JP3669690B2 - Resin powder molding die heating device - Google Patents

Resin powder molding die heating device Download PDF

Info

Publication number
JP3669690B2
JP3669690B2 JP2001039692A JP2001039692A JP3669690B2 JP 3669690 B2 JP3669690 B2 JP 3669690B2 JP 2001039692 A JP2001039692 A JP 2001039692A JP 2001039692 A JP2001039692 A JP 2001039692A JP 3669690 B2 JP3669690 B2 JP 3669690B2
Authority
JP
Japan
Prior art keywords
hot air
mold
heating
chamber
heating chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001039692A
Other languages
Japanese (ja)
Other versions
JP2002210762A (en
Inventor
教之 鈴木
孝夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001039692A priority Critical patent/JP3669690B2/en
Publication of JP2002210762A publication Critical patent/JP2002210762A/en
Application granted granted Critical
Publication of JP3669690B2 publication Critical patent/JP3669690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂粉末成形(パウダースラッシュ成形)に用いられる加熱炉内に搬入された金型の加熱装置の改良に関するものである。
【0002】
【従来の技術】
一般にパウダースラッシュ法などの樹脂粉末成形法では、加熱された金型面上に熱可塑性の樹脂粉末を装填し、その金型の熱を利用してその樹脂粉末を熱溶融させて金型の成形面上に、その樹脂の熱溶融物を形成させ、その後にその熱溶融物を冷却固化して金型の成形面形状の成形物を得る成形法であり、かかる樹脂粉末成形法での従来の金型の加熱手段は、たとえば実開平6−55721号公報、特開平9−248832号公報に開示されている。
【0003】
【発明が解決しようとする課題】
ところが、かかる樹脂粉末成形に用いられる金型の加熱手段では、加熱炉内に熱風を吹き込むことにより金型を加熱するようにしており、加熱炉内に熱風を吹き込むにあたり、熱風吹出口に設けたノズル手段やフィン手段を用いて金型への熱風の風量や風向などを制御しているが、それらの制御は、それらの手段全体で行うようにしており、複数の熱風吹出口毎の熱風制御には自ずから限界があり、金型全体を能率良く均等に加熱するためのきめの細かい熱風制御が困難であり、また金型の外面を加熱するには、専用のノズル装置が必要であり、加熱装置全体の構造を複雑にしてコスト高を招く原因になっている。
【0004】
また、加熱炉は、金型を搬出入するための開口を、上面部に設けているので、金型の出入れが面倒であるばかりでなく加熱炉内の熱が逃げ易い。
【0005】
さらに、前記金型は、その内面に複雑な形状の成形面を有して全域にわたり断面変化があり、しかも成形面には、アンダーカット部などの熱風の流れにくい熱風滞留部が存在しているものがあるため、金型をその全域にわたり均等に加熱するには、加熱炉内を流れる熱風が金型の内外面に、その滞留部をつくることなくスムーズに流動させ、特に熱風滞留部には、その内外面から集中的に熱風を吹き付けることが望ましいが、前記従来のものでは、かかる技術的な配慮がなされていない。
【0006】
本発明は、かかる実情に鑑みてなされたもので、熱風貯留室内の均等に加熱された熱風を主熱風と副熱風とに分流して加熱炉本体を流通させ、加熱しにくい部分を有する金型でも、その形状を問わずにそれを内外面より熱効率よく均等に加熱できるようにし、さらに、加熱室内の熱の逃げを少なくして、加熱室内への金型の搬出入を容易に行うことができるようにした新規な、樹脂粉末成形用金型の加熱装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本請求項1記載の発明は、加熱炉の加熱炉本体内に、加熱すべき金型を収容する加熱室と熱風制御室と熱風貯留室とを上から下に層状に形成し、前記熱風貯留室には、その中央部に一次主熱風口を、またその周囲に、選択的に開閉可能な複数の一次副熱風口を開口し、熱風貯留室から一次主熱風口を流れる主熱風は、加熱炉本体の中央部を流れて、加熱室の底部の金型支持部材の中間部に開口した主熱風口から該加熱室内を下から上へ流れて、金型の内面に直接吹き付けられ、一方、熱風貯留室から複数の一次副熱風口を流れる副熱風は、吹出位置を選択されて前記主熱風の外側を流れて、加熱室の底部の金型支持部材の、主熱風口の周囲に開口した複数の補助熱風口から該加熱室内を下から上へ流れて、金型の外周面に導かれて、金型の加熱しにくい部位をその内外面より集中的に加熱できるようにし、加熱室の一側壁には、金型の搬入口を、その他側壁には金型の搬出口を、それぞれ開口したことを特徴としており、かかる特徴によれば、熱風貯留室内の貯留熱風を、主熱風と、その外周を部分的に選択して流れる副熱風とに分流し、それら両熱風を加熱室の底部より、該加熱室を下から上へと流して金型をその内外面より集中的に加熱することができ、これにより加熱しにくい、アンダーカット部を含む熱風滞留部を有効に加熱することができ、その結果金型の形状を問わずに、それを所望温度に均等に熱効率良く加熱することができる。また、金型の加熱室への搬入、および加熱室外への搬出を容易に行うことができ、加熱室内の熱の放散を抑えることができる共に金型の温度低下を抑えることができる。
【0008】
また前記目的達成のため、本請求項2記載の発明によれば、前記請求項1記載のものにおいて、前記加熱室内には、金型の上方において熱風排出ダクトの下流側に開閉制御可能な複数の吸気口を設け、それらの吸気口の選択的開閉制御により前記副熱風を金型の、加熱しにくい部位の外面に沿うように導くようにしたことを特徴としており、かかる特徴によれば、前記請求項1記載の発明の効果に加えて、吸気口の選択的な開閉制御により、金型の外面を流れる熱風の、熱風滞留部外面への誘導を一層し易くすることができる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を、添付の図面に示した本発明の一実施例に基づいて説明する。
【0010】
図1〜図7は本発明の一実施例を示すものであり、図1はパウダースラッシュ成形装置における金型の搬送・搬出系を示す概略系統図、図2は加熱炉の側面図、図3は加熱炉の縦断面図、図4は、図3の4−4線に沿う拡大縦断面図、図5は図3の5−5線に沿う拡大横断面、図6は図3の6−6線に沿う拡大横断面図、図7は図3の7−7線に沿う拡大横断面図である。
【0011】
パウダースラッシュ成形法は、金型加熱工程、パウダリング工程、金型冷却工程および脱型工程の各工程からなっており、この実施例では、図1に示すように、それらの工程に対応する金型加熱装置H、パウダリング装置P、金型冷却装置C、および金型脱型装置Sが直列に配設され、また、金型Mを搬送するための金型搬送手段Tは、前記各装置に並列して配置され、また脱型後の金型Mを、搬出するための搬出ラインOは、前記各装置の配列方向に対して略直交して配列されている。
【0012】
つぎに、金型加熱装置Hにおいて、金型Mを加熱するための、加熱炉1の構造を、図2〜7を参照して説明する。
【0013】
この加熱炉1は、金型Mを、その成形面Mfに装填される熱可塑性樹脂が熱溶融する温度に加熱するためのものであって、その主体部を構成する加熱炉本体2は、密閉の直方体の箱状に形成され、その大きさは、一つの金型Mが収容できる程の比較的小容積に形成されていて、金型Mの搬送方向に沿う左右両側壁3,4と、これらと直交する前後壁5,6と、上壁7と、下壁8とを備えている。そして、図2に明瞭に示すように、加熱炉1の、金型搬送手段Tと隣接する側の右側壁4の上部には、金型Mを搬入するための搬入口10が開口され、また、加熱炉1の後壁(パウダリング装置の入り口側に対面する壁)の上部には、搬出口11が開口されている。そして、前記搬入口10と搬出口11とは、加熱炉本体2のコーナ部を挟んで相互に隣接しており、また、搬入口10は、搬出口11よりも開口面積が大きい。
【0014】
図2に示すように、前記搬入口10には、透明な搬入蓋12がそこに設けたガイド13に沿って上下に開閉可能に設けられる。搬入蓋12は、開閉駆動機構14により開閉制御される。搬入口10の上縁には、複数本の牽引索条15の一端が連結され、これらの牽引索条15は、加熱炉本体21の上部に設けた架台16に支持される案内シーブ17を経由して、それらの他端が駆動手段すなわち単動の伸縮シリンダ18に連結されており、その伸縮シリンダ18の収縮作動によれば、牽引索条15の牽引により搬入蓋12は開いて搬入口10は開放される。また、伸縮シリンダ18をフリーにすれば、搬入蓋12はその自重により下降して、搬入口10は閉じられる。しかして、搬入蓋12の開放によれば、後に述べるように、金型Mは、汎用トラバーサ81(図1参照)により金型フレーム28と共に図2の紙面と直交する方向より加熱炉本体2内に搬入される。
【0015】
また、前記搬出口11にも、透明な搬出蓋20がそこに設けたガイド21に沿って上下に開閉可能に設けられる。搬出蓋20は、前記搬入蓋12の開閉駆動機構と同じ構造の、他の開閉駆動機構22により開閉制御されるものであるので、この機構22の詳細な説明を省略する。しかして、搬出蓋20の開放によれば、後に述べるように、所定温度に加熱された金型Mは、金型フレーム28と共に図2の左方向に搬出される。そして、後に述べるように、専用トラバーサ82(図1参照)によりパウダリング装置Pへと搬送される。
【0016】
図3,4に示すように、加熱炉本体2内の上部には、加熱室24が形成され、この加熱室24の底部には、金型支持部材27が横架固定されている。この金型支持部材27上には、金型Mが、金型フレーム28に取り付けられた状態で載設される。図3に鎖線で示すフック部材29は、汎用トラバーサ81に開閉可能に設けられており、このフック部材29に支持されて金型フレーム28は加熱室24内に搬入される。金型フレーム28は、金型Mの移動および操作のために、その金型Mに取り付けられるものであり、その取付状態では、金型Mは、その成形面Mfは下向きである。図3,7に示すように、前記金型支持部材27には、その中間部に、1つの主熱風口31が、また、その周囲に複数の補助熱風口32が開口されており、主熱風口31を通過した熱量の多い熱風(図3,4太線白矢印)は、金型Mの成形面Mfに直接吹き付けられて流れ、また、複数の補助熱風口32を通過した熱量の少ない熱風は、金型フレーム28の外周部を流れるようになっている。また、加熱室24の上壁の中央部には、熱風排出ダクト34が開設され、金型Mの加熱後の熱風は、この熱風排出ダクト34を通って、後に述べる熱エネルギ回収回路Rへと流れる。
【0017】
図3,4に示すように、加熱炉本体2の中間部、すなわち前記加熱室24の下には、熱風制御室25が形成され、さらに、加熱炉本体2の下部、すなわち前記熱風制御室25の下には、熱風貯留室26が層状に形成されており、そして、その熱風貯留室26の前壁には、熱風流入ダクト35が開設され、熱風発生装置75からの熱風は、この熱風流入ダクト35を通って熱風貯留室26に貯留される。
【0018】
図3,4において、熱風制御室25と、熱風貯留室26とは境界壁37により仕切られており、この境界壁37の中央部には、一次主熱風口39が開口され、また、その周囲には、一次熱風制御手段C1が設けられる。この一次熱風制御手段C1は、主として熱風の圧力および整流制御を行うものであり、その構造を、図3〜5を参照して説明するに、前記境界壁37の周囲には、前記一次主熱風口39を取り囲むようにして、複数の一次副熱風口40が開口されている。各一次副熱風口40には、2枚の上、下風圧制御板41,42が、互いにスライド可能に重ね合わされて固定される。2枚の上、下風圧制御板41,42は、同じ構造に形成されており、何れも長方形の板部材に多数の長孔よりなる風圧調整孔43が2列に並列され、また、その四隅には、長孔よりなる取付孔がそれぞれ穿設されている。2枚の上、下風圧制御板41,42は、互いに重ね合わせて一次副熱風口40上に積層して、前記長孔よりなる取付孔を介して取付ネジ44により固定される。そして、取付ネジ44を緩めたのち、2枚の上、下風圧制御板41,42を手動により相互にスライド調整することにより、風圧調整孔43の開口面積を変更して、複数の一次副熱風口40を通る熱風の風圧をそれぞれ開閉調整することができる。
【0019】
加熱炉本体2の上下中間部に設けられる熱風制御室25内には、二次熱風制御手段C2が設けられる。つぎに、この二次熱風制御手段C2の構造を、図3,4および6を参照して説明するに、これは、主として加熱室24に供給される熱風の風向きおよび風量を調整するためのものであり、風向調整ノズル46、風量調整ダンパ47およびガラリ機構48とより構成されている。前記境界壁37の中央部には、前記一次主熱風口39に連通する支柱49が、熱風制御室25に向けて一体に立設され、この支柱49の上には支持フレーム50をもって複数(3組)の前記風量調整ダンパ47が設けられる。そして熱風はこの支柱49の内外を流れるようになっている。これらの風量調整ダンパ47は、何れも同じ構造であるので、その一つについて説明すると、図4に示すように、支持フレーム50には、熱風貯留室26と、熱風制御室25とを連通する一対のダクト51が固定され、各ダクト51内には、羽根52が回動軸53を介して開閉自在に軸支されている。各回動軸53から一体に延びるアーム54の先端には、連結部材56を介して操作杆55がそれぞれ連結されており、この操作杆55は、加熱炉1の外まで延長されていて、これを手動で操作することにより、一対の羽根52を同調して開閉できるようになっている。かくして3組の風量調整ダンパ47は、加熱炉1の外部から手動により選択的に操作することができ、熱風貯留室26から熱風制御室25を通って加熱室24に送られる熱風の風量を調整することができる。
【0020】
図3,4に示すように、前記風量調整ダンパ47のダクト51の上方には、前記風向調整ノズル46がそれぞれ配設される。支持フレーム50には、前記ダクト51の直上において筒状のノズル本体58が、首振り軸59をもって前後方向(図4、左右方向)に首振り自在に軸支されており、複数の首振り軸59からそれぞれ一体に延びるアーム60の先端には、連結部材61を介して操作杆61がそれぞれ連結されており、この操作杆61は、加熱炉1の外まで延長されていて、これを手動で操作することにより、一対のノズル本体58を同調して前後方向に首振り作動させることができる。筒状のノズル本体58は、その下部が前記ダクト51に向かって末広状に拡開されていて、ダクト51の上部に重なりあっており、ノズル本体58の首振り位置の如何に拘らずダクト51からの熱風がノズル本体58に導かれるようになっている。また、ノズル本体58の開口上端、すなわちその出口には、多数の整流板63が設けられて、金型支持部材27の主通風口31を通って加熱室24に連通されている。したがって、風量調整ダンパ47により風量を調整された熱風は、風向調整ノズル46により風向きを変更調整され、整流板63により整流されて前記金型Mの成形面Mfに直接吹き付けることができる。したがって、風量、風向を調整制御され、整流された熱風を、金型Mのアンダーカット部を含む熱風滞留部aに積極的に吹き付けることができ、該部aを熱量の多い熱風により有効に加熱することができる。
【0021】
図3,4および6に示すように、前記風向調整ノズル46および風量調整ダンパ47の外周部には、それを取り囲むように、複数の前記ガラリ機構48が配設され、これらのガラリ機構48は、前記支柱49上の支持フレーム50に取り付けられている。複数のガラリ機構48はいずれも同じ構造であるので、以下に、その一つについて説明すると、前記支柱49の上部外周において、支持フレーム50には、通風口65が開口され、この通風口65上には、上、下ルーバ66,67が、相互に直交して、2段に重ね合わせて着脱可能に固定されている。上、下ルーバ66,67は、いずれも同じ構造を備えており、四角なルーバ枠68に、複数のルーバ羽根69が手動で偏向調整可能に設けて構成され、互いに直交して配置される、これら上、下ルーバ66,67を手動により調整制御することにより、支柱49の外側において、通風口65を流れる熱風の向きを、左右、前後方向に調整することができる。かくして、前記二次熱風制御手段C2によれば、一次主熱風口39を流れる主熱風およびその外側の副熱風口49を流れる副熱風をいずれも風量調整されたのち、風向きを変向して、加熱室24に圧送することができ、後に述べるように、主熱風および副熱風を金型Mの内外面に能率よく吹き付けることができ、該金型Mの形状を問わずにそれを熱効率良く均等に加熱することができる。
【0022】
また、図3,4に示すように、加熱室24内の、金型フレーム28の上方には、複数(3つ)の吸気口72を開口した吸気板71が横架され、各吸気口72はそれぞれ開閉板73により個別に手動で開閉制御できるようになっている。そして、それらの開閉板73の選択的な開閉制御により加熱室24を熱風排出ダクト34に向けて流れる熱風の流れ方向を制御できるようになっており、金型Mの成形面Mfの一部、たとえば熱風の流れにくいアンダーカット部を含む熱風滞留部a(図4参照)の外周部への熱風量を多くすることができる。
【0023】
図3に示すように、熱風排出ダクト35と、前記熱風発生装置75の入口間は、熱エネルギ回収回路Rにより接続される。この熱エネルギ回収回路Rの途中には、熱風循環ファン76が接続される。そしてこの熱風循環ファン76と熱風発生装置75とを継ぐ回路78から大気放出回路77が分岐され、そこに切換弁79が介在されている。そして、必要に応じて切換弁79を開弁制御することにより、熱風の一部が大気に放出制御される。
【0024】
熱風発生装置75は、外部から供給される空気と、熱エネルギ回収回路Rを通って加熱炉1から回収される熱エネルギを用いて熱風を発生させ、その熱風を熱風吸入ダクト35より熱風貯留室26に導く。
【0025】
ところで、熱風貯留室26内に貯留された熱風は、一次主熱風口39と一次副熱風口40へと分流して熱風制御室25へと流れるが、そのうち、比較的大風量の主熱風は支柱49を通り、風量調整ダンパ47から風向調整ノズル46へと流れ(図3,4太線白矢印)、そこで前述したように風量と風向きを調整され、整流されて加熱室24へと流れ、金型Mの成形面Mfを有する内面に吹き付けられ、この金型Mを直接加熱する。一方、比較的小風量の副熱風は、一次熱風制御手段C1による複数の副熱風口40の選択的な開閉制御により、吹出位置、風圧、風向きを制御されて熱風制御室25へと流れ、さらに二次熱風制御装置C2のガラリ機構48を通って、加熱室24へと流れ(図3,4実線矢印)、前述のように、前記主熱風の外側から金型フレーム28の外周部を流れ、金型Mをその外側から加熱することができる。したがって、金型Mは、熱風貯留室26内の貯留熱風を概ね2つの流れに分流し、その熱風を、風量、風圧、風向き、および整流制御して、その制御熱風により金型Mをその内外より効率よく加熱することができ、特に金型Mのアンダーカット部を含む熱風滞留部aをその内外より選択集中的に加熱することができ、その結果金型Mの形状を問わずに該金型Mをその内外面より均等に加熱することができ、また金型の外面を加熱するのに専用のノズル装置が不要になる。
【0026】
再び、図1に戻って、金型搬送手段Tは、縦列される金型加熱装置H、パウダリング装置P、金型冷却装置Cおよび金脱型装置Sの一側に沿う一対の案内レール80を備えており、この案内レール80上を前記汎用トラバーサ81が往復自走制御できるように設けられており、金型加熱装置Hと、パウダリング装置Pとの間には、それら間を往復移動可能に専用トラバーサ82が配置される。
【0027】
図1において、金型Mを載せた汎用トラバーサ81が、加熱炉1の搬入口10と対面する位置までくると、金型Mは、前記搬入口10の開口により加熱炉1内に搬送((1)-(2)) される。加熱炉1内で所定温度に加熱された金型Mは、前記搬出口11の開口により、専用トラバーサ82に移載((2)-(3)) され、該専用トラバーサ82の移動により、パウダリング装置Pに搬入((3)-(4)) される。パウダリング装置Pでは、加熱された金型Mの成形面Mfに熱可塑性の樹脂粉末を層状に装填して、金型Mの熱でその粉末を熱溶融させて成形面Mf上に樹脂熱溶融物を成形させる。そして、その後、金型Mをパウダリング装置Pから、その一側に待機している汎用トラバーサ81に移載((4)-(5)) する。汎用トラバーサ81の移動により、これが金型冷却装置Cに移動((5)-(6)) したところで、金型Mをそこから金型冷却装置Cに移載((6)-(7)) する。金型冷却装置Cでは、そ の成形面Mfに装填されている熱溶融物を冷却固化させる。冷却された金型Mは、金型冷却装置Cに待機している汎用トラバーサ81に再び移載((7)-(8)) した後、該汎用トラバーサ81を金型脱型装置Sまで移動((8)-(9)) し、ここで、その金型脱型装置Sに移載((9)-(10))し、ここで樹脂成形物M′を脱型した金型Mは、そこに待機している汎用トラバーサに移載((10)-(11)) する。一方、脱型された樹脂成形物M′は、搬出ラインOに移載((10)-(11 ′))して外部に取り出す。
【0028】
樹脂成形物M′を脱型した金型Mは、再び加熱装置Hのところまで移動((11)-(1))する。
【0029】
しかして、前記の樹脂粉末成形工程において、金型Mは、加熱炉1の一側壁、すなわち右側壁4に開口された搬入口10より、該金型M内に搬送されて搬入口10の閉成により加熱され、また所定温度に加熱した後は、金型Mの他側壁、すなわち左側壁3に開口した搬出口11より、そこに隣接して対面するパウダリング装置Pの入口へ素早く移載することができるので、金型Mの、加熱炉1への搬入、および該加熱炉1外への搬出に際して、加熱炉1からの熱の放散を極力抑えることができるとともに加熱された金型Mの温度低下をも極力抑えながら隣接するパウダリング装置Pに短時間のうちに搬送することができ、その結果熱効率のよい金型の加熱と、加熱された金型の短時間での搬送による、その温度低下の抑制とが相俟ってパウダースラッシュ成形法による成形コストを大幅に低減することができる。
【0030】
以上、本発明の実施例を説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行うことが可能である。
【0031】
【発明の効果】
以上のように、本請求項1記載の本発明によれば、加熱炉の加熱炉本体内に、加熱すべき金型を収容する加熱室と熱風制御室と熱風貯留室とを上から下に層状に形成し、前記熱風貯留室には、その中央部に一次主熱風口を、またその周囲に、選択的に開閉可能な複数の一次副熱風口を開口し、熱風貯留室から一次主熱風口を流れる主熱風は、加熱炉本体の中央部を流れて、加熱室の底部の金型支持部材の中間部に開口した主熱風口から該加熱室内を下から上へ流れて、金型の内面に直接吹き付けられ、一方、熱風貯留室から複数の一次副熱風口を流れる副熱風は、吹出位置を選択されて前記主熱風の外側を流れて、加熱室の底部の金型支持部材の、主熱風口の周囲に開口した複数の補助熱風口から該加熱室内を下から上へ流れて、金型の外周面に導かれて、金型の加熱しにくい部位をその内外面より集中的に加熱できるようにし、加熱室の一側壁には、金型の搬入口を、その他側壁には金型の搬出口を、それぞれ開口したので、熱風貯留室内の貯留熱風を、主熱風と、その外周を部分的に選択して流れる副熱風とに分流し、それら両熱風を加熱室の底部より、該加熱室を下から上へと流して金型をその内外面より集中的に加熱することができ、これにより加熱しにくい、アンダーカット部を含む熱風滞留部を有効に加熱することができ、その結果金型の形状を問わずに、それを所望温度に均等に熱効率良く加熱することができる。また、金型の加熱室への搬入、および加熱室外への搬出を容易に行うことができ、加熱室内の熱の放散を抑えることができる共に金型の温度低下を抑えることができる。
【0032】
また本請求項2記載の発明によれば、前記請求項1記載のものにおいて、前記加熱室内には、金型の上方において熱風排出ダクトの下流側に開閉制御可能な複数の吸気口を設け、それらの吸気口の選択的開閉制御により前記副熱風を金型の、加熱しにくい部位の外面に沿うように導くようにしたので、前記請求項1記載の発明の効果に加えて、吸気口の選択的な開閉制御により、金型の外面を流れる熱風の、熱風滞留部外面への誘導を一層し易くすることができる。
【図面の簡単な説明】
【図1】 パウダースラッシュ成形装置における金型Mの搬送・搬出系を示す概略系統図
【図2】 加熱炉の側面図
【図3】 加熱炉の縦断面図
【図4】 図3の4−4線に沿う拡大縦断面図
【図5】 図3の5−5線に沿う拡大横断面
【図6】 図3の6−6線に沿う拡大横断面図
【図7】 図3の7−7線に沿う拡大横断面図
【符号の説明】
1・・・・・・・・・・・・加熱炉
2・・・・・・・・・・・・加熱炉本体
10・・・・・・・・・・・搬入口
11・・・・・・・・・・・搬出口
24・・・・・・・・・・・加熱室
25・・・・・・・・・・・熱風制御室
26・・・・・・・・・・・熱風貯留室
27・・・・・・・・・・・金型支持部材
31・・・・・・・・・・・主熱風口
32・・・・・・・・・・・補助熱風口
34・・・・・・・・・・・熱風排出ダクト
39・・・・・・・・・・・一次主熱風口
40・・・・・・・・・・・一次副熱風口
72・・・・・・・・・・・吸気口
M・・・・・・・・・・・・金型
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a heating device for a mold carried in a heating furnace used for resin powder molding (powder slush molding).
[0002]
[Prior art]
Generally, in resin powder molding methods such as the powder slush method, a thermoplastic resin powder is loaded on a heated mold surface, and the resin powder is melted using the heat of the mold to mold the mold. This is a molding method in which a hot melt of the resin is formed on the surface, and then the hot melt is cooled and solidified to obtain a molded product having a molding surface shape of the mold. The mold heating means is disclosed in, for example, Japanese Utility Model Laid-Open No. 6-55721 and Japanese Patent Laid-Open No. 9-248832.
[0003]
[Problems to be solved by the invention]
However, in the mold heating means used for molding the resin powder, the mold is heated by blowing hot air into the heating furnace, and the hot air is blown into the heating furnace. The nozzle means and fin means are used to control the amount and direction of hot air to the mold, but these are controlled by the whole means, and hot air control for each of the hot air outlets. Is naturally limited, it is difficult to finely control the hot air to efficiently and evenly heat the entire mold, and a special nozzle device is required to heat the outer surface of the mold. This complicates the structure of the entire apparatus and causes high costs.
[0004]
Moreover, since the heating furnace is provided with an opening for carrying in and out the mold on the upper surface portion, not only the mold is taken in and out but also the heat in the heating furnace easily escapes.
[0005]
Furthermore, the mold has a complex-shaped molding surface on its inner surface and changes in cross section over the entire area, and the molding surface has a hot-air staying portion such as an undercut portion that hardly flows hot air. Therefore, in order to heat the mold evenly over the entire area, the hot air flowing in the heating furnace flows smoothly on the inner and outer surfaces of the mold without creating the staying part, especially in the hot air staying part. Although it is desirable to blast hot air intensively from the inner and outer surfaces, such technical consideration is not made in the conventional one.
[0006]
The present invention has been made in view of such circumstances, and a mold having a portion that is difficult to heat by distributing the heating furnace main body by dividing the hot air heated uniformly in the hot air storage chamber into the main hot air and the auxiliary hot air. However, regardless of its shape, it can be heated more efficiently and evenly from the inside and outside surfaces, and moreover, the escape of heat in the heating chamber can be reduced, and the mold can be easily carried in and out of the heating chamber. It is an object of the present invention to provide a novel heating apparatus for a resin powder molding die that can be made .
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a heating chamber, a hot-air control chamber, and a hot-air storage chamber that house a mold to be heated are placed in the heating furnace body of the heating furnace from the top to the bottom. In the hot air storage chamber, a primary main hot air port is opened at the center, and a plurality of primary auxiliary hot air ports that can be selectively opened and closed are opened around the hot air storage chamber. The main hot air flowing through the mouth flows through the center of the heating furnace main body, flows from the main hot air opening opened in the middle part of the mold support member at the bottom of the heating chamber to the upper side in the heating chamber, On the other hand, the auxiliary hot air that is blown directly on the inner surface and flows through the plurality of primary auxiliary hot air ports from the hot air storage chamber flows outside the main hot air with the blowing position selected, and the mold support member at the bottom of the heating chamber, It flows from a plurality of auxiliary hot air outlet which is open around the main hot air outlet to the top heating chamber from below, the mold Guided on the peripheral surface, a heating difficult sites of the die to be able intensively heated than its inner and outer surfaces, on one side wall of the heating chamber, the mold entrance, the other side wall of the mold transportable According to this feature, the hot air stored in the hot air storage chamber is divided into the main hot air and the auxiliary hot air that partially flows at the outer periphery, and both of these outlets are opened. The hot air can flow from the bottom of the heating chamber from the bottom to the top, and the mold can be heated intensively from the inner and outer surfaces, thereby making it difficult to heat the hot air retaining portion including the undercut portion. It can be heated effectively, and as a result, regardless of the shape of the mold, it can be heated to a desired temperature evenly and efficiently. In addition, the mold can be easily carried into and out of the heating chamber, heat dissipation in the heating chamber can be suppressed, and a decrease in the temperature of the mold can be suppressed.
[0008]
In order to achieve the above object, according to the invention described in claim 2, in the apparatus described in claim 1, the heating chamber has a plurality of open / close-controllable downstream of the hot air exhaust duct above the mold. And the auxiliary hot air is guided along the outer surface of the portion of the mold that is difficult to heat, by the selective opening and closing control of those intake ports, In addition to the effect of the first aspect of the invention, the selective opening / closing control of the intake port can further facilitate the induction of the hot air flowing through the outer surface of the mold to the outer surface of the hot air retaining portion.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on one embodiment of the present invention shown in the accompanying drawings.
[0010]
1 to 7 show an embodiment of the present invention, FIG. 1 is a schematic system diagram showing a mold conveying / unloading system in a powder slush molding apparatus, FIG. 2 is a side view of a heating furnace, and FIG. Is a longitudinal sectional view of the heating furnace, FIG. 4 is an enlarged longitudinal sectional view taken along line 4-4 in FIG. 3, FIG. 5 is an enlarged transverse sectional view taken along line 5-5 in FIG. FIG. 7 is an enlarged cross-sectional view taken along line 7-7 of FIG.
[0011]
The powder slush molding method is composed of a mold heating process, a powdering process, a mold cooling process, and a demolding process. In this embodiment, as shown in FIG. A mold heating device H, a powdering device P, a mold cooling device C, and a mold demolding device S are arranged in series, and a mold transport means T for transporting the mold M includes the above-described devices. The unloading line O for unloading the mold M after demolding is arranged substantially orthogonal to the arrangement direction of the devices.
[0012]
Next, the structure of the heating furnace 1 for heating the mold M in the mold heating apparatus H will be described with reference to FIGS.
[0013]
The heating furnace 1 is for heating the mold M to a temperature at which the thermoplastic resin loaded on the molding surface Mf melts, and the heating furnace body 2 constituting the main part is hermetically sealed. The left and right side walls 3 and 4 along the conveying direction of the mold M are formed so as to have a relatively small volume so that one mold M can be accommodated. Front and rear walls 5, 6 orthogonal to these, an upper wall 7, and a lower wall 8 are provided. Then, as clearly shown in FIG. 2, an entrance 10 for carrying the mold M is opened at the upper part of the right side wall 4 on the side adjacent to the mold conveying means T of the heating furnace 1, and In the upper part of the rear wall of the heating furnace 1 (the wall facing the inlet side of the powdering device), a carry-out port 11 is opened. The carry-in port 10 and the carry-out port 11 are adjacent to each other across the corner portion of the heating furnace body 2, and the carry-in port 10 has a larger opening area than the carry-out port 11.
[0014]
As shown in FIG. 2, the carry-in entrance 10 is provided with a transparent carry-in lid 12 that can be opened and closed vertically along a guide 13 provided there. The loading lid 12 is controlled to be opened and closed by an opening / closing drive mechanism 14. One end of a plurality of tow ropes 15 is connected to the upper edge of the carry-in entrance 10, and these tow ropes 15 pass through a guide sheave 17 supported by a gantry 16 provided at the upper part of the heating furnace main body 21. Then, the other end thereof is connected to driving means, that is, a single acting telescopic cylinder 18, and when the telescopic cylinder 18 is contracted, the loading lid 12 is opened by the pulling of the tow rope 15 and the loading port 10 is opened. Is released. Further, if the telescopic cylinder 18 is made free, the carry-in lid 12 is lowered by its own weight, and the carry-in entrance 10 is closed. Thus, when the loading lid 12 is opened, as will be described later, the mold M is placed in the heating furnace main body 2 from the direction orthogonal to the paper surface of FIG. 2 together with the mold frame 28 by the general-purpose traverser 81 (see FIG. 1). It is carried in.
[0015]
A transparent carry-out lid 20 is also provided at the carry-out port 11 so as to be opened and closed along a guide 21 provided there. Since the carry-out lid 20 is controlled to be opened and closed by another open / close drive mechanism 22 having the same structure as the open / close drive mechanism of the carry-in lid 12, detailed description of the mechanism 22 is omitted. Thus, when the carry-out lid 20 is opened, the mold M heated to a predetermined temperature is carried out together with the mold frame 28 in the left direction in FIG. Then, as will be described later, it is conveyed to the powdering apparatus P by a dedicated traverser 82 (see FIG. 1).
[0016]
As shown in FIGS. 3 and 4, a heating chamber 24 is formed in the upper part of the heating furnace main body 2, and a mold support member 27 is horizontally fixed to the bottom of the heating chamber 24. On the mold support member 27, the mold M is mounted in a state of being attached to the mold frame 28. A hook member 29 indicated by a chain line in FIG. 3 is provided on the general-purpose traverser 81 so as to be openable and closable, and the mold frame 28 is carried into the heating chamber 24 by being supported by the hook member 29. The mold frame 28 is attached to the mold M for movement and operation of the mold M. In the mounted state, the mold M has a molding surface Mf facing downward. As shown in FIGS. 3 and 7, the mold support member 27 has one main hot air vent 31 at an intermediate portion thereof and a plurality of auxiliary hot air vents 32 around the main hot air vent 31. Hot air with a large amount of heat that has passed through the mouth 31 (FIG. 3, 4 thick white arrows) flows directly blown to the molding surface Mf of the mold M, and hot air with a small amount of heat that has passed through the auxiliary hot air ports 32 is The outer periphery of the mold frame 28 flows. A hot air exhaust duct 34 is opened at the center of the upper wall of the heating chamber 24, and the hot air after heating the mold M passes through the hot air exhaust duct 34 to a thermal energy recovery circuit R described later. Flowing.
[0017]
As shown in FIGS. 3 and 4, a hot air control chamber 25 is formed in an intermediate portion of the heating furnace body 2, that is, below the heating chamber 24, and further, a lower portion of the heating furnace body 2, that is, the hot air control chamber 25. The hot air storage chamber 26 is formed in a layered structure below, and a hot air inflow duct 35 is formed on the front wall of the hot air storage chamber 26, and the hot air from the hot air generator 75 is supplied to the hot air inflow. It is stored in the hot air storage chamber 26 through the duct 35.
[0018]
3 and 4, the hot air control chamber 25 and the hot air storage chamber 26 are partitioned by a boundary wall 37, and a primary main hot air port 39 is opened at the center of the boundary wall 37, and the periphery thereof Is provided with primary hot air control means C1. The primary hot air control means C1 mainly performs hot air pressure and rectification control. The structure of the primary hot air control means C1 will be described with reference to FIGS. A plurality of primary auxiliary hot air openings 40 are opened so as to surround the opening 39. In each primary auxiliary hot air vent 40, two upper and lower wind pressure control plates 41, 42 are slidably overlapped and fixed. The two upper and lower wind pressure control plates 41 and 42 are formed in the same structure, and in each case, wind pressure adjusting holes 43 made up of a plurality of long holes are arranged in two rows on a rectangular plate member, and the four corners thereof are also arranged. Each has a mounting hole made of a long hole. The upper and lower wind pressure control plates 41 and 42 are stacked on the primary auxiliary hot air outlet 40 so as to overlap each other, and are fixed by the mounting screws 44 through the mounting holes made of the long holes. Then, after loosening the mounting screws 44, the upper and lower wind pressure control plates 41, 42 are manually slid to each other to change the opening area of the wind pressure adjusting hole 43, and a plurality of primary auxiliary hot air The wind pressure of the hot air passing through the mouth 40 can be adjusted to open and close.
[0019]
A secondary hot air control means C2 is provided in the hot air control chamber 25 provided in the upper and lower intermediate part of the heating furnace body 2. Next, the structure of the secondary hot air control means C2 will be described with reference to FIGS. 3, 4 and 6. This is mainly for adjusting the direction and volume of the hot air supplied to the heating chamber 24. And includes a wind direction adjusting nozzle 46, an air volume adjusting damper 47, and a louver mechanism 48. At the center of the boundary wall 37, a support column 49 communicating with the primary main hot air vent 39 is integrally provided upright toward the hot air control chamber 25, and a plurality of support frames 50 (3 The air volume adjusting damper 47 of the set) is provided. The hot air flows inside and outside the column 49. Since these air volume adjusting dampers 47 have the same structure, one of them will be described. As shown in FIG. 4, the support frame 50 communicates with the hot air storage chamber 26 and the hot air control chamber 25. A pair of ducts 51 are fixed, and a blade 52 is pivotally supported in each duct 51 via a rotation shaft 53 so as to be opened and closed. An operating rod 55 is connected to the tip of an arm 54 integrally extending from each rotating shaft 53 via a connecting member 56, and this operating rod 55 is extended to the outside of the heating furnace 1. By manually operating, the pair of blades 52 can be opened and closed in synchronization. Thus, the three air volume adjustment dampers 47 can be manually operated from the outside of the heating furnace 1 to adjust the air volume of hot air sent from the hot air storage chamber 26 to the heating chamber 24 through the hot air control chamber 25. can do.
[0020]
As shown in FIGS. 3 and 4, the air direction adjusting nozzle 46 is disposed above the duct 51 of the air amount adjusting damper 47. A cylindrical nozzle body 58 is pivotally supported on the support frame 50 directly above the duct 51 so as to swing in the front-rear direction (FIG. 4, left-right direction) with a swing shaft 59. An operating rod 61 is connected to the tip of each arm 60 integrally extending from 59 via a connecting member 61, and this operating rod 61 is extended to the outside of the heating furnace 1, and is manually operated. By operating, the pair of nozzle main bodies 58 can be swung in the front-rear direction in synchronization. The lower part of the cylindrical nozzle body 58 is widened toward the duct 51 and overlaps the upper part of the duct 51, and the duct 51 regardless of the swing position of the nozzle body 58. The hot air from is guided to the nozzle body 58. A large number of rectifying plates 63 are provided at the upper end of the opening of the nozzle body 58, that is, at the outlet thereof, and communicated with the heating chamber 24 through the main vent 31 of the mold support member 27. Therefore, the hot air whose air volume has been adjusted by the air volume adjusting damper 47 can be changed and adjusted by the air direction adjusting nozzle 46, rectified by the rectifying plate 63, and directly blown onto the molding surface Mf of the mold M. Therefore, the hot air rectified and controlled with the air volume and the air direction can be positively blown to the hot air retention portion a including the undercut portion of the mold M, and the portion a is effectively heated by the hot air having a large amount of heat. can do.
[0021]
As shown in FIGS. 3, 4, and 6, a plurality of the louver mechanisms 48 are disposed on the outer peripheral portions of the air direction adjusting nozzle 46 and the air volume adjusting damper 47 so as to surround the louver mechanisms 48. , Attached to a support frame 50 on the support column 49. Since each of the plurality of louver mechanisms 48 has the same structure, one of them will be described below. A vent hole 65 is opened in the support frame 50 on the outer periphery of the upper portion of the support column 49. The upper and lower louvers 66 and 67 are fixed to each other so as to be detachable by being stacked in two stages perpendicular to each other. Both the upper and lower louvers 66 and 67 have the same structure, and a plurality of louver blades 69 are provided on a square louver frame 68 so as to be manually deflectable and arranged orthogonal to each other. In addition, by manually adjusting and controlling the lower louvers 66 and 67, the direction of the hot air flowing through the ventilation openings 65 on the outside of the support column 49 can be adjusted in the left-right and front-back directions. Thus, according to the secondary hot air control means C2, after adjusting the air volume of the main hot air flowing through the primary main hot air port 39 and the auxiliary hot air flowing through the auxiliary hot air port 49 outside thereof, the direction of the wind is changed, As will be described later, the main hot air and the auxiliary hot air can be efficiently blown onto the inner and outer surfaces of the mold M, and the heat can be evenly distributed regardless of the shape of the mold M. Can be heated.
[0022]
As shown in FIGS. 3 and 4, an intake plate 71 having a plurality of (three) intake ports 72 is horizontally installed above the mold frame 28 in the heating chamber 24. Each can be manually controlled to open and close by an opening and closing plate 73. The flow direction of the hot air flowing through the heating chamber 24 toward the hot air discharge duct 34 can be controlled by selective opening / closing control of the opening / closing plates 73, and a part of the molding surface Mf of the mold M, For example, it is possible to increase the amount of hot air to the outer peripheral portion of the hot air retention portion a (see FIG. 4) including the undercut portion where hot air does not flow easily.
[0023]
As shown in FIG. 3, the hot air discharge duct 35 and the inlet of the hot air generator 75 are connected by a thermal energy recovery circuit R. In the middle of the thermal energy recovery circuit R, a hot air circulation fan 76 is connected. An air discharge circuit 77 is branched from a circuit 78 connecting the hot air circulation fan 76 and the hot air generator 75, and a switching valve 79 is interposed there. Then, by controlling the opening of the switching valve 79 as necessary, a part of the hot air is controlled to be released into the atmosphere.
[0024]
The hot air generator 75 generates hot air using air supplied from the outside and the thermal energy recovered from the heating furnace 1 through the thermal energy recovery circuit R, and the hot air is supplied from the hot air intake duct 35 to the hot air storage chamber. Lead to 26.
[0025]
By the way, the hot air stored in the hot air storage chamber 26 is divided into the primary main hot air port 39 and the primary auxiliary hot air port 40 and flows into the hot air control chamber 25. 49, flows from the air volume adjusting damper 47 to the air direction adjusting nozzle 46 (FIG. 3, 4 thick white arrows), where the air volume and the air direction are adjusted as described above, rectified and flow to the heating chamber 24, and the mold The mold M is sprayed on the inner surface having the molding surface Mf of M and directly heated. On the other hand, the relatively hot air volume of the auxiliary hot air flows to the hot air control chamber 25 by controlling the blowing position, the wind pressure, and the wind direction by the selective opening / closing control of the plurality of auxiliary hot air ports 40 by the primary hot air control means C1. It flows to the heating chamber 24 through the louver mechanism 48 of the secondary hot air control device C2 (FIG. 3, 4 solid line arrows), and flows through the outer periphery of the mold frame 28 from the outside of the main hot air as described above. The mold M can be heated from the outside. Therefore, the mold M roughly divides the hot air stored in the hot air storage chamber 26 into two flows, and controls the hot air with the air volume, wind pressure, wind direction, and rectification control, and the mold M is controlled by the controlled hot air. It is possible to heat more efficiently, and in particular, the hot air retaining part a including the undercut part of the mold M can be selectively heated from inside and outside, and as a result, the mold M can be used regardless of the shape of the mold M. The mold M can be heated more uniformly from the inner and outer surfaces, and a dedicated nozzle device is not required to heat the outer surface of the mold.
[0026]
Returning to FIG. 1 again, the mold conveying means T includes a pair of guide rails 80 along one side of the mold heating apparatus H, the powdering apparatus P, the mold cooling apparatus C, and the mold demolding apparatus S that are arranged in series. The general-purpose traverser 81 is provided on the guide rail 80 so as to perform reciprocating self-running control. Between the mold heating device H and the powdering device P, reciprocating movement between them is provided. A dedicated traverser 82 is arranged as possible.
[0027]
In FIG. 1, when the general-purpose traverser 81 on which the mold M is placed reaches a position facing the carry-in entrance 10 of the heating furnace 1, the mold M is transferred into the heating furnace 1 through the opening of the carry-in entrance 10 (( 1)-(2)). The mold M heated to a predetermined temperature in the heating furnace 1 is transferred ((2)-(3)) to the dedicated traverser 82 through the opening of the carry-out port 11, and the powder is moved by the movement of the dedicated traverser 82. It is carried into the ring device P ((3)-(4)). In the powdering apparatus P, a thermoplastic resin powder is loaded in a layered manner on the molding surface Mf of the heated mold M, and the powder is thermally melted by the heat of the mold M to melt the resin on the molding surface Mf. Make a product. Thereafter, the mold M is transferred from the powdering device P to the general-purpose traverser 81 waiting on one side ((4)-(5)). When the general-purpose traverser 81 moves to the mold cooling apparatus C ((5)-(6)), the mold M is transferred from there to the mold cooling apparatus C ((6)-(7)). To do. In the mold cooling apparatus C, the hot melt charged on the molding surface Mf is cooled and solidified. The cooled mold M is transferred again to the general-purpose traverser 81 waiting in the mold cooling apparatus C ((7)-(8)), and then the general-purpose traverser 81 is moved to the mold demolding apparatus S. ((8)-(9)) Then, the mold M transferred to the mold demolding device S ((9)-(10)) and demolding the resin molded product M ′ here is Then, transfer to the general-purpose traverser waiting there ((10)-(11)). On the other hand, the demolded resin molding M ′ is transferred to the carry-out line O ((10)-(11 ′)) and taken out to the outside.
[0028]
The mold M from which the resin molded product M ′ has been removed moves again to the heating device H ((11)-(1)).
[0029]
Thus, in the resin powder molding step, the mold M is transferred into the mold M from the inlet 10 opened on one side wall of the heating furnace 1, that is, the right side wall 4, and the inlet 10 is closed. After being heated by the formation and heated to a predetermined temperature, it is quickly transferred from the other side wall of the mold M, that is, the unloading port 11 opened in the left side wall 3 to the entrance of the powdering device P facing the adjacent side. Therefore, when the mold M is carried into the heating furnace 1 and taken out from the heating furnace 1, heat dissipation from the heating furnace 1 can be suppressed as much as possible, and the heated mold M Can be transported to the adjacent powdering apparatus P in a short time while suppressing the temperature drop as much as possible. As a result, by heating the mold with high heat efficiency and transporting the heated mold in a short time, Combined with the suppression of the temperature drop, powder The molding costs by slush molding can be greatly reduced.
[0030]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the present invention described in the claims. It is.
[0031]
【The invention's effect】
As described above, according to the first aspect of the present invention, the heating chamber, the hot air control chamber, and the hot air storage chamber that house the mold to be heated are placed in the heating furnace main body of the heating furnace from the top to the bottom. In the hot air storage chamber, a primary main hot air port is opened at the center, and a plurality of primary auxiliary hot air ports that can be selectively opened and closed are opened around the hot air storage chamber. The main hot air flowing through the mouth flows through the center of the heating furnace main body, flows from the main hot air opening opened in the middle part of the mold support member at the bottom of the heating chamber to the upper side in the heating chamber, On the other hand, the auxiliary hot air that is blown directly on the inner surface and flows through the plurality of primary auxiliary hot air ports from the hot air storage chamber flows outside the main hot air with the blowing position selected, and the mold support member at the bottom of the heating chamber, Flow from the bottom to the top of the heating chamber through a plurality of auxiliary hot air vents that open around the main hot air vent. The part of the mold that is difficult to heat can be heated intensively from the inner and outer surfaces. The mold inlet is provided on one side wall of the heating chamber, and the mold outlet is provided on the other side wall. Therefore, the hot air stored in the hot air storage chamber is divided into the main hot air and the auxiliary hot air that flows by partially selecting the outer periphery of the hot air, and these hot air flows from the bottom of the heating chamber down to the heating chamber. It is possible to heat the mold from the inner and outer surfaces intensively by flowing from the upper side to the upper side, thereby effectively heating the hot air retention part including the undercut part, which is difficult to heat, and as a result, the mold Regardless of the shape, it can be heated to a desired temperature uniformly and efficiently. In addition, the mold can be easily carried into and out of the heating chamber, heat dissipation in the heating chamber can be suppressed, and temperature reduction of the mold can be suppressed.
[0032]
According to the invention of claim 2, in the apparatus of claim 1, the heating chamber is provided with a plurality of intake ports that can be opened and closed on the downstream side of the hot air exhaust duct above the mold, Since the auxiliary hot air is guided along the outer surface of the portion of the mold that is difficult to heat by the selective opening / closing control of the intake ports, in addition to the effect of the invention of claim 1, By selective opening / closing control, it is possible to further facilitate the induction of the hot air flowing on the outer surface of the mold to the outer surface of the hot air retaining portion.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram showing a conveying / unloading system of a mold M in a powder slush molding apparatus. FIG. 2 is a side view of a heating furnace. FIG. 3 is a longitudinal sectional view of the heating furnace. FIG. 5 is an enlarged longitudinal sectional view taken along line 5-5. FIG. 6 is an enlarged transverse sectional view taken along line 5-5 in FIG. 3. FIG. 6 is an enlarged transverse sectional view taken along line 6-6 in FIG. Expanded cross-sectional view along line 7 [Explanation of symbols]
1 ... Heating furnace 2 ... Heating furnace body
10 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Inlet
11 ···························· 24 .... Hot air storage chamber
27 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Mold support member
31 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Main hot air vent
32 ... Auxiliary hot air outlet 34 ... Hot air exhaust duct 39 ... Primary main hot air outlet 40 ...・ ・ ・ ・ ・ ・ ・ ・ Primary auxiliary hot air inlet 72 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Inlet M ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Mold

Claims (2)

加熱炉(1)の加熱炉本体(2)内に、加熱すべき金型(M)を収容する加熱室(24)と熱風制御室(25)と熱風貯留室(26)とを上から下に層状に形成し、前記熱風貯留室(26)には、その中央部に一次主熱風口(39)を、またその周囲に、選択的に開閉可能な複数の一次副熱風口(40)を開口し、熱風貯留室(26)から一次主熱風口(39)を流れる主熱風は、加熱炉本体(2)の中央部を流れて、加熱室(24)の底部の金型支持部材(27)の中間部に開口した主熱風口(31)から該加熱室(24)内を下から上へ流れて、金型(M)の内面に直接吹き付けられ、
一方、熱風貯留室(26)から複数の一次副熱風口(40)を流れる副熱風は、吹出位置を選択されて前記主熱風の外側を流れて、加熱室(24)の底部の金型支持部材(27)の、主熱風口(31)の周囲に開口した複数の補助熱風口(32)から該加熱室(24)内を下から上へ流れて、金型(M)の外周面に導かれて、金型(M)の加熱しにくい部位をその内外面より集中的に加熱できるようにし、加熱室(24)の一側壁には、金型(M)の搬入口(10)を、その他側壁には金型(M)の搬出口(11)を、それぞれ開口したことを特徴とする、樹脂粉末成形用金型の加熱装置。
In the heating furnace main body (2) of the heating furnace (1), a heating chamber (24), a hot air control chamber (25), and a hot air storage chamber (26) for accommodating the mold (M) to be heated are placed from above to below. The hot air storage chamber (26) has a primary main hot air port (39) at the center thereof and a plurality of primary auxiliary hot air ports (40) that can be selectively opened and closed around the hot air storage chamber (26). The main hot air that opens and flows from the hot air storage chamber (26) through the primary main hot air port (39) flows through the center of the heating furnace body (2), and the mold support member (27 at the bottom of the heating chamber (24)). ) From the main hot air vent (31) opened in the middle of the heating chamber (24) from the bottom to the top and blown directly to the inner surface of the mold (M),
On the other hand, the auxiliary hot air flowing from the hot air storage chamber (26) through the plurality of primary auxiliary hot air ports (40) flows outside the main hot air with the blowing position selected, and supports the mold at the bottom of the heating chamber (24). From the plurality of auxiliary hot air vents (32) opened around the main hot air vent (31) of the member (27), the inside of the heating chamber (24) flows from the bottom to the upper surface of the mold (M). The portion of the mold (M) that is difficult to be heated can be intensively heated from the inner and outer surfaces thereof, and the inlet (10) of the mold (M) is provided on one side wall of the heating chamber (24). A heating device for a resin powder molding die , wherein the other side wall is provided with openings for carrying out the mold (M) .
前記加熱室(24)内には、金型(M)の上方において熱風排出ダクト(34)の下流側に開閉制御可能な複数の吸気口(72)を設け、それらの吸気口(72)の選択的開閉制御により前記副熱風を金型(M)の、加熱しにくい部位の外面に沿うように導くようにしたことを特徴とする、前記請求項1記載の樹脂粉末成形用金型の加熱装置。  In the heating chamber (24), a plurality of intake ports (72) that can be controlled to open and close are provided on the downstream side of the hot air discharge duct (34) above the mold (M). The heating of the resin powder molding die according to claim 1, wherein the auxiliary hot air is guided along the outer surface of the portion of the die (M) that is difficult to heat by selective opening and closing control. apparatus.
JP2001039692A 2001-02-16 2001-02-16 Resin powder molding die heating device Expired - Fee Related JP3669690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001039692A JP3669690B2 (en) 2001-02-16 2001-02-16 Resin powder molding die heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001039692A JP3669690B2 (en) 2001-02-16 2001-02-16 Resin powder molding die heating device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001013851A Division JP3577462B2 (en) 2001-01-22 2001-01-22 Powder slush molding equipment

Publications (2)

Publication Number Publication Date
JP2002210762A JP2002210762A (en) 2002-07-30
JP3669690B2 true JP3669690B2 (en) 2005-07-13

Family

ID=18902424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001039692A Expired - Fee Related JP3669690B2 (en) 2001-02-16 2001-02-16 Resin powder molding die heating device

Country Status (1)

Country Link
JP (1) JP3669690B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002361099A1 (en) * 2002-12-26 2004-07-29 Nakata Coating Co., Ltd. Powder slush molding machine and powder slush molding method
KR100666334B1 (en) 2006-03-27 2007-01-11 김윤수 Heating device of powder slush mold and heating method of powder slush mold
KR102476253B1 (en) * 2021-05-21 2022-12-12 리얼룩앤컴퍼니 주식회사 Apparatus that controls the temperature of the mold using a thermoelectric element

Also Published As

Publication number Publication date
JP2002210762A (en) 2002-07-30

Similar Documents

Publication Publication Date Title
JP3669690B2 (en) Resin powder molding die heating device
CN101468365B (en) Wind-guiding device and workpiece-cooling device using the wind-guiding device
JP3619463B2 (en) Resin powder molding die heating device
JP3577462B2 (en) Powder slush molding equipment
CN110202726A (en) Battery diaphragm baking oven device
JP3696875B2 (en) Powder slush molding machine and powder slush molding method
CN105475404B (en) Convey roll-type thermoforming food processing apparatus and processing method
CN209257455U (en) A kind of bottle blowing machine heating mechanism with bottle opening cooling device
CN207043300U (en) A kind of die casting cooling device
CN207941928U (en) Vibrate boiling cooling bed
JP2008137272A (en) Powder slush molding machine
CN105594774A (en) Food heat processing device and processing method
CN115739563A (en) Semiconductor chip JCR curing box
JPH06272949A (en) Air conditioning duct device
CN208433492U (en) A kind of air-cooled battery pack
CN210880498U (en) Cooling device is used in plastic products production
JP3578371B2 (en) heating furnace
JP4173153B2 (en) Heat treatment furnace
CN208794966U (en) A kind of tunnel heating furnace
CN209459392U (en) It is a kind of to go up and down vertical air-distribution device
CN206718414U (en) A kind of feed arrangement of pelletizing machine
CN217172876U (en) Automatic temperature-regulating elevator for car wall
CN219902977U (en) Flat vulcanizing machine with noise reduction mechanism
CN109539765A (en) It is a kind of to go up and down vertical air-distribution device
CN206006097U (en) Medicated cap cooling apparatus for shaping

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees