JP3856771B2 - Method for preventing thermal degradation products - Google Patents

Method for preventing thermal degradation products Download PDF

Info

Publication number
JP3856771B2
JP3856771B2 JP2003189259A JP2003189259A JP3856771B2 JP 3856771 B2 JP3856771 B2 JP 3856771B2 JP 2003189259 A JP2003189259 A JP 2003189259A JP 2003189259 A JP2003189259 A JP 2003189259A JP 3856771 B2 JP3856771 B2 JP 3856771B2
Authority
JP
Japan
Prior art keywords
flow path
wall surface
resin
molten resin
foreign matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003189259A
Other languages
Japanese (ja)
Other versions
JP2005022195A (en
Inventor
雅弘 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Life and Living Corp
Original Assignee
Asahi Kasei Life and Living Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Life and Living Corp filed Critical Asahi Kasei Life and Living Corp
Priority to JP2003189259A priority Critical patent/JP3856771B2/en
Publication of JP2005022195A publication Critical patent/JP2005022195A/en
Application granted granted Critical
Publication of JP3856771B2 publication Critical patent/JP3856771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92885Screw or gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂フィルム、シート、発泡体、異形押出品など押出成形品の製造における熱劣化物生成防止方法に関する。
【0002】
【従来の技術】
一般に、樹脂のフィルム、シート、発泡体、異形押出品などの押出成形品の成形は、固体の樹脂原料や添加剤に熱を加え樹脂を流動変形状態にし、押出成形用ダイから樹脂を押出すことによりフィルム、シート、発泡体、異形押出品などに成形する。そのときに樹脂、添加剤が熱劣化して生成する熱劣化異物が、製品となる成形されたフィルム、シート、発泡体、異形押出品などの内部に混入することを防止するために、通常、押出成形用ダイ上流に異物濾過装置を設けている。しかし、熱劣化異物は、異物濾過装置の下流にある押出成形用ダイ内でも発生することがあり、その場合、異物濾過装置では除去されず、成形されたフィルム、シート、発泡体、異形押出品などの内部に混入してしまう。従来は、このような押出成形用ダイ内で生成した熱劣化異物の製品への混入対策として、時間あたりの生産量を下げたり、押出成形用ダイの分解掃除の頻度を著しく増加させたりして、生産効率を著しく阻害した製造方法をおこなっている。
【0003】
また、従来、押出成形用ダイ内の熱劣化異物は、特開平9−155949号に示されているように溶融樹脂の押出成形用ダイ内での滞留時間が長いために生成すると考えられてきた。そのため、押出成形用ダイの流路形状を狭めたり、溶融樹脂の滞留部ができないように流路壁面表面に角部が無いようにしたり、押出成形用ダイの溶融樹脂流路壁面表面の金属表面処理材質に溶融樹脂との付着性や接着性が小さい表面処理材を使用したり、押出成形用ダイ内の流路を短くしたりして、押出成形用ダイ流路壁面表面の溶融樹脂の滞留時間を少なくすることにより熱劣化異物の生成の抑制を行なってきた。
しかし、押出成形用ダイ内での熱劣化異物生成は、従来の技術である溶融樹脂の滞留時間を少なくすることにより熱劣化を防止しただけでは、抑制できないのが現状であった。
【0004】
【特許文献1】
特開平9−155949号公報
【0005】
【発明が解決しようとする課題】
本発明は、押出成形用ダイ内での溶融樹脂の熱劣化による異物の生成を抑制することにより、それらが樹脂フィルム、シート、発泡体、異形押出品など押出成形品の内部に混入することを防止する方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者は、前記課題を解決するため鋭意検討した結果、本発明をなすに至った。すなわち、本発明は以下の通りである。
(1) 樹脂を押出し成形する際に、押出成形用ダイ内を流れる溶融樹脂の流路壁面表面上のせん断速度を、押出成形用ダイの全流路壁面表面積の60%以上において40sec−1〜10sec−1 とし、かつ全流路壁面表面上において40sec −1 以下とすることを特徴とする熱劣化物生成防止方法。
(2) 溶融樹脂の流路壁面表面上のせん断速度を、押出成形用ダイ内の全流路壁面表面積の80%以上において40sec−1〜10sec−1 とし、かつ全流路壁面表面上において40sec −1 以下とする(1)記載の熱劣化物生成防止方法。
【0007】
【発明の実施の形態】
本発明が従来技術と最も相違するところは、従来の技術では、樹脂押出成形用ダイ内の熱劣化異物の生成を、溶融樹脂の滞留時間を少なくすることにより抑制しているのに対し、本発明では、滞留時間とは無関係に、ダイ内部の流路壁面上における溶融樹脂のせん断速度を制御することにより熱劣化異物の生成を抑制できることである。
【0008】
本発明者は、押出成形用ダイ内での溶融樹脂の滞留時間と熱劣化異物の生成の関係を研究した結果、押出成形用ダイ内の滞留時間が短い位置にも熱劣化異物が生成している部分があり、また、滞留時間が明らかに長い部分で熱劣化異物の生成がない状態を発見した。この熱劣化異物の生成、付着状況についてスパイラルダイを例にとって、図1に示す。図中11内側ダイリング外面に15、16のように熱劣化異物が生成していた。また、12の外側ダイリング内面にも15、16の位置の樹脂流路をはさんだ反対側の面の位置に熱劣化異物が生成していた。しかし、図1中の15、16よりも、明らかに滞留時間が長い17の部分とその樹脂流路を挟んだ反対側の溶融樹脂流路面では熱劣化異物が生成していないのである。
【0009】
さらに、溶融樹脂の流路が狭く、流路を通過する速度がある一定以上に速く、大きなせん断応力が溶融樹脂にかかり、溶融樹脂が大きな自己発熱を起こす条件で、熱劣化異物が生成されることを発見した。押出成形用ダイ内流路のいずれの部位においても、流路断面方向で溶融樹脂にかかるせん断応力に分布があり、溶融樹脂に高いせん断応力がかかる押出成形用ダイ流路壁面表面上で、溶融樹脂や添加剤等が大きな自己発熱をし、カーボン等の熱劣化異物の生成量が多い。そして、溶融樹脂流路の押出成形用ダイ流路壁面表面上に熱劣化異物が付着固化し、そのカーボン等の熱劣化異物が積層状に成長して、押出成形用ダイの流路厚みが狭くなり、溶融樹脂の通過速度が速くなり、ますます押出成形用ダイ流路壁面表面上で、溶融樹脂や添加剤等にかかるせん断応力が大きくなり、溶融樹脂や添加剤等の自己発熱が大きくなり、カーボン等の熱劣化異物の生成速度を助長する事となる。
【0010】
その後、熱劣化異物積層によって溶融樹脂が通過する流路が狭まることで増加した溶融樹脂のせん断応力が、生成した熱劣化異物と押出成形用ダイ流路壁面表面との付着力を超えた時、それまで積層してきた熱劣化異物が剥がれ、押出成形用ダイ出口から流出し、製品である樹脂フィルム、シート、発泡体、異形押出品などに混入するのである。
樹脂の押出成形では、樹脂が流動可能なように各樹脂の融点以上から融点より100℃程度高い温度条件で成形を行なうが、局部的に押出成形用ダイ内での樹脂や添加剤の自己発熱がおこると、溶融樹脂の熱伝導が非常に悪いという性質により、局部的に熱劣化異物の生成が行われるのである。また、熱劣化を防止するために成形温度を下げることもたびたび行われるが、溶融樹脂の温度が下がると、溶融樹脂の粘度が上がり局所的なせん断発熱量は増えることとなり、溶融樹脂の熱伝導が非常に悪いという性質により、かえって熱劣化異物の生成が増え、改善に至らない事が多い。
【0011】
押出成形用ダイ内での樹脂や添加剤の自己発熱による熱劣化異物生成の防止には、樹脂に大きなせん断応力、せん断速度をかけない方が望ましく、樹脂フィルム、シート、発泡体、異形押出品などの製造運転条件に対して、押出成形用ダイ流路壁面表面上のせん断速度は100sec-1以下で押出成形用ダイを設計・製作し、使用するのが良い。好ましくは、70sec-1以下、さらに好ましくは40sec-1以下である。ただし、せん断速度が低すぎると、溶融樹脂の押出成形用ダイ内流路壁面表面上の局部滞留による熱劣化異物の問題が生じるので、押出成形用ダイ内のいずれかの流路を構成する流路壁面表面上で10sec-1以上が好ましい。
【0012】
また、その熱劣化異物の生成量や成形品への混入量は、押出成形用ダイ内の全流路壁面表面積に対しての上記の最適なせん断速度を有した流路壁面表面積の比を増大することで、減少させることが可能である。その押出成形用ダイ内の全流路壁面表面積に対しての上記最適なせん断速度を有した流路壁面表面積の比は60%以上が好ましく、80%以上がさらに好ましく、100%に漸近するのがもっとも好ましい。本発明でいう流路壁面とは、押出成形用ダイ内を構成する溶融樹脂が流れる流路断面や流線に直交する断面が円管状断面流路、略円管状断面流路、半円管状断面流路、平面またはスリット状断面流路、円筒状断面流路、矩形状断面流路、略矩形状断面流路、スリット状断面流路などの流路すべての部位をいう。
【0013】
本発明で用いられる被押出材料は、熱可塑性樹脂やそれらのブレンド系樹脂などであるが、例えば、ポリエチレン系,ポリプロピレン系、ポリスチレン系,塩化ビニル系、塩化ビニリデン系、メタクリル系、ポリエチレンテレフタレート系、エチレンビニルアルコール系、アイオノマー系、スチレンアクリレート系、スチレンブタジエン系、スチレンアクリロニトリル系、アクリレートブタジエンスチレン系、ポリアミド系、ポリアセタール系、ポリカーボネート系、ポリフェニレンエーテル系、ポリブチレンエーテル系、ポリサルフォン系、ポリエーテルサルフォン系、ポリフェニレンサルファイド系、ポリアクリレート系、ポリイミド系、ポリエーテルケトン系、液晶ポリマー系、フッ素樹脂系、ポリマーアロイ系、熱可塑性エラストマー系、熱可塑ポリウレタン系などが挙げられる。また、上記樹脂に熱安定剤、酸化防止剤、紫外線吸収剤、界面活性剤、マイクロバルーン、金属粉、無機物粉、木片粉などの添加剤を加えた熱可塑性樹脂やそれらのブレンド系樹脂を用いても良い。
【0014】
これらの押出材料は、通常、押出機で可塑化、溶融樹脂になり、混練均一化され、各樹脂の融点以上から融点より100℃程度高い温度で、異物ろ過装置やポリマーパイプと呼ばれる配管を通り、押出ダイへと導かれ、押出ダイで樹脂フィルム、シート、発泡体、異形押出品などに成形される。本発明の好適なせん断速度の適用は、押出機より下流の異物ろ過装置、ポリマーパイプにも適用可能であるが、異物ろ過装置の下流で、均一な押出成形品を得るためにせん断速度が比較的高くなり、溶融樹脂の流路壁面表面積が比較的多くカーボンが生成しやすい押出ダイで非常に効果を発揮する。
【0015】
本発明で使用されるダイとは、押出成形品の仕様によってダイ形態が変わるが、あらゆる種類の押出ダイを使用できる。例えば、樹脂押出成形用の円筒ダイであるスパイダーダイ、スパイラルダイ、クロスヘッドダイなどや平面ダイであるT−ダイ、コートハンガーダイ、フィッシュテールダイなどや異形押出用ダイなどが挙げられる。そして、それらのダイの単層ダイまたは多層ダイを使用することもできる。
【0016】
押出成形用ダイの溶融樹脂が流れる流路壁面表面上のせん断速度の制御方法には、上記の押出ダイの溶融樹脂の流路断面積を溶融樹脂の流量に対して大きくすることである。押出量を下げるなどの簡単な方法もあるが、それでは、生産効率を下げる事となり、工業上好ましくない。押出成形用ダイにおいては、ほとんどの場合、平面またはスリット状断面流路や円筒状断面流路でせん断速度が大きくなりがちで、この部位で熱劣化異物が流路壁面表面上に生成され、剥離された跡が観察されることが多い。平面またはスリット状断面流路、円筒状断面流路でせん断速度を適正な値まで下げるには、それらの流路厚みを大きくしたりすることで制御が可能である。そして、円筒ダイでは円筒状断面流路を構成する径を大きくしたり、平面ダイでは平面またはスリット状断面流路の幅を大きくしたりすることでも、せん断速度の制御が可能である。
【0017】
しかし、押出成形用ダイでは、フィルム、シート、発泡体、異形押出品などで一定の厚薄斑精度を維持するために、適宜、スリット流路厚みを小さくしたりすることがあるが、スリット流路厚みを小さくすると溶融樹脂にかかるせん断応力やせん断速度が大きくなり、溶融樹脂の自己発熱が大きくなり、熱劣化異物生成量が増えてしまうので、スリット流路厚みを小さくせず、スリット流路を長くしたり、スリット流路より上流の流路を工夫して、必要な樹脂フィルム、シート、発泡体、異形押出品などの厚薄斑精度を維持することが好ましい。
【0018】
また、溶融樹脂が流れる押出成形用ダイ内の流路壁面表面材質には、通常、金属やセラミック系材などが使用されるが、溶融樹脂と密着性が悪い材質を選択する事で溶融樹脂が流れる流路壁面表面上のせん断速度の制御をしやすくなる。つまり、溶融樹脂との密着性の小さな流路壁面表面材質を選択する事により流路壁面表面材と溶融樹脂の間で滑りが発生し、結果的に溶融樹脂の流路壁面表面上のせん断速度を下げて、適正な値にすることができる。それらの流路壁面表面材質は、表面処理材であれば、クロム系、セラミック系、ニッケル系、ニッケル系ブレンド系、電解研磨処理系、ニッケル−テフロン(登録商標)ブレンド系、不動態処理系、窒化処理系などが挙げられ、樹脂流路構成母材であれば、銅系、アルミ系、チタン系、タングステン系、ニッケル系、ステンレス系、セラミック系、クロム系、モリブデン系やそれらのブレンド系の材質が挙げられる。
【0019】
ただし、溶融樹脂の流路壁面表面上のせん断速度を下げることができても、流路壁面表面材と溶融樹脂の間の滑りによる摩擦発熱が大きくなれば、その部分で樹脂または添加剤の熱劣化異物を生成してしまうので、摩擦発熱の少ない材質を適宜選択することが好ましい。同様に、流路構成部材の表面仕上げ粗度を小さくする事により、溶融樹脂の流路壁面表面上のせん断速度を下げて、適正な値にすることができる。その表面仕上げ粗度の値は0.3μm以下が好ましい。そのためには、バフ研磨、ラップ仕上げ、電解研磨などの表面処理を行うのが好ましい。なお、その他で溶融樹脂の流路壁面表面上のせん断速度を適正値に低減するには、テフロン(登録商標)系に代表される金属に密着性が悪い材料などを被押出材料に混合することにより、樹脂流路壁面表面上で溶融樹脂と溶融樹脂の流路を構成する材料の間で滑りが発生し、上記の最適な流路壁面表面材質を使用することと同様の効果を得ることが可能となる。
【0020】
樹脂流路壁面表面上のせん断速度の算定方法には、樹脂流路壁面表面上を樹脂が滑らない条件と滑る条件の2通りある。
樹脂流路壁面表面上を樹脂が滑らない条件の場合、樹脂流路壁面表面上のせん断速度の計算方式は、たとえば、円管状断面流路と平面状断面流路は図2に記述するような計算方式が好ましく、また、その他の断面形状流路の壁面表面上のせん断速度は有限要素法や差分法などの数値解析手法を用いて詳細に精度良く流動計算するのが好ましい。
【0021】
押出流路壁面表面構成材料に対して、流路壁面表面上で溶融樹脂が滑る場合、樹脂流路壁面表面上のせん断速度の計算方式は、被押出材料と流路壁面表面材質の滑り特性を予備試験で測定し、たとえば、円管状断面流路と平面状断面流路は図3に記述するような計算方式が好ましく、また、その他の断面形状流路の壁面表面上のせん断速度は有限要素法や差分法などの数値解析手法を用いて詳細に精度良く流動計算するのが好ましい。
【0022】
【実施例】
[実施例]
溶融樹脂の出口直径がφ200mm、円筒形状の流路のスリット部で、押出量500kg/hr、溶融樹脂の粘度のべき乗則近似係数n=0.6、樹脂の溶融密度=760kg/m3、流路厚み寸法が4.8mm、流路壁面表面材質をハードクロムメッキとし、溶融樹脂流路壁面全表面積(616,885mm2)の97%にあたる流路壁面表面積(598,378mm2)において、壁面表面上のせん断速度が92.6sec-1と壁面表面上のせん断速度が100sec-1以下となる流路形状を有した多層樹脂押出成形用スパイラルダイを使用し、添加剤入りのポリエチレン系溶融樹脂を押出量500kg/hr、設定温度200℃で、溶融押出し、樹脂フィルムの製造をおこなった。この押出成形用ダイを用いて、フィルムを製造することで約12ヶ月連続製造運転する事が可能となり、生産性が非常に向上した。また、樹脂フィルム、シートへの熱劣化異物の混入も皆無になり、出荷検査での樹脂フィルム、シートの熱劣化異物の混入による廃棄処分量も皆無になった。
【0023】
[比較例]
溶融樹脂の流路壁面表面上のせん断速度以外の条件が、上記実施例と同一条件で、溶融樹脂が通過する流路において、流路厚みを狭め、溶融樹脂の流速を上げて、溶融樹脂の押出ダイ内での滞留時間を低減させ、直径がφ200mm円筒形状の流路のスリット部で、押出量500kg/hr、溶融樹脂の粘度のべき乗則近似係数n=0.6、樹脂の溶融密度=760kg/m3、流路厚み寸法が4.4mm、流路壁面表面材質をハードクロムメッキとし、流路壁面表面積が全体の流路壁面表面積の50%にあたる部分で壁面表面上のせん断速度が110.1sec-1と流路壁面上の樹脂にかかるせん断速度が110sec-1以上である流路形状を有したスパイラルダイを用いて樹脂を押出した。すると、この押出成形用ダイを約1.5ヶ月以上使用した時点で、急に多量の熱劣化異物が樹脂フィルムに混入し、出荷検査での樹脂フィルムの廃棄処分量が極端に上昇し、生産における樹脂フィルムの収率を非常に低下させた。また、この押出成形用ダイは樹脂フィルムに熱劣化異物の流出混入を防止するために、連続使用1ヶ月未満で分解掃除する必要があることが分かり、生産性を著しく阻害した。
【0024】
【発明の効果】
押出成形用ダイ内での溶融樹脂の熱劣化異物生成の抑制により、樹脂フィルム、シート、発泡体、異形押出品などへの熱劣化異物の混入を防止することができる。
【図面の簡単な説明】
【図1】スパイラルダイの熱劣化異物付着状況の一例を示す模式図。
【図2】樹脂流路壁面表面上のせん断速度の算出方法の一例を示す模式図。
【図3】樹脂流路壁面表面上のせん断速度の算出方法の他の一例を示す模式図。
【図4】溶融樹脂のべき乗則近似を利用した場合の粘度係数算出の例を示すグラフ。
【符号の説明】
11 :スパイラルダイの内側ダイリング
12 : スパイラルダイの外側ダイリング
13 :押出成形用ダイへの樹脂流路入口
14 :押出成形用ダイの樹脂流路出口
15 :熱劣化異物が付いてない場所17より上流の熱劣化異物生成付着場所
16 :熱劣化異物が付いてない場所18より上流の熱劣化異物生成付着場所
17 :熱劣化異物が付いてない場所
18 :熱劣化異物が付いてない場所
19 :熱劣化異物生成付着場所
21 :流路壁面表面
31 :流路壁面表面
γdot#wall :樹脂流路のさまざまな位置での押出成形用ダイの流路壁面表面上の溶融樹脂、添加剤にかかるせん断速度[sec-1]
dot :樹脂流路のさまざまな位置での押出流量[m3/sec]
H :樹脂流路のさまざまな位置でのスリット流路の厚み[m]
W :樹脂流路のさまざまな位置でのMdot流れる主流方向の直角方向の平面断面流路の幅または円筒管断面流路であれば周長[m]
R :円管断面流路の半径[m]
wall :溶融樹脂、添加剤が押出成形用ダイの流路壁面表面上で滑る速度[m/s]
n :溶融樹脂の、添加剤がある場合はそれも含めての粘度の、たとえば、べき乗則近似による粘度に関する係数
γdot0 :押出成形用ダイ内のせん断速度と樹脂粘度を、たとえば、べき乗則近似を使用した場合に近似的に表現できるせん断速度の下限[sec-1]
γdot1 :押出成形用ダイ内のせん断速度と樹脂粘度を、たとえば、べき乗則近似を使用した場合に近似的に表現できるせん断速度の上限[sec-1]
μ0 :せん断速度γdot0の時の溶融樹脂粘度[Pa・sec]
μ1 :せん断速度γdot1の時の溶融樹脂粘度[Pa・sec]
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preventing the generation of thermally deteriorated products in the production of extruded products such as resin films, sheets, foams, and profile extrusions.
[0002]
[Prior art]
In general, in the molding of extruded products such as resin films, sheets, foams, and profile extrusions, heat is applied to solid resin raw materials and additives to make the resin flow deformed, and the resin is extruded from an extrusion die. As a result, it is formed into a film, a sheet, a foam, a profile extrusion product, or the like. At that time, in order to prevent the heat-deteriorated foreign matter produced by heat-deteriorating the resin and additives from entering the molded film, sheet, foam, profile extrusion product, etc., which is the product, A foreign matter filtering device is provided upstream of the extrusion die. However, heat-deteriorated foreign matter may also occur in an extrusion die downstream of the foreign matter filtering device. In that case, the foreign matter filtering device does not remove the molded film, sheet, foam, or profile extrusion. It will be mixed inside. Conventionally, as a countermeasure against contamination of heat-deteriorated foreign matter generated in such an extrusion die, the production amount per hour has been reduced, or the frequency of disassembly and cleaning of the extrusion die has been significantly increased. , Manufacturing methods that significantly impede production efficiency.
[0003]
Conventionally, it has been considered that the heat-deteriorated foreign matter in the extrusion die is generated due to a long residence time of the molten resin in the extrusion die as disclosed in JP-A-9-155949. . For this reason, the flow path shape of the extrusion die is narrowed, the flow wall surface has no corners so that no molten resin stays, or the metal surface of the molten resin flow wall surface of the extrusion die. Residue of molten resin on the surface of the extrusion die channel wall surface by using a surface treatment material with low adhesion or adhesion to the molten resin as the treatment material, or shortening the flow passage in the extrusion die The generation of heat-deteriorated foreign matter has been suppressed by reducing the time.
However, the current situation is that heat-deteriorated foreign matter generation in an extrusion die cannot be suppressed only by preventing heat deterioration by reducing the residence time of the molten resin, which is a conventional technique.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-155949
[Problems to be solved by the invention]
The present invention suppresses the generation of foreign matter due to thermal degradation of the molten resin in the extrusion molding die, so that they are mixed into the extrusion molded product such as a resin film, sheet, foam, and profile extrusion product. It aims to provide a method to prevent.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor has made the present invention. That is, the present invention is as follows.
(1) When extruding the resin, the shear rate on the flow path wall surface of the molten resin flowing in the extrusion die is 40 sec −1 at 60% or more of the total flow path wall surface area of the extrusion die. and ~10sec -1, and thermal degradation products formation preventing method which is characterized in that a 40 sec -1 or less on the entire flow path wall surface.
(2) the shear rate on the flow path wall surface of the molten resin, 80% or more odor of the total flow path wall surface of the extrusion within-die and 40 sec -1 ~10sec -1, and total flow wall surface The method for preventing thermal degradation product generation according to (1), wherein the thermal degradation product is 40 sec −1 or less .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The most different point of the present invention from the prior art is that the conventional technique suppresses the generation of thermally deteriorated foreign matter in the resin extrusion die by reducing the residence time of the molten resin. In the invention, regardless of the residence time, the generation of heat-deteriorated foreign matter can be suppressed by controlling the shear rate of the molten resin on the channel wall surface inside the die.
[0008]
As a result of studying the relationship between the residence time of the molten resin in the extrusion die and the generation of heat-deteriorated foreign matter, the inventor found that the heat-degraded foreign matter was generated even at a position where the residence time was short in the extrusion die. We found a state where there is no heat-deteriorated foreign matter with a part where the residence time is clearly long. FIG. 1 shows an example of the generation and adhesion of the thermally deteriorated foreign matter, taking a spiral die as an example. In the figure, heat-deteriorated foreign matter like 15 and 16 was generated on the outer surface of the 11 inner die ring. Further, heat-deteriorated foreign matter was also generated on the surface on the opposite side of the inner surface of the outer die ring 12 on the opposite side of the resin flow path 15 and 16. However, no heat-deteriorated foreign matter is generated in the portion 17 where the residence time is clearly longer than 15 and 16 in FIG.
[0009]
Furthermore, heat-deteriorated foreign matter is generated under the condition that the flow path of the molten resin is narrow, the speed passing through the flow path is higher than a certain level, a large shear stress is applied to the molten resin, and the molten resin causes a large amount of self-heating. I discovered that. In any part of the flow path in the extrusion die, there is a distribution in the shear stress applied to the molten resin in the cross-sectional direction of the flow path. Resins, additives, and the like generate a large amount of self-heating, and a large amount of thermally deteriorated foreign matter such as carbon is generated. Then, heat-deteriorated foreign matter adheres and solidifies on the wall surface of the extrusion molding die flow path of the molten resin flow path, and the heat-degraded foreign matter such as carbon grows in a layered manner, thereby reducing the thickness of the extrusion die flow path. As a result, the passage speed of the molten resin increases, and the shear stress applied to the molten resin and additives increases on the surface of the die flow path wall for extrusion molding, and self-heating of the molten resin and additives increases. In addition, the rate of generation of heat-degraded foreign matter such as carbon is promoted.
[0010]
Then, when the shear stress of the molten resin increased by narrowing the flow path through which the molten resin passes due to the heat-degraded foreign material lamination exceeds the adhesive force between the generated heat-degraded foreign material and the extrusion die channel wall surface, The heat-deteriorated foreign matter that has been laminated is peeled off, flows out from the extrusion die outlet, and is mixed into the product resin film, sheet, foam, profile extrusion product, and the like.
In resin extrusion molding, molding is performed under a temperature condition that is higher than the melting point of each resin and about 100 ° C. higher than the melting point so that the resin can flow, but self-heating of the resin and additives locally in the extrusion die. If this happens, the heat-degraded foreign matter is locally generated due to the property that the heat conduction of the molten resin is very poor. In addition, the molding temperature is often lowered to prevent thermal degradation. However, when the temperature of the molten resin decreases, the viscosity of the molten resin increases and the local shear heating value increases, and the heat conduction of the molten resin increases. On the other hand, the generation of heat-deteriorated foreign matter is increased due to the property of being very bad.
[0011]
In order to prevent the generation of heat-degraded foreign matter due to self-heating of the resin and additives in the extrusion die, it is desirable not to apply a large shear stress and shear rate to the resin. Resin films, sheets, foams, profile extrusions For example, the extrusion die should be designed, manufactured and used at a shear rate of 100 sec -1 or less on the surface of the extrusion die channel wall. Preferably, 70 sec -1 or less, more preferably 40 sec -1 or less. However, if the shear rate is too low, there will be a problem of heat-degraded foreign matter due to local stagnation on the wall surface of the flow path inside the die for extrusion molding. 10 sec −1 or more is preferable on the road wall surface.
[0012]
In addition, the amount of heat-degraded foreign matter generated and the amount mixed into the molded product increases the ratio of the channel wall surface area with the above optimum shear rate to the total channel wall surface area in the extrusion die. By doing so, it is possible to reduce. The ratio of the channel wall surface area having the optimum shear rate to the total channel wall surface area in the extrusion die is preferably 60% or more, more preferably 80% or more, and gradually approaches 100%. Is most preferred. In the present invention, the flow path wall surface means a cross section of the flow path through which the molten resin constituting the extrusion die flows or a cross section perpendicular to the streamline is a circular cross section flow path, a substantially circular cross section flow path, a semicircular cross section. It refers to all parts of the flow path, such as a flow path, a plane or slit cross section flow path, a cylindrical cross section flow path, a rectangular cross section flow path, a substantially rectangular cross section flow path, and a slit cross section flow path.
[0013]
Extruded materials used in the present invention are thermoplastic resins and blended resins thereof, for example, polyethylene, polypropylene, polystyrene, vinyl chloride, vinylidene chloride, methacryl, polyethylene terephthalate, Ethylene vinyl alcohol, ionomer, styrene acrylate, styrene butadiene, styrene acrylonitrile, acrylate butadiene styrene, polyamide, polyacetal, polycarbonate, polyphenylene ether, polybutylene ether, polysulfone, polyether sulfone , Polyphenylene sulfide, polyacrylate, polyimide, polyether ketone, liquid crystal polymer, fluororesin, polymer alloy, thermoplastic elastomer System, a thermoplastic polyurethane, and the like. In addition, thermoplastic resins and blended resins obtained by adding additives such as heat stabilizers, antioxidants, UV absorbers, surfactants, microballoons, metal powders, inorganic powders, and wood chip powders to the above resins are used. May be.
[0014]
These extrusion materials are usually plasticized and melted by an extruder, kneaded and homogenized, and passed through a pipe called a foreign matter filtering device or a polymer pipe at a temperature higher than the melting point of each resin and about 100 ° C. higher than the melting point. Then, it is led to an extrusion die and formed into a resin film, a sheet, a foam, a profile extrusion product, and the like by the extrusion die. The application of the preferred shear rate of the present invention is also applicable to foreign matter filtration devices and polymer pipes downstream from the extruder, but the shear rates are compared in order to obtain a uniform extruded product downstream of the foreign matter filtration device. The extrusion die has a relatively large flow channel wall surface area of the molten resin and is easy to generate carbon, and is very effective.
[0015]
The die used in the present invention varies in die form depending on the specifications of the extruded product, but any type of extrusion die can be used. For example, spider dies, spiral dies, crosshead dies, etc., which are cylindrical dies for resin extrusion molding, T-dies, coat hanger dies, fish tail dies, etc., which are flat dies, and profile extrusion dies. A single layer die or a multilayer die of those dies can also be used.
[0016]
A method for controlling the shear rate on the flow path wall surface through which the molten resin of the extrusion die flows is to increase the flow passage cross-sectional area of the molten resin of the extrusion die with respect to the flow rate of the molten resin. There is a simple method such as reducing the amount of extrusion, but this would reduce the production efficiency, which is not industrially preferable. In most extrusion dies, the shear rate tends to be large in a flat or slit-like flow path or cylindrical cross-section flow path, and heat-deteriorated foreign matter is generated on the flow path wall surface at this site and peeled off. In many cases, the traces made are observed. In order to reduce the shear rate to an appropriate value in a plane, slit-like cross-section flow path, or cylindrical cross-section flow path, control can be performed by increasing the thickness of the flow paths. The shear rate can also be controlled by increasing the diameter of the cylindrical cross-sectional flow path in the cylindrical die or by increasing the width of the flat or slit-shaped cross-sectional flow path in the planar die.
[0017]
However, in an extrusion die, the thickness of the slit channel may be reduced as appropriate in order to maintain a certain thickness accuracy in films, sheets, foams, profile extrusions, etc. Decreasing the thickness increases the shear stress and shear rate applied to the molten resin, increases the self-heating of the molten resin, and increases the amount of heat-deteriorated foreign matter generated. It is preferable to lengthen or devise a channel upstream from the slit channel to maintain the thickness accuracy of necessary resin films, sheets, foams, profile extrusions, and the like.
[0018]
In addition, the material of the channel wall surface in the extrusion die through which the molten resin flows is usually a metal or ceramic material, but the molten resin can be selected by selecting a material with poor adhesion to the molten resin. It becomes easy to control the shear rate on the flow channel wall surface. In other words, by selecting a channel wall surface material with low adhesion to the molten resin, slippage occurs between the channel wall surface material and the molten resin, resulting in a shear rate of the molten resin on the channel wall surface. Can be lowered to an appropriate value. If the flow path wall surface material is a surface treatment material, it is chromium, ceramic, nickel, nickel blend, electropolishing, nickel-Teflon (registered trademark), passive treatment, For example, nitriding treatment base materials are used as the base material of the resin flow path. Copper, aluminum, titanium, tungsten, nickel, stainless, ceramic, chromium, molybdenum, and their blends The material is mentioned.
[0019]
However, even if the shear rate on the flow path wall surface of the molten resin can be reduced, if the frictional heat generation due to the slip between the flow path wall surface material and the molten resin increases, the heat of the resin or additive in that portion Since a deteriorated foreign matter is generated, it is preferable to appropriately select a material with little frictional heat generation. Similarly, by reducing the surface finish roughness of the flow path component, the shear rate of the molten resin on the flow path wall surface can be lowered to an appropriate value. The surface finish roughness value is preferably 0.3 μm or less. For this purpose, it is preferable to perform surface treatment such as buffing, lapping and electrolytic polishing. In addition, in order to reduce the shear rate on the flow channel wall surface of the molten resin to an appropriate value, a material having poor adhesion to a metal represented by Teflon (registered trademark) is mixed with the material to be extruded. As a result, slippage occurs between the molten resin and the material constituting the flow path of the molten resin on the resin flow path wall surface, and the same effect as using the above-mentioned optimal flow path wall surface material can be obtained. It becomes possible.
[0020]
There are two methods for calculating the shear rate on the resin flow path wall surface, the condition that the resin does not slide on the resin flow path wall surface and the condition of sliding.
In the condition that the resin does not slip on the resin channel wall surface, the shear rate calculation method on the resin channel wall surface is, for example, as shown in FIG. The calculation method is preferable, and the shear rate on the wall surface of the other cross-sectional channel is preferably calculated in detail and accurately using a numerical analysis method such as a finite element method or a difference method.
[0021]
When molten resin slides on the surface of the flow path wall surface against the material constituting the surface of the extruded flow path wall surface, the shear rate calculation method on the surface of the resin flow path wall surface is based on the slip characteristics of the extruded material and the flow path wall surface material. For example, the calculation method shown in FIG. 3 is preferable for the tubular cross-section flow channel and the planar cross-section flow channel, and the shear rate on the wall surface of the other cross-sectional flow channels is a finite element. It is preferable to perform flow calculation in detail and accurately using a numerical analysis method such as a method or a difference method.
[0022]
【Example】
[Example]
The exit diameter of the molten resin is 200 mm, and the extrusion rate is 500 kg / hr, the power law approximation coefficient of the viscosity of the molten resin is n = 0.6, the melt density of the resin is 760 kg / m 3 , the flow The surface of the wall surface is 4.8 mm, the wall surface is made of hard chrome plating, and the surface of the wall surface (598,378 mm 2 ) is 97% of the total surface area of the molten resin flow channel wall (616,885 mm 2 ). using the spiral die for multilayer resin extrusion shear rate shear rate on 92.6Sec -1 and the wall surface had a channel shape which is 100 sec -1 or less of the above polyethylene-based molten resin additive containing A resin film was produced by melt extrusion at an extrusion rate of 500 kg / hr and a set temperature of 200 ° C. Using this extrusion die, a film can be produced, which enables a continuous production operation for about 12 months, and the productivity is greatly improved. In addition, there was no contamination of the heat-degraded foreign matter into the resin film or sheet, and there was no disposal amount due to the contamination of the heat-degraded foreign matter of the resin film or sheet in the shipping inspection.
[0023]
[Comparative example]
The conditions other than the shear rate on the flow path wall surface of the molten resin are the same as in the above example, and in the flow path through which the molten resin passes, the flow path of the molten resin is reduced by reducing the flow path thickness. The residence time in the extrusion die is reduced, and the amount of extrusion is 500 kg / hr, the power law approximation coefficient of the viscosity of the molten resin is n = 0.6, and the melt density of the resin is at a slit portion of a cylindrical channel having a diameter of φ200 mm. 760kg / m 3 , channel thickness dimension is 4.4mm, channel wall surface material is hard chrome plating, the channel wall surface area is 50% of the total channel wall surface area and the shear rate on the wall surface is 110 The resin was extruded using a spiral die having a channel shape in which the shear rate applied to the resin on the channel wall surface was 1 sec −1 and 110 sec −1 or more. Then, when this extrusion die is used for about 1.5 months or more, a large amount of heat-degraded foreign matter suddenly enters the resin film, and the disposal amount of the resin film in the shipping inspection is extremely increased. The yield of the resin film was greatly reduced. Further, it was found that this extrusion die required to be disassembled and cleaned in less than one month of continuous use in order to prevent the heat-degraded foreign matter from flowing out into the resin film, which significantly hindered productivity.
[0024]
【The invention's effect】
By suppressing the generation of the heat-deteriorated foreign matter of the molten resin in the extrusion molding die, it is possible to prevent the heat-deteriorated foreign matter from being mixed into the resin film, sheet, foam, modified extrusion product and the like.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a state of adhesion of thermally deteriorated foreign matter on a spiral die.
FIG. 2 is a schematic view showing an example of a method for calculating a shear rate on the resin flow path wall surface.
FIG. 3 is a schematic diagram showing another example of a method for calculating the shear rate on the resin flow path wall surface.
FIG. 4 is a graph showing an example of viscosity coefficient calculation when using power law approximation of a molten resin.
[Explanation of symbols]
11: Spiral die inner die ring 12: Spiral die outer die ring 13: Resin flow channel inlet 14 to the extrusion molding die 14: Resin flow channel outlet 15 of the extrusion molding die 17: Location 17 where no thermally deteriorated foreign matter is attached Location 18 where heat degradation foreign matter is generated and attached upstream: Location 18 where heat degradation foreign matter is generated upstream of location 18 where no thermal degradation foreign matter is attached 17: Location 18 where no thermal degradation foreign matter is attached 18: Location 19 where no thermal degradation foreign matter is attached : Heat-deteriorated foreign matter generation and adhesion site 21: Channel wall surface 31: Channel wall surface γ dot # wall : For molten resin and additive on the channel wall surface of the extrusion die at various positions in the resin channel The shear rate [sec -1 ]
M dot : Extrusion flow rate at various positions in the resin flow path [m 3 / sec]
H: Thickness of slit channel at various positions of resin channel [m]
W: width of the plane cross-sectional flow path in the direction perpendicular to the main flow direction where M dots flow at various positions of the resin flow path, or circumferential length [m] if the cross-section flow path is cylindrical
R: Radius [m] of the circular cross section channel
V wall : speed at which molten resin and additive slide on the flow path wall surface of the extrusion die [m / s]
n: Coefficient of viscosity of molten resin including additives, if any, for example, viscosity coefficient by power law approximation γ dot0 : Shear rate and resin viscosity in extrusion die, for example, power law approximation Lower limit of shear rate [sec -1 ] that can be expressed approximately when using
γ dot1 : The upper limit of the shear rate [sec -1 ] that can approximately represent the shear rate and resin viscosity in the extrusion die when using, for example, the power law approximation
μ 0 : Melt resin viscosity [Pa · sec] at shear rate γ dot0
μ 1 : Melted resin viscosity [Pa · sec] at shear rate γ dot1

Claims (2)

樹脂を押出し成形する際に、押出成形用ダイ内を流れる溶融樹脂の流路壁面表面上のせん断速度を、押出成形用ダイの全流路壁面表面積の60%以上において40sec−1〜10sec−1 とし、かつ全流路壁面表面上において40sec −1 以下とすることを特徴とする熱劣化物生成防止方法。When extruding a resin, the shear rate on the flow path wall surface of the molten resin flowing through the extrusion molding in a die, 40 sec at 60% or more of the total flow path wall surface of the extrusion die -1 ~10sec - 1 and 40 sec −1 or less on the entire wall surface of the flow path . 溶融樹脂の流路壁面表面上のせん断速度を、押出成形用ダイ内の全流路壁面表面積の80%以上において40sec−1〜10sec−1 とし、かつ全流路壁面表面上において40sec −1 以下とする請求項1に記載の熱劣化物生成防止方法。 The shear rate on the flow path wall surface of the molten resin, 80% or more odor of the total flow path wall surface of the extrusion within-die and 40 sec -1 ~10sec -1, and 40sec on total flow wall surface - The method for preventing thermal degradation product generation according to claim 1, wherein the thermal degradation product generation method is 1 or less .
JP2003189259A 2003-07-01 2003-07-01 Method for preventing thermal degradation products Expired - Fee Related JP3856771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189259A JP3856771B2 (en) 2003-07-01 2003-07-01 Method for preventing thermal degradation products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189259A JP3856771B2 (en) 2003-07-01 2003-07-01 Method for preventing thermal degradation products

Publications (2)

Publication Number Publication Date
JP2005022195A JP2005022195A (en) 2005-01-27
JP3856771B2 true JP3856771B2 (en) 2006-12-13

Family

ID=34187523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189259A Expired - Fee Related JP3856771B2 (en) 2003-07-01 2003-07-01 Method for preventing thermal degradation products

Country Status (1)

Country Link
JP (1) JP3856771B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586980B2 (en) * 2005-05-31 2010-11-24 富士フイルム株式会社 Method for producing thermoplastic film
JP4826267B2 (en) * 2006-01-30 2011-11-30 東洋紡績株式会社 Plastic film roll and manufacturing method thereof
JP4826243B2 (en) * 2005-10-03 2011-11-30 東洋紡績株式会社 Manufacturing method of plastic film
JP4693595B2 (en) * 2005-10-31 2011-06-01 積水化学工業株式会社 Extrusion method
JP2013095784A (en) * 2011-10-28 2013-05-20 Sekisui Chem Co Ltd Method for producing composite resin molded body and composite resin molded body
JP2013237191A (en) * 2012-05-15 2013-11-28 Sekisui Chem Co Ltd Method of manufacturing vinyl chloride-based resin molded article using calcium zinc-based stabilizer
JP6788575B2 (en) * 2015-03-26 2020-11-25 テルモ株式会社 Medical molded products, extrusion molding methods for medical molded products, and extrusion molding equipment for medical molded products

Also Published As

Publication number Publication date
JP2005022195A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP3856771B2 (en) Method for preventing thermal degradation products
Shahriar et al. Influence of parameters controlling the extrusion step in fused filament fabrication (FFF) process applied to polymers using numerical simulation
JP2010131962A (en) Extruder and method for manufacturing extrusion-molded article
JP7215138B2 (en) Feedblock, method for producing multi-layer extrudates, and apparatus for producing multi-layer extrudates
WO2015108037A1 (en) Stretched film manufacturing method
JP5755953B2 (en) Roll for melt extrusion molding, roll assembly for melt extrusion molding, and melt extrusion molding method
JP6794171B2 (en) Manufacturing method for cylindrical extrusion dies and seamless tubes
JPS59114027A (en) Extrusion molding die
Vlachopoulos et al. Flat Film and Sheet Dies
TW200950957A (en) Sheet forming die and sheet forming method
US9868241B1 (en) Extrusion process for tubular member
JP6735135B2 (en) Screw type extruder
JP6191439B2 (en) Cooling apparatus and tubular body manufacturing apparatus
KR20160108445A (en) Method of manufacturing stretched film
JPH11170340A (en) Production of seamless tube
JP3560354B2 (en) Mold in extrusion molding machine
JP2008030258A (en) Method and apparatus for manufacturing laminated sheet
JP2006142516A (en) Extrusion molding device and extrusion molding method of resin
JP6874444B2 (en) Extrusion molding equipment and sheet manufacturing method
Shah Evaluation of surface defects using polymer processing additives/aids in a capillary rheometer and in flat film extrusion
WO2015108036A1 (en) Method for producing stretched film
JP3070823B2 (en) Method for producing thermoplastic resin film
JPH0467494B2 (en)
JP2004160876A (en) Manufacturing method for thermoplastic elastomer sheet
Cheng Screw and Die Designs for Hope Blown Film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent or registration of utility model

Ref document number: 3856771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees