 31.

上記に加えて、本実施形態では、第一の還流ダクト25を経由して攪拌機3に吸込まれる冷却ガスの量を調節する第一の調節機構28と、第二の還流ダクト26を経由して前記攪拌機3に吸込まれる冷却ガスの量を調節する第二の調節機構29とを設けている。第一の調節機構28は、第一の還流ダクト25側の隔壁251に穿たれたガス流入口252をシャッタ281によって開閉するものである。シャッタ281は、ガス流入口252に対応して穿設した複数の貫通孔282を有する板状体であり、隔壁251に対し略平行に移動可能であるように支持させてなる。本実施形態では、シャッタ281を上下動可能とし、その上下動をアクチュエータ283によって惹起する。図5に示しているように、シャッタ281を上昇させて貫通孔282が隔壁251のガス流入口252と重なり合う開通位置に位置づければ、ガス流入口252が開通し、冷却ガスを第一の還流ダクト25へ自由に流入させることができる。翻って、図6に示しているように、シャッタ281を下降させて貫通孔282がガス流入口251から偏倚する閉塞位置に位置づければ、ガス流入口252が閉塞され、冷却ガスの第一の還流ダクト25への流入が抑制される。また、シャッタ281の高さ位置を制御して貫通孔282とガス流入口252との重なり合いの度合いを調節することにより、冷却ガスの第一の還流ダクト25への流入量を増減させることも可能である。   In addition to the above, in the present embodiment, the first adjustment mechanism 28 for adjusting the amount of the cooling gas sucked into the stirrer 3 via the first reflux duct 25 and the second reflux duct 26 are used. And a second adjusting mechanism 29 for adjusting the amount of the cooling gas sucked into the stirrer 3. The first adjusting mechanism 28 opens and closes the gas inlet 252 formed in the partition wall 251 on the first reflux duct 25 side by the shutter 281. The shutter 281 is a plate-like body having a plurality of through holes 282 formed corresponding to the gas inlets 252 and is supported so as to be movable substantially in parallel with the partition 251. In the present embodiment, the shutter 281 can be moved up and down, and the vertical movement is caused by the actuator 283. As shown in FIG. 5, when the shutter 281 is raised and the through hole 282 is positioned at the open position where it overlaps the gas inlet 252 of the partition wall 251, the gas inlet 252 is opened and the cooling gas is supplied to the first reflux. It can freely flow into the duct 25. On the other hand, as shown in FIG. 6, if the shutter 281 is lowered and the through hole 282 is positioned at the closed position deviating from the gas inlet 251, the gas inlet 252 is closed, and the first cooling gas is supplied. Inflow to the reflux duct 25 is suppressed. It is also possible to increase or decrease the amount of cooling gas flowing into the first reflux duct 25 by controlling the height position of the shutter 281 and adjusting the degree of overlap between the through hole 282 and the gas inlet 252. It is.

第二の調節機構29は、第二の還流ダクト26側の隔壁に穿たれたガス流入口262をシャッタ291によって開閉するものである。第二の調節機構29は、第一の調節機構28と同様の構成とする。即ち、ガス流通口262に対応する複数の貫通孔292をシャッタ291に穿設し、このシャッタ291を開通位置と閉塞位置との間で隔壁261に対し略平行に上下動可能としている。シャッタ291の上下動は、アクチュエータ293によって惹起する。   The second adjustment mechanism 29 opens and closes the gas inlet 262 formed in the partition wall on the second reflux duct 26 side by the shutter 291. The second adjustment mechanism 29 has the same configuration as the first adjustment mechanism 28. That is, a plurality of through holes 292 corresponding to the gas flow ports 262 are formed in the shutter 291 so that the shutter 291 can be moved up and down substantially parallel to the partition wall 261 between the open position and the closed position. The vertical movement of the shutter 291 is caused by the actuator 293.

その上で、各調節機構28、29のシャッタ281、291を駆動するアクチュエータ283、293を、プログラマブルコントローラ(図示せず)によって個別に制御する。これにより、上下の吹出部232、242から吹出した冷却ガスを、第一の還流ダクト25に流入させるのか、第二の還流ダクト26に流入させるのか、さらにはどの程度の量を流入させるのかを、プログラム制御することが可能となる。例えば、右側部位の熱容量が左側部位よりも大きい熱処理対象物Wを冷却する場合、第一の還流ダクト25のガス流入口252を大きく開け、第二の還流ダクト26のガス流入口262を絞るかまたは閉塞して、熱処理対象物Wの右側部位により多くの量の冷却ガスを当てて冷却する。あるいは、第一の還流ダクト25のガス流入口252と、第二の還流ダクト26のガス流入口262とを所定のタイムサイクルで交互に開閉するようにプログラム制御し、第一の還流ダクト25のガス流入口252を開ける時間を長く、第二の還流ダクト26のガス流入口262を開ける時間を短く設定して、熱処理対象物Wの右側部位に冷却ガスを当てる時間を長くする。   In addition, the actuators 283 and 293 that drive the shutters 281 and 291 of the adjustment mechanisms 28 and 29 are individually controlled by a programmable controller (not shown). As a result, whether the cooling gas blown from the upper and lower blowing portions 232, 242 is caused to flow into the first reflux duct 25, the second reflux duct 26, or how much is to be introduced. Program control is possible. For example, when the heat treatment object W having a larger heat capacity in the right part than in the left part is cooled, the gas inlet 252 of the first reflux duct 25 is opened wide and the gas inlet 262 of the second reflux duct 26 is throttled. Or it obstruct | occludes and it cools by applying a lot of cooling gas to the right side part of the heat processing target object W. FIG. Alternatively, program control is performed so that the gas inlet 252 of the first reflux duct 25 and the gas inlet 262 of the second reflux duct 26 are alternately opened and closed in a predetermined time cycle. The time for opening the gas inlet 252 is set longer, the time for opening the gas inlet 262 of the second reflux duct 26 is set shorter, and the time for applying the cooling gas to the right portion of the heat treatment object W is set longer.

本実施形態によれば、ガス冷却空間20に導入される冷却ガスを吸込み吐出する攪拌機3と、前記攪拌機3が吐出する冷却ガスを導いてガス冷却空間20に配置した熱処理対象物Wに向けて吹出させる第一の吹出ダクト23と、同じ攪拌機3が吐出する冷却ガスを導いて前記第一の吹出ダクト23とは異なる方向から熱処理対象物Wに向けて吹出させる第二の吹出ダクト24とを具備する熱処理炉を構成し、攪拌機3が吐出する冷却ガスを各吹出ダクト23、24を介して複数方向(特に、互いに略対向する二方)から吹出させることで、熱処理対象物Wに与える冷却効果の均一化を図ったため、熱処理対象物Wの温度降下に局地差が生じる問題を実効的に解消でき、均一な冶金的効果が得られるとともに熱処理対象物Wの歪みを軽減ないし回避できる。また、複数基の攪拌機3を熱処理炉に装備する必要もない。   According to the present embodiment, the stirrer 3 that sucks and discharges the cooling gas introduced into the gas cooling space 20, and the heat treatment object W arranged in the gas cooling space 20 by guiding the cooling gas discharged by the stirrer 3. A first blowing duct 23 to be blown out and a second blowing duct 24 to guide the cooling gas discharged from the same stirrer 3 and blow out toward the heat treatment object W from a direction different from the first blowing duct 23. Cooling given to the heat treatment object W by constituting the heat treatment furnace provided and blowing the cooling gas discharged from the stirrer 3 from each of the blow ducts 23 and 24 from a plurality of directions (especially, substantially opposite to each other). Since the effect is made uniform, it is possible to effectively eliminate the problem of local differences in the temperature drop of the heat treatment object W, and to obtain a uniform metallurgical effect and to reduce the distortion of the heat treatment object W. It can be avoided. Moreover, it is not necessary to equip the heat treatment furnace with a plurality of agitators 3.

さらに、熱処理対象物Wに向けて吹出した冷却ガスを、前記第一の吹出ダクト23及び前記第二の吹出ダクト24による冷却ガスの吹出方向とは交差する方向に流入させて前記攪拌機3へと導く還流ダクト25、26を具備するものとしており、ガス冷却空間20における冷却ガスの循環を円滑にして熱処理対象物W全体の均一な冷却に寄与し得る。   Further, the cooling gas blown toward the heat treatment object W is caused to flow into the stirrer 3 by flowing in the direction intersecting the cooling gas blowing direction by the first blowing duct 23 and the second blowing duct 24. The recirculation ducts 25 and 26 to be guided are provided, and the circulation of the cooling gas in the gas cooling space 20 can be facilitated to contribute to uniform cooling of the entire heat treatment object W.

前記攪拌機3のファン31を、所定方向から冷却ガスを吸込み周囲に送風するものとし、このファン31の周囲を複数区域に区画することによって前記第一の吹出ダクト23、前記第二の吹出ダクト24の各々に流入する冷却ガスを分かつようにしており、攪拌機3が吐出する冷却ガスを好適に分流できる。   The fan 31 of the stirrer 3 sucks the cooling gas from a predetermined direction and blows it around the fan 31. By dividing the periphery of the fan 31 into a plurality of sections, the first blowing duct 23 and the second blowing duct 24 are used. The cooling gas that flows into each of these is divided, and the cooling gas discharged by the stirrer 3 can be divided appropriately.

また、前記第一の吹出ダクト23は、熱処理対象物Wをガス冷却空間20に移送する際の移送経路近傍に吹出部を有し、移送経路に対し略平行に冷却ガスを吹出させるものであるので、その吹出部が移送経路に干渉して熱処理対象物Wの搬出入の妨げとならないよう、移送経路に干渉しない位置に退避させられる可動のものとしている。   The first blowing duct 23 has a blowing portion in the vicinity of the transfer path when the heat treatment object W is transferred to the gas cooling space 20, and blows out the cooling gas substantially parallel to the transfer path. Therefore, it is made movable so that it can be retreated to a position where it does not interfere with the transfer path so that the blowout part does not interfere with the transfer path due to interference with the transfer path.

なお、本発明は以上に詳述した実施形態に限られるものではない。例えば、上記実施形態では各調節機構28、29におけるシャッタ281、291をそれぞれ一枚板としていたが、図7に示すように、シャッタ281、291を複数に分割し、それらを(複数のアクチュエータ283、293によって)独立して駆動し得るものとすることが考えられる。図示例では、都合3枚のシャッタ281(291)を前後に配列しており、各々を独立に上下動させることを可能としている。このような構成を採用すれば、複数のガス流入口252(262)を個別に開閉できる。即ち、上下の吹出部232、242から熱処理対象物Wに向けて吹出した冷却ガスを、前方のガス流入口252(262)に多く流入させるのか、後方のガス流入口252(262)に多く流入させるのか、または中間のガス流入口252(262)に多く流入させるのかを制御できる。ひいては、冷却ガスの流れを自在に操れるようになり、熱処理対象物Wの特定部位を重点的に冷却したり、冷却ガスの流れる経路を刻々に変化させて熱処理対象物Wの各部位をまんべんなく冷却したりすることが容易に可能となる。   The present invention is not limited to the embodiment described in detail above. For example, in the above-described embodiment, the shutters 281 and 291 in each of the adjustment mechanisms 28 and 29 are each formed as a single plate. However, as illustrated in FIG. It is conceivable that it can be driven independently (by 293). In the illustrated example, for convenience, three shutters 281 (291) are arranged in the front-rear direction, and each can be moved up and down independently. If such a structure is employ | adopted, the several gas inflow port 252 (262) can be opened and closed separately. That is, a large amount of the cooling gas blown from the upper and lower blowing portions 232 and 242 toward the heat treatment target W is allowed to flow into the front gas inlet 252 (262) or the rear gas inlet 252 (262). It is possible to control whether the gas flows into the intermediate gas inlet 252 (262). As a result, the flow of the cooling gas can be freely controlled, and the specific part of the heat treatment target W is intensively cooled, or the part of the heat treatment target W is cooled evenly by changing the flow path of the cooling gas every moment. Can be easily performed.

上記実施形態では、還流ダクト25、26内に熱交換器27を配設していたが、熱交換器27の配置は任意に変更することができる。熱交換器27を還流ダクト25、26外に配設してもよく、吹出ダクト23、24内に配設してもよい。   In the said embodiment, although the heat exchanger 27 was arrange | positioned in the reflux ducts 25 and 26, arrangement | positioning of the heat exchanger 27 can be changed arbitrarily. The heat exchanger 27 may be disposed outside the reflux ducts 25 and 26, or may be disposed within the blowout ducts 23 and 24.

また、特に、加熱室と冷却室とが分離していない、言い換えるならば加熱空間がそのままガス冷却空間となる一室型の熱処理炉に本発明を適用することを妨げない。   In particular, the present invention is not prevented from being applied to a one-chamber heat treatment furnace in which the heating chamber and the cooling chamber are not separated, in other words, the heating space is directly used as the gas cooling space.

その他各部の具体的構成は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   Other specific configurations of the respective parts are not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明の一実施形態の熱処理炉の概要を示す側断面図。The side sectional view showing the outline of the heat treatment furnace of one embodiment of the present invention. 吹出ダクト、還流ダクトを示す要部斜視図。The principal part perspective view which shows the blowing duct and the recirculation | reflux duct. 吹出ダクト、還流ダクトを示す要部正断面図。The principal part front sectional drawing which shows a blowing duct and a reflux duct. 吹出ダクト、還流ダクトを示す要部側断面図。The principal part sectional side view which shows the blowing duct and the reflux duct. 調節機構の動作を説明する図。The figure explaining operation | movement of an adjustment mechanism. 調節機構の動作を説明する図。The figure explaining operation | movement of an adjustment mechanism. 調節機構の動作を説明する図。The figure explaining operation | movement of an adjustment mechanism.

符号の説明Explanation of symbols

20…ガス冷却空間
23…第一の吹出ダクト
24…第二の吹出ダクト
25…第一の還流ダクト
26…第二の還流ダクト
28…第一の調節機構
29…第二の調節機構
3…攪拌機
DESCRIPTION OF SYMBOLS 20 ... Gas cooling space 23 ... 1st blowing duct 24 ... 2nd blowing duct 25 ... 1st reflux duct 26 ... 2nd reflux duct 28 ... 1st adjustment mechanism 29 ... 2nd adjustment mechanism 3 ... Stirrer

Claims (4)

熱処理対象物を加熱し、しかる後にガス冷却処理、油冷却処理、またはガス冷却処理後に油冷却処理できる熱処理炉であって、
上下方向に拡張し、その上部領域にガス冷却のためのガス冷却空間を設け、下部領域に油冷却のための油槽を設けた冷却室と、
熱処理対象物を持ち上げて前記ガス冷却空間に移送し、または熱処理対象物を下降させて前記油槽に移送するリフトと、
前記ガス冷却空間に導入される冷却ガスを吸込み吐出する攪拌機と、
前記攪拌機が吐出する冷却ガスを導いて前記ガス冷却空間に配置した熱処理対象物に対し下方から吹出させる第一の吹出ダクトと、
同じ攪拌機が吐出する冷却ガスを導いて前記ガス冷却空間に配置した熱処理対象物に対し上方から吹出させる第二の吹出ダクトと
を具備してなり、
前記第一の吹出ダクトは、冷却ガスを上向きに吹出させる吹出部を有し、
その吹出部を、前記リフトで熱処理対象物を移送する際の移送経路近傍において前記ガス冷却空間に配置した熱処理対象物に下方より臨む位置と、移送経路を開通する位置との間で変位可能に構成しており、
なおかつ、熱処理対象物に向けて吹出した冷却ガスを、前記第一の吹出ダクト及び前記第二の吹出ダクトによる冷却ガスの吹出方向とは交差する方向に流入させて前記攪拌機へと導く還流ダクトをさらに具備し、
前記ガス冷却空間から前記還流ダクトに冷却ガスを流入させる複数のガス流入口を、ガス冷却空間に面しガス冷却空間と還流ダクトとを隔てるとともに前記第一の吹出ダクト及び前記第二の吹出ダクトによる冷却ガスの吹出方向とは交差する方向を向く隔壁にのみ穿設し、
前記隔壁に穿設した複数のガス流入口は、周辺寄りにあるものの開口寸法が中央寄りにあるものの開口寸法よりも小さく設定され、これらが複数枚のシャッタによって個別に開閉される
ことを特徴とする熱処理炉。
A heat treatment furnace that heats an object to be heat treated, and then can perform gas cooling treatment, oil cooling treatment, or oil cooling treatment after gas cooling treatment,
A cooling chamber that extends in the vertical direction, has a gas cooling space for gas cooling in its upper region, and has an oil tank for oil cooling in its lower region;
A lift that lifts the heat treatment object and transfers it to the gas cooling space, or lowers the heat treatment object and transfers it to the oil tank;
A stirrer that sucks and discharges the cooling gas introduced into the gas cooling space;
A first blowing duct that guides the cooling gas discharged from the stirrer and blows it from below with respect to the heat treatment object disposed in the gas cooling space;
A second blowing duct that guides the cooling gas discharged from the same stirrer and blows out the heat treatment object disposed in the gas cooling space from above;
The first blowout duct has a blowout portion that blows the cooling gas upward,
The blowout portion can be displaced between a position facing the heat treatment object arranged in the gas cooling space from below and a position opening the transfer path in the vicinity of the transfer path when the heat treatment object is transferred by the lift. configured and,
In addition, a reflux duct for introducing the cooling gas blown toward the heat treatment object into the stirrer by flowing in the direction intersecting the blowing direction of the cooling gas by the first blowing duct and the second blowing duct. In addition,
A plurality of gas inlets through which the cooling gas flows from the gas cooling space into the reflux duct faces the gas cooling space, separates the gas cooling space and the reflux duct, and the first blowout duct and the second blowout duct. Perforated only in the partition wall facing the direction intersecting with the cooling gas blowing direction by
The plurality of gas inlets drilled in the partition wall are set so that the opening size is closer to the periphery but the opening size is closer to the center, and these are individually opened and closed by a plurality of shutters.
A heat treatment furnace characterized by that .
前記吹出部を水平軸回りに回動可能に軸支している請求項1記載の熱処理炉。 The heat treatment furnace according to claim 1, wherein the blow-out portion is pivotally supported around a horizontal axis. 前記攪拌機は、前記冷却室の上端に配設され、所定方向から冷却ガスを吸込み周囲に送風するファンを有するものであって、
前記ファンの周囲を複数区域に区画して前記第一の吹出ダクト、前記第二の吹出ダクトの各々に流入する冷却ガスを分流させるようにし、
前記第一の吹出ダクトは、前記ファンの左右に面する開口部から下方に屈曲し、前記ガス冷却空間を回り込むように下方に延伸して、その下端で吹出部を内側方に突出させており、その吹出部から冷却ガスを上向きに吹出させるものであり、
前記第二の吹出ダクトは、前記ファンの前後に面する開口部から下方に屈曲し、さらにそこからガス冷却空間の上方を覆うように吹出部を前後方向に伸張させており、その吹出部から冷却ガスを下向きに吹出させるものである請求項1または2記載の熱処理炉。
The stirrer is provided at the upper end of the cooling chamber, and has a fan that sucks cooling gas from a predetermined direction and blows it around.
The cooling gas flowing into each of the first blowing duct and the second blowing duct is divided into a plurality of sections around the fan,
The first blowing duct is bent downward from an opening facing the left and right of the fan, extends downward so as to go around the gas cooling space, and projects the blowing part inward at the lower end thereof. The cooling gas is blown upward from the blowing part,
The second blowout duct is bent downward from the opening facing the front and rear of the fan, and further extends the blowout portion in the front-rear direction so as to cover the upper part of the gas cooling space from the blowout portion. The heat treatment furnace according to claim 1 or 2, wherein the cooling gas is blown downward.
前記攪拌機は、冷却ガスを吸込み吐出するファンと、ファンを回転駆動する原動機とを要素とし、
原動機は前記冷却室のハウジング外にあって、その駆動軸をハウジング内に貫入してファンに接続しており、
熱処理対象物をガス冷却するに際しては、炉内が真空または減圧状態にある段階で原動機を起動してファンを回転させ所要の回転数に至らしめ、熱処理対象物を加熱室から取り出してガス冷却空間に移送した後に、冷却室に冷却ガスを導入充填しこれを攪拌、循環させて熱処理対象物を冷却する請求項1、2または3記載の熱処理炉。
The stirrer includes a fan that sucks and discharges a cooling gas and a prime mover that rotationally drives the fan.
The prime mover is outside the housing of the cooling chamber, the drive shaft penetrates into the housing and is connected to the fan,
When gas-cooling the object to be heat-treated, start the prime mover in a stage where the furnace is in a vacuum or reduced pressure state, rotate the fan to reach the required number of revolutions, take out the object to be heat-treated from the heating chamber, and then enter the gas cooling space. The heat treatment furnace according to claim 1, 2 or 3 , wherein after being transferred to the heat treatment object, a cooling gas is introduced and filled in the cooling chamber, and this is stirred and circulated to cool the heat treatment object.
JP2005206962A 2005-07-15 2005-07-15 Heat treatment furnace Active JP3861099B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005206962A JP3861099B1 (en) 2005-07-15 2005-07-15 Heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005206962A JP3861099B1 (en) 2005-07-15 2005-07-15 Heat treatment furnace

Publications (2)

Publication Number Publication Date
JP3861099B1 true JP3861099B1 (en) 2006-12-20
JP2007023336A JP2007023336A (en) 2007-02-01

Family

ID=37648338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005206962A Active JP3861099B1 (en) 2005-07-15 2005-07-15 Heat treatment furnace

Country Status (1)

Country Link
JP (1) JP3861099B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4958725B2 (en) * 2007-10-19 2012-06-20 エジソンハード株式会社 Heat treatment equipment
JP2009185349A (en) * 2008-02-07 2009-08-20 Ihi Corp Multichamber heat treatment furnace

Also Published As

Publication number Publication date
JP2007023336A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US10415136B2 (en) Substrate processing apparatus including heating and cooling device, and ceiling part included in the same
US7625204B2 (en) Gas cooling type vacuum heat treating furnace and cooling gas direction switching device therefor
KR102053029B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and program
JPS6212288B2 (en)
JP4173153B2 (en) Heat treatment furnace
US20040007565A1 (en) Directional cooling system for vacuum heat treating furnace
JP3861099B1 (en) Heat treatment furnace
JP5433664B2 (en) Retort furnace for heat treatment of metal workpieces
JP5384226B2 (en) Hot air heating device
JP2007051844A (en) Device and method for cooling vertical furnace for steel
CN107614709A (en) Annealing device
JP4958725B2 (en) Heat treatment equipment
JP4247703B2 (en) Gas-cooled oil-cooled vacuum furnace
JP5492540B2 (en) Heat treatment furnace
KR102205383B1 (en) Substrate processing apparatus and substrate processing method
JP6735686B2 (en) Substrate processing apparatus and substrate cooling method
JP2004214689A (en) Substrate treatment device
WO2022054437A1 (en) Batch-type heat treatment furnace
JP3525074B2 (en) Batch oven
JP3669690B2 (en) Resin powder molding die heating device
TWM599897U (en) Heat treatment equipment and vacuum heat treatment furnace
JP4141139B2 (en) Horizontal diffusion furnace
CN114599803A (en) Gas quenching unit
JPH0143394Y2 (en)
KR20210008613A (en) Active air-flap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Ref document number: 3861099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150929

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250