JP6191439B2 - Cooling apparatus and tubular body manufacturing apparatus - Google Patents

Cooling apparatus and tubular body manufacturing apparatus Download PDF

Info

Publication number
JP6191439B2
JP6191439B2 JP2013261254A JP2013261254A JP6191439B2 JP 6191439 B2 JP6191439 B2 JP 6191439B2 JP 2013261254 A JP2013261254 A JP 2013261254A JP 2013261254 A JP2013261254 A JP 2013261254A JP 6191439 B2 JP6191439 B2 JP 6191439B2
Authority
JP
Japan
Prior art keywords
melt
peripheral surface
tubular body
cooling
cooling member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013261254A
Other languages
Japanese (ja)
Other versions
JP2015116735A (en
Inventor
茂 福田
茂 福田
大士 文男
文男 大士
健司 大森
健司 大森
溝口 聡
聡 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2013261254A priority Critical patent/JP6191439B2/en
Publication of JP2015116735A publication Critical patent/JP2015116735A/en
Application granted granted Critical
Publication of JP6191439B2 publication Critical patent/JP6191439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、冷却装置及び管状体の製造装置に関する。   The present invention relates to a cooling device and a tubular body manufacturing apparatus.

特許文献1には、環状押出ダイのマンドレルの外周面とリング部材の内周面との間に形成される環状ダイスリットから押し出される溶融状態の管状フィルムを、上記環状押出ダイのマンドレルに支持部材を介して同心円状に取り付けたサイジングマンドレルのサイジング部の外周面上を少なくとも内側より内部冷却水で冷却しながら通過させることにより、所定内径の管状フィルムを形成する管状フィルムの成形方法であって、上記サイジング部の外周面と上記管状フィルムの内側面との間隙に、水膜が形成されるように内部冷却水を管状フィルムの進行方向とは逆方向に流通させることによって上記管状フィルムの内側面を冷却することを特徴とする管状フィルムの成形方法が開示されている。   In Patent Document 1, a molten tubular film extruded from an annular die slit formed between an outer peripheral surface of a mandrel of an annular extrusion die and an inner peripheral surface of a ring member is supported on the mandrel of the annular extrusion die. A method for forming a tubular film that forms a tubular film having a predetermined inner diameter by passing the sizing portion of a sizing mandrel attached concentrically through an outer peripheral surface of the sizing mandrel while being cooled with internal cooling water from at least the inside. The inner surface of the tubular film is made to circulate internal cooling water in a direction opposite to the traveling direction of the tubular film so that a water film is formed in the gap between the outer peripheral surface of the sizing portion and the inner surface of the tubular film. A method for forming a tubular film characterized in that is cooled.

特許文献2には、押出機により可塑化され、円筒ダイよりチューブ状に押出された熱可塑性樹脂チューブを、この熱可塑性樹脂チューブの仕上げ内径に対応する外径を有するサイジングダイの外周面に沿わせて誘導し、冷却しながら前記仕上げ内径に成形して引き取り輪切りする熱可塑性樹脂チューブの製造方法であって、前記サイジングダイの上部外周より、前記サイジングダイの外周面と前記熱可塑性樹脂チューブの内周面との間に冷却水を流下することを特徴とする熱可塑性樹脂チューブの製造方法が開示されている。   In Patent Document 2, a thermoplastic resin tube plasticized by an extruder and extruded into a tube shape from a cylindrical die is placed along the outer peripheral surface of a sizing die having an outer diameter corresponding to the finished inner diameter of the thermoplastic resin tube. A method of manufacturing a thermoplastic resin tube that is formed into the finished inner diameter while being cooled and cooled, and is cut off from the upper outer periphery of the sizing die, and the outer peripheral surface of the sizing die and the thermoplastic resin tube. A manufacturing method of a thermoplastic resin tube is disclosed, in which cooling water is allowed to flow between the inner peripheral surface and the inner peripheral surface.

特許文献3には、所定径のサイジング部を備え、前記サイジング部を環状押出ダイから押し出される溶融状態のパリソンが内部冷却水で冷却されながら通過することにより所定内径のフィルムが形成されるようになっているサイジングマンドレルであって、前記サイジングマンドレルの少なくともサイジング部を構成している材質の冷却水との接触角は、フィルムの冷却水との接触角よりも小さいことを特徴とする、管状フィルム成形用サイジングマンドレルが開示されている。   Patent Document 3 includes a sizing portion having a predetermined diameter, and a film having a predetermined inner diameter is formed by passing a molten parison extruded from an annular extrusion die while being cooled by internal cooling water. A tubular film characterized in that the contact angle with the cooling water of the material constituting at least the sizing part of the sizing mandrel is smaller than the contact angle with the cooling water of the film. A sizing mandrel for molding is disclosed.

特開2000−033641号公報JP 2000-033641 A 特開2002−200665号公報JP 2002-200665 A 特開平11−179790号公報JP 11-179790 A

本発明の目的は、形状精度の優れた管状体が得られる冷却装置を提供することにある。   An object of the present invention is to provide a cooling device capable of obtaining a tubular body having excellent shape accuracy.

上記課題は、以下の本発明により達成される。
すなわち請求項1に係る発明は、
外周面の少なくとも一部に多孔を有し、押出装置に設けられた口金から押し出される溶融した熱可塑性樹脂を含む管状の溶融体を前記溶融体の内周面側から冷却する冷却部材と、
気体である加圧媒体を前記多孔から前記溶融体の内周面に向かって噴出させる機構と、
前記加圧媒体とは異なる媒体である冷媒を前記冷却部材に供給して、前記冷却部材を冷却する機構と、
を備えた冷却装置である。
The above-mentioned subject is achieved by the following present invention.
That is, the invention according to claim 1
A cooling member that has a porosity in at least a part of the outer peripheral surface, and cools a tubular melt containing a molten thermoplastic resin extruded from a die provided in an extrusion device from the inner peripheral surface side of the melt;
A mechanism for ejecting a pressurized medium that is a gas from the porous toward the inner peripheral surface of the melt;
A mechanism for supplying a coolant, which is a medium different from the pressurized medium, to the cooling member, and cooling the cooling member;
Is a cooling device.

請求項2に係る発明は、
前記冷媒は液体である請求項1に記載の冷却装置である。
請求項3に係る発明は、
前記冷却部材は、前記溶融体の押出方向における最も上流側に位置し外周面に前記多孔を有さない第一の領域と、前記第一の領域よりも前記溶融体の押出方向の下流側に位置し外周面に前記多孔を有する第二の領域と、を含む、請求項1又は請求項2に記載の冷却装置である。
The invention according to claim 2
The cooling device according to claim 1, wherein the refrigerant is a liquid.
The invention according to claim 3
The cooling member is located on the most upstream side in the extrusion direction of the melt and has a first region that does not have the porosity on the outer peripheral surface, and on the downstream side in the extrusion direction of the melt from the first region. The cooling device according to claim 1, further comprising: a second region that is located and has the porosity on an outer peripheral surface thereof.

請求項4に係る発明は、
前記加圧媒体の温度は、前記冷媒の温度よりも低い、請求項1〜請求項3のいずれか1項に記載の冷却装置である。
The invention according to claim 4
The temperature of the said pressurization medium is a cooling device of any one of Claims 1-3 which is lower than the temperature of the said refrigerant | coolant .

請求項5に係る発明は、
溶融した熱可塑性樹脂を含む溶融体を口金から管状に押し出す押出装置と、
前記口金から管状に押し出された前記溶融体を、前記溶融体の内周面側から冷却して管状体とする、請求項1〜請求項4のいずれか1項に記載の冷却装置と、
前記管状体を前記溶融体の押し出し方向に引き出す引き出し装置と、
を有する管状体の製造装置である。
The invention according to claim 5
An extrusion apparatus for extruding a melt containing a molten thermoplastic resin into a tubular shape from a die;
The cooling device according to any one of claims 1 to 4 , wherein the melt extruded in a tubular shape from the base is cooled from the inner peripheral surface side of the melt to form a tubular body.
A drawing device for pulling out the tubular body in the extrusion direction of the melt;
The manufacturing apparatus of the tubular body which has this.

請求項1に係る発明によれば、気体である加圧媒体を噴出させる前記機構を有さない場合に比べて、形状精度の優れた管状体が得られる。 According to the first aspect of the present invention, a tubular body with excellent shape accuracy can be obtained as compared with the case where the mechanism for ejecting a pressurized medium that is a gas is not provided.

請求項3に係る発明によれば、前記第一の領域が前記多孔を有する場合に比べて、うねりが抑制された管状体が得られる。 According to the invention which concerns on Claim 3 , the tubular body by which the wave | undulation was suppressed compared with the case where said 1st area | region has the said porosity is obtained.

請求項4に係る発明によれば、前記加圧媒体の温度が前記冷媒の温度と同じ場合又は前記冷媒の温度よりも高い場合に比べて、電気抵抗値のバラツキが少ない管状体が得られる。 According to the invention of claim 4, wherein as compared with the case where the temperature of the pressurizing medium is higher than the temperature of the same case or the coolant temperature of the coolant, less variation tubular body of the electric resistance value can be obtained.

請求項5に係る発明によれば、冷却装置が気体である加圧媒体を噴出させる前記機構を有さない場合に比べて、形状精度の優れた管状体が得られる。 According to the invention which concerns on Claim 5 , compared with the case where the cooling device does not have the said mechanism which ejects the pressurized medium which is gas , the tubular body excellent in the shape precision is obtained.

本実施形態に係る管状体の製造装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the manufacturing apparatus of the tubular body which concerns on this embodiment. 図1の管状体の製造装置における冷却装置周辺を拡大した概略断面図である。It is the schematic sectional drawing which expanded the cooling device periphery in the manufacturing apparatus of the tubular body of FIG. 本実施形態に係る管状体の製造装置の他の一例における冷却装置周辺を拡大した概略断面図である。It is the schematic sectional drawing which expanded the cooling device periphery in another example of the manufacturing apparatus of the tubular body which concerns on this embodiment. 本実施形態に係る管状体の製造装置の他の一例における冷却装置周辺を拡大した概略断面図である。It is the schematic sectional drawing which expanded the cooling device periphery in another example of the manufacturing apparatus of the tubular body which concerns on this embodiment.

以下、本発明の一例である実施形態について図面を参照しつつ詳細に説明する。   Hereinafter, an embodiment which is an example of the present invention will be described in detail with reference to the drawings.

[第1実施形態]
<管状体の製造装置>
まず、本実施形態に係る冷却装置を用いた管状体の製造装置の一例として、第1実施形態の管状体製造装置について説明する。
図1は、本実施形態に係る管状体製造装置100の構成を概略的に示す断面図であり、図2は、図1に示した管状体製造装置100における冷却装置(冷却部)周辺の構成を拡大して概略的に示す断面図である。なお、以下に参照する図面は、本実施形態を説明するために使用するものであり、実際の大きさの比を現すものではない。
[First Embodiment]
<Tube manufacturing apparatus>
First, the tubular body manufacturing apparatus according to the first embodiment will be described as an example of a tubular body manufacturing apparatus using the cooling device according to the present embodiment.
FIG. 1 is a cross-sectional view schematically showing a configuration of a tubular body manufacturing apparatus 100 according to the present embodiment. FIG. 2 is a configuration around a cooling device (cooling unit) in the tubular body manufacturing apparatus 100 shown in FIG. It is sectional drawing which expands and shows roughly. Note that the drawings referred to below are used for explaining the present embodiment, and do not show the actual size ratio.

図1に示すように、管状体製造装置100は、溶融(溶解)した熱可塑性樹脂を含む溶融体Fを口金20(環状ダイ)から管状に下方へ押し出す押出装置110と、口金20から管状に押し出された溶融体Fを溶融体Fの内周面側から冷却する冷却装置30と、冷却装置30を支持する支持部材70と、冷却装置30によって溶融体Fが冷却されて得られた管状体Tを溶融体Fの押し出し方向に引き出す引き出し機50(引き出し装置)と、を備えている。   As shown in FIG. 1, the tubular body manufacturing apparatus 100 includes an extrusion apparatus 110 that extrudes a molten body F containing a molten (dissolved) thermoplastic resin downward from a base 20 (annular die), and a tubular form from the base 20. A cooling device 30 that cools the extruded melt F from the inner peripheral surface side of the melt F, a support member 70 that supports the cooling device 30, and a tubular body obtained by cooling the melt F by the cooling device 30 And a drawing machine 50 (drawing device) for drawing T in the extrusion direction of the melt F.

(押出装置)
押出装置110は、図1に示されるように、熱可塑性樹脂を含む樹脂材料Pを溶融状態にして溶融体Fとする一軸押出機10と、一軸押出機10の先端部に取り付けられた口金20と、を備えている。
(Extruder)
As shown in FIG. 1, the extrusion apparatus 110 includes a uniaxial extruder 10 in which a resin material P containing a thermoplastic resin is melted to form a melt F, and a die 20 attached to the tip of the uniaxial extruder 10. And.

一軸押出機10は、図示しないヒータを有し樹脂材料Pを加熱する加熱筒12と、加熱筒12に設けられ樹脂材料Pが投入される投入口11と、加熱筒12の内部に設けられ樹脂材料Pが溶融した溶融体Fを口金20へ搬送する搬送部材としてのスクリュー13と、を備えている。   The uniaxial extruder 10 includes a heating cylinder 12 having a heater (not shown) for heating the resin material P, a charging port 11 provided in the heating cylinder 12 and charged with the resin material P, and a resin provided in the heating cylinder 12. And a screw 13 as a conveying member that conveys the melt F in which the material P is melted to the base 20.

一軸押出機10では、投入口11から加熱筒12の内部に投入された樹脂材料Pが、加熱筒12のヒータにより、樹脂材料Pの融解温度以上の温度(通常、150〜450℃)で加熱かつスクリュー回転による発熱で溶融しつつ、スクリュー13によって口金20へ搬送(供給)されるようになっている。なお、一軸押出機10では、粒状に形成された樹脂材料P(ペレット)が、投入口11に投入されるようになっている。   In the single screw extruder 10, the resin material P charged into the heating cylinder 12 through the charging port 11 is heated by the heater of the heating cylinder 12 at a temperature equal to or higher than the melting temperature of the resin material P (usually 150 to 450 ° C.). The screw 13 is conveyed (supplied) to the base 20 while being melted by the heat generated by the screw rotation. In the single screw extruder 10, the resin material P (pellet) formed in a granular shape is fed into the charging port 11.

図1に示されるように、口金20には、一軸押出機10の加熱筒12の内部と通じ加熱筒12から流入した溶融状態の溶融体Fが通過する流路22と、流路22を通過した溶融状態の溶融体Fを管状に押し出すための環状(円形状)の出口孔23と、が形成されている。   As shown in FIG. 1, the die 20 passes through the flow path 22 through which the molten F flowing in from the heating cylinder 12 passes through the inside of the heating cylinder 12 of the single screw extruder 10 and the flow path 22. An annular (circular) outlet hole 23 is formed for extruding the molten F in a molten state into a tubular shape.

口金20では、溶融状態の溶融体Fが、加熱筒12の先端部から流路22へ流入して流路22を通過し、一軸押出機10のスクリュー13の回転による推進力(搬送力)によって、出口孔23から管状に押し出されるようになっている。   In the base 20, the melt F in a molten state flows into the flow path 22 from the tip of the heating cylinder 12 and passes through the flow path 22, and is driven by the propulsive force (conveyance force) due to the rotation of the screw 13 of the single screw extruder 10. The tube is extruded from the outlet hole 23 into a tubular shape.

(支持部材)
支持部材70は、図1に示されるように、円柱状に形成されており、口金20に環状に形成された出口孔23の径方向中央部(中心)で口金20を貫通し、口金20の上方及び下方に突出するように支持されている。
(Support member)
As shown in FIG. 1, the support member 70 is formed in a columnar shape, penetrates the base 20 at the radial center (center) of the outlet hole 23 formed in an annular shape in the base 20, and It is supported so as to protrude upward and downward.

(冷却装置)
冷却装置30は、図2に示されるように、溶融体Fの内周面側から溶融体Fを冷却する冷却部材32と、冷却部材32の外周面34の多孔から溶融体Fの内周面に向かって噴出させる気体又は液体である加圧媒体を、冷却部材32の内部に設けられた空洞37に供給する供給管48と、冷却部材32を冷却するための冷媒を、冷却部材32の内部に設けられた空洞42に供給する供給管44と、前記冷媒を空洞42から排出する排出管46と、を含んで構成されている。
(Cooling system)
As shown in FIG. 2, the cooling device 30 includes a cooling member 32 that cools the melt F from the inner peripheral surface side of the melt F, and an inner peripheral surface of the melt F from the porosity of the outer peripheral surface 34 of the cooling member 32. A supply pipe 48 that supplies a pressurized medium that is a gas or a liquid to be ejected toward the inside to a cavity 37 provided inside the cooling member 32, and a refrigerant that cools the cooling member 32 is provided inside the cooling member 32. And a supply pipe 44 for supplying the cavity 42 to the cavity 42 and a discharge pipe 46 for discharging the refrigerant from the cavity 42.

冷却部材32は、例えば円筒状に形成され、その内周面が支持部材70の外周面に接触するように支持部材70と同軸状に配置されることで、冷却部材32を軸方向に貫通する支持部材70によって支持されている。
そして冷却部材32は、図2に示されるように、外周面34を構成する最外周壁36が、気体又は液体を透過させる多孔質の材料で構成されており、それによって外周面34に多孔が形成されている。また最外周壁36の径方向中心側には、供給管48から加圧媒体が供給される空洞37が、最外周壁36の内周面に接して設けられている。さらに、前記の通り冷却部材32の内部(空洞37よりもさらに径方向中心側)には、冷媒が供給される空洞42が設けられ、空洞37と空洞42との間に、気体及び液体を透過させない境界壁38が設けられている。
The cooling member 32 is formed in a cylindrical shape, for example, and is disposed coaxially with the support member 70 so that the inner peripheral surface thereof contacts the outer peripheral surface of the support member 70, thereby penetrating the cooling member 32 in the axial direction. It is supported by the support member 70.
In the cooling member 32, as shown in FIG. 2, the outermost peripheral wall 36 constituting the outer peripheral surface 34 is made of a porous material that allows gas or liquid to pass therethrough, so that the outer peripheral surface 34 is porous. Is formed. A cavity 37 to which a pressurized medium is supplied from a supply pipe 48 is provided in contact with the inner peripheral surface of the outermost peripheral wall 36 on the radial center side of the outermost peripheral wall 36. Furthermore, as described above, a cavity 42 to which a coolant is supplied is provided inside the cooling member 32 (further in the radial direction than the cavity 37), and gas and liquid are transmitted between the cavity 37 and the cavity 42. A boundary wall 38 that is not allowed is provided.

多孔質の材料で構成された最外周壁36の厚みは、特に限定されないが、例えば3mm以上10mm以下の範囲が挙げられる。
多孔質の材料は、溶融体Fの冷却時における冷却部材32の温度(例えば30℃以上250℃以下の範囲)に耐えられる材料であれば特に限定されない。多孔質の材料としては、具体的には、例えば、金属粉末を焼結した焼結体、金網を重ねた構造を持つ多孔質金属体、ハニカム構造の多孔質金属体、多孔質セラミックス焼結体(例えばアルミナ等の金属酸化物)、多孔質セメント成形体等が挙げられる。
Although the thickness of the outermost peripheral wall 36 comprised with the porous material is not specifically limited, For example, the range of 3 mm or more and 10 mm or less is mentioned.
The porous material is not particularly limited as long as it is a material that can withstand the temperature of the cooling member 32 (for example, a range of 30 ° C. or more and 250 ° C. or less) when the melt F is cooled. Specific examples of the porous material include, for example, a sintered body obtained by sintering metal powder, a porous metal body having a structure in which a metal mesh is stacked, a porous metal body having a honeycomb structure, and a porous ceramic sintered body. (For example, metal oxides such as alumina), porous cement molded bodies, and the like.

なお、本実施形態の冷却部材32は、最外周壁36が多孔質の材料で構成されることで外周面34に多孔を有する形態であるが、この形態に限られず、例えば図3に示す冷却装置60の冷却部材62のように、外周面64を構成する最外周壁66が多数の貫通孔を設けることで多孔が形成された多孔板であってもよい。   Note that the cooling member 32 of the present embodiment has a configuration in which the outermost peripheral wall 36 is made of a porous material so that the outer peripheral surface 34 is porous. However, the cooling member 32 is not limited to this configuration. For example, the cooling shown in FIG. Like the cooling member 62 of the device 60, the outermost peripheral wall 66 constituting the outer peripheral surface 64 may be a perforated plate in which a plurality of through holes are provided to form a hole.

図3に示す冷却部材62は、具体的には、多数の貫通孔を設けることで多孔が形成された多孔板である最外周壁66と、供給管48から加圧媒体が供給される空洞67と、空洞67と空洞42との間に設けられ気体及び液体を透過させない境界壁68と、で構成されている。多孔板に設けられた貫通孔の貫通方向は特に限定されないが、溶融体Fの径方向に沿った方向に近いほど望ましく、径方向であることが特に望ましい。   Specifically, the cooling member 62 shown in FIG. 3 includes an outermost peripheral wall 66 that is a perforated plate formed with a plurality of through holes and a cavity 67 in which a pressurized medium is supplied from a supply pipe 48. And a boundary wall 68 that is provided between the cavity 67 and the cavity 42 and does not allow gas and liquid to pass therethrough. The through direction of the through hole provided in the perforated plate is not particularly limited, but it is desirable that the direction is closer to the radial direction of the melt F, and the radial direction is particularly desirable.

多数の貫通孔を設けた多孔板である最外周壁66の材料としては、溶融体Fの冷却時における冷却部材62の温度に耐えられる材料であれば特に限定されないが、例えば、ステンレス鋼や炭素鋼等の金属材料が挙げられる。   The material of the outermost peripheral wall 66 that is a perforated plate provided with a large number of through holes is not particularly limited as long as it is a material that can withstand the temperature of the cooling member 62 when the melt F is cooled. Examples include metal materials such as steel.

ここで「多孔」とは、表面に形成された多数の孔であり、多孔を構成するそれぞれの孔の直径としては、例えば10μm以上1000μm以下の範囲が挙げられ、多孔を構成する孔の開孔率(孔が占める面積比)としては、例えば10%以上50%以下の範囲が挙げられる。
また多孔は、冷却部材32の外周面34に孔が点在していればよく、孔の数や分布は特に限定されるものではないが、管状体Tの形状精度を向上させる観点から、冷却部材32の外周面34における周方向全体にわたって孔が点在することが望ましい。すなわち、多孔を形成する孔の開孔率が冷却部材32の周方向において大きく変わらないことが望ましい。
Here, “porous” is a large number of pores formed on the surface, and the diameter of each pore constituting the pore includes, for example, a range of 10 μm or more and 1000 μm or less. As a rate (area ratio which a hole occupies), the range of 10% or more and 50% or less is mentioned, for example.
In addition, the pores only need to be scattered in the outer peripheral surface 34 of the cooling member 32, and the number and distribution of the holes are not particularly limited. From the viewpoint of improving the shape accuracy of the tubular body T, cooling is performed. It is desirable that holes are scattered throughout the entire circumferential direction of the outer circumferential surface 34 of the member 32. That is, it is desirable that the hole area ratio of the holes forming the pores does not change significantly in the circumferential direction of the cooling member 32.

次に、加圧媒体を、冷却部材32の外周面34の多孔から溶融体Fの内周面に向かって噴出させる機構について説明する。
前記加圧媒体を冷却部材32に供給する供給管48は、一端が不図示の加圧機に接続され、支持部材70の軸方向に沿って支持部材70の内部を通った後、空洞42及び境界壁38を貫通し、他端が空洞37に接続されている。
Next, a mechanism for ejecting the pressurized medium from the porosity of the outer peripheral surface 34 of the cooling member 32 toward the inner peripheral surface of the melt F will be described.
The supply pipe 48 for supplying the pressure medium to the cooling member 32 is connected to a pressure machine (not shown) at one end and passes through the inside of the support member 70 along the axial direction of the support member 70, and then the cavity 42 and boundary The other end is connected to the cavity 37 through the wall 38.

そして加圧媒体は、前記不図示の加圧機でかけられた圧力によって、供給管48を通じて冷却部材32の空洞37に送り込まれ、最外周壁36の内部の孔を通って、最外周壁36の外周面34の多孔から溶融体Fの内周面に向かって噴出される。
なお、本実施形態では、加圧媒体を多孔から溶融体Fの内周面に向かって噴出させる機構を有していればよく、溶融体Fの冷却時に実際に加圧媒体が多孔から噴出する形態に限定されるものではない。すなわち、例えば溶融体Fが冷却部材32の外周面34に接触しながら通過し、溶融体Fによって多孔が塞がれて加圧媒体が噴出しない場合でも、加圧媒体を多孔から噴出させる機構によって、溶融体Fの内周面側に圧力がかかればよい。
The pressurizing medium is fed into the cavity 37 of the cooling member 32 through the supply pipe 48 by the pressure applied by the pressurizer (not shown), passes through the hole in the outermost peripheral wall 36, and the outer periphery of the outermost peripheral wall 36. It is ejected from the porous surface 34 toward the inner peripheral surface of the melt F.
In the present embodiment, it is only necessary to have a mechanism for ejecting the pressurized medium from the porous toward the inner peripheral surface of the melt F, and the pressurized medium is actually ejected from the porous when the melt F is cooled. The form is not limited. That is, for example, even when the melt F passes while contacting the outer peripheral surface 34 of the cooling member 32 and the pores are blocked by the melt F and the pressurized medium is not ejected, the mechanism that ejects the pressurized medium from the pores is used. It is sufficient that pressure is applied to the inner peripheral surface side of the melt F.

加圧媒体の種類としては、気体又は液体であり、外周面34の多孔を通過するものであれば特に限定されない。加圧媒体の具体例としては、例えば、空気、窒素やアルゴン等の不活性気体、水、エチレングリコール水溶液等の後述する冷媒として用いられる化合物等が挙げられる。   The type of the pressurizing medium is not particularly limited as long as it is a gas or a liquid and passes through the perforation of the outer peripheral surface 34. Specific examples of the pressurizing medium include air, inert gases such as nitrogen and argon, compounds used as refrigerants described later such as water and ethylene glycol aqueous solution, and the like.

その中でも、加圧媒体を多孔から噴出させた後における取り扱いの容易性等の観点から、加圧媒体は気体であることが好ましい。また、例えば加圧媒体が液体である場合、多孔から噴出された液体が冷却部材32の外周面34を伝って冷却部材32の上部に溜まることが考えられる。その場合、例えば溶融体Fが冷却部材32によって冷却されるよりも前に、冷却部材32の上部に溜まった液体に接触して急速に冷却されて溶融体Fが硬化すると、多孔から噴出させた加圧媒体による効果が得られにくくなることも考えられる。その観点でも、加圧媒体は気体であることが好ましい。
また、加圧媒体の取り扱い性の観点から、加圧媒体は、空気であるか、又は冷媒と同じ化合物であることが好ましい。
Among them, the pressure medium is preferably a gas from the viewpoint of ease of handling after the pressure medium is ejected from the pores. Further, for example, when the pressurized medium is a liquid, it is conceivable that the liquid ejected from the perforation accumulates on the cooling member 32 along the outer peripheral surface 34 of the cooling member 32. In that case, for example, before the melt F is cooled by the cooling member 32, when the melt F is rapidly cooled by contact with the liquid accumulated in the upper portion of the cooling member 32, the melt F is ejected from the pores. It is also conceivable that the effect of the pressurized medium is difficult to obtain. From this point of view, the pressurized medium is preferably a gas.
Further, from the viewpoint of handleability of the pressurized medium, the pressurized medium is preferably air or the same compound as the refrigerant.

前記不図示の加圧機の種類は特に限定されないが、例えば加圧ポンプが挙げられ、加圧媒体の種類に応じて選択される。
なお、加圧ポンプで加圧媒体にかける圧力については、加圧媒体の粘度、最外周壁36における多孔質の材料の構造、多孔における個々の孔の大きさ及び開孔率等に応じて設定される。具体的には、例えば加圧媒体が気体の場合、加圧媒体にかける圧力としては0.01MPa以上0.1MPa以下の範囲が挙げられ、加圧媒体が液体の場合、加圧媒体にかける圧力としては0.01MPa以上0.1MPa以下の範囲が挙げられる。
The type of the pressurizer (not shown) is not particularly limited, and includes, for example, a pressurization pump, and is selected according to the type of pressurization medium.
The pressure applied to the pressurizing medium by the pressurizing pump is set according to the viscosity of the pressurizing medium, the structure of the porous material on the outermost peripheral wall 36, the size of individual pores in the pores, the open area ratio, etc. Is done. Specifically, for example, when the pressure medium is a gas, the pressure applied to the pressure medium includes a range of 0.01 MPa to 0.1 MPa. When the pressure medium is a liquid, the pressure applied to the pressure medium The range is 0.01 MPa or more and 0.1 MPa or less.

次に、冷却部材32を冷却する機構について説明する。
冷却部材32を冷却するための冷媒を空洞42に供給する供給管44及び前記冷媒を空洞42から排出する排出管46はいずれも、一端が図示しない冷却機に接続され、支持部材70の軸方向に沿って支持部材70の内部を通った後、他端が空洞42に接続されている。
そして前記冷媒は、前記不図示の冷却機によって冷却された後、供給管44を通って空洞42に供給されることで冷却部材32を冷却し、冷却部材32の温度が調整される。そして、冷却部材を冷却した前記冷媒は、空洞42から排出管46を通って冷却部材32の外に排出され、前記不図示の冷却機に戻って再び冷却される。
Next, a mechanism for cooling the cooling member 32 will be described.
The supply pipe 44 for supplying the coolant for cooling the cooling member 32 to the cavity 42 and the discharge pipe 46 for discharging the coolant from the cavity 42 are both connected to a cooler (not shown), and the axial direction of the support member 70 And the other end is connected to the cavity 42.
The refrigerant is cooled by the cooler (not shown) and then supplied to the cavity 42 through the supply pipe 44 to cool the cooling member 32 and the temperature of the cooling member 32 is adjusted. The refrigerant that has cooled the cooling member is discharged from the cavity 42 through the discharge pipe 46 to the outside of the cooling member 32, and returned to the cooler (not shown) to be cooled again.

以上のようにして、冷却部材32は、冷却機によって冷却された冷媒の温度に冷却される。すなわち、冷却部材32の温度は、冷媒の温度を調整することによって制御される。
冷媒は、特に限定されず、例えば、水、エチレングリコール又はプロピレングリコールの水浴液(ブライン)等が挙げられる。
なお、本実施形態では、冷媒を用いて冷却部材32を冷却する形態であるが、冷却部材32が冷却されれば特に冷却手段は限定されるものではない。
As described above, the cooling member 32 is cooled to the temperature of the refrigerant cooled by the cooler. That is, the temperature of the cooling member 32 is controlled by adjusting the temperature of the refrigerant.
The refrigerant is not particularly limited, and examples thereof include water, a water bath solution (brine) of ethylene glycol or propylene glycol, and the like.
In the present embodiment, the cooling member 32 is cooled using a refrigerant. However, the cooling means is not particularly limited as long as the cooling member 32 is cooled.

(引き出し機)
引き出し機50は、図1に示すように、支持部材70の周囲に設けられ、冷却装置30によって溶融体Fが冷却されて得られた管状体Tの内周面側から管状体Tを支持する内側ロール52と、管状体Tの外周面側から管状体Tを支持する外側ロール54と、を備えている。
引き出し機50では、内側ロール52と外側ロール54とで管状体Tを挟み込み、内側ロール52及び外側ロール54が回転することで、溶融体Fの押出方向に管状体Tが引き出されるようになっている。
(Drawer)
As shown in FIG. 1, the drawer 50 is provided around the support member 70 and supports the tubular body T from the inner peripheral surface side of the tubular body T obtained by cooling the melt F by the cooling device 30. An inner roll 52 and an outer roll 54 that supports the tubular body T from the outer peripheral surface side of the tubular body T are provided.
In the drawer 50, the tubular body T is sandwiched between the inner roll 52 and the outer roll 54, and the inner roll 52 and the outer roll 54 rotate, whereby the tubular body T is pulled out in the extrusion direction of the melt F. Yes.

<管状体の製造方法>
次に、前述の管状体製造装置100を用いた、管状体の一例としての熱可塑性樹脂チューブを製造する製造方法について説明する。
<Method for producing tubular body>
Next, the manufacturing method which manufactures the thermoplastic resin tube as an example of a tubular body using the above-mentioned tubular body manufacturing apparatus 100 is demonstrated.

まず、一軸押出機10の投入口11から加熱筒12内部へ樹脂材料P(ペレット)を投入し(図1参照)、当該樹脂材料Pを、加熱筒12の複数のヒータ(図示せず)により、樹脂材料Pの融解温度以上の温度(通常、150〜450℃)に加熱して溶融状態にし、溶融体Fを得る(加熱工程)。   First, the resin material P (pellet) is charged into the heating cylinder 12 from the charging port 11 of the single screw extruder 10 (see FIG. 1), and the resin material P is fed by a plurality of heaters (not shown) of the heating cylinder 12. The resin material P is heated to a temperature equal to or higher than the melting temperature of the resin material P (usually 150 to 450 ° C.) to obtain a molten state F (heating step).

次に、図1に示されるように、溶融状態の溶融体Fを、加熱筒12の内部のスクリュー13の推進力により、加熱筒12から口金20の流路22を通過させて、口金20の出口孔23から管状に押し出す(押出工程)。   Next, as shown in FIG. 1, the melt F in a molten state is caused to pass through the flow path 22 of the base 20 from the heating cylinder 12 by the propulsive force of the screw 13 inside the heating cylinder 12. Extruded into a tube from the outlet hole 23 (extrusion process).

次に、口金20の出口孔23から管状に押し出された溶融体Fを、冷却装置30によって、溶融体Fの内周面側から冷却し、硬化させることで、管状体Tを得る。(冷却工程)。
具体的には、口金20の出口孔23から管状に押し出された溶融体Fが冷却部材32の外周を通過する際に、冷却部材32の外周面34における多孔から溶融体Fの内周面に向かって噴出する加圧媒体によって、溶融体Fが外側に圧力を付与されながら冷却される。
なお、溶融体Fの内周面は、上記のように多孔から噴出した加圧媒体によって外側に圧力がかけられていればよく、溶融体Fの内周面が冷却部材32の外周面34に直接接触しても直接接触していなくてもよい。溶融体Fの内周面が冷却部材32の外周面34に直接接触しない場合は、加圧媒体が溶融体Fの熱を奪うことで溶融体Fが冷却され、直接接触する場合は、加圧媒体及び冷却部材32が溶融体Fの熱を奪うことで溶融体Fが冷却される。
Next, the molten body F extruded in a tubular shape from the outlet hole 23 of the base 20 is cooled from the inner peripheral surface side of the molten body F by the cooling device 30 and hardened to obtain the tubular body T. (Cooling process).
Specifically, when the melt F extruded in a tubular shape from the outlet hole 23 of the base 20 passes through the outer periphery of the cooling member 32, the pores in the outer peripheral surface 34 of the cooling member 32 are changed to the inner peripheral surface of the melt F. The melt F is cooled while pressure is applied to the outside by the pressurized medium ejected toward it.
The inner peripheral surface of the melt F only needs to be pressurized outward by the pressurized medium ejected from the pore as described above, and the inner peripheral surface of the melt F is applied to the outer peripheral surface 34 of the cooling member 32. Direct contact or no direct contact may be required. When the inner peripheral surface of the melt F is not in direct contact with the outer peripheral surface 34 of the cooling member 32, the pressurization medium cools the melt F by taking the heat of the melt F, and when the melt F is in direct contact, pressurization is performed. The medium F and the cooling member 32 take the heat of the melt F, so that the melt F is cooled.

次に、得られた管状体Tを引き出し機50により連続的に引き出す(引き出し工程)。具体的には、内側ロール52と外側ロール54とで管状体Tを挟み込みつつ、内側ロール52及び外側ロール54を回転させることで管状体Tに張力をかけ、管状体Tの形状を管状に保ったまま連続的に引き出す。
このようにして、本実施形態では、熱可塑性樹脂チューブ(円筒状フィルム)である管状体が製造される。
Next, the obtained tubular body T is continuously pulled out by the drawer 50 (drawing step). Specifically, while the tubular body T is sandwiched between the inner roll 52 and the outer roll 54, the tubular body T is tensioned by rotating the inner roll 52 and the outer roll 54, and the shape of the tubular body T is maintained in a tubular shape. Pull out continuously.
Thus, in this embodiment, the tubular body which is a thermoplastic resin tube (cylindrical film) is manufactured.

本実施形態では、前述のように、冷却部材32の外周面34に多孔が設けられ、多孔から溶融体Fの内周面に向かって加圧媒体を噴出させているため、形状精度の優れた管状体Tが得られる。
具体的には、例えば外周面に多孔を有さない冷却部材を用いた場合、冷却部材の外周面と溶融体の内周面との間の摩擦力が大きく、引き出し機によって管状体を引き出す際に管状体にかかる張力が大きすぎて歪みが発生する。
In the present embodiment, as described above, the outer peripheral surface 34 of the cooling member 32 is provided with a hole, and the pressurized medium is ejected from the hole toward the inner peripheral surface of the melt F. Therefore, the shape accuracy is excellent. A tubular body T is obtained.
Specifically, for example, when a cooling member that does not have porosity on the outer peripheral surface is used, the frictional force between the outer peripheral surface of the cooling member and the inner peripheral surface of the melt is large, and when the tubular body is pulled out by a drawer In addition, the tension applied to the tubular body is too large, and distortion occurs.

これに対して本実施形態では、冷却部材の外周面34の多孔から溶融体Fの内周面に向かって加圧媒体が噴出する機構を有し、冷却部材32の外周に位置する溶融体Fが外側に押し広げられる方向(すなわち溶融体Fの径が拡張する方向)に圧力がかかる。そのため、冷却部材32の外周面34と溶融体Fの内周面との間にかかる摩擦力が小さくなり、引き出し機50によって管状体Tを引き出す際にかかる張力が大きくなりにくく、歪みが発生しにくいため、形状制度の優れた管状体Tが得られると考えられる。また加圧媒体かける圧力等の条件によっては、冷却部材32の外周面34と溶融体Fの内周面との接触面積が小さくなり、冷却部材32の外周面34と溶融体Fの内周面との間にかかる摩擦力がより小さくなり、形状制度の優れた管状体Tが得られる。   On the other hand, in the present embodiment, the melt F located on the outer periphery of the cooling member 32 has a mechanism in which the pressurized medium is ejected from the porosity of the outer peripheral surface 34 of the cooling member toward the inner peripheral surface of the melt F. The pressure is applied in the direction in which the material is pushed outward (that is, the diameter of the melt F expands). Therefore, the frictional force applied between the outer peripheral surface 34 of the cooling member 32 and the inner peripheral surface of the melt F is reduced, and the tension applied when the tubular body T is pulled out by the drawer 50 is difficult to increase, and distortion occurs. It is considered difficult to obtain a tubular body T having an excellent shape system. Further, depending on conditions such as pressure applied to the pressurized medium, the contact area between the outer peripheral surface 34 of the cooling member 32 and the inner peripheral surface of the melt F is reduced, and the outer peripheral surface 34 of the cooling member 32 and the inner peripheral surface of the melt F are reduced. The tubular body T having an excellent shape system is obtained.

そして本実施形態の管状体を、例えば画像形成装置の中間転写ベルト等に用いた場合、管状体の形状精度が優れていることによって、管状体が感光体や記録媒体に接触させる際の圧力ムラが少なく転写性が向上する。また本実施形態の管状体は、平面性が高い(形状精度が優れている)ため、クリーニング部材への接触についてもバラツキが少なく、クリーニング性が向上する。よって、本実施形態の管状体を用いた画像形成装置によって得られた画像は、濃淡ムラや画像抜けが抑制されたものとなる。   When the tubular body of the present embodiment is used, for example, in an intermediate transfer belt of an image forming apparatus, the pressure irregularity when the tubular body is brought into contact with the photoreceptor or the recording medium due to the excellent shape accuracy of the tubular body. And transferability is improved. In addition, since the tubular body of the present embodiment has high flatness (excellent shape accuracy), there is little variation in contact with the cleaning member, and cleaning properties are improved. Therefore, an image obtained by the image forming apparatus using the tubular body of the present embodiment is one in which unevenness in density and image omission are suppressed.

ここで、「形状精度が優れている」とは、うねりが小さく、かつ、平面度が優れていることを意味する。
また、「うねり」とは、後述するように表面粗さ計によって測定された凹凸を示す値であり、うねりの値が小さいほど形状精度が優れていることを意味する。具体的には、前記うねりの値が0.2μm以下であることが好ましく、0.1μm以下であることがより好ましい。
Here, “the shape accuracy is excellent” means that the undulation is small and the flatness is excellent.
“Waviness” is a value indicating the unevenness measured by a surface roughness meter as described later, and means that the smaller the waviness value, the better the shape accuracy. Specifically, the waviness value is preferably 0.2 μm or less, and more preferably 0.1 μm or less.

また、「平面度が優れている」とは、二軸で張架時の軸方向真直度が小さいことを意味し、二軸で張架時の軸方向真直度は、後述するように例えば、得られた管状体を2本のロールで張ってレーザ変位計で軸方向に表面位置を測定したときの差を示す値である。そして、二軸で張架時の軸方向真直度の値が小さいほど形状精度が優れていることを意味し、具体的には、二軸で張架時の軸方向真直度の値が2mm以下であることが好ましく、1mm以下であることがより好ましい。   Further, “excellent flatness” means that the straightness in the axial direction when stretched with two axes is small, and the straightness in the axial direction when stretched with two axes is, for example, as described later, It is a value indicating the difference when the obtained tubular body is stretched with two rolls and the surface position is measured in the axial direction with a laser displacement meter. And, the smaller the value of the straightness in the axial direction when stretched with two axes, the better the shape accuracy is. Specifically, the value of the straightness in the axial direction when stretched with two axes is 2 mm or less. It is preferable that it is 1 mm or less.

本実施形態では、加圧媒体の温度が冷却部材32の温度(すなわち冷媒の温度)よりも低いことが望ましく、それによって電気抵抗値のバラツキが少ない管状体Tが得られる。具体的には、例えば管状体Tが導電剤を含む場合、溶融体Fが冷却されて部分的に結晶化された領域が発生すると、その結晶化された領域を避けるように導電剤が移動し、その結果、導電剤の偏在化が起こることが考えられる。これに対して、加圧媒体の温度が冷却部材32の温度よりも低い場合は、溶融体Fの冷却速度が速く、導電剤の偏在化が起こる前に溶融体Fが硬化し、電気抵抗値のバラツキが少ない管状体Tが得られると推測される。   In the present embodiment, it is desirable that the temperature of the pressurizing medium is lower than the temperature of the cooling member 32 (that is, the temperature of the refrigerant), thereby obtaining the tubular body T with less variation in electric resistance value. Specifically, for example, when the tubular body T contains a conductive agent, when the melt F is cooled and a partially crystallized region is generated, the conductive agent moves so as to avoid the crystallized region. As a result, it is conceivable that the conductive agent is unevenly distributed. On the other hand, when the temperature of the pressurizing medium is lower than the temperature of the cooling member 32, the cooling rate of the melt F is high, and the melt F is cured before the conductive agent is unevenly distributed. It is presumed that a tubular body T with less variation is obtained.

なお、冷却部材32の温度と加圧媒体の温度との差(冷却部材32の温度−加圧媒体の温度)としては、例えば、0℃以上100℃以下が挙げられ、30℃以上80℃以下が望ましい。
加圧媒体の温度としては、溶融体Fに含まれる熱可塑性樹脂のガラス転移温度をTg(℃)とすると、例えばTg−100℃以上Tg(℃)以下が挙げられる。
また冷却部材32の温度としては、例えば、Tg−15℃以上Tg(℃)以下が挙げられる。
In addition, as a difference (temperature of the cooling member 32-temperature of a pressurization medium) between the temperature of the cooling member 32 and the temperature of a pressurization medium, 0 degreeC or more and 100 degrees C or less are mentioned, for example, 30 degreeC or more and 80 degrees C or less Is desirable.
The temperature of the pressure medium may be, for example, Tg-100 ° C. or higher and Tg (° C.) or lower, assuming that the glass transition temperature of the thermoplastic resin contained in the melt F is Tg (° C.).
Moreover, as temperature of the cooling member 32, Tg-15 degreeC or more and Tg (degreeC) or less are mentioned, for example.

本実施形態では、口金20の出口孔23から押し出された溶融体Fを冷却装置30によって冷却させた後に引き出し機50によって引き出しているが、これに限られず、例えば複数の冷却装置を離間させて設けて段階的に冷却させてもよい。具体的には、例えば、第一の冷却装置と第二の冷却装置とを離間させて設け、溶融体Fが第一の冷却装置によって冷却された後に第二の冷却装置によって冷却され、管状体Tを得る構成としてもよい。また、複数の冷却装置を用いる場合は、前記複数の冷却装置のうち少なくともいずれかの冷却装置の外周面に多孔を有していればよい。   In the present embodiment, the melt F pushed out from the outlet hole 23 of the base 20 is cooled by the cooling device 30 and then drawn by the drawing machine 50. However, the invention is not limited to this. For example, a plurality of cooling devices are separated from each other. It may be provided and cooled in stages. Specifically, for example, the first cooling device and the second cooling device are provided separately from each other, and the melt F is cooled by the first cooling device and then cooled by the second cooling device. It is good also as a structure which obtains T. Further, when a plurality of cooling devices are used, it is only necessary that the outer peripheral surface of at least one of the plurality of cooling devices is porous.

また、図2に示す冷却部材32では、気体及び液体を透過させない境界壁38を有することで、加圧媒体と冷媒とが接触しない形態となっているが、これに限られない。具体的には、例えば、空洞42と空洞37との間に境界壁38を設けないか又は気体及び液体を透過させる境界壁を設け、供給管44から空洞42に供給された冷媒をそのまま加圧媒体として用い、最外周壁36を通過させて外周面34の多孔から噴出させる形態でもよい。   Further, the cooling member 32 shown in FIG. 2 has a boundary wall 38 that does not allow gas and liquid to pass therethrough, so that the pressurized medium and the refrigerant do not come into contact with each other. However, the present invention is not limited to this. Specifically, for example, the boundary wall 38 is not provided between the cavity 42 and the cavity 37 or a boundary wall that allows gas and liquid to pass through is provided, and the refrigerant supplied to the cavity 42 from the supply pipe 44 is pressurized as it is. It may be used as a medium and may be ejected from the outer peripheral surface 34 through the outermost peripheral wall 36.

管状体製造装置100において用いられる樹脂材料Pに含まれる熱可塑性樹脂としては、特に限られず、具体的には、例えば、ポリエチレン(高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン等)、ポリプロピレンエチレンブロック又はランダム共重合体、ポリアミド、ポリアミドイミド、ポリアセタール、ポリアリレート、ポリカーボネート、ポリフェニレンエーテル、変性ポリフェニレンエーテル、液晶性ポリエステル、ポリエチレンテレフタレート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンサルファイド、ポリブチレンテレフタレート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフッ化ビニリデン、エチレンテトラフルオロエチレン共重合体、パーフルオロアルキルビニルエーテル共重合体、の1種またはこれらの混合物からなるものが使用される。その中でも特に好ましいのは、高弾性率なポリエーテルイミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン等が挙げられる。   The thermoplastic resin contained in the resin material P used in the tubular body manufacturing apparatus 100 is not particularly limited. Specifically, for example, polyethylene (high density polyethylene, medium density polyethylene, low density polyethylene, linear low density) Polyethylene, etc.), polypropylene ethylene block or random copolymer, polyamide, polyamideimide, polyacetal, polyarylate, polycarbonate, polyphenylene ether, modified polyphenylene ether, liquid crystalline polyester, polyethylene terephthalate, polysulfone, polyethersulfone, polyphenylene sulfide, poly Butylene terephthalate, polyetherimide, polyetheretherketone, polyvinylidene fluoride, ethylenetetrafluoroethylene copolymer, perfluoro Vinyl ether copolymer, is made of one or a mixture of these is used. Among them, particularly preferred are polyetherimide, polyphenylene sulfide, polyether ether ketone and the like having a high elastic modulus.

樹脂材料Pは、必要に応じて熱可塑性樹脂の他に、導電剤やその他の添加剤を含んでいてもよい。
導電剤としては、例えば、カーボンブラック、グラファイト、カーボン繊維、金属粉、導電性金属酸化物、有機金属化合物、有機金属塩、導電性高分子等から選ばれる少なくとも1種またはこれら数種の混合物からなるものが挙げられる。その中でも特に、カーボンブラックが好ましい。カーボンブラックとしては、アセチレンブラック、ファーネスブラック、チャンネルブラック等のカーボンブラックがある。管状体の外観を損なわないために揮発分率の少ないカーボンブラックが好ましく、また抵抗安定性の点で小粒子径のカーボンブラックを用いる事が好ましい。ここで「導電性」とは、体積抵抗率が1010Ωcm以下であることを意味する。
The resin material P may contain a conductive agent and other additives in addition to the thermoplastic resin as necessary.
Examples of the conductive agent include at least one selected from carbon black, graphite, carbon fiber, metal powder, conductive metal oxide, organic metal compound, organic metal salt, conductive polymer, and the like, or a mixture of several of these. The thing which becomes. Among these, carbon black is particularly preferable. Examples of the carbon black include carbon blacks such as acetylene black, furnace black, and channel black. In order not to impair the appearance of the tubular body, carbon black having a low volatile content is preferable, and it is preferable to use carbon black having a small particle diameter in terms of resistance stability. Here, “conductive” means that the volume resistivity is 10 10 Ωcm or less.

その他の添加剤としては、例えば、熱安定性を改善させるための酸化防止剤、押出成形時の噛み込み防止のための滑剤等が挙げられ、管状体の特性を変化させない程度であれば添加してもよい。   Other additives include, for example, antioxidants for improving thermal stability, lubricants for preventing biting during extrusion molding, and the like, so long as the properties of the tubular body are not changed. May be.

本実施形態の管状体製造装置で製造された管状体としては、例えば、静電複写方式の画像形成装置に用いる熱可塑性樹脂製円筒状フィルムが挙げられ、特に限定されるものではない。具体的には、例えば、転写体を搬送する円筒状部材、トナーを第1の保持体から第2の保持体へ転写する中間転写用円筒状部材等に用いられる。   Examples of the tubular body manufactured by the tubular body manufacturing apparatus of the present embodiment include, but are not limited to, a thermoplastic resin cylindrical film used in an electrostatic copying image forming apparatus. Specifically, for example, it is used for a cylindrical member that conveys a transfer member, an intermediate transfer cylindrical member that transfers toner from a first holding member to a second holding member, and the like.

[第2実施形態]
<押出成形装置(管状体の製造装置)>
第2実施形態の押出成形装置は、上記第1実施形態の管状体製造装置100に備えられた冷却装置30の代わりに、外周面84Aに多孔を有さない第一の領域82Aと外周面84Bに多孔を有する第二の領域82Bとを有する冷却部材82を含む冷却装置80を用いた形態である。なお、冷却装置が異なること以外の事項については、上記と同様であるため説明を省略する。
[Second Embodiment]
<Extrusion molding device (tubular body manufacturing device)>
In the extrusion molding apparatus of the second embodiment, instead of the cooling device 30 provided in the tubular body manufacturing apparatus 100 of the first embodiment, the first region 82A and the outer circumferential surface 84B that do not have porosity on the outer circumferential surface 84A. This is a form using a cooling device 80 including a cooling member 82 having a porous second region 82B. Since matters other than the difference in the cooling device are the same as described above, description thereof will be omitted.

図4は、本実施形態の管状体製造装置における冷却装置(冷却部)周辺の構成を拡大して概略的に示す断面図である。なお、第1実施形態に係る管状体製造装置100と同様な構成については、同様の符号を用いる。   FIG. 4 is a cross-sectional view schematically showing an enlarged configuration around the cooling device (cooling unit) in the tubular body manufacturing apparatus of the present embodiment. In addition, the same code | symbol is used about the structure similar to the tubular body manufacturing apparatus 100 which concerns on 1st Embodiment.

冷却装置80の冷却部材82は、図4に示されるように、第一の領域82Aと第二の領域82Bとで構成されている。第一の領域82Aでは、最外周壁86Aが気体及び液体を透過させない材料で構成されているため、外周面84Aに多孔がない領域となっている。一方、第二の領域82Bでは、最外周壁86Bが気体又は液体を透過させる多孔質の材料で構成されているため、外周面84Bに多孔を有する領域となっている。   As shown in FIG. 4, the cooling member 82 of the cooling device 80 includes a first region 82A and a second region 82B. In the first region 82A, since the outermost peripheral wall 86A is made of a material that does not allow gas and liquid to pass therethrough, the outer peripheral surface 84A has no porosity. On the other hand, in the second region 82B, since the outermost peripheral wall 86B is made of a porous material that allows gas or liquid to pass therethrough, the outer peripheral surface 84B is a porous region.

また、冷却装置30の冷却部材32と同様に、冷却部材82の内部に冷媒が供給される空洞42が設けられ、また第二の領域82Bにおいては、加圧媒体が供給される空洞87Bが最外周壁86Bの内周面に接するように設けられている。そして空洞42と空洞87Bとの間に、気体及び液体を透過させない境界壁88設けられている。
加圧媒体を冷却部材82に供給する供給管48は、支持部材70から空洞42及び境界壁88を貫通し、一端が空洞87Bに接続されている。すなわち冷却装置80では、加圧媒体が、供給管48の他端が接続された不図示の加圧機から、供給管48を通って空洞87Bに送り込まれ、最外周壁86Bの内部の孔を通って、最外周壁86Bの外周面84Bの多孔から溶融体Fの内周面に向かって噴出される。
Further, similarly to the cooling member 32 of the cooling device 30, a cavity 42 to which a refrigerant is supplied is provided inside the cooling member 82, and in the second region 82B, the cavity 87B to which a pressurized medium is supplied is the most. It is provided in contact with the inner peripheral surface of the outer peripheral wall 86B. A boundary wall 88 that does not allow gas and liquid to pass therethrough is provided between the cavity 42 and the cavity 87B.
The supply pipe 48 that supplies the pressurized medium to the cooling member 82 passes through the cavity 42 and the boundary wall 88 from the support member 70, and has one end connected to the cavity 87 </ b> B. That is, in the cooling device 80, the pressurized medium is sent from the pressurizer (not shown) connected to the other end of the supply pipe 48 through the supply pipe 48 to the cavity 87B and through the hole in the outermost peripheral wall 86B. Thus, the outer peripheral wall 86B is jetted from the outer peripheral surface 84B toward the inner peripheral surface of the melt F.

なお、最外周壁86Bを構成する多孔質の材料、最外周壁86Bの厚み等については、前記冷却部材32の最外周壁36と同様である。
また、冷却部材82を冷却する機構等のその他の構成についても、冷却装置30と同様である。
The porous material constituting the outermost peripheral wall 86B, the thickness of the outermost peripheral wall 86B, and the like are the same as those of the outermost peripheral wall 36 of the cooling member 32.
Further, other configurations such as a mechanism for cooling the cooling member 82 are the same as those of the cooling device 30.

本実施形態において、口金20の出口孔23から管状に押し出された溶融体Fが冷却装置80によって冷却される際には、溶融体Fは、冷却部材82のうち第一の領域82Aの周囲を通過した後に、第二の領域82Bの周囲を通過する。
そのため溶融体Fは、まず、外周面84Aに多孔を有さない第一の領域82Aの周囲を通過しながら冷却され、溶融体Fの内周面が外周面84Aの形状に沿った状態で硬化が進行する。その後、硬化が進行した溶融体Fが、外周面84Bに多孔を有する第二の領域82Bの周囲を通過し、外周面84Bの多孔から噴出された加圧媒体を内周面に受け、押し広げられる方向に圧力を受けながら、さらに冷却されて硬化がさらに進行し、管状体Tとなる。
すなわち、第一の領域82Aを通過した後第二の領域82Bを通過する前における溶融体Fは、例えば、口金20の出口孔23から押し出された溶融体Fよりも硬化が進行しているが、完全には固化していない状態(半硬化の状態)となる。そして、硬化が進行した溶融体Fが第二の領域82Bを通過することにより、さらに硬化が進行し、管状体Tとなる。
In the present embodiment, when the melt F extruded in a tubular shape from the outlet hole 23 of the base 20 is cooled by the cooling device 80, the melt F surrounds the first region 82 </ b> A of the cooling member 82. After passing, it passes around the second region 82B.
Therefore, the melt F is first cooled while passing around the first region 82A having no porosity on the outer peripheral surface 84A, and the melt is cured in a state where the inner peripheral surface of the melt F follows the shape of the outer peripheral surface 84A. Progresses. Thereafter, the melt F that has been cured passes around the second region 82B having a porosity on the outer peripheral surface 84B, receives the pressurized medium ejected from the pores on the outer peripheral surface 84B, and spreads the inner surface. While being subjected to pressure in the direction in which it is pressed, it is further cooled and hardening further proceeds to form a tubular body T.
That is, although the melt F that has passed through the first region 82A and before passing through the second region 82B is hardened more than the melt F extruded from the outlet hole 23 of the base 20, for example. , It is not completely solidified (semi-cured state). Then, the cured body F passes through the second region 82 </ b> B, so that the curing further proceeds and the tubular body T is obtained.

本実施形態では、上記の通り、冷却部材82が、外周面84Aに多孔を有さない第一の領域82Aと、外周面84Bに多孔を有する第二の領域82Bと、で構成されているため、さらに「うねり」が小さい管状体Tが得られる。
その理由は、溶融体Fの効果が進行した後に加圧媒体による圧力を受けるため、溶融体Fの形状が上記圧力等の影響を受けにくく、かつ、多孔がない場合に比べて冷却部材82の外周面84Bと溶融体Fの内周面との摩擦力が低減されるからであると推測される。
In the present embodiment, as described above, the cooling member 82 is composed of the first region 82A having no porosity on the outer peripheral surface 84A and the second region 82B having porosity on the outer peripheral surface 84B. Further, the tubular body T having a smaller “swell” is obtained.
The reason for this is that since the pressure of the pressurized medium is applied after the effect of the melt F has progressed, the shape of the melt F is less affected by the pressure and the like, and the cooling member 82 is less porous than the case where there is no porosity. This is presumably because the frictional force between the outer peripheral surface 84B and the inner peripheral surface of the melt F is reduced.

すなわち、硬化が進行する前の軟化した溶融体Fが加圧媒体による圧力を受けない場合は、溶融体Fの内周面の形状が外周面84Aに沿って固定されるため、硬化が進行する前から圧力を受ける場合に比べて溶融体Fの形状を制御しやすいと考えられる。そして溶融体Fが、硬化の進行により形状が固定された後に加圧媒体による圧力を受けることにより、圧力による溶融体Fの形状の変化が起こりにくく、例えば前記圧力にバラツキがあったとしても、溶融体Fの形状を保ちやすいと考えられる。加えて、外周面84Bの多孔から溶融体Fの内周面に向かって加圧媒体が噴出され、溶融体Fの内周面が押し広げられる方向に力を受けるため、引き出し機50によって管状体Tを引き出しても、張力がかかりすぎることによる歪みが発生しにくいと考えられる。   That is, when the softened melt F before being cured does not receive pressure from the pressurized medium, the shape of the inner peripheral surface of the melt F is fixed along the outer peripheral surface 84A, and thus the cure proceeds. It is considered that the shape of the melt F can be controlled more easily than when pressure is applied from the front. And, since the melt F is subjected to pressure by the pressurizing medium after the shape is fixed by the progress of curing, the change in the shape of the melt F due to the pressure hardly occurs, for example, even if there is a variation in the pressure, It is considered that the shape of the melt F is easily maintained. In addition, since the pressurized medium is ejected from the perforation of the outer peripheral surface 84B toward the inner peripheral surface of the melt F and receives a force in the direction in which the inner peripheral surface of the melt F is expanded, the puller 50 applies a tubular body. Even if T is pulled out, it is considered that distortion due to excessive tension hardly occurs.

本実施形態において、第一の領域82Aの長さと第二の領域82Bの長さとの比は特に限定されないが、例えば、第一の領域82Aにおける押出方向の長さが、第二の領域82Bにおける押出方向の長さの0.1倍以上2倍以下である範囲が挙げられ、0.5倍以上1倍以下であることが望ましい。
また、本実施形態では、冷却部材82が第一の領域82Aと第二の領域82Bとで構成されていたが、これに限られず、第二の領域82Bよりもさらに押出方向下流側に、外周面に多孔を有さない第三の領域を含む形態であってもよい。
In the present embodiment, the ratio of the length of the first region 82A to the length of the second region 82B is not particularly limited. For example, the length in the extrusion direction of the first region 82A is the same as the length of the second region 82B. The range which is 0.1 times or more and 2 times or less of the length of an extrusion direction is mentioned, It is desirable that it is 0.5 times or more and 1 time or less.
In the present embodiment, the cooling member 82 includes the first region 82A and the second region 82B. However, the cooling member 82 is not limited to this, and the outer periphery is further downstream in the extrusion direction than the second region 82B. It may be a form including a third region having no porosity on the surface.

また本実施形態の冷却部材82は、第二の領域82Bの最外周壁86Bが多孔質の材料で構成されているが、これに限られず、例えば図3に示す冷却部材62のように、第二の領域82Bの最外周壁86Bとして多数の貫通孔を設けた多孔板を用いた形態でもよい。
さらに本実施形態では、ひとつの冷却部材82が第一の領域82Aと第二の領域82Bとを有していたが、これに限られず、外周面に多孔を有さない第一の冷却部材と、第一の冷却部材よりも押出方向下流側に設けられ、外周面の少なくとも一部に多孔を有する第二の冷却部材と、を有する形態であってもよい。
In the cooling member 82 of the present embodiment, the outermost peripheral wall 86B of the second region 82B is made of a porous material. However, the present invention is not limited to this. For example, like the cooling member 62 shown in FIG. The form using the perforated plate which provided many through-holes as the outermost peripheral wall 86B of the 2nd area | region 82B may be sufficient.
Furthermore, in this embodiment, one cooling member 82 has the first region 82A and the second region 82B. However, the present invention is not limited to this. The second cooling member may be provided on the downstream side in the extrusion direction from the first cooling member, and may have a porosity on at least a part of the outer peripheral surface.

以下、実施例を交えて本発明を詳細に説明するが、以下に示す実施例のみに本発明は限定されるものではない。尚、以下において「部」および「%」は、特に断りのない限り質量基準である。   Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited only to the following examples. In the following, “part” and “%” are based on mass unless otherwise specified.

[樹脂ペレットの作製]
<樹脂ペレット1>
熱可塑性樹脂としてポリフェニレンサルファイド(トレリナT1881、東レ株式会社製、Tg:85℃)100部と、導電剤としてカーボンブラック(Monarch 880、キャボット社製)14部と、をヘンシェルミキサー(日本コークス製 FM10C)を用いて混合した。得られた混合物を、二軸押出溶融混練機(L/D60(パーカーコーポレーション社製))により360℃で溶融混練し、φ5の孔より紐状に押出し、水槽中に入れて冷却固化後切断し、樹脂ペレット1を得た。
[Production of resin pellets]
<Resin pellet 1>
100 parts of polyphenylene sulfide (Torelina T1881, manufactured by Toray Industries, Inc., Tg: 85 ° C.) as a thermoplastic resin and 14 parts of carbon black (Monarch 880, manufactured by Cabot) as a conductive agent, Henschel mixer (FM10C manufactured by Nippon Coke) And mixed. The obtained mixture was melt-kneaded at 360 ° C. with a twin-screw extrusion melt kneader (L / D60 (manufactured by Parker Corporation)), extruded into a string shape through a hole of φ5, placed in a water tank, cooled, solidified and cut. Resin pellet 1 was obtained.

[管状体の製造]
<無端ベルト1(管状体)の製造>
上記樹脂ペレットの作製により得られた樹脂ペレット1を用いて、図1に示す管状体の製造装置により管状体を製造した。
具体的には、押出温度を300℃に設定した一軸溶融押出機(溶融押出装置、三葉製作所社製、型番:E−8001、L/D24)に樹脂ペレット1を投入し、溶融しながら環状ダイ(口金)とニップルの間隙(出口孔)から円筒状に押出した。
[Manufacture of tubular bodies]
<Manufacture of endless belt 1 (tubular body)>
A tubular body was manufactured by the tubular body manufacturing apparatus shown in FIG. 1 using the resin pellet 1 obtained by the production of the resin pellet.
Specifically, the resin pellet 1 is put into a uniaxial melting extruder (melting extrusion apparatus, manufactured by Mitsuba Seisakusho, model number: E-8001, L / D24) in which the extrusion temperature is set to 300 ° C. Extruded into a cylindrical shape from the gap (exit hole) between the die (die) and the nipple.

次に、押出された円筒状フィルム(溶融体F)を、引き出し機50によって引きとりながら、フィルムの円筒形状と径を固定化するために、冷却装置30における冷却部材32(サイジングダイ)の周囲を通過させた。
そして、円筒状フィルムを冷却装置30によって冷却させつつ、引き出し機50によって引き出した後、目的とする幅に切断し、φ160(内径160mm)、長さ232mm、膜厚100μmの無端ベルト1を得た。
Next, in order to fix the cylindrical shape and diameter of the film while pulling out the extruded cylindrical film (melt F) by the drawer 50, the periphery of the cooling member 32 (sizing die) in the cooling device 30 Was passed.
Then, after the cylindrical film was cooled by the cooling device 30 and pulled out by the drawer 50, it was cut to a desired width to obtain an endless belt 1 having a diameter of 160 mm (inner diameter of 160 mm), a length of 232 mm, and a film thickness of 100 μm. .

なお、冷却部材32の詳細は以下の通りである。
・全体の形状:外径160mm、押出方向における長さが50mmの円筒状
・最外周壁36を構成する多孔質の材料:青銅球体粉を焼結した焼結体
・最外周壁36の厚み:5mm
・多孔を構成する孔の平均径:5μm
・多孔を構成する孔の開孔率:30%
The details of the cooling member 32 are as follows.
-Overall shape: cylindrical shape with an outer diameter of 160 mm and a length in the extrusion direction of 50 mm-Porous material constituting the outermost peripheral wall 36: a sintered body obtained by sintering bronze sphere powder-Thickness of the outermost peripheral wall 36: 5mm
-Average diameter of pores constituting the pore: 5 μm
・ Aperture ratio of the pores constituting the pore: 30%

また、冷却部材32を冷却させるための冷媒として、エチレングリコールの水溶液(ブライン)を用い、冷却部材32の外周面34における多孔から噴出させる加圧媒体として、空気を用いた。
冷媒の温度、並びに加圧媒体の圧力及び温度は、表1に示すように設定した。
In addition, an ethylene glycol aqueous solution (brine) was used as a coolant for cooling the cooling member 32, and air was used as a pressurizing medium ejected from the pores in the outer peripheral surface 34 of the cooling member 32.
The temperature of the refrigerant and the pressure and temperature of the pressurized medium were set as shown in Table 1.

<無端ベルト2〜3(管状体)の製造>
上記図2に示す冷却装置30の代わりに、図4に示す冷却装置80を用いた以外は、無端ベルト1と同様にして、無端ベルト2〜3を得た。
<Manufacture of endless belts 2 to 3 (tubular body)>
Endless belts 2 to 3 were obtained in the same manner as the endless belt 1 except that the cooling device 80 shown in FIG. 4 was used instead of the cooling device 30 shown in FIG.

なお、用いた冷却装置80における冷却部材82の詳細は以下の通りである。
・全体の形状:外径160mm、押出方向における長さが50mmの円筒状
・第一の領域82Aにおける押出方向の長さ:25mm
・第二の領域82Bにおける押出方向の長さ:25mm
・第二の領域82Bの最外周壁86Bを構成する多孔質の材料:青銅球体粉を焼結した焼結体
・最外周壁86Bの厚み:5mm
・多孔を構成する孔の平均径:5μm
・第二の領域82Bの外周面84Bにおける多孔を構成する孔の開孔率:30%
In addition, the detail of the cooling member 82 in the used cooling device 80 is as follows.
-Overall shape: cylindrical shape with an outer diameter of 160 mm and a length in the extrusion direction of 50 mm-Length in the extrusion direction in the first region 82A: 25 mm
-Length in the extrusion direction in the second region 82B: 25 mm
-Porous material constituting the outermost peripheral wall 86B of the second region 82B: a sintered body obtained by sintering bronze sphere powder-Thickness of the outermost peripheral wall 86B: 5 mm
-Average diameter of pores constituting the pore: 5 μm
-Opening ratio of the holes constituting the porosity in the outer peripheral surface 84B of the second region 82B: 30%

<無端ベルト4〜5(管状体)の製造>
上記図2に示す冷却装置30の代わりに、冷却部材の外周面に多孔を有さない冷却装置を用いた以外は、無端ベルト1と同様にして、無端ベルト4〜5を得た。
なお、用いた冷却装置における冷却部材の全体の形状は、外径160mm、押出方向における長さが50mmの円筒状であり、冷媒の温度は表1に示すように設定した。
<Manufacture of endless belts 4 to 5 (tubular body)>
Endless belts 4 to 5 were obtained in the same manner as the endless belt 1 except that a cooling device having no porosity on the outer peripheral surface of the cooling member was used instead of the cooling device 30 shown in FIG.
The overall shape of the cooling member in the cooling device used was a cylindrical shape having an outer diameter of 160 mm and a length in the extrusion direction of 50 mm, and the temperature of the refrigerant was set as shown in Table 1.

[管状体の評価]
<うねり(Wmax)の測定>
表面粗さ計を用い、測定長さ50mm、カットオフ波長0.8mm、測定速度0.6mm/秒で測定した。前記測定を、無端ベルトの幅方向に3か所行い、その平均値をうねり(Wmax)とした。結果を表1に示す。
[Evaluation of tubular body]
<Measurement of swell (Wmax)>
Using a surface roughness meter, measurement was performed at a measurement length of 50 mm, a cutoff wavelength of 0.8 mm, and a measurement speed of 0.6 mm / second. The measurement was performed at three locations in the width direction of the endless belt, and the average value was defined as waviness (Wmax). The results are shown in Table 1.

うねり(Wmax)の評価基準は以下の通りである。
G1:うねりが0.1μm以下
G2:うねりが0.1μmより大きく0.2μm以下
G3:うねりが0.2μmより大きい
The evaluation criteria for waviness (Wmax) are as follows.
G1: Swell is 0.1 μm or less G2: Swell is greater than 0.1 μm and 0.2 μm or less G3: Swell is greater than 0.2 μm

<二軸で張架時の軸方向真直度の測定>
外径φ28の金属ロール二本を、得られた無端ベルト内に入れ、片側の金属ロールを固定し、張力が偏らないように注意しながら残りの片側を39.2Nの張力で支持する。
二本の金属ロール間の中央部分におけるベルト表面(外周面)の位置を、レーザ変位計を用いて軸方向に測定し、最大値と最小値との差を求めた。この測定をベルトの周方向に8箇所行い、前記差の最大値を二軸で張架時の軸方向真直度とした。結果を表1に示す。
<Measurement of axial straightness when stretching with two axes>
Two metal rolls having an outer diameter φ of 28 are placed in the obtained endless belt, the metal roll on one side is fixed, and the remaining one side is supported with a tension of 39.2 N while taking care not to bias the tension.
The position of the belt surface (outer peripheral surface) in the central portion between the two metal rolls was measured in the axial direction using a laser displacement meter, and the difference between the maximum value and the minimum value was determined. This measurement was performed at eight locations in the circumferential direction of the belt, and the maximum value of the difference was defined as the straightness in the axial direction during stretching with two axes. The results are shown in Table 1.

二軸で張架時の軸方向真直度の評価基準は以下の通りである。
G1:二軸で張架時の軸方向真直度が1.0mm以下
G2:二軸で張架時の軸方向真直度が1.0mmより大きく2.0mm以下
G3:二軸で張架時の軸方向真直度が2.0mmより大きい
The evaluation criteria of the straightness in the axial direction when stretching with two axes are as follows.
G1: Axial straightness when stretching with two axes is 1.0 mm or less G2: Axial straightness when stretching with two axes is greater than 1.0 mm and 2.0 mm or less G3: When stretching with two axes Axial straightness greater than 2.0mm

<転写性の評価>
得られた無端ベルトを画像形成装置(富士ゼロックス社製のDocuPrint CP200W)の中間転写ベルトとして組み込み、温度22℃湿度55%RHの環境下においてハーフトーン画像(マゼンタ40%をのせた画像)をA4縦用紙で3枚出力し、目視により下記評価基準で転写性の判定を行った。結果を表1に示す。
<Evaluation of transferability>
The obtained endless belt is incorporated as an intermediate transfer belt of an image forming apparatus (DocuPrint CP200W manufactured by Fuji Xerox Co., Ltd.), and a halftone image (an image on which magenta is 40%) is A4 in an environment of a temperature of 22 ° C. and a humidity of 55% RH. Three sheets of vertical paper were output, and transferability was judged visually by the following evaluation criteria. The results are shown in Table 1.

−評価基準−
G1:画像に濃度ムラなし
G2:画像に軽い濃度ムラあり
G3:画像に濃度ムラあり
G4:画像抜けあり
-Evaluation criteria-
G1: No density unevenness in image G2: Light density unevenness in image G3: Density unevenness in image G4: Image missing

<電気抵抗値のバラツキの評価>
内円筒φ16、外円筒φ30×φ40の二重円筒式プローブを用い、下面を絶縁体にした測定装置を用いた。この装置の内円筒に100Vをかけたときに外円筒に流れる電流値(電圧印加後5秒値)を測定し、フィルム(管状体)の表面抵抗率を計算により求め、常用対数に変換した。この測定を管状体周方向12箇所、軸方向3か所測定を行い、最大値と最小値の差を求めた。結果を表1に示す。
<Evaluation of variation in electrical resistance value>
A measuring device having an inner cylinder φ16 and an outer cylinder φ30 × φ40 with a double cylinder probe and an insulating bottom surface was used. The current value (5 seconds after voltage application) flowing in the outer cylinder when 100 V was applied to the inner cylinder of this device was measured, and the surface resistivity of the film (tubular body) was determined by calculation and converted to a common logarithm. This measurement was performed at 12 locations in the circumferential direction of the tubular body and at 3 locations in the axial direction, and the difference between the maximum value and the minimum value was determined. The results are shown in Table 1.

−評価基準−
G1:0.2log(Ω/□)以下
G2:0.2log(Ω/□)より大きく0.8log(Ω/□)未満
G3:0.8log(Ω/□)以上
-Evaluation criteria-
G1: 0.2 log (Ω / □) or less G2: greater than 0.2 log (Ω / □) and less than 0.8 log (Ω / □) G3: 0.8 log (Ω / □) or more

上記表1の結果より、実施例では比較例に比べ、うねり及び二軸で張架時の軸方向真直度の値が低く、形状精度の優れた無端ベルトが得られていることがわかった。また実施例では比較例に比べ、転写性が良好であることがわかった。   From the results of Table 1 above, it was found that an endless belt having excellent shape accuracy was obtained in the example, with a lower value of axial straightness during undulation and biaxial tension than in the comparative example. Further, it was found that the transferability was better in the example than in the comparative example.

10 一軸押出機
11 投入口
12 加熱筒
13 スクリュー
20 口金
22 流路
23 出口孔
30、60、80 冷却装置
32、62、82 冷却部材
34、64、84A、84B 外周面
36、66、86A、86B 最外周壁
38、68、88 境界壁
37、42、67、87B 空洞
44、48 供給管
46 排出管
50 引き出し機(引き出し装置)
52 内側ロール
54 外側ロール
70 支持部材
82A 第一の領域
82B 第二の領域
100 管状体製造装置
110 押出装置
F 溶融体
P 樹脂材料
T 管状体
DESCRIPTION OF SYMBOLS 10 Single screw extruder 11 Input port 12 Heating cylinder 13 Screw 20 Base 22 Flow path 23 Outlet hole 30, 60, 80 Cooling device 32, 62, 82 Cooling member 34, 64, 84A, 84B Outer peripheral surface 36, 66, 86A, 86B Outermost peripheral wall 38, 68, 88 Boundary wall 37, 42, 67, 87B Cavity 44, 48 Supply pipe 46 Discharge pipe 50 Drawer (drawer device)
52 Inner roll 54 Outer roll 70 Support member 82A First region 82B Second region 100 Tubular body manufacturing apparatus 110 Extruder F Melt P Resin material T Tubular body

Claims (5)

外周面の少なくとも一部に多孔を有し、押出装置に設けられた口金から押し出される溶融した熱可塑性樹脂を含む管状の溶融体を前記溶融体の内周面側から冷却する冷却部材と、
気体である加圧媒体を前記多孔から前記溶融体の内周面に向かって噴出させる機構と、
前記加圧媒体とは異なる媒体である冷媒を前記冷却部材に供給して、前記冷却部材を冷却する機構と、
を備えた冷却装置。
A cooling member that has a porosity in at least a part of the outer peripheral surface, and cools a tubular melt containing a molten thermoplastic resin extruded from a die provided in an extrusion device from the inner peripheral surface side of the melt;
A mechanism for ejecting a pressurized medium that is a gas from the porous toward the inner peripheral surface of the melt;
A mechanism for supplying a coolant, which is a medium different from the pressurized medium, to the cooling member, and cooling the cooling member;
With cooling device.
前記冷媒は液体である請求項1に記載の冷却装置。  The cooling device according to claim 1, wherein the refrigerant is a liquid. 前記冷却部材は、前記溶融体の押出方向における最も上流側に位置し外周面に前記多孔を有さない第一の領域と、前記第一の領域よりも前記溶融体の押出方向の下流側に位置し外周面に前記多孔を有する第二の領域と、を含む、請求項1又は請求項2に記載の冷却装置。 The cooling member is located on the most upstream side in the extrusion direction of the melt and has a first region that does not have the porosity on the outer peripheral surface, and on the downstream side in the extrusion direction of the melt from the first region. The cooling device according to claim 1, further comprising: a second region that is located and has the porosity on an outer peripheral surface thereof. 前記加圧媒体の温度は、前記冷媒の温度よりも低い、請求項1〜請求項3のいずれか1項に記載の冷却装置。 The cooling device according to any one of claims 1 to 3 , wherein a temperature of the pressurized medium is lower than a temperature of the refrigerant . 溶融した熱可塑性樹脂を含む溶融体を口金から管状に押し出す押出装置と、
前記口金から管状に押し出された前記溶融体を、前記溶融体の内周面側から冷却して管状体とする、請求項1〜請求項4のいずれか1項に記載の冷却装置と、
前記管状体を前記溶融体の押し出し方向に引き出す引き出し装置と、
を有する管状体の製造装置。
An extrusion apparatus for extruding a melt containing a molten thermoplastic resin into a tubular shape from a die;
The cooling device according to any one of claims 1 to 4 , wherein the melt extruded in a tubular shape from the base is cooled from the inner peripheral surface side of the melt to form a tubular body.
A drawing device for pulling out the tubular body in the extrusion direction of the melt;
An apparatus for manufacturing a tubular body.
JP2013261254A 2013-12-18 2013-12-18 Cooling apparatus and tubular body manufacturing apparatus Active JP6191439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261254A JP6191439B2 (en) 2013-12-18 2013-12-18 Cooling apparatus and tubular body manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261254A JP6191439B2 (en) 2013-12-18 2013-12-18 Cooling apparatus and tubular body manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2015116735A JP2015116735A (en) 2015-06-25
JP6191439B2 true JP6191439B2 (en) 2017-09-06

Family

ID=53529927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261254A Active JP6191439B2 (en) 2013-12-18 2013-12-18 Cooling apparatus and tubular body manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6191439B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102129980B1 (en) * 2019-04-26 2020-07-03 조인상 Cooling System for Adapter of Twin Extruder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9400738A (en) * 1994-05-04 1995-12-01 Wavin Bv Method and device for manufacturing biaxially oriented tube from thermoplastic plastic material.
NL1001259C2 (en) * 1995-05-03 1996-11-05 Wavin Bv Method for treating an extruded plastic profile and extrusion installation therefor.
JP4037559B2 (en) * 1998-06-22 2008-01-23 株式会社プラスチック工学研究所 Tubular film manufacturing method and tubular film manufacturing apparatus
JP3710800B2 (en) * 2003-01-31 2005-10-26 住友ベークライト株式会社 Tubular resin film manufacturing apparatus and manufacturing method
JP2011042121A (en) * 2009-08-21 2011-03-03 Sekisui Chem Co Ltd Method of manufacturing thermoplastic resin foaming pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102129980B1 (en) * 2019-04-26 2020-07-03 조인상 Cooling System for Adapter of Twin Extruder

Also Published As

Publication number Publication date
JP2015116735A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
EP3263310A1 (en) Filament resin molding, three-dimensional object fabrication method, and filament resin molding manufacturing method
JP4411497B2 (en) Fluororesin tube and manufacturing method thereof
JP6191439B2 (en) Cooling apparatus and tubular body manufacturing apparatus
US8524133B2 (en) Method for manufacturing resin film for thin film-capacitor and the film therefor
JP5340210B2 (en) Film for film capacitor and manufacturing method thereof
JP6365177B2 (en) Extrusion mold, extrusion molding apparatus, and extrusion molding method
JP6206073B2 (en) Cooling device, tubular body manufacturing apparatus, and tubular body manufacturing method
JP2006276426A (en) Method for producing semiconductive seamless belt
JP6183420B2 (en) Pick-up device
JP7049971B2 (en) Molding method for polyarylene ether ketone resin sheet
JP6515583B2 (en) Apparatus and method for manufacturing tubular body
JP6515582B2 (en) Apparatus and method for manufacturing tubular body
JP6671495B2 (en) Method for producing thermoplastic resin film
JP2013129165A (en) Apparatus and method for manufacturing tubular body
JP5088441B1 (en) Tubular body manufacturing apparatus and tubular body manufacturing method
JPH11344025A (en) Seamless tube and manufacture thereof
JPH11170340A (en) Production of seamless tube
JP4438001B2 (en) Two-layer tube manufacturing apparatus and two-layer tube manufacturing method
JP2012061729A (en) Method of manufacturing elastic roller
JP2005246849A (en) Plug and manufacturing method of thermoplastic resin foamed sheet using the plug
JPH04278327A (en) Manufacture of film-like tubular body
JP2008100469A (en) Extrusion molder and method of extrusion molding of polyether sulfone using it
JP2005288919A (en) Device for manufacturing fixing member for electrophotography
JP2017080949A (en) Annular die and method for manufacturing tube-like object
JP2017101157A (en) Manufacturing method of semiconductive polyamide resin molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170724

R150 Certificate of patent or registration of utility model

Ref document number: 6191439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350