JP3860847B2 - Photo-oxidation water treatment equipment with microbiological pre-treatment and post-treatment - Google Patents

Photo-oxidation water treatment equipment with microbiological pre-treatment and post-treatment Download PDF

Info

Publication number
JP3860847B2
JP3860847B2 JP04994095A JP4994095A JP3860847B2 JP 3860847 B2 JP3860847 B2 JP 3860847B2 JP 04994095 A JP04994095 A JP 04994095A JP 4994095 A JP4994095 A JP 4994095A JP 3860847 B2 JP3860847 B2 JP 3860847B2
Authority
JP
Japan
Prior art keywords
water
treated
belonging
microorganisms
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04994095A
Other languages
Japanese (ja)
Other versions
JPH08243592A (en
Inventor
嘉 照 夫 比
崎 史 朗 宮
Original Assignee
株式会社Em研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Em研究機構 filed Critical 株式会社Em研究機構
Priority to JP04994095A priority Critical patent/JP3860847B2/en
Publication of JPH08243592A publication Critical patent/JPH08243592A/en
Application granted granted Critical
Publication of JP3860847B2 publication Critical patent/JP3860847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の背景】
発明の分野
本発明は、紫外線による光酸化によって水を処理する水処理装置に関し、さらに詳しくは紫外線による光酸化によって水を処理する水処理装置における微生物学的な前処理および/または後処理に関する。
【0002】
背景技術
ほとんどの物質は紫外線領域に吸収を持ち、その結果、光反応、光イオン化、生理作用、殺菌作用などが生じる。従って、下水、洗浄排水、または使用前の水に紫外線を照射することで、その中に含まれる有機物、微生物などを分解し、低分子化して水質の浄化を図ることが出来る。このような装置は、光酸化処理装置、紫外線酸化水処理装置などと呼ばれて広く知られている。
【0003】
【発明の概要】
本発明者らは、今般、光酸化処理装置と、被処理水を特定の微生物群と接触させる前処理および/または後処理とを組み合わせることで、より効率の良い水処理が出来ることを見出した。本発明はかかる知見に基づくものである。
【0004】
従って、本発明は、より効率の良い水処理が可能な紫外線酸化処理装置の提供をその目的としている。
【0005】
本発明による光酸化水処理装置は、
被処理水に紫外線を照射する光酸化部、
該光酸化部に導かれる前の被処理水を、放線菌、光合成細菌、乳酸生成菌、糸状菌、および酵母の5つの群のそれぞれから少なくとも一種ずつ選択された、少なくとも計5種からなる微生物群と接触させる前処理部、および/または
該光酸化部で処理された後の被処理水を、放線菌、光合成細菌、乳酸生成菌、糸状菌、および酵母の5つの群のそれぞれから少なくとも一種ずつ選択された、少なくとも計5種からなる微生物群と接触させる後処理部
を備えてなるもの、である。
【0006】
【発明の具体的説明】
本発明による水処理装置によれば、被処理水のCODおよびBODの低減、含有有機物の分解、殺菌処理、殺藻処理を効率よく行うことが出来る。本発明による水処理装置は、種々の水系排水の浄化処理、一次利用水、二次利用水の浄化処理などに適用できる。その具体例としては、家庭および店舗排水の処理;精密機械加工における脱脂洗浄排水処理;メッキ処理におけるシアン排水処理;プリント配線基板製造における無電解Niメッキ浴排水、液体レジスト現像排水処理;染色加工における有機染料排水処理;半導体製造または液晶製造などにおける超純水処理の前処理;下水処理水の再利用のための処理;工業用循環水の処理;有機塩素系溶剤、アルコール、炭化水素などの有機物を多量に含んだ排水の有機物分解処理;ゴルフ場排水の処理;池水、湖水、沼水などの浄化処理;その他高CODおよび高BODの有機系排水処理等が挙げられる。
【0007】
本発明による水処理装置の光酸化部は、紫外線の酸化力により、有機物を分解、低分子化する機能を備えたものであれば、特に限定されない。好ましくは、被処理水に過酸化水素、次亜塩素酸ナトリウム、オゾンなどの酸化剤を添加して、その後処理水に紫外線を照射する態様が好ましい。この態様においては、紫外線の照射により酸化剤が活性化され、ヒドロキシラジカルなどが発生し、これにより処理水中の有機物は酸化分解され、低分子化される。さらに、酸化剤を活性化させる触媒を存在させてもよい。
【0008】
本発明の第一の態様による水処理装置は、この光酸化部に導かれる前の被処理水を、生物学的に前処理する。生物学的前処理は、この被処理水を、放線菌、光合成細菌、乳酸生成菌、糸状菌、および酵母の5つの群のそれぞれから少なくとも一種ずつ選択された、少なくとも計5種からなる微生物群と接触させることによって行われる。
【0009】
本発明に用いられる微生物の好ましい具体例を挙げれば次の通りである。
放線菌に属するものとしては、Streptomyces、Streptoverticillium 、Nocardia、Micromonospora、Rhodococcus などの属に属する微生物が挙げられ、より具体的にはStreptomyces albus (e.g. ATCC 3004) 、Streptoverticillium baldaccii (e.g. ATCC 23654) 、Nocardia asteroides (e.g. ATCC 19247) 、Micromonospora chalcea (e.g. ATCC 12452)、Rhodococcus rhodochrous(e.g. ATCC 13803)などが挙げられる。
【0010】
光合成細菌に属するものとしては、Rhodopseudomonas、Rhodospirillum、Chromatium、Chlorobiumなどの属に属する微生物が挙げられ、より具体的にはRhodopseudomonas sphaeroides (e.g. IFO 12203) 、Rhodospirillum rubrum (e.g. IFO 3986) 、Chromatium okenii 、Chlorobium limicola などが挙げられる。
【0011】
乳酸生成菌に属するものとしては、Lactobacillus 、Propionibacterium 、Pediococcus 、Streptococusなどの属に属する微生物が挙げられ、より具体的にはLactobacillus bulgaricus (e.g. ATCC 11842)、Propionibacterium freudenreichii (e.g. IFO 12391) 、Pediococcus halophilus (e.g. IFO 12172) 、Streptococus lactis (e.g. IFO 12007)、Storeptococus faecalis (e.g. IFO 3971)などが挙げられる。
【0012】
糸状菌に属するものとしては、Aspergillus 、Mucor などの属に属する微生物が挙げられ、より具体的にはAspergillus japonicus (e.g. IFO 4060) 、Aspergillus oryzae (e.g IFO 4075) 、Mucor hiemalis (e.g. IFO 5303)などが挙げられる。
【0013】
酵母に属するものとしては、Saccharomyces 、Candida などの属に属する微生物が挙げられ、より具体的にはSaccharomyces cerevisiae (e.g. IFO 0304)、Saccharomyces lactis (e.g. IFO 0433)、Candida utilis (e.g. IFO 0396)などが挙げられる。
【0014】
本発明において5つの群からそれぞれ選ばれる微生物は一種でも複数でも良い。本発明のより好ましい態様によれば、複数の微生物を組み合わせて用いるのが好ましい。これらの微生物は、それらの微生物の通常の条件で培養されてよい。
【0015】
このような生物学的前処理によって、後段の光分解による処理がより効率よく行われる。以下の理論に拘束されるわけではないが、この前処理によって、被処理水中に存在する有機物などの固形成分は微生物によって、後段の光分解において効率よく分解され得る大きさの分子まで分解されるのが理由と思われる。
【0016】
微生物と被処理水の接触の態様は特に限定されないが、本発明の好ましい態様によれば、微生物を多孔質体に単持させ、その多孔質体と被処理水とを接触させることで実施されてよい。この多孔質体は、微生物が生息可能であれば特に限定されないが、例えば粘土鉱物を焼結して得られた連続気孔を有する多孔質セラミック、木炭、合成繊維からなるフェルト、合成樹脂からなる多孔板、多段に重ねた合成樹脂板などを好ましく利用することが出来る。
【0017】
本発明の第二の態様による水処理装置は、光酸化部で処理された後の処理水を、生物学的に後処理する。生物学的後処理は、この処理水を、放線菌、光合成細菌、乳酸生成菌、糸状菌、および酵母の5つの群のそれぞれから少なくとも一種ずつ選択された、少なくとも計5種からなる微生物群と接触させることによって行う。
【0018】
この態様に用いられる微生物の好ましい具体例としては、上記した生物学的前処理に用いられるものが挙げられる。さらに、微生物と被処理水の接触の態様は特に限定されないが、本発明の好ましい態様によれば、上記した生物学的前処理と同様の態様が挙げられる。
【0019】
このような生物学的後処理によって、光酸化部で処理された処理水に存在する有機物をより完全に分解することが出来る。さらに従来、このような光酸化部で処理された処理水の後処理として活性炭による濾過処理が知られているが、本発明によれば、この活性炭と上記微生物群を組み合わせることで、この活性炭の濾過能力を長期間に亘り維持することが可能であるとの利点が得られる。
【0020】
本発明の第三の態様による水処理装置は、上記の第一の態様および第二の態様を組み合わせたもの、すなわち生物学的前処理と、生物学的後処理をともに備えてなるものである。この態様による水処理装置によれば、より効率のよい水処理を行うことが出来る。
【0021】
本発明による水処理装置を図面を用いて説明する。図1は、本発明による水処理装置を表す。被処理水はタンク1に導入路2を介して投入される。このタンク1内のpH、温度などの状態は、センサー手段3を設けて知ることができるよう構成してもよい。このタンク1の被処理水はポンプ4によりバルブ5を介して前処理6に導入される。この前処理6の断面図を図2に示す。この前処理6は、容器7とその中に充填された多孔質床8とから構成されている。そしてこの多孔質床8には上記した微生物群が担持されている。被処理水は導管10から入り多孔質床8の間隙9を流れる。その間、被処理水中に存在する有機物などは多孔質床8に吸着される。そして、微生物群により分解され、低分子化される。さらに場合によって、バルブ26および27を切り替えて、被処理水を循環路28を経由させて循環処理することも可能である。その後被処理水は導管11から前処理槽6を出る。前処理を受けた被処理水は、次に貯留タンク12に至り溜め置かれ、その後光酸化処理を受ける。
【0022】
光酸化処理は次のように行われる。貯留タンク12に溜め置かれた被処理水に、酸化剤タンク13からの酸化剤を、投入装置14を用いて貯留タンク12に投入する。貯留タンク12中で被処理水を攪拌するなどして酸化剤と被処理水を十分に混合する。酸化剤と混合された被処理水は、バルブ15が開けられ、ポンプ16によって触媒槽17に至る。触媒槽17内には触媒層が設けられてなる。この触媒層は光酸化処理に用いられている触媒層であってよく、例えばニッケル化合物、鉄化合物、チタン化合物からなり、充填構造をとるのが好ましい。また、この触媒層は光酸化部と一体に構成されてよい。この触媒槽によって酸化剤が活性化され、その後被処理水は光酸化部18に至る。この光酸化部18は、容器19と、その内部に収容された紫外線ランプ20とから構成される。被処理水は容器19内に入ると、紫外線ランプ20から紫外線の照射を受ける。被処理水に存在する有機物、微生物などは紫外線により分解され、低分子化される。これにより、被処理水の浄化、殺菌などが達成される。光酸化部18を出た被処理水はバルブ21を介して再び貯留タンク12に至る。本発明の好ましい態様によれば、このような光酸化処理を処理水を循環させて一定時間継続して行う。酸化剤を適宜追加しながら行うことも好ましい。被処理水の浄化の程度は、センサー22を設け、これによって監視しながら行うことも可能である。目的とする被処理水の浄化の程度が達成できたならば、次に被処理水を後処理に付す。
【0023】
バルブ21を閉めバルブ23を開けることで、被処理水を後処理槽24に導く。ここで、この後処理24は基本的に前処理槽6と同一の構成とされてよい。すなわち、この後処理槽は容器内に上記した微生物群を担持させた多孔質床を収容して構成されてよい。本発明の好ましい態様によれば、この後処理24の多孔質床は活性炭によって構成されるのが好ましい。被処理水はこの後処理槽24内において、多孔質床の間隙を通過し、その際被処理水内に残存している有機物などが多孔質床に吸着される。吸着された有機物は多孔質床に担持された微生物により分解され、低分子化される。これによって被処理水のより完全な浄化が達成される。
【0024】
本発明の好ましい態様によれば、貯留タンク12の底部に多孔質床25を形成してもよい。この多孔質床25に微生物が生息し、その結果、被処理水を貯留している間に有機物の分解、低分子化が行なわれ、光酸化による水の浄化を補助することが出来る。
【0025】
上記の装置において、前処理槽および後処理槽の大きさ、光酸化部の紫外線ランプの出力などは被処理水の種類および量、光酸化処理時に光酸化部を通過する被処理水の流量などを勘案して適宜決定されてよい。本発明の好ましい態様によれば、ポリオキシエチレン(OPE)系洗浄液含有排水(COD300mg/l)のような排水の場合、前処理槽における多孔質床を100リットル、後処理槽における活性炭からなる多孔質床を100リットル3 、紫外線ランプの出力を2kw、紫外線酸化部に導入される被処理水の循環流量を1.8m3 /時としたとき、約125リットル/時程度の量の排水処理を行うことが出来る。
【0026】
【実施例】
実施例1
図1に記載の装置と同一の装置を用いて水処理を行った。紫外線の出力は2kWとし、酸化剤は35%過酸化水素水を下記の表に記載の量添加した。前処理槽は、次の微生物群を、粘土鉱物を主原料に高温焼結して得られた連続気孔を有する多孔質セラミック担体(比重0.4〜0.5、吸水率170%以上、気孔率75%以上、表面積2m2 /g)に担持させたものを使用した。
【0027】
微生物群
放線菌:Streptomyces albus (ATCC 3004) 、Streptoverticillium baldaccii (ATCC 23654) 、Nocardia asteroides (ATCC 19247) 、Micromonospora chalcea (ATCC 12452) 、Rhodococcus rhodochrous(ATCC 13803) 。
光合成細菌:Rhodopseudomonas sphaeroides (IFO 12203) 、Rhodospirillum rubrum (IFO 3986) 、Chromatium okenii 、Chlorobium limicola 。
乳酸生成菌:Lactobacillus bulgaricus (ATCC 11842) 、Propionibacterium freudenreichii (IFO 12391) 、Pediococcus halophilus (IFO 12172) 、Streptococus lactis (IFO 12007) 、Storeptococus faecalis (IFO 3971) 。
糸状菌:Aspergillus japonicus (IFO 4060) 、Aspergillus oryzae (IFO 4075) 、Mucor hiemalis (IFO 5303) 。
酵母:Saccharomyces cerevisiae (IFO 0304) 、Saccharomyces lactis (IFO 0433) 、Candida utilis (IFO 0396) 。
【0028】
上記の装置に原排水として種々のCOD値を有するPOE系洗浄液含有排水を導入し、30リットル/分の流量で原排水を前処理槽6に導入した。処理水30リットルを貯留槽12に貯留し、その後光酸化処理を行った。光酸化槽を循環させる際の流量は10リットル/分、処理時間は1時間とした。
原排水、および光酸化処理前後の貯留槽12の処理水のCOD値を測定した。
また、更に前処理装置を有さない、光酸化槽のみによる処理も行った。
それらの結果は、次の表に示される通りであった。
【0029】

Figure 0003860847
【0030】
実施例2
実施例1と同様の装置によってPOE系洗浄液含有排水を処理し、前処理および光酸化処理によりCOD値12ppmの処理水を得た。この処理水を、多孔質セラミック担体を粒状活性炭に代えた以外は実施例1の前処理装置と同様の後処理装置に、10リットル/分の流量で導入した。この後処理後の処理水のCOD値を測定し、その値が12ppmとなるまでの時間を測定した。
また、上記微生物を担持させなかった以外は上記と同様の後処理装置を構成し、これに上記と同様の排水を10リットル/分の流量で導入した。この場合も、この後処理後の処理水のCOD値を測定し、その値が12ppmとなるまでの時間を測定した。
それらの結果は、次の表に示される通りであった。
【0031】
Figure 0003860847

【図面の簡単な説明】
【図1】本発明による光酸化水処理装置の全体の模式図である。
【図2】本発明による光酸化水処理装置の前処理槽または後処理槽の断面図である。
【符号の説明】
1 貯留槽
6 前処理槽
7 容器
8 多孔質床
12 貯留槽
13 酸化剤槽
14 酸化剤投入装置
17 触媒槽
18 光酸化部
20 紫外線ランプ
24 後処理槽[0001]
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION The present invention relates to a water treatment device for treating water by photooxidation with ultraviolet rays, and more particularly, for microbiological pretreatment and / or in a water treatment device for treating water by photooxidation with ultraviolet rays. Regarding post-processing.
[0002]
Background art Most substances have absorption in the ultraviolet region, resulting in photoreaction, photoionization, physiological action, bactericidal action and the like. Therefore, by irradiating ultraviolet rays to sewage, washing waste water, or water before use, organic substances, microorganisms and the like contained therein can be decomposed and reduced in molecular weight to purify water quality. Such an apparatus is widely known as a photo-oxidation treatment apparatus, an ultraviolet oxidation water treatment apparatus, or the like.
[0003]
Summary of the Invention
The present inventors have now found that more efficient water treatment can be achieved by combining a photo-oxidation treatment apparatus and pretreatment and / or posttreatment in which treated water is brought into contact with a specific microorganism group. . The present invention is based on such knowledge.
[0004]
Accordingly, an object of the present invention is to provide an ultraviolet oxidation treatment apparatus capable of more efficient water treatment.
[0005]
The photo-oxidized water treatment apparatus according to the present invention comprises:
A photo-oxidation part that irradiates the water to be treated with ultraviolet rays,
Microorganisms comprising at least five species in total, wherein the water to be treated before being led to the photooxidation unit is selected from at least one of each of the five groups of actinomycetes, photosynthetic bacteria, lactic acid producing bacteria, filamentous fungi, and yeasts At least one kind of each of the five groups of actinomycetes, photosynthetic bacteria, lactic acid producing bacteria, filamentous fungi, and yeast is treated with the pretreatment unit to be brought into contact with the group and / or treated water after the photooxidation unit. Each is provided with a post-processing unit that is selected and brought into contact with a group of at least five types of microorganisms.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
According to the water treatment device of the present invention, it is possible to efficiently perform COD and BOD reduction of treated water, decomposition of contained organic substances, sterilization treatment, and algaecidal treatment. The water treatment apparatus according to the present invention can be applied to purification treatments of various aqueous drainage, purification treatment of primary usage water, secondary usage water, and the like. Specific examples include household and store wastewater treatment; degreasing cleaning wastewater treatment in precision machining; cyan wastewater treatment in plating treatment; electroless Ni plating bath wastewater in printed wiring board manufacturing, liquid resist development wastewater treatment; Organic dye wastewater treatment; Pretreatment of ultrapure water treatment in semiconductor production or liquid crystal production; Treatment for reuse of sewage treated water; Treatment of industrial circulating water; Organic substances such as organic chlorinated solvents, alcohols and hydrocarbons Organic matter decomposition treatment of wastewater containing a large amount of water; treatment of wastewater from golf courses; purification treatment of pond water, lake water, swamp water, etc .; organic wastewater treatment of other high COD and high BOD, etc.
[0007]
The photo-oxidation part of the water treatment apparatus according to the present invention is not particularly limited as long as it has a function of decomposing and reducing the molecular weight of organic substances by the oxidizing power of ultraviolet rays. Preferably, an aspect in which an oxidizing agent such as hydrogen peroxide, sodium hypochlorite, ozone, or the like is added to the water to be treated and then the ultraviolet rays are irradiated to the treated water is preferable. In this embodiment, the oxidizing agent is activated by irradiation with ultraviolet rays to generate hydroxy radicals, etc., whereby the organic matter in the treated water is oxidatively decomposed and reduced in molecular weight. Further, a catalyst for activating the oxidizing agent may be present.
[0008]
The water treatment apparatus according to the first aspect of the present invention biologically pretreats the water to be treated before being led to the photooxidation unit. In the biological pretreatment, this treated water is selected from at least one of each of the five groups of actinomycetes, photosynthetic bacteria, lactic acid producing bacteria, filamentous fungi, and yeast. Done by contacting with.
[0009]
Preferred specific examples of the microorganism used in the present invention are as follows.
Examples of the actinomycetes include microorganisms belonging to genera such as Streptomyces, Streptoverticillium, Nocardia, Micromonospora, Rhodococcus, and more specifically, Streptomyces albus (eg ATCC 3004), Streptoverticillium baldaccii (eg ATCC 23654), Nocardia asteroides (eg ATCC 19247), Micromonospora chalcea (eg ATCC 12452), Rhodococcus rhodochrous (eg ATCC 13803), and the like.
[0010]
Examples of the photosynthetic bacteria include microorganisms belonging to the genera such as Rhodopseudomonas, Rhodospirillum, Chromatium, Chlorobium, and more specifically Rhodopseudomonas sphaeroides (eg IFO 12203), Rhodospirillum rubrum (eg IFO 3986), Chromatium orobii, limicola.
[0011]
Examples of lactic acid-producing bacteria include microorganisms belonging to genera such as Lactobacillus, Propionibacterium, Pediococcus, Streptococus, and more specifically, Lactobacillus bulgaricus (eg ATCC 11842), Propionibacterium freudenreichii (eg IFO 12391), Pediococcus halophilus eg IFO 12172), Streptococus lactis (eg IFO 12007), Storeptococus faecalis (eg IFO 3971) and the like.
[0012]
Examples of filamentous fungi include microorganisms belonging to genera such as Aspergillus, Mucor, and more specifically Aspergillus japonicus (eg IFO 4060), Aspergillus oryzae (eg IFO 4075), Mucor hiemalis (eg IFO 5303), etc. Is mentioned.
[0013]
Examples of those belonging to yeast include microorganisms belonging to genera such as Saccharomyces and Candida, and more specifically, Saccharomyces cerevisiae (eg IFO 0304), Saccharomyces lactis (eg IFO 0433), Candida utilis (eg IFO 0396) and the like. Can be mentioned.
[0014]
In the present invention, one or more microorganisms may be selected from each of the five groups. According to a more preferred embodiment of the present invention, it is preferable to use a combination of a plurality of microorganisms. These microorganisms may be cultured under the normal conditions of those microorganisms.
[0015]
By such biological pretreatment, the subsequent photolysis is performed more efficiently. Although not bound by the following theory, this pretreatment decomposes solid components such as organic matter present in the water to be treated into molecules of a size that can be efficiently decomposed by subsequent photolysis by microorganisms. The reason seems to be.
[0016]
The mode of contact between the microorganism and the water to be treated is not particularly limited, but according to a preferred embodiment of the present invention, the microorganism is held in a porous body, and the porous body and the water to be treated are brought into contact with each other. It's okay. The porous body is not particularly limited as long as microorganisms can inhabit it. For example, porous ceramics having continuous pores obtained by sintering clay minerals, charcoal, felt made of synthetic fibers, and porous made of synthetic resins. A plate, a synthetic resin plate stacked in multiple stages, and the like can be preferably used.
[0017]
The water treatment apparatus according to the second aspect of the present invention biologically post-treats the treated water after being treated in the photooxidation unit. In the biological post-treatment, the treated water is treated with at least one microbial group consisting of at least one selected from each of the five groups of actinomycetes, photosynthetic bacteria, lactic acid producing bacteria, filamentous fungi, and yeast. This is done by contact.
[0018]
Preferable specific examples of the microorganism used in this embodiment include those used in the biological pretreatment described above. Furthermore, although the aspect of contact with microorganisms and to-be-processed water is not specifically limited, According to the preferable aspect of this invention, the aspect similar to the biological pretreatment mentioned above is mentioned.
[0019]
By such biological post-treatment, organic substances present in the treated water treated in the photooxidation part can be more completely decomposed. Further, conventionally, filtration treatment with activated carbon is known as a post-treatment of the treated water treated in such a photo-oxidation part. According to the present invention, by combining this activated carbon and the above microorganism group, The advantage is obtained that the filtration capacity can be maintained over a long period of time.
[0020]
The water treatment apparatus according to the third aspect of the present invention is a combination of the first aspect and the second aspect described above, that is, comprising both biological pretreatment and biological posttreatment. . According to the water treatment apparatus according to this aspect, more efficient water treatment can be performed.
[0021]
A water treatment apparatus according to the present invention will be described with reference to the drawings. FIG. 1 represents a water treatment device according to the invention. Treated water is introduced through the introduction passage 2 to the tank 1. PH in the tank 1 of this, conditions such as temperature, may be configured to be able to know the sensor means 3 is provided. Treatment water of this tank 1 is introduced into the pretreatment tank 6 via a valve 5 by the pump 4. A sectional view of the pretreatment tank 6 is shown in FIG. The pretreatment tank 6 is composed of a container 7 and a porous bed 8 filled therein. The porous bed 8 carries the above microorganism group. The water to be treated enters through the conduit 10 and flows through the gap 9 in the porous bed 8. In the meantime, the organic substance etc. which exist in to-be-processed water are adsorb | sucked by the porous bed 8. FIG. And it is decomposed | disassembled by microorganisms and it is made low molecular. Further, depending on the case, the water to be treated can be circulated through the circulation path 28 by switching the valves 26 and 27. Thereafter, the water to be treated exits the pretreatment tank 6 from the conduit 11. The water to be treated that has undergone the pretreatment is then stored in the storage tank 12 and then subjected to photooxidation treatment.
[0022]
The photo-oxidation process is performed as follows. The oxidant from the oxidant tank 13 is charged into the storage tank 12 using the input device 14 to the water to be treated stored in the storage tank 12. The oxidant and the water to be treated are sufficiently mixed by, for example, stirring the water to be treated in the storage tank 12. The treated water mixed with the oxidizing agent is opened in the valve 15 and reaches the catalyst tank 17 by the pump 16. A catalyst layer is provided in the catalyst tank 17. This catalyst layer may be a catalyst layer used for photo-oxidation treatment, and is preferably made of, for example, a nickel compound, an iron compound, or a titanium compound, and has a packed structure. Moreover, this catalyst layer may be integrated with the photo-oxidation part. The oxidizing agent is activated by the catalyst tank, and then the water to be treated reaches the photooxidation unit 18. This photo-oxidation part 18 is comprised from the container 19 and the ultraviolet lamp 20 accommodated in the inside. When the water to be treated enters the container 19, it is irradiated with ultraviolet rays from the ultraviolet lamp 20. Organic matter, microorganisms, etc. present in the water to be treated are decomposed by ultraviolet rays to be reduced in molecular weight. Thereby, purification, sterilization, etc. of to-be-processed water are achieved. The water to be treated that has exited the photooxidation unit 18 reaches the storage tank 12 again via the valve 21. According to a preferred aspect of the present invention, such photo-oxidation treatment is continuously performed for a predetermined time by circulating the treated water. It is also preferable to carry out while adding an oxidizing agent as appropriate. The degree of purification of the water to be treated can be measured while the sensor 22 is provided and monitored. If the target degree of purification of the water to be treated can be achieved, the water to be treated is then subjected to post-treatment.
[0023]
The water to be treated is guided to the post-treatment tank 24 by closing the valve 21 and opening the valve 23. Here, the post-treatment tank 24 may basically have the same configuration as the pre-treatment tank 6. That is, this post-treatment tank may be configured by accommodating a porous bed carrying the above-described microorganism group in a container. According to a preferred embodiment of the present invention, the porous bed of the post-treatment tank 24 is preferably composed of activated carbon. In the post-treatment tank 24, the water to be treated passes through the gap between the porous beds, and the organic matter remaining in the water to be treated is adsorbed on the porous bed. The adsorbed organic matter is decomposed by the microorganisms supported on the porous bed to reduce the molecular weight. This achieves a more complete purification of the water to be treated.
[0024]
According to a preferred embodiment of the present invention, the porous bed 25 may be formed at the bottom of the storage tank 12. Microorganisms inhabit the porous bed 25. As a result, organic substances are decomposed and molecular weight-reduced while the water to be treated is stored, and water purification by photooxidation can be assisted.
[0025]
In the above apparatus, the size of the pretreatment tank and the posttreatment tank, the output of the ultraviolet lamp of the photooxidation unit, the type and amount of the water to be treated, the flow rate of the water to be treated that passes through the photooxidation unit during the photooxidation treatment, etc. May be determined as appropriate. According to a preferred embodiment of the present invention, in the case of wastewater such as wastewater containing polyoxyethylene (OPE) -based cleaning liquid (COD 300 mg / l), the porous bed in the pretreatment tank is 100 liters, and the porous bed is made of activated carbon in the posttreatment tank. Shitsuyuka a 100 l 3, 2 kw output of the ultraviolet lamp, when the circulation flow rate of the water to be treated is introduced into the ultraviolet oxidation unit was 1.8 m 3 / hr, a waste water treatment of approximately 125 l / h approximately amounts Can be done.
[0026]
【Example】
Example 1
Water treatment was performed using the same apparatus as that shown in FIG. The output of ultraviolet rays was 2 kW, and 35% hydrogen peroxide water was added as the oxidizing agent in the amount shown in the table below. The pretreatment tank is a porous ceramic carrier having continuous pores obtained by high-temperature sintering the following microorganism group using clay mineral as a main raw material (specific gravity 0.4 to 0.5, water absorption rate 170% or more, pores The one supported at a rate of 75% or more and a surface area of 2 m 2 / g) was used.
[0027]
Streptomyces albus (ATCC 3004), Streptoverticillium baldaccii (ATCC 23654), Nocardia asteroides (ATCC 19247), Micromonospora chalcea (ATCC 12452), Rhodococcus rhodochrous (ATCC 13803).
Photosynthetic bacteria: Rhodopseudomonas sphaeroides (IFO 12203), Rhodospirillum rubrum (IFO 3986), Chromatium okenii, Chlorobium limicola.
Lactic acid producing bacteria: Lactobacillus bulgaricus (ATCC 11842), Propionibacterium freudenreichii (IFO 12391), Pediococcus halophilus (IFO 12172), Streptococus lactis (IFO 12007), Storeptococus faecalis (IFO 3971).
Filamentous fungi: Aspergillus japonicus (IFO 4060), Aspergillus oryzae (IFO 4075), Mucor hiemalis (IFO 5303).
Yeast: Saccharomyces cerevisiae (IFO 0304), Saccharomyces lactis (IFO 0433), Candida utilis (IFO 0396).
[0028]
POE-based cleaning liquid-containing wastewater having various COD values was introduced into the above apparatus as raw wastewater, and the raw wastewater was introduced into the pretreatment tank 6 at a flow rate of 30 liters / minute. 30 liters of treated water was stored in the storage tank 12, and then photooxidation was performed. The flow rate for circulating the photooxidation tank was 10 liters / minute, and the treatment time was 1 hour.
The COD value of the raw water and the treated water in the storage tank 12 before and after the photo-oxidation treatment were measured.
Moreover, the process only by a photo-oxidation tank which did not have a pre-processing apparatus was also performed.
The results were as shown in the following table.
[0029]
Figure 0003860847
[0030]
Example 2
The POE cleaning liquid-containing wastewater was treated by the same apparatus as in Example 1, and treated water having a COD value of 12 ppm was obtained by pretreatment and photooxidation treatment. This treated water was introduced at a flow rate of 10 liters / minute into a post-treatment device similar to the pre-treatment device of Example 1 except that the porous ceramic carrier was replaced with granular activated carbon. The COD value of the treated water after this post-treatment was measured, and the time until the value reached 12 ppm was measured.
A post-treatment apparatus similar to that described above was configured except that the microorganisms were not supported, and waste water similar to that described above was introduced thereto at a flow rate of 10 liters / minute. Also in this case, the COD value of the treated water after this post-treatment was measured, and the time until the value reached 12 ppm was measured.
The results were as shown in the following table.
[0031]
Figure 0003860847

[Brief description of the drawings]
FIG. 1 is a schematic view of an entire photooxidized water treatment apparatus according to the present invention.
FIG. 2 is a cross-sectional view of a pretreatment tank or a posttreatment tank of a photooxidized water treatment apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Storage tank 6 Pretreatment tank 7 Container 8 Porous bed 12 Storage tank 13 Oxidant tank 14 Oxidant charging device 17 Catalyst tank 18 Photooxidation part 20 Ultraviolet lamp 24 Post-treatment tank

Claims (8)

被処理水に紫外線を照射する光酸化部、
該光酸化部に導かれる前の被処理水を、放線菌、光合成細菌、乳酸生成菌、糸状菌、および酵母の5つの群のそれぞれから少なくとも一種ずつ選択された、少なくとも計5種からなる微生物群と接触させる前処理部、および
該光酸化部で処理された後の被処理水を、放線菌、光合成細菌、乳酸生成菌、糸状菌、および酵母の5つの群のそれぞれから少なくとも一種ずつ選択された、少なくとも計5種からなる微生物群と接触させる後処理部
を備えてなる光酸化水処理装置であって、
前記前処理部による処理を受けた、光酸化部に導く前の被処理水を貯留する貯留部をさらに有してなり、前記水貯留部にある被処理水に、酸化剤を添加する酸化剤添加手段が設けられてなることを特徴とする、水処理装置。
A photo-oxidation part that irradiates the water to be treated with ultraviolet rays,
Microorganisms comprising at least five species in total, wherein the water to be treated before being led to the photooxidation unit is selected from at least one of each of the five groups of actinomycetes, photosynthetic bacteria, lactic acid producing bacteria, filamentous fungi, and yeasts A pretreatment unit to be brought into contact with the group, and water to be treated after being treated with the photooxidation unit, at least one selected from each of the five groups of actinomycetes, photosynthetic bacteria, lactic acid producing bacteria, filamentous fungi, and yeast A photo-oxidized water treatment apparatus comprising a post-treatment unit that is brought into contact with a group of microorganisms consisting of at least five species ,
An oxidant that has been treated by the pretreatment unit, further comprises a storage unit that stores the water to be treated before being led to the photooxidation unit, and adds an oxidant to the water to be treated in the water storage unit A water treatment apparatus comprising an adding means.
前処理部および/または後処理部における微生物が、多孔質担体に担持されている、請求項1に記載の水処理装置。  The water treatment apparatus according to claim 1, wherein microorganisms in the pretreatment unit and / or the posttreatment unit are supported on a porous carrier. 前処理部および後処理部における微生物が、放線菌に属するStreptomyces、Streptoverticillium 、Nocardia、およびMicromonospora、Rhodococcus の属に属する微生物、光合成細菌に属するRhodopseudomonas、Rhodospirillum、Chromatium、およびChlorobiumの属に属する微生物、乳酸生成菌に属するLactobacillus 、Propionibacterium 、Pediococcus 、およびStoreptococus の属に属する微生物、糸状菌に属するAspergillus 、およびMucor の属に属する微生物、並びに酵母に属するSaccharomyces 、およびCandida の属に属する微生物からなる群から選択されるものである、請求項1または2に記載の水処理装置。  Microorganisms in the pre-treatment part and the post-treatment part are Streptomyces, Streptoverticillium, Nocardia and Micromonospora belonging to Actinomyces, microorganisms belonging to Rhodococcus, Rhodopseudomonas belonging to photosynthetic bacteria, Rhodospirillum, Chromatium, and microorganisms belonging to the genus Chlorobium, lactic acid Selected from the group consisting of microorganisms belonging to the genus Lactobacillus, Propionibacterium, Pediococcus and Storeptococus belonging to the producer, microorganisms belonging to the genus Aspergillus and Mucor belonging to the filamentous fungus, Saccharomyces belonging to the genus Yeast, and microorganisms belonging to the genus Candida The water treatment apparatus according to claim 1 or 2, wherein 微生物が、放線菌に属するStreptomyces albus、Streptoverticillium baldaccii 、Nocardia asteroides 、Micromonospora chalcea、およびRhodococcus rhodochrous、光合成細菌に属するRhodopseudomonas sphaeroides、Rhodospirillum rubrum、Chromatium okenii 、およびChlorobium limicol、乳酸生成菌に属するLactobacillus bulgaricus、Propionibacterium freudenreichii、Pediococcus halophilus、Streptococus lactis 、およびStreptococusfaecalis 、糸状菌に属するAspergillus japonicus 、Aspergillus oryzae、およびMucorhiemalis、並びに酵母に属するSaccharomyces cerevisiae、Saccharomyces lactis、およびCandida utilisからなる群から選択されるものである、請求項記載の水処理装置。Microbes are Streptomyces albus, Streptoverticillium baldaccii, Nocardia asteroides, Micromonospora chalcea, and Rhodococcus rhodochrous belonging to the actinomycetes, Rhodopseudomonas sphaeroides, Rhodospirillum rubrum, Protobacterium bulrum, Protobacterium , Pediococcus halophilus, Streptococus lactis, and Streptococusfaecalis, those selected Aspergillus japonicus belonging to filamentous fungi, Aspergillus oryzae, and Mucorhiemalis, and Saccharomyces cerevisiae belonging to yeast, from the group consisting of Saccharomyces lactis, and Candida utilis, claim 3 The water treatment apparatus as described. 前記貯留部内に多孔質床をさらに有してなる、請求項1〜4のいずれか一項に記載の水処理装置。  The water treatment apparatus according to any one of claims 1 to 4, further comprising a porous bed in the storage section. 酸化剤が添加された被処理水を触媒と接触させる触媒部をさらに有してなる、請求項1〜5のいずれか一項記載の水処理装置。  The water treatment apparatus according to any one of claims 1 to 5, further comprising a catalyst unit for bringing the water to be treated to which the oxidizing agent is added into contact with the catalyst. 被処理水に紫外線を照射する光酸化部、および
該光酸化部に導かれる前の被処理水を、放線菌、光合成細菌、乳酸生成菌、糸状菌、および酵母の5つの群のそれぞれから少なくとも一種ずつ選択された、少なくとも計5種からなる微生物群と接触させる前処理部を備えてなる光酸化水処理装置であって、
前記光酸化部に導く前の被処理水を貯留する貯留部をさらに有してなり、前記水貯留部にある被処理水に、酸化剤を添加する酸化剤添加手段が設けられてなり、かつ前記貯留部内に多孔質床をさらに有してなることを特徴とする、水処理装置。
A photooxidation part that irradiates the water to be treated with ultraviolet light, and a water to be treated before being guided to the photooxidation part are at least from each of the five groups of actinomycetes, photosynthetic bacteria, lactic acid producing bacteria, filamentous fungi, and yeast. A photo-oxidized water treatment apparatus comprising a pretreatment unit that is selected one by one and brought into contact with a group of at least five types of microorganisms,
Further comprising a storage part for storing the water to be treated before being led to the photooxidation part, provided with an oxidant addition means for adding an oxidant to the water to be treated in the water storage part; and The water treatment apparatus further comprising a porous bed in the storage section.
被処理水に紫外線を照射する光酸化部、および
該光酸化部で処理された後の被処理水を、放線菌、光合成細菌、乳酸生成菌、糸状菌、および酵母の5つの群のそれぞれから少なくとも一種ずつ選択された、少なくとも計5種からなる微生物群と接触させる後処理部を備えてなる光酸化水処理装置であって、
前記光酸化部に導く前の被処理水を貯留する貯留部をさらに有してなり、前記水貯留部にある被処理水に、酸化剤を添加する酸化剤添加手段が設けられてなり、かつ前記貯留部内に多孔質床をさらに有してなることを特徴とする、水処理装置。
A photo-oxidation part that irradiates the water to be treated with ultraviolet light, and a water to be treated after being treated with the photo-oxidation part, from each of the five groups of actinomycetes, photosynthetic bacteria, lactic acid-producing bacteria, filamentous fungi, and yeast A photo-oxidized water treatment device comprising a post-treatment unit selected from at least one species and brought into contact with a group of microorganisms comprising at least five species,
Further comprising a storage part for storing the water to be treated before being led to the photooxidation part, provided with an oxidant addition means for adding an oxidant to the water to be treated in the water storage part; and The water treatment apparatus further comprising a porous bed in the storage section.
JP04994095A 1995-03-09 1995-03-09 Photo-oxidation water treatment equipment with microbiological pre-treatment and post-treatment Expired - Fee Related JP3860847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04994095A JP3860847B2 (en) 1995-03-09 1995-03-09 Photo-oxidation water treatment equipment with microbiological pre-treatment and post-treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04994095A JP3860847B2 (en) 1995-03-09 1995-03-09 Photo-oxidation water treatment equipment with microbiological pre-treatment and post-treatment

Publications (2)

Publication Number Publication Date
JPH08243592A JPH08243592A (en) 1996-09-24
JP3860847B2 true JP3860847B2 (en) 2006-12-20

Family

ID=12845028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04994095A Expired - Fee Related JP3860847B2 (en) 1995-03-09 1995-03-09 Photo-oxidation water treatment equipment with microbiological pre-treatment and post-treatment

Country Status (1)

Country Link
JP (1) JP3860847B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336891A (en) * 2001-05-17 2002-11-26 Kurabo Ind Ltd Decomposition system for hardly decomposable material
CN102836748A (en) * 2012-09-17 2012-12-26 湖北省环境科学研究院 Method for preparing ozone oxidation catalyst by utilizing waste beer yeast
CN109502898B (en) * 2018-12-03 2022-04-01 无锡金农生物科技有限公司 Resource full utilization method of rice protein production wastewater

Also Published As

Publication number Publication date
JPH08243592A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
Al-Qodah et al. Combined electrocoagulation processes as a novel approach for enhanced pollutants removal: A state-of-the-art review
US4990260A (en) Method and apparatus for removing oxidizable contaminants in water to achieve high purity water for industrial use
CA2356976C (en) Water treatment process and apparatus
EP2447223A2 (en) Process for biological treatment of organic waste water and apparatus therefor
HK1076618A1 (en) Process and assembly for the treatment of waste water on ships
Nivya et al. Comparison of Photo ElectroFenton Process (PEF) and combination of PEF Process and Membrane Bioreactor in the treatment of Landfill Leachate
Blume et al. Improving chlorine disinfection of wastewater by ultrasound application
CN107585970A (en) The technique of hardly degraded organic substance advanced treating in a kind of Industrial reverse osmosis concentrated water
JP3860847B2 (en) Photo-oxidation water treatment equipment with microbiological pre-treatment and post-treatment
JPH04145997A (en) Method for cleaning water
JP4129631B2 (en) Membrane treatment system for virus isolation
JP2010058078A (en) Water treating system used for water treating method and it
KR101071709B1 (en) Photo-Fenton oxidation reactor to remove 1,4-dioxane and method to remove 1,4-dioxane by Photo-Fenton oxidation
KR100583904B1 (en) High intergated Biological Nutrient Removal System
CN104787988B (en) Intelligent sewage treatment unit and the method processing sewage
JPS5929081A (en) Treatment of waste water containing humic acid and fulvic acid
Sigge et al. Use of ozone and hydrogen peroxide in the post-treatment of UASB treated alkaline fruit cannery effluent
JPH0818037B2 (en) Wastewater microbial treatment equipment
KR101709476B1 (en) Mineral oil-containing waste water purification system
KR200259748Y1 (en) Water Purifier for Household Water
Farooq et al. Process considerations in design of ozone contactor for disinfection
JPH02303598A (en) Treatment of organic matter-containing water
JPH0751668A (en) Purification treatment of sewage
Mousavi et al. Bio-electrochemical treatment of wastewater with high ammonium concentration
JPH1147772A (en) Drainage treatment apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees