JP3856028B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3856028B2
JP3856028B2 JP2004313598A JP2004313598A JP3856028B2 JP 3856028 B2 JP3856028 B2 JP 3856028B2 JP 2004313598 A JP2004313598 A JP 2004313598A JP 2004313598 A JP2004313598 A JP 2004313598A JP 3856028 B2 JP3856028 B2 JP 3856028B2
Authority
JP
Japan
Prior art keywords
temperature
valve opening
water
refrigerant
discharge temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004313598A
Other languages
Japanese (ja)
Other versions
JP2005069680A (en
Inventor
昌宏 尾浜
竹司 渡辺
松本  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004313598A priority Critical patent/JP3856028B2/en
Publication of JP2005069680A publication Critical patent/JP2005069680A/en
Application granted granted Critical
Publication of JP3856028B2 publication Critical patent/JP3856028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は貯湯式のヒートポンプ給湯機に関するものである。   The present invention relates to a hot water storage type heat pump water heater.

従来のこの種のヒートポンプ給湯機は、図28に示すように、圧縮機1、冷媒対水熱交換器2、減圧装置3、蒸発器4からなる冷媒循環回路と、貯湯槽5、循環ポンプ6、前記冷媒対水熱交換器2、補助加熱器7を接続した給湯回路ならなり前記圧縮機1より吐出された高温高圧の過熱ガス冷媒は前記冷媒対水熱交換器2に流入し、ここで前記循環ポンプ6から送られてきた水を加熱する。   As shown in FIG. 28, a conventional heat pump water heater of this type includes a refrigerant circulation circuit including a compressor 1, a refrigerant-to-water heat exchanger 2, a decompression device 3, an evaporator 4, a hot water tank 5, and a circulation pump 6. The high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 flows into the refrigerant-to-water heat exchanger 2 in the form of a hot water supply circuit connected to the refrigerant-to-water heat exchanger 2 and the auxiliary heater 7. The water sent from the circulation pump 6 is heated.

この水と熱交換した冷媒は前記減圧装置3で減圧され、前記蒸発器4に流入し、ここで大気熱を吸熱して蒸発ガス化し、前記圧縮機1に戻る。一方、前記冷媒対水熱交換器2で加熱された湯は前記貯湯槽5の上部に流入し、上から次第に貯湯されていく。   The refrigerant that exchanges heat with water is decompressed by the decompression device 3 and flows into the evaporator 4, where it absorbs atmospheric heat to evaporate and returns to the compressor 1. On the other hand, the hot water heated in the refrigerant-to-water heat exchanger 2 flows into the upper part of the hot water storage tank 5 and is gradually stored from above.

そして、前記冷媒対水熱交換器2の入口水温が設定値に達すると給水温度検出手段8が
検知し、前記圧縮機1によるヒートポンプ運転を停止して、前記補助加熱器7の単独運転に切り換えるものである(例えば特許文献1参照)。
特開昭60−164157号公報
When the inlet water temperature of the refrigerant-to-water heat exchanger 2 reaches a set value, the feed water temperature detecting means 8 detects it, stops the heat pump operation by the compressor 1, and switches to the independent operation of the auxiliary heater 7. (See, for example, Patent Document 1).
JP 60-164157 A

上記図28に示す従来例のヒートポンプ給湯機では、減圧装置3としてキャピラリーチューブや温度式膨張弁を用いていた。減圧装置3としてキャピラリーチューブを用いる場合、一般的に、冷媒循環量の多い夏季の温度条件を基準にキャピラリーチューブの仕様を設計する。   In the conventional heat pump water heater shown in FIG. 28, a capillary tube or a temperature type expansion valve is used as the decompression device 3. When a capillary tube is used as the decompression device 3, the specification of the capillary tube is generally designed based on the summer temperature conditions in which the refrigerant circulation amount is large.

そのため、夏季以外の特に冬季の運転開始時には、必要以上に冷媒が流れるので、圧縮機1の温度上昇が遅く、冷媒対水熱交換器2出口の湯は低温のまま貯湯槽5の上部に流入し貯湯される。それ故、貯湯槽5の中の高温の湯と混合し、貯湯槽5の湯温を低下させてしまい、時としては、湯切れを起こすという課題があった。   Therefore, since the refrigerant flows more than necessary at the start of operation particularly in winter other than the summer, the temperature rise of the compressor 1 is slow, and the hot water at the outlet of the refrigerant-to-water heat exchanger 2 flows into the upper part of the hot water storage tank 5 at a low temperature. The hot water is stored. Therefore, there is a problem that the hot water in the hot water tank 5 is mixed with the hot water in the hot water tank 5 to lower the hot water temperature in the hot water tank 5 and sometimes the hot water runs out.

また、圧縮機1の温度が上昇した後の定常運転時にも、同様に、冷媒循環回路に必要以上の冷媒が循環するため、運転の効率が悪くなるという課題を有していた。さらに場合によっては、圧縮機1に液冷媒が吸い込まれ、その結果、液圧縮となり圧縮機1の耐久性が悪くなるという課題も有していた。   Further, even during steady operation after the temperature of the compressor 1 has risen, similarly, since more refrigerant than necessary circulates in the refrigerant circulation circuit, there has been a problem that the efficiency of operation is deteriorated. Further, in some cases, the liquid refrigerant is sucked into the compressor 1, and as a result, there is a problem that liquid compression occurs and the durability of the compressor 1 is deteriorated.

他方、減圧装置3として温度式膨張弁を用いる場合、一般的に、蒸発器4の出口の冷媒は一定の過熱度がとれた過熱ガス状態となるように、減圧装置3としての温度式膨張弁の仕様を設計する。   On the other hand, when a temperature type expansion valve is used as the pressure reducing device 3, generally, the temperature type expansion valve as the pressure reducing device 3 is set so that the refrigerant at the outlet of the evaporator 4 is in a superheated gas state with a certain degree of superheat. Design the specifications.

しかし、運転開始時には冷媒回路中の冷媒の分布が安定しないため、圧縮機1の吐出圧力や吐出温度がハンチング(上下変動)し、上限吐出圧力や上限吐出温度を超える場合があり、圧縮機1の耐久性が悪くなるという課題を有していた。   However, since the distribution of the refrigerant in the refrigerant circuit is not stable at the start of operation, the discharge pressure and discharge temperature of the compressor 1 may hunt (up and down fluctuations) and exceed the upper limit discharge pressure and upper limit discharge temperature. It had the subject that durability of worsened.

また、定常運転時においても、設計した外気温度よりも高い時には吐出圧力が上昇したり、外気温度の低い冬季には吐出温度が上昇したりして圧縮機の耐久性が悪くなるという課題を有していた。   In addition, even during steady-state operation, the discharge pressure rises when the temperature is higher than the designed outside air temperature, and the discharge temperature rises in winter when the outside air temperature is low. Was.

本発明は、湯切れが少なく、効率の良い給湯加熱運転を実現することを目的とするものであるにある。   An object of the present invention is to realize an efficient hot water supply heating operation with less hot water shortage.

前記従来の課題を解決するために、圧縮機、冷媒対水熱交換器、冷媒の流量を制御する減圧装置、蒸発器を設けた冷媒循環回路と、貯湯槽、循環ポンプ、前記冷媒対水熱交換器を設けた給湯回路と、前記圧縮機の吐出温度を検出する吐出温度検出手段と、前記冷媒対水熱交換器の水側入口水温を検出する給水温度検出手段とを具備し、前記圧縮機の起動時は、前記給水温度検出手段からの信号に応じて、前記減圧装置の弁開度を予め設定された初期弁開度に設定するようにしたものである。 In order to solve the above-mentioned conventional problems, a compressor, a refrigerant-to-water heat exchanger, a decompression device that controls the flow rate of the refrigerant, a refrigerant circulation circuit provided with an evaporator, a hot water tank, a circulation pump, the refrigerant-to-water heat A hot water supply circuit provided with an exchanger, discharge temperature detection means for detecting the discharge temperature of the compressor, and water supply temperature detection means for detecting the water-side inlet water temperature of the refrigerant-to-water heat exchanger. When the machine is started , the valve opening of the pressure reducing device is set to a preset initial valve opening in accordance with a signal from the feed water temperature detecting means .

これによって、目標吐出温度になるように前記減圧装置の弁開度を制御するため、常に冷媒回路に適正な冷媒が循環し、圧力と温度とも安定することになる。   As a result, the valve opening degree of the pressure reducing device is controlled so as to reach the target discharge temperature, so that an appropriate refrigerant is always circulated through the refrigerant circuit, and both the pressure and temperature are stabilized.

本発明のヒートポンプ給湯機は、圧縮機の起動時には減圧装置の弁開度を予め設定された初期弁開度に制御しておくことにより、圧縮機の吐出温度や吐出圧力のハンチングによ
る異常温度上昇や異常圧力上昇がなく耐久性が高く、また、圧縮機の温度上昇が速く、すぐに冷媒対水熱交換器出口の湯は高温となるので、湯切れの可能性も少くすることができる。
The heat pump water heater of the present invention controls an abnormal temperature rise due to hunting of the compressor discharge temperature or discharge pressure by controlling the valve opening of the pressure reducing device to a preset initial valve opening when the compressor is started. In addition, there is no abnormal pressure rise and durability is high, and the temperature of the compressor rises quickly, and the hot water at the outlet of the refrigerant-to-water heat exchanger immediately becomes hot, so that the possibility of running out of hot water can be reduced.

第1の発明は、圧縮機、冷媒対水熱交換器、冷媒の流量を制御する減圧装置、蒸発器を設けた冷媒循環回路と、貯湯槽、循環ポンプ、前記冷媒対水熱交換器を設けた給湯回路と、前記圧縮機の吐出温度を検出する吐出温度検出手段と、前記冷媒対水熱交換器の水側入口水温を検出する給水温度検出手段とを具備し、前記圧縮機の起動時は、前記給水温度検出手段からの信号に応じて、前記減圧装置の弁開度を予め設定された初期弁開度に設定するようにしたものである。 The first invention is provided with a compressor, a refrigerant-to-water heat exchanger, a decompression device for controlling the flow rate of the refrigerant, a refrigerant circulation circuit provided with an evaporator, a hot water tank, a circulation pump, and the refrigerant-to-water heat exchanger. A hot water supply circuit, discharge temperature detection means for detecting the discharge temperature of the compressor, and water supply temperature detection means for detecting the water-side inlet water temperature of the refrigerant-to-water heat exchanger, when the compressor is started The valve opening of the pressure reducing device is set to a preset initial valve opening in accordance with a signal from the feed water temperature detecting means .

従って、圧縮機の起動時には前記減圧装置の弁開度を予め設定された初期弁開度に設定する制御手段を具備することにより、運転の起動時にも、冷媒回路に適正な冷媒が循環するので、前記圧縮機の吐出温度や吐出圧力のハンチングによる異常温度上昇や異常圧力上昇がなく耐久性が高く、また、圧縮機の温度上昇が速く、すぐに冷媒対水熱交換器出口の湯は高温となるので、湯切れの可能性も少くすることができる。   Therefore, by providing a control means for setting the valve opening of the pressure reducing device to a preset initial valve opening at the time of starting the compressor, proper refrigerant circulates in the refrigerant circuit even at the start of operation. The compressor discharge temperature and discharge pressure hunting does not cause an abnormal temperature rise or abnormal pressure rise, and the durability is high. The compressor temperature rises quickly, and the hot water at the outlet of the refrigerant-to-water heat exchanger immediately becomes hot. Therefore, the possibility of running out of hot water can be reduced.

以下、本発明の実施の形態について図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
以下実施の形態を1図1、2を参照して説明する。なお、従来例背景技術で説明した図28と同じ構成部材には同一符号を用い説明を省略する。
(Embodiment 1)
Hereinafter, an embodiment will be described with reference to FIGS. In addition, the same code | symbol is used for the same component as FIG. 28 demonstrated by the prior art example, and description is abbreviate | omitted.

図1において、冷媒対水熱交換器2の水側出口に設けられた沸き上げ温度検出手段9からの信号で回転数制御手段10は循環ポンプ6の回転数を制御して、冷媒対水熱交換器2の出口水温(沸き上げ温度)をほぼ一定になるように沸き上げる。また、制御手段11は、目標吐出温度を記憶している目標吐出温度記憶手段12と圧縮機1の吐出温度を検出する吐出温度検出手段13からの信号で減圧装置3を制御する。なお、減圧装置3として電動膨張弁(図示せず)等がある。   In FIG. 1, the rotation speed control means 10 controls the rotation speed of the circulation pump 6 by a signal from the boiling temperature detection means 9 provided at the water-side outlet of the refrigerant-to-water heat exchanger 2, and the refrigerant-to-water heat The outlet water temperature (boiling temperature) of the exchanger 2 is boiled so as to be substantially constant. Further, the control unit 11 controls the decompression device 3 with a signal from the target discharge temperature storage unit 12 that stores the target discharge temperature and the discharge temperature detection unit 13 that detects the discharge temperature of the compressor 1. The decompression device 3 includes an electric expansion valve (not shown).

次に動作、作用について説明する。図2は横軸に減圧装置3の弁開度をとり、縦軸に吐出温度と吐出圧力と効率をとって、ある外気温度の時の減圧装置3の弁開度に対する吐出温度と吐出圧力と効率の関係を示したものである。同図からわかるように、効率は減圧装置3の弁開度に対して極大値がある。また、同図において、一点鎖線は圧縮機の通常使用時の上限吐出温度(常用最大吐出温度)であり、二点鎖線は圧縮機の通常使用時の上限吐出圧力(常用最大吐出圧力)である。   Next, the operation and action will be described. FIG. 2 shows the valve opening of the pressure reducing device 3 on the horizontal axis and the discharge temperature, discharge pressure, and efficiency on the vertical axis, and the discharge temperature and discharge pressure with respect to the valve opening of the pressure reducing device 3 at a certain outside air temperature. It shows the relationship of efficiency. As can be seen from the figure, the efficiency has a maximum value with respect to the valve opening degree of the decompression device 3. In the figure, the alternate long and short dash line is the upper limit discharge temperature during normal use of the compressor (normal maximum discharge temperature), and the alternate long and two short dashes line is the upper limit discharge pressure during normal use of the compressor (normal maximum discharge pressure). .

ここで、効率が極大になる減圧装置3の弁開度Xに対する吐出温度を目標吐出温度Yとする。この目標吐出温度Yを目標吐出温度記憶手段12に予め記憶させる。   Here, the discharge temperature with respect to the valve opening X of the pressure reducing device 3 at which the efficiency is maximized is defined as a target discharge temperature Y. This target discharge temperature Y is stored in advance in the target discharge temperature storage means 12.

つまり、給湯運転が始まり圧縮機1が起動すると、制御手段11は吐出温度検出手段13からの信号で吐出温度を検出する。そして、目標吐出温度を記憶している目標吐出温度記憶手段12からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の弁開度を大きくする(開く)ように制御する。   That is, when the hot water supply operation starts and the compressor 1 is started, the control unit 11 detects the discharge temperature by the signal from the discharge temperature detection unit 13. If the current discharge temperature is higher than the target discharge temperature based on the information from the target discharge temperature storage unit 12 storing the target discharge temperature, the control unit 11 increases (opens) the valve opening degree of the decompression device 3. ) To control.

逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は減圧装置3の弁開度を小さくする(閉じる)ように制御する。   Conversely, if the current discharge temperature is lower than the target discharge temperature, the control means 11 controls the valve opening degree of the pressure reducing device 3 to be reduced (closed).

上記のように、制御手段11による吐出温度制御をある時間毎に行えば、常に効率の良い給湯運転が可能となる。また、目標吐出温度になるように減圧装置3の弁開度を制御するため、常に冷媒回路に適正な冷媒が循環するので、異常温度上昇や異常圧力上昇がなく、耐久性も良くすることができる。   As described above, if the discharge temperature control by the control means 11 is performed every certain time, an efficient hot water supply operation is always possible. In addition, since the proper refrigerant circulates in the refrigerant circuit at all times to control the valve opening of the decompression device 3 so as to reach the target discharge temperature, there is no abnormal temperature rise or abnormal pressure rise, and durability can be improved. it can.

(実施の形態2)
図3、4を参照して実施の形態2を説明する。本実施の形態2おいて、実施の形態1と異なる点は、運転起動時における減圧装置3の弁開度を記憶している初期弁開度記憶手段14を設けた構成としていることである。なお、実施の形態1と同符号の部分は同一構成を有し、説明は省略する。
(Embodiment 2)
The second embodiment will be described with reference to FIGS. The second embodiment is different from the first embodiment in that the initial valve opening degree storage means 14 that stores the valve opening degree of the pressure reducing device 3 at the time of starting operation is provided. In addition, the part of the same code | symbol as Embodiment 1 has the same structure, and description is abbreviate | omitted.

次に動作、作用について説明する。図3において、運転起動時には、制御手段11は、起動時における減圧装置3の弁開度(初期弁開度)を記憶している初期弁開度記憶手段14からの信号で減圧装置3の弁開度を前記初期弁開度に設定した後、給湯加熱運転を開始する。   Next, the operation and action will be described. In FIG. 3, when the operation is started, the control means 11 uses the signal from the initial valve opening degree storage means 14 that stores the valve opening degree (initial valve opening degree) of the pressure reducing apparatus 3 at the time of activation. After the opening is set to the initial valve opening, the hot water supply heating operation is started.

図4は横軸に運転時間をとり、縦軸に吐出温度をとって、運転時間に対する吐出温度変化を示したものである。同図において、Tgは目標吐出温度である。また、Td0は制御開始吐出温度で、吐出温度がこの温度になるまでは減圧装置3の弁開度は初期弁開度で一定とし、吐出温度がこの制御開始吐出温度Td0以上になれば、実施例1で説明したように、吐出温度制御運転を行う。すなわち、制御手段11は吐出温度検出手段13からの信号で吐出温度を検出する。   FIG. 4 shows the change in the discharge temperature with respect to the operation time, with the operation time on the horizontal axis and the discharge temperature on the vertical axis. In the figure, Tg is a target discharge temperature. Td0 is the control start discharge temperature. Until the discharge temperature reaches this temperature, the valve opening of the pressure reducing device 3 is made constant at the initial valve opening, and if the discharge temperature becomes equal to or higher than the control start discharge temperature Td0, the operation is performed. As described in Example 1, the discharge temperature control operation is performed. That is, the control unit 11 detects the discharge temperature based on a signal from the discharge temperature detection unit 13.

そして、目標吐出温度を記憶している目標吐出温度記憶手段12からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の弁開度を大きくする(開く)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は減圧装置3の弁開度を小さくする(閉じる)ように制御する。   If the current discharge temperature is higher than the target discharge temperature based on the information from the target discharge temperature storage unit 12 storing the target discharge temperature, the control unit 11 increases (opens) the valve opening degree of the decompression device 3. ) To control. Conversely, if the current discharge temperature is lower than the target discharge temperature, the control means 11 controls the valve opening degree of the pressure reducing device 3 to be reduced (closed).

今、図4において、吐出温度が目標吐出温度に達して、定常状態になった時の減圧装置3の弁開度を到達弁開度とする。同図において、実線Aは運転起動から減圧装置3の弁開度を到達弁開度で運転した場合の吐出温度の変化を示したものである。   Now, in FIG. 4, the valve opening degree of the pressure reducing device 3 when the discharge temperature reaches the target discharge temperature and becomes a steady state is defined as the ultimate valve opening degree. In the figure, the solid line A shows the change in the discharge temperature when the valve opening of the pressure reducing device 3 is operated at the ultimate valve opening from the start of operation.

もし、この到達弁開度よりも小さい(閉じた)弁開度で運転した場合は、一点鎖線Bのようになり、吐出温度がハンチング(上下変動)し、場合によっては上限吐出温度を超えることもある。逆に、この到達弁開度よりも大きい(開いた)弁開度で運転した場合は、点線Cのようになり、吐出温度の上昇が遅く、目標吐出温度に達するのに時間がかかる。   If the valve is operated with a valve opening smaller (closed) than the ultimate valve opening, it becomes like the one-dot chain line B, and the discharge temperature hunts (up and down), and in some cases exceeds the upper limit discharge temperature. There is also. Conversely, when the engine is operated with a valve opening that is larger (open) than this ultimate valve opening, it becomes as shown by dotted line C, and the discharge temperature rises slowly, and it takes time to reach the target discharge temperature.

そこで、この到達弁開度である弁開度Zを予め求めておいて、初期弁開度記憶手段14に記憶させておく。給湯運転の起動時に、制御手段11は初期弁開度記憶手段14からの信号で減圧装置3の初期弁開度(弁開度Z)を求める。そして、制御手段11は減圧装置3の弁開度を弁開度Zに設定した後、給湯加熱運転を開始する。   Therefore, the valve opening Z that is the ultimate valve opening is obtained in advance and stored in the initial valve opening storage means 14. At the start of the hot water supply operation, the control means 11 obtains the initial valve opening degree (valve opening degree Z) of the pressure reducing device 3 from the signal from the initial valve opening degree storage means 14. And after the control means 11 sets the valve opening degree of the decompression device 3 to the valve opening degree Z, the hot water supply heating operation is started.

上記のように、運転の起動時に減圧装置3の弁開度を予め設定された初期弁開度に設定することにより、冷媒回路に適正な冷媒が循環するので、圧縮機1の吐出温度や吐出圧力のハンチングによる異常温度上昇や異常圧力上昇がなく耐久性が高く、また、圧縮機1の吐出温度上昇が速く、すぐに冷媒対水熱交換器2出口の湯は高温となるので、湯切れの可能性も少くすることができる。   As described above, by setting the valve opening of the pressure reducing device 3 to a preset initial valve opening at the start of operation, an appropriate refrigerant circulates in the refrigerant circuit. No abnormal temperature rise or abnormal pressure rise due to pressure hunting, durability is high, discharge temperature rise of the compressor 1 is fast, and hot water at the outlet of the refrigerant-to-water heat exchanger 2 immediately becomes hot. The possibility of this can be reduced.

(実施の形態3)
図5、6において、実施の形態2と異なる点は、圧縮機1が温まっている熱時起動と圧
縮機1が冷えている冷時起動とを検出する熱時冷時検出手段15を備えた構成としていることである。ここでは、熱時冷時検出手段15として吐出温度検出手段13を用いる。なお、実施の形態2と同符号の部分は同一構成を有し、説明は省略する。
(Embodiment 3)
5 and 6, the difference from the second embodiment is provided with a hot and cold detection means 15 for detecting a hot start when the compressor 1 is warm and a cold start when the compressor 1 is cold. It is a configuration. Here, the discharge temperature detection means 13 is used as the hot / cold detection means 15. In addition, the part of the same code | symbol as Embodiment 2 has the same structure, and abbreviate | omits description.

次に動作、作用について説明する。図6は横軸に運転時間をとり、縦軸に吐出温度をとって、運転時間に対する吐出温度の変化を示したものである。同図において、Tgは目標吐出温度である。また、Td0は制御開始吐出温度で、吐出温度がこの温度になるまでは減圧装置3の弁開度は初期弁開度で一定とし、吐出温度がこの制御開始吐出温度Td0以上になれば、実施の形態1で説明したように、吐出温度制御運転を行う。   Next, the operation and action will be described. FIG. 6 shows the change of the discharge temperature with respect to the operation time, with the operation time on the horizontal axis and the discharge temperature on the vertical axis. In the figure, Tg is a target discharge temperature. Further, Td0 is a control start discharge temperature. Until the discharge temperature reaches this temperature, the valve opening of the pressure reducing device 3 is made constant at the initial valve opening. If the discharge temperature becomes equal to or higher than the control start discharge temperature Td0, the operation is performed. As described in the first embodiment, the discharge temperature control operation is performed.

同図の実線で示す吐出温度の変化は、運転起動時に圧縮機1が温まっている熱時起動の場合であり、一点鎖線で示す吐出温度の変化は、運転起動時に圧縮機1が冷えている冷時起動の場合である。同図からわかるように、熱時起動の場合は立ち上がりが速く、すぐに定常状態になる。   The change in the discharge temperature shown by the solid line in the figure is the case of the start-up when the compressor 1 is warm at the start of operation, and the change in the discharge temperature shown by the alternate long and short dash line is the cool of the compressor 1 at the start of the operation. This is the case of cold start. As can be seen from the figure, in the case of start-up during heat, the rise is fast and the steady state is immediately reached.

一方、冷時起動の場合は立ち上がりが遅く、定常状態に達するまでに時間がかかる。熱時起動の場合も冷時起動の場合も、定常状態に達したときの減圧装置3の弁開度(実施の形態2で説明した弁開度Z)は同じである。冷時起動の立ち上がりを速くするために、冷時起動の場合は、熱時起動の場合よりも、減圧装置3の初期弁開度を小さく設定する。そうすれば、同図中の点線(冷時の改良)で示すように、吐出温度の立ち上がりが比較的速くなる。   On the other hand, in the case of cold start, the rise is slow and it takes time to reach a steady state. The valve opening degree of the decompression device 3 (the valve opening degree Z described in the second embodiment) when the steady state is reached is the same in both the case of starting in the hot state and the case of starting in the cold state. In order to speed up the start of the cold start, the initial valve opening of the decompression device 3 is set smaller in the cold start than in the hot start. Then, as shown by the dotted line (improvement during cold) in the figure, the discharge temperature rises relatively quickly.

図6において、Tjdを熱時起動と冷時起動との区別を判定する熱時冷時判定吐出温度とし、運転起動して所定の待機時間t後にこの熱時起動と冷時起動との区別を判定するものとする。すなわち、給湯運転の起動時に、制御手段11は初期弁開度記憶手段14からの信号で減圧装置3の初期弁開度(弁開度Z)を求める。   In FIG. 6, Tjd is the hot / cold determination discharge temperature for determining the distinction between the hot start and the cold start, and the distinction between the hot start and the cold start is made after a predetermined waiting time t after the start of operation. It shall be determined. That is, at the start of the hot water supply operation, the control means 11 obtains the initial valve opening degree (valve opening degree Z) of the pressure reducing device 3 from the signal from the initial valve opening degree storage means 14.

そして、制御手段11は減圧装置3の弁開度を弁開度Zに設定した後、給湯加熱運転を開始する。そして、起動して所定の待機時間t後、吐出温度検出手段13からの信号から得た吐出温度が、熱時冷時判定吐出温度Tjd以上の温度(点A)であれば熱時起動と判定し、熱時冷時判定吐出温度Tjdより低い温度(点B)であれば冷時起動と判定する。判定の結果、熱時起動の場合にはそのままの弁開度(弁開度Z)で運転を続ける。   And after the control means 11 sets the valve opening degree of the decompression device 3 to the valve opening degree Z, the hot water supply heating operation is started. Then, after the start-up and a predetermined standby time t, if the discharge temperature obtained from the signal from the discharge temperature detecting means 13 is a temperature (point A) equal to or higher than the hot-time determination discharge temperature Tjd, it is determined that the start-up is hot. If the temperature is lower than the hot-time cold determination discharge temperature Tjd (point B), it is determined that the engine is cold-started. As a result of the determination, in the case of start-up during heat, the operation is continued with the valve opening (valve opening Z) as it is.

一方、冷時起動の場合には、制御手段11は減圧装置3の弁開度を弁開度Zより小さい弁開度(弁開度Zm)に設定し運転を続ける。なお、この弁開度Zmは、吐出温度の大きなオーバーシュートが無い範囲で予め求めておく。   On the other hand, in the case of cold start, the control means 11 sets the valve opening of the pressure reducing device 3 to a valve opening (valve opening Zm) smaller than the valve opening Z and continues the operation. The valve opening Zm is obtained in advance in a range where there is no large overshoot of the discharge temperature.

そして、熱時起動の場合も冷時起動の場合も、吐出温度が制御開始吐出温度Td0以上になれば、実施例1で説明したように、吐出温度制御運転を行う。すなわち、制御手段11は吐出温度検出手段13からの信号で吐出温度を検出する。そして、目標吐出温度を記憶している目標吐出温度記憶手段12からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の弁開度を大きくする(開く)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は減圧装置3の弁開度を小さくする(閉じる)ように制御する。   In both the case of the start at the time of heating and the case of the start at the cold time, if the discharge temperature becomes equal to or higher than the control start discharge temperature Td0, the discharge temperature control operation is performed as described in the first embodiment. That is, the control unit 11 detects the discharge temperature based on a signal from the discharge temperature detection unit 13. If the current discharge temperature is higher than the target discharge temperature based on the information from the target discharge temperature storage unit 12 storing the target discharge temperature, the control unit 11 increases (opens) the valve opening degree of the decompression device 3. ) To control. Conversely, if the current discharge temperature is lower than the target discharge temperature, the control means 11 controls the valve opening degree of the pressure reducing device 3 to be reduced (closed).

上記のように、圧縮機1の起動時の温度に応じて減圧装置3の弁開度を設定するため、運転起動時にも冷媒回路に適正な冷媒が循環するので、特に冷時においても圧縮機1の温度上昇が速く、すぐに冷媒対水熱交換器2出口の湯は高温となるので、湯切れの可能性も少くすることができる。   As described above, since the valve opening degree of the decompression device 3 is set according to the temperature at the time of starting the compressor 1, an appropriate refrigerant circulates in the refrigerant circuit even at the time of starting the operation. The temperature rise of 1 is fast and the hot water at the outlet of the refrigerant-to-water heat exchanger 2 immediately becomes high temperature, so that the possibility of hot water shortage can be reduced.

(実施の形態4)
図7、8において、実施の形態3と異なる点を述べれば、熱時冷時検出手段15として吐出温度検出手段13と外気温度検出手段16とを用いた構成としていることである。なお、実施の形態3と同符号の部分は同一構成を有し、説明は省略する。
(Embodiment 4)
7 and 8, the difference from the third embodiment is that the discharge temperature detection means 13 and the outside air temperature detection means 16 are used as the hot / cold detection means 15. In addition, the part of the same code | symbol as Embodiment 3 has the same structure, and description is abbreviate | omitted.

次に動作、作用について説明する。図8は横軸に運転停止後の圧縮機1の温度をとり、縦軸に吐出温度検出手段13を付けている配管の温度をとって、運転停止後の圧縮機1の温度に対する吐出温度検出手段13を付けている配管の温度変化の関係を示したものである。   Next, the operation and action will be described. In FIG. 8, the horizontal axis represents the temperature of the compressor 1 after operation stop, and the vertical axis represents the temperature of the pipe provided with the discharge temperature detection means 13 to detect the discharge temperature relative to the temperature of the compressor 1 after operation stop. The relationship of the temperature change of the piping which attached the means 13 is shown.

今、吐出温度を検出する吐出温度検出手段13は圧縮機1の吐出口に接続された配管に設けられている。運転中は冷媒が循環しているため、圧縮機1の温度と吐出温度検出手段13の取り付けている配管部の温度とはほぼ等しいが、運転を停止すると、圧縮機1の温度と吐出温度検出手段13の取り付けている配管部の温度とは差ができてくる。   Now, the discharge temperature detecting means 13 for detecting the discharge temperature is provided in a pipe connected to the discharge port of the compressor 1. Since the refrigerant circulates during operation, the temperature of the compressor 1 and the temperature of the pipe part to which the discharge temperature detecting means 13 is attached are substantially equal, but when the operation is stopped, the temperature of the compressor 1 and the discharge temperature are detected. There is a difference from the temperature of the pipe part to which the means 13 is attached.

すなわち、圧縮機1は熱容量が吐出温度検出手段13の取り付けている配管よりも大きく、さらに、圧縮機1は通常、防音のため断熱材で覆われている。このため、圧縮機1の温度低下の速さは吐出温度検出手段13の取り付けている配管の温度低下の速さよりも小さい。   That is, the compressor 1 has a larger heat capacity than the pipe to which the discharge temperature detecting means 13 is attached, and the compressor 1 is usually covered with a heat insulating material for soundproofing. For this reason, the speed of the temperature drop of the compressor 1 is smaller than the speed of the temperature drop of the pipe to which the discharge temperature detecting means 13 is attached.

また、温度の低下の速さは外気温度によっても異なる。当然、外気温度が低いほど温度の低下の速さは大きい。   Further, the speed of temperature decrease also depends on the outside air temperature. Of course, the lower the outside air temperature, the greater the rate of temperature decrease.

同図において、Tgは目標吐出温度であり、Tjは熱時起動と冷時起動との区別を判定する熱時冷時判定圧縮機温度である。つまり、運転起動時に、圧縮機1の温度が、Tj以上であれば熱時起動であり、Tjより小さければ冷時起動である。   In the figure, Tg is a target discharge temperature, and Tj is a hot / cold determination compressor temperature for determining a distinction between the hot start and the cold start. That is, when the operation is started, if the temperature of the compressor 1 is equal to or higher than Tj, it is a hot start, and if it is lower than Tj, it is a cold start.

また、実線は夏(例えば外気温度35゜C)における運転停止後の圧縮機1の温度と吐出温度検出手段13を取り付けている配管の温度との関係を示したものである。同様に、一点鎖線および点線はそれぞれ中間期(例えば外気温度20゜C)及び冬(例えば外気温度5゜C)における関係を示している。夏、中間期、冬における前述した関係において、運転停止後の圧縮機1の温度が熱時冷時判定圧縮機温度Tjになる時の吐出温度検出手段13を取り付けている配管の温度はそれぞれT1、T2、T3となる。   Further, the solid line shows the relationship between the temperature of the compressor 1 after the operation stop in summer (for example, outside air temperature 35 ° C.) and the temperature of the pipe to which the discharge temperature detecting means 13 is attached. Similarly, an alternate long and short dash line and a dotted line show the relationship in the intermediate period (for example, outside air temperature 20 ° C.) and winter (for example, outside air temperature 5 ° C.), respectively. In the above-described relationship in summer, intermediate period, and winter, the temperatures of the pipes to which the discharge temperature detecting means 13 is attached when the temperature of the compressor 1 after the operation stops becomes the hot / cold determination compressor temperature Tj are T1 respectively. , T2, and T3.

そして、この外気温度(例えば35゜C、20゜C、5゜C)に対して、T1、T2、T3を予め求めておけば、吐出温度検出手段13からの信号によって、熱時起動か冷時起動かの判断ができる。   If T1, T2, and T3 are obtained in advance for this outside air temperature (for example, 35 ° C., 20 ° C., 5 ° C.), the start-up or the cold start is performed according to the signal from the discharge temperature detecting means 13. It is possible to determine whether to start up.

上記のように、外気温度が変化してもその外気温度に対して、圧縮機1の初期温度に応じた減圧装置3の弁開度を設定するため、運転起動時にも冷媒回路に適正な冷媒が循環するので、特に冷時においても圧縮機の温度上昇が速く、すぐに冷媒対水熱交換器出口の湯は高温となるので、湯切れの可能性も少くすることができる。   As described above, even if the outside air temperature changes, the valve opening degree of the pressure reducing device 3 corresponding to the initial temperature of the compressor 1 is set with respect to the outside air temperature. Since the temperature of the compressor rises quickly even when it is cold, and the hot water at the outlet of the refrigerant-to-water heat exchanger quickly becomes hot, the possibility of running out of hot water can be reduced.

(実施の形態5)
図9において、実施の形態3と異なる点を述べれば、熱時冷時検出手段15として圧縮機温度検出手段17を用いた構成としていることである。なお、実施の形態3と同符号の部分は同一構成を有し、説明は省略する。
(Embodiment 5)
In FIG. 9, the difference from the third embodiment is that the compressor temperature detecting means 17 is used as the hot / cold detecting means 15. In addition, the part of the same code | symbol as Embodiment 3 has the same structure, and description is abbreviate | omitted.

次に動作、作用について説明する。実施の形態4で説明したように、熱時起動と冷時起動との区別を判定する圧縮機1の温度を熱時冷時判定圧縮機温度Tjとすると、運転起動
時に、圧縮機1の温度が、Tj以上であれば熱時起動であり、Tjより小さければ冷時起動である。
Next, the operation and action will be described. As described in the fourth embodiment, when the temperature of the compressor 1 for determining the distinction between the hot start and the cold start is the hot cold determination compressor temperature Tj, the temperature of the compressor 1 at the start of operation If it is equal to or higher than Tj, it is a hot start, and if it is smaller than Tj, it is a cold start.

すなわち、給湯運転の起動時に、制御手段11は圧縮機温度検出手段17からの信号で圧縮機1の温度を求める。そして、この求めた温度が前述した熱時冷時判定圧縮機温度Tjよりも大きいか等しければ、制御手段11は熱時起動と判断し、減圧装置3の弁開度を弁開度Zに設定した後、給湯加熱運転を開始する。逆に求めた温度が前述した熱時冷時判定圧縮機温度Tjよりも小さければ、制御手段11は冷時起動と判断し、減圧装置3の弁開度を弁開度Zより小さい弁開度(弁開度Zm)に設定した後、給湯加熱運転を開始する。   That is, at the start of the hot water supply operation, the control means 11 obtains the temperature of the compressor 1 with a signal from the compressor temperature detection means 17. If the obtained temperature is equal to or higher than the above-described hot / cold determination compressor temperature Tj, the control means 11 determines that the engine is activated when it is hot, and sets the valve opening of the decompression device 3 to the valve opening Z. After that, the hot water heating operation is started. On the contrary, if the obtained temperature is lower than the above-described hot / cold determination compressor temperature Tj, the control means 11 determines that it is cold start, and the valve opening of the pressure reducing device 3 is smaller than the valve opening Z. After setting to (valve opening Zm), hot water supply heating operation is started.

上記のように、直接圧縮機1の温度を検出するため、熱時冷時判定のための待機時間が無く、運転起動と同時に減圧装置3の弁開度を最適値に設定できるので、運転効率を良くすることができる。   As described above, since the temperature of the compressor 1 is directly detected, there is no waiting time for determining when the temperature is cold and the valve opening of the pressure reducing device 3 can be set to an optimum value simultaneously with the start of operation. Can be improved.

(実施の形態6)
図10は本発明の実施の形態6のヒートポンプ給湯機の構成図、図11は同ヒートポンプ給湯機の運転停止後の時間に対する吐出温度検出手段13を付けている配管の温度を示す説明図、図12は同ヒートポンプ給湯機の外気温度に対する熱時冷時判定時間を示す説明図である。
(Embodiment 6)
FIG. 10 is a configuration diagram of a heat pump water heater according to Embodiment 6 of the present invention, and FIG. 11 is an explanatory diagram showing the temperature of a pipe provided with a discharge temperature detecting means 13 with respect to the time after the operation of the heat pump water heater is stopped. 12 is explanatory drawing which shows the determination time at the time of cold at the time with respect to the external temperature of the heat pump water heater.

本実施の形態において、実施の形態3と異なる点は、熱時冷時検出手段15として前回の運転停止からの経過時間を計測する時間計測手段18と外気温度を検出する外気温度検出手段16とを用いた構成としていることである。なお、実施の形態3と同符号の部分は同一構成を有し、説明は省略する。   In the present embodiment, the difference from the third embodiment is that, as the hot and cold detection means 15, a time measurement means 18 for measuring the elapsed time from the previous operation stop, and an outside air temperature detection means 16 for detecting the outside air temperature. It is that it is the structure using. In addition, the part of the same code | symbol as Embodiment 3 has the same structure, and description is abbreviate | omitted.

次に動作、作用について説明する。図11は横軸に運転停止後の時間をとり、縦軸に吐出温度検出手段13を付けている配管の温度をとって、運転停止後の時間に対する吐出温度検出手段13を付けている配管の温度の変化の関係を示したものである。   Next, the operation and action will be described. In FIG. 11, the horizontal axis represents the time after the operation stop, the vertical axis represents the temperature of the pipe with the discharge temperature detection means 13, and the pipe with the discharge temperature detection means 13 with respect to the time after the operation stop. This shows the relationship of temperature change.

同図において、Tgは目標吐出温度であり、Tjhは熱時起動と冷時起動との区別を判定する熱時冷時判定吐出配管温度である。いま、吐出温度を検出する吐出温度検出手段13は圧縮機1の吐出口に接続された配管に設けられている。   In the figure, Tg is a target discharge temperature, and Tjh is a hot / cold determination discharge pipe temperature for determining a distinction between a hot start and a cold start. Now, the discharge temperature detecting means 13 for detecting the discharge temperature is provided in a pipe connected to the discharge port of the compressor 1.

そして、運転を停止すると圧縮機1の温度が低下するとともに、吐出温度検出手段13を付けている配管の温度も低下する。また、温度の低下の速さは外気温度によっても異なる。当然、外気温度が低いほど温度の低下の速さは大きい。   When the operation is stopped, the temperature of the compressor 1 is lowered and the temperature of the pipe to which the discharge temperature detecting means 13 is attached is also lowered. Further, the speed of temperature decrease also depends on the outside air temperature. Of course, the lower the outside air temperature, the greater the rate of temperature decrease.

同図において、実線は、夏(例えば外気温度35゜C)の場合における、運転停止後の時間に対する吐出温度検出手段13を付けている配管の温度の変化を示す。同様に、一点鎖線および点線はそれぞれ中間期(例えば外気温度20゜C)及び冬(例えば外気温度5゜C)における吐出温度検出手段13を付けている配管の温度の変化を示す。   In the figure, the solid line shows the change in the temperature of the pipe provided with the discharge temperature detecting means 13 with respect to the time after operation stop in summer (for example, outside air temperature 35 ° C.). Similarly, the alternate long and short dash line and the dotted line indicate changes in the temperature of the pipe to which the discharge temperature detecting means 13 is attached in the intermediate period (for example, outside air temperature 20 ° C.) and winter (for example, outside air temperature 5 ° C.).

また、吐出温度検出手段13を付けている配管の温度が、熱時起動と冷時起動との区別を判定する熱時冷時判定吐出配管温度Tjh以上であれば熱時起動であり、熱時冷時判定吐出配管温度Tjh未満であれば冷時起動である。夏、中間期、冬における吐出温度検出手段13を付けている配管の温度が熱時冷時判定吐出配管温度Tjhに等しくなる運転停止後の時間はそれぞれt1、t2、t3となる。この時間を熱時冷時判定時間とする。   Further, if the temperature of the pipe to which the discharge temperature detecting means 13 is attached is equal to or higher than the hot / cold determination discharge pipe temperature Tjh for determining the distinction between the hot start and the cold start, the hot start is performed. If it is lower than the cold determination discharge pipe temperature Tjh, it is cold start. In the summer, the middle period, and winter, the time after the operation stop when the temperature of the pipe to which the discharge temperature detecting means 13 is attached becomes equal to the hot and cold determination discharge pipe temperature Tjh is t1, t2, and t3, respectively. This time is referred to as a hot / cold determination time.

つまり、運転を起動する場合に、前回の運転停止後からの時間が、この熱時冷時判定時
間以下であれば熱時起動であり、この熱時冷時判定時間より大きければ冷時起動となる。
In other words, when the operation is started, if the time since the previous operation stop is equal to or less than the hot cold determination time, it is hot start, and if it is longer than the hot cold determination time, it is cold start. Become.

図12は横軸に外気温度をとり、縦軸に熱時冷時判定時間をとって、外気温度に対する熱時冷時判定時間の関係を示したものである。同図において、実線よりしたの部分が熱時起動で、上の部分が冷時起動である。この図12の関係を予め求めておくことによって、時間計測手段18からの信号と外気温度検出手段16とによって、熱時起動か冷時起動かの判断ができる。   In FIG. 12, the horizontal axis represents the outside air temperature, and the vertical axis represents the hot / cold determination time. The relationship between the outdoor air temperature and the hot / cold determination time is shown. In the figure, the part shown by the solid line is the start-up when it is hot, and the upper part is the start-up when it is cold. By obtaining the relationship shown in FIG. 12 in advance, it is possible to determine whether to start in the hot state or in the cold state based on the signal from the time measuring unit 18 and the outside air temperature detecting unit 16.

すなわち、給湯運転の起動時に、制御手段11は、時間計測手段18からの信号で前回の運転停止からの経過時間を求め、さらに、外気温度検出手段16からの信号で外気温度を求める。そして、この求めた外気温度おいて、前回の運転停止からの経過時間が前述の熱時冷時判定時間以下であれば、制御手段11は熱時起動と判断し、減圧装置3の弁開度を弁開度Zに設定した後、給湯加熱運転を開始する。   That is, when the hot water supply operation is started, the control unit 11 obtains an elapsed time from the previous operation stop by a signal from the time measurement unit 18 and further obtains an outside air temperature by a signal from the outside air temperature detection unit 16. If the elapsed time from the previous shutdown is equal to or less than the above-described hot / cold determination time at the determined outside air temperature, the control means 11 determines that the engine is hot and the valve opening of the decompression device 3 is determined. After the valve opening Z is set, the hot water heating operation is started.

逆に前回の運転停止からの経過時間が前述の熱時冷時判定時間より大きければ、制御手段11は冷時起動と判断し、減圧装置3の弁開度を弁開度Zより小さい弁開度(弁開度Zm)に設定した後、給湯加熱運転を開始する。   On the other hand, if the elapsed time from the previous shutdown is longer than the above-mentioned hot / cold determination time, the control means 11 determines that the engine is cold and the valve opening of the pressure reducing device 3 is smaller than the valve opening Z. After the temperature (valve opening Zm) is set, the hot water supply heating operation is started.

上記のように、前回の運転停止からの経過時間と外気温度とから熱時と冷時の判断を行うので、運転起動と同時に判断ができ、外気温度が変化しても常に運転効率を良くすることができる。   As described above, it is possible to make a judgment at the same time as the start of operation because the elapsed time since the previous shutdown and the outside air temperature are judged. be able to.

(実施の形態7)
図13、14において、実施の形態2と異なる点は、外気温度検出手段16からの信号に応じて減圧装置3の初期弁開度を決定する制御手段11を設けた構成としていることである。なお、実施の形態2と同符号の部分は同一構成を有し、説明は省略する。
(Embodiment 7)
13 and 14, the difference from the second embodiment is that a control means 11 for determining the initial valve opening degree of the decompression device 3 in accordance with a signal from the outside air temperature detection means 16 is provided. In addition, the part of the same code | symbol as Embodiment 2 has the same structure, and abbreviate | omits description.

次に動作、作用について説明する。図14は横軸に外気温度をとり、縦軸に冷媒循環量と減圧装置3の弁開度とをとって、外気温度に対する冷媒循環量と減圧装置3の弁開度の変化を示したものである。   Next, the operation and action will be described. In FIG. 14, the horizontal axis represents the outside air temperature, and the vertical axis represents the refrigerant circulation amount and the valve opening degree of the decompression device 3, and shows the change in the refrigerant circulation amount and the valve opening degree of the decompression device 3 with respect to the outside air temperature. It is.

一般に、外気温度が高くなると、蒸発器4が大気熱から得るエネルギーは大きくなる。それに従って、同図に示すように、冷媒循環量が増加するので、圧縮機1の吐出温度と吐出圧力とを上限吐出温度および上限吐出圧力以下にするためには、減圧装置3の弁開度を大きく(開く)する必要がある。   In general, as the outside air temperature increases, the energy that the evaporator 4 obtains from atmospheric heat increases. Accordingly, as shown in the figure, since the refrigerant circulation amount increases, in order to make the discharge temperature and discharge pressure of the compressor 1 equal to or lower than the upper limit discharge temperature and the upper limit discharge pressure, the valve opening of the decompression device 3 Needs to be enlarged (opened).

そこで、実施例2で説明した到達弁開度である弁開度Zを、外気温度に対して予め求めておいて、初期弁開度記憶手段14に記憶させておく。給湯運転の起動時に、制御手段11は外気温度検出手段16からの信号と初期弁開度記憶手段14からの信号とで減圧装置3の初期弁開度(弁開度Z)を求める。そして、制御手段11は減圧装置3の弁開度を弁開度Zに設定した後、給湯加熱運転を開始する。   Therefore, the valve opening Z, which is the reaching valve opening described in the second embodiment, is obtained in advance with respect to the outside air temperature and stored in the initial valve opening storage unit 14. At the start of the hot water supply operation, the control means 11 obtains the initial valve opening (valve opening Z) of the pressure reducing device 3 from the signal from the outside air temperature detecting means 16 and the signal from the initial valve opening storage means 14. And after the control means 11 sets the valve opening degree of the decompression device 3 to the valve opening degree Z, the hot water supply heating operation is started.

上記のように、外気温度に対して減圧装置3の初期弁開度を設定するため、外気温度が変化しても運転の起動時に適正な冷媒が循環するので、圧縮機1の吐出度や吐出圧力のハンチングによる異常温度上昇や異常圧力上昇がなく耐久性が高く、また、圧縮機1の温度上昇が速く、すぐに冷媒対水熱交換器2出口の湯は高温となるので、湯切れの可能性も少くすることができる。   As described above, since the initial valve opening degree of the decompression device 3 is set with respect to the outside air temperature, even if the outside air temperature changes, an appropriate refrigerant circulates at the start of operation. There is no abnormal temperature rise or abnormal pressure rise due to pressure hunting, and durability is high. The temperature rise of the compressor 1 is fast, and the hot water at the outlet of the refrigerant-to-water heat exchanger 2 immediately becomes high temperature. The possibility can be reduced.

(実施の形態8)
図15は本発明の実施の形態8のヒートポンプ給湯機の構成図、図16は同ヒートポン
プ給湯機の貯湯槽の高さ方向に対する貯湯槽内の湯の温度を示す説明図、図17は同ヒートポンプ給湯機の給水温度に対する吐出圧力を示す説明図、図18は同ヒートポンプ給湯機の給水温度に対する減圧装置の弁開度を示す説明図である。
(Embodiment 8)
FIG. 15 is a configuration diagram of the heat pump water heater according to the eighth embodiment of the present invention, FIG. 16 is an explanatory diagram showing the temperature of hot water in the hot water storage tank with respect to the height direction of the hot water storage tank, and FIG. FIG. 18 is an explanatory diagram showing the valve opening degree of the decompression device with respect to the feed water temperature of the heat pump water heater.

本実施例において、実施の形態2と異なる点は、冷媒対水熱交換器2の水側入口水温である給水温度を検出する給水温度検出手段8からの信号に応じて、初期弁開度を決定する制御手段11を設けた構成としていることである。なお、実施の形態2と同符号の部分は同一構成を有し、説明は省略する。   In this example, the difference from the second embodiment is that the initial valve opening is set according to the signal from the feed water temperature detecting means 8 that detects the feed water temperature that is the water side inlet water temperature of the refrigerant-to-water heat exchanger 2. In other words, the control means 11 for determination is provided. In addition, the part of the same code | symbol as Embodiment 2 has the same structure, and abbreviate | omits description.

次に動作、作用について説明する。図16は横軸に貯湯槽5内の湯の温度をとり、縦軸に貯湯槽5の高さをとって、貯湯槽内の湯の温度分布を示したものである。前述したように、冷媒対水熱交換器2の水側出口に設けられた沸き上げ温度検出手段9からの信号で回転数制御手段10は循環ポンプ6の回転数を制御して、冷媒対水熱交換器2の出口水温(沸き上げ温度)をほぼ一定になるように沸き上げる。   Next, the operation and action will be described. FIG. 16 shows the temperature distribution of hot water in the hot water tank with the horizontal axis representing the temperature of the hot water in the hot water tank 5 and the vertical axis representing the height of the hot water tank 5. As described above, the rotation speed control means 10 controls the rotation speed of the circulation pump 6 by the signal from the boiling temperature detection means 9 provided at the water-side outlet of the refrigerant-to-water heat exchanger 2, and the refrigerant-to-water The outlet water temperature (boiling temperature) of the heat exchanger 2 is boiled so as to be substantially constant.

しかしながら、沸き上げ運転時間の経過とともに貯湯槽5内の高温湯と低温水の接する部分で高温湯と低温水が混合した混合層が生じ、その層は次第に拡大していく。同図中において、前述の混合層は、高温湯と低温湯の熱伝導および対流により発生するものであり、高温湯から低温湯へ伝熱されその境界部分で高温湯は温度低下し、逆に低温湯は温度上昇する。   However, as the boiling operation time elapses, a mixed layer in which high-temperature hot water and low-temperature water are mixed is formed at a portion where the hot water and low-temperature water are in contact with each other in the hot water storage tank 5, and the layer gradually expands. In the figure, the above-mentioned mixed layer is generated by heat conduction and convection between hot and cold hot water, and heat is transferred from the hot water to the cold hot water, and the temperature of the hot water drops at the boundary. Low temperature hot water rises.

従って、沸き上げ運転完了近くになると、前記冷媒対水熱交換器2に流入する水温は、時間とともに急激に高くなる。図17は横軸に冷媒対水熱交換器2の水側入口水温である給水温度をとり、縦軸に吐出圧力をとって、減圧装置3の弁開度をパラメータとして、給水温度に対する吐出圧力の関係を示したものである。   Accordingly, when the boiling operation is nearly completed, the water temperature flowing into the refrigerant-to-water heat exchanger 2 increases rapidly with time. In FIG. 17, the horizontal axis represents the feed water temperature, which is the water-side inlet water temperature of the refrigerant-to-water heat exchanger 2, the vertical axis represents the discharge pressure, and the valve opening of the decompression device 3 is used as a parameter to determine the discharge pressure relative to the feed water temperature. This shows the relationship.

同図からわかるように、給水温度が高くなるほど吐出圧力も高くなるが、同一の給水温度に対しては、減圧装置3の弁開度が大きい方が、吐出圧力が低くなる。いま、設計吐出圧力をPsとすると、減圧装置3の弁開度大、中、小に対して、設計吐出圧力Psになる給水温度は、それぞれ、Tw1、Tw2、Tw3となる。さらに、図18はこの関係を給水温度と減圧装置3の弁開度について表したものである。すなわち、横軸に冷媒対水熱交換器2の水側入口水温である給水温度をとり、縦軸に減圧装置3の弁開度をとって、給水温度に対する減圧装置3の弁開度の関係を示したものである。   As can be seen from the figure, the higher the feed water temperature, the higher the discharge pressure. However, for the same feed water temperature, the greater the valve opening of the decompression device 3, the lower the discharge pressure. Now, assuming that the design discharge pressure is Ps, the feed water temperatures at which the design discharge pressure Ps is set are Tw1, Tw2, and Tw3 for the valve opening degree of the decompression device 3 being large, medium, and small, respectively. Further, FIG. 18 shows this relationship with respect to the feed water temperature and the valve opening degree of the decompression device 3. That is, the horizontal axis represents the feed water temperature, which is the water-side inlet water temperature of the refrigerant-to-water heat exchanger 2, and the vertical axis represents the valve opening of the decompression device 3, and the relationship between the valve opening of the decompression device 3 and the feed water temperature. Is shown.

そこで、実施の形態で説明した到達弁開度である弁開度Zを、給水温度に対して予め求めておいて、初期弁開度記憶手段14に記憶させておく。給湯運転の起動時に、制御手段11は給水温度検出手段8からの信号と初期弁開度記憶手段14からの信号とで減圧装置3の初期弁開度(弁開度Z)を求める。そして、制御手段11は減圧装置3の弁開度を弁開度Zに設定した後、給湯加熱運転を開始する。   Therefore, the valve opening Z, which is the ultimate valve opening described in the embodiment, is obtained in advance with respect to the feed water temperature, and is stored in the initial valve opening storage means 14. At the start of the hot water supply operation, the control means 11 obtains the initial valve opening (valve opening Z) of the pressure reducing device 3 from the signal from the feed water temperature detecting means 8 and the signal from the initial valve opening storage means 14. And after the control means 11 sets the valve opening degree of the decompression device 3 to the valve opening degree Z, the hot water supply heating operation is started.

上記のように、給水温度に応じて初期弁開度を設定するため、貯湯槽5の湯水混合層領域の湯も沸き上げることができ、そのため、貯湯槽5の湯容積を有効に利用できるので、湯切れの可能性も少くすることができる。   As described above, since the initial valve opening is set in accordance with the feed water temperature, the hot water in the hot water / mixed layer region of the hot water tank 5 can also be boiled, and therefore the hot water volume of the hot water tank 5 can be used effectively. The possibility of running out of hot water can be reduced.

(実施の形態9)
図19は本発明の実施の形態9のヒートポンプ給湯機の構成図、図20は同ヒートポンプ給湯機の給水温度に対する吐出圧力を示す説明図、図21は同ヒートポンプ給湯機の給水温度に対する減圧装置の弁開度を示す説明図である。
(Embodiment 9)
FIG. 19 is a configuration diagram of the heat pump water heater according to the ninth embodiment of the present invention, FIG. 20 is an explanatory diagram showing discharge pressure with respect to the feed water temperature of the heat pump water heater, and FIG. 21 is a diagram of the pressure reducing device with respect to the feed water temperature of the heat pump water heater. It is explanatory drawing which shows a valve opening degree.

本実施の形態において、実施の形態2と異なる点は、冷媒対水熱交換器2の水側入口水
温である給水温度を検出する給水温度検出手段8からの信号と外気温度を検出する外気温度検出手段16からの信号とに応じて、初期弁開度を決定する制御手段11を設けた構成としていることである。なお、実施の形態2と同符号の部分は同一構成を有し、説明は省略する。
In the present embodiment, the difference from the second embodiment is that the signal from the feed water temperature detecting means 8 that detects the feed water temperature that is the water-side inlet water temperature of the refrigerant-to-water heat exchanger 2 and the outside air temperature that detects the outside air temperature. The control means 11 for determining the initial valve opening degree according to the signal from the detection means 16 is provided. In addition, the part of the same code | symbol as Embodiment 2 has the same structure, and abbreviate | omits description.

次に動作、作用について説明する。図20は横軸に冷媒対水熱交換器2の水側入口水温である給水温度をとり、縦軸に吐出圧力をとって、外気温度(例えば夏35゜C、中間期20゜C、冬5゜C)をパラメータとして、減圧装置3の弁開度を一定とした場合の給水温度に対する吐出圧力の関係を示したものである。同図からわかるように、蒸発器4が大気熱から得るエネルギー(夏>中間期>冬)が大きい方が、吐出圧力が高くなる。   Next, the operation and action will be described. In FIG. 20, the horizontal axis represents the feed water temperature, which is the water-side inlet water temperature of the refrigerant-to-water heat exchanger 2, and the vertical axis represents the discharge pressure, so that the outside air temperature (for example, summer 35 ° C, intermediate period 20 ° C, winter The relationship of the discharge pressure with respect to the feed water temperature when the valve opening of the pressure reducing device 3 is made constant with 5 ° C) as a parameter is shown. As can be seen from the drawing, the discharge pressure increases as the energy (summer> intermediate> winter) that the evaporator 4 obtains from atmospheric heat is larger.

今、図20において、各外気温度(夏、中間期、冬)に対して、図17で説明したことが成り立つ。さらに、図18で説明した給水温度と減圧装置3の弁開度との関係を、各外気温度(夏、中間期、冬)に対して、求めれば図21のようになる。   Now, in FIG. 20, what has been described in FIG. 17 is valid for each outside air temperature (summer, intermediate period, winter). Furthermore, if the relationship between the feed water temperature described in FIG. 18 and the valve opening degree of the pressure reducing device 3 is obtained for each outside air temperature (summer, intermediate period, winter), it is as shown in FIG.

すなわち、図21は、横軸に冷媒対水熱交換器2の水側入口水温である給水温度をとり、縦軸に減圧装置3の弁開度をとって、外気温度(例えば夏35゜C、中間期20゜C、冬5゜C)をパラメータとして、給水温度に対する減圧装置3の弁開度の関係を示したものである。   That is, in FIG. 21, the horizontal axis represents the feed water temperature, which is the water-side inlet water temperature of the refrigerant-to-water heat exchanger 2, and the vertical axis represents the valve opening of the decompression device 3, and the outside air temperature (for example, summer 35 ° C.). The relationship between the valve opening of the decompression device 3 with respect to the feed water temperature is shown using the intermediate period 20 ° C. and winter 5 ° C. as parameters.

そこで、実施の形態2で説明した到達弁開度である弁開度Zを、外気温度をパラメータとして、給水温度に対して予め求めておいて、初期弁開度記憶手段14に記憶させておく。給湯運転の起動時に、制御手段11は給水温度検出手段8からの信号と外気温度検出手段16からの信号と初期弁開度記憶手段14からの信号とで減圧装置3の初期弁開度(弁開度Z)を求める。   Therefore, the valve opening Z, which is the reaching valve opening described in the second embodiment, is obtained in advance with respect to the feed water temperature using the outside air temperature as a parameter, and is stored in the initial valve opening storage means 14. . At the start of the hot water supply operation, the control means 11 uses the signal from the feed water temperature detection means 8, the signal from the outside air temperature detection means 16, and the signal from the initial valve opening degree storage means 14 to determine the initial valve opening (valve). Obtain the opening Z).

そして、制御手段11は減圧装置3の弁開度を弁開度Zに設定した後、給湯加熱運転を開始する。   And after the control means 11 sets the valve opening degree of the decompression device 3 to the valve opening degree Z, the hot water supply heating operation is started.

上記のように、給水温度と外気温度とに応じて、初期弁開度を設定するため、貯湯槽5の湯水混合層領域の湯も沸き上げることができ、そのため、外気温度が変化しても常に貯湯槽5の湯容積を有効に利用できるので、湯切れの可能性も少くすることができる。   As described above, since the initial valve opening is set according to the feed water temperature and the outside air temperature, the hot water in the hot water mixed layer region of the hot water tank 5 can also be boiled, and therefore, even if the outside air temperature changes. Since the hot water volume of the hot water tank 5 can always be effectively used, the possibility of hot water running out can be reduced.

(実施の形態10)
図22は本発明の実施の形態10のヒートポンプ給湯機の構成図、図23は同ヒートポンプ給湯機の外気温度に対する目標吐出温度を示す説明図である。
(Embodiment 10)
FIG. 22 is a configuration diagram of the heat pump water heater according to the tenth embodiment of the present invention, and FIG. 23 is an explanatory diagram showing a target discharge temperature with respect to the outside air temperature of the heat pump water heater.

本実施の形態において、実施の形態1と異なる点は、外気温度を検出する外気温度検出手段16からの信号に応じて、目標吐出温度を決定する制御手段11を設けた構成としていることである。なお、実施の形態1と同符号の部分は同一構成を有し、説明は省略する。   The present embodiment is different from the first embodiment in that the control means 11 for determining the target discharge temperature is provided according to the signal from the outside air temperature detecting means 16 for detecting the outside air temperature. . In addition, the part of the same code | symbol as Embodiment 1 has the same structure, and abbreviate | omits description.

次に動作、作用について説明する。一般に、外気温度が高くなると、蒸発器4が大気熱から得るエネルギーは大きくなる。それに従って、冷媒循環量が増加するので、圧縮機1の吐出温度と吐出圧力とを上限吐出温度および上限吐出圧力以下にするためには、減圧装置3の弁開度を大きく(開く)する必要がある。   Next, the operation and action will be described. In general, as the outside air temperature increases, the energy that the evaporator 4 obtains from atmospheric heat increases. Accordingly, since the refrigerant circulation amount increases, the valve opening of the decompression device 3 needs to be increased (opened) in order to make the discharge temperature and discharge pressure of the compressor 1 equal to or lower than the upper limit discharge temperature and the upper limit discharge pressure. There is.

そこで、予め、実施例1で示した図2の関係を外気温度を変えて求める。そして、その外気温度に対して目標吐出温度Yを求めると図23のようになる。すなわち、図23は横軸に外気温度をとり、縦軸に目標吐出温度をとって、外気温度に対する目標吐出温度の変
化を示したものである。
Therefore, the relationship of FIG. 2 shown in the first embodiment is obtained in advance by changing the outside air temperature. Then, the target discharge temperature Y is obtained with respect to the outside air temperature as shown in FIG. That is, FIG. 23 shows the change of the target discharge temperature with respect to the outside air temperature, with the outside air temperature on the horizontal axis and the target discharge temperature on the vertical axis.

この外気温度に対する目標吐出温度の変化を予め求めておいて、目標吐出温度記憶手段12に記憶させておく。給湯運転の起動時に、制御手段11は外気温度検出手段16からの信号と目標吐出温度記憶手段12からの信号とによって、目標吐出温度を求める。さらに、制御手段11は吐出温度検出手段13からの信号で吐出温度を検出する。   A change in the target discharge temperature with respect to the outside air temperature is obtained in advance and stored in the target discharge temperature storage unit 12. At the start of the hot water supply operation, the control means 11 obtains the target discharge temperature from the signal from the outside air temperature detection means 16 and the signal from the target discharge temperature storage means 12. Further, the control means 11 detects the discharge temperature with a signal from the discharge temperature detection means 13.

そして、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は減圧装置3の開度を小さくする(閉じる)ように制御する。   If the current discharge temperature is higher than the target discharge temperature, the control means 11 controls to increase (open) the opening of the decompression device 3. Conversely, if the current discharge temperature is lower than the target discharge temperature, the control means 11 performs control so as to reduce (close) the opening of the decompression device 3.

上記のように、目標吐出温度になるように減圧装置3の弁開度を制御するため、外気温度が変化しても常に冷媒回路に適正な冷媒が循環するので、異常温度上昇や異常圧力上昇がなく、耐久性が高く、運転効率も良くすることができる。   As described above, since the valve opening degree of the pressure reducing device 3 is controlled so as to reach the target discharge temperature, even if the outside air temperature changes, an appropriate refrigerant circulates in the refrigerant circuit at all times. The durability is high and the driving efficiency can be improved.

(実施例11)
図24は本発明の実施の形態11のヒートポンプ給湯機の構成図、図25は同ヒートポンプ給湯機の給水温度に対する目標吐出温度と吐出圧力とを示す説明図である。
(Example 11)
FIG. 24 is a configuration diagram of the heat pump water heater according to the eleventh embodiment of the present invention, and FIG. 25 is an explanatory diagram showing a target discharge temperature and a discharge pressure with respect to the water supply temperature of the heat pump water heater.

本実施例において、実施の形態1と異なる点は、冷媒対水熱交換器2の水側入口水温である給水温度を検出する給水温度検出手段8からの信号に応じて、目標吐出温度を決定する制御手段11を設けた構成としていることである。なお、実施の形態1と同符号の部分は同一構成を有し、説明は省略する。   In this example, the difference from the first embodiment is that the target discharge temperature is determined according to the signal from the feed water temperature detecting means 8 that detects the feed water temperature that is the water side inlet water temperature of the refrigerant-to-water heat exchanger 2. In other words, the control means 11 is provided. In addition, the part of the same code | symbol as Embodiment 1 has the same structure, and abbreviate | omits description.

次に動作、作用について説明する。実施例8の図16で説明したように、貯湯槽5内の高温湯と低温水の接する部分で高温湯と低温水が混合した混合層が生じる。そして、この混合槽内の水が冷媒対水熱交換器2に送られるが、この冷媒対水熱交換器2に送られる水の温度(給水温度)は時間とともに高くなる。   Next, the operation and action will be described. As described with reference to FIG. 16 of the eighth embodiment, a mixed layer in which the high temperature hot water and the low temperature water are mixed is formed in a portion where the high temperature hot water and the low temperature water are in contact with each other. And although the water in this mixing tank is sent to the refrigerant | coolant versus water heat exchanger 2, the temperature (water supply temperature) of the water sent to this refrigerant | coolant versus water heat exchanger 2 becomes high with time.

図25は横軸に給水温度をとり、縦軸に目標吐出温度と吐出圧力とをとって、給水温度に対する目標吐出温度と吐出圧力の変化を示したものである。同図中、一点鎖線は、目標吐出温度を一定(目標吐出温度Tg1)とした場合である。そしてこの場合は、給水温度の上昇とともに、吐出圧力も上昇し、時には、上限吐出圧力を越える場合もある。   FIG. 25 shows changes in the target discharge temperature and discharge pressure with respect to the water supply temperature, with the water supply temperature on the horizontal axis and the target discharge temperature and discharge pressure on the vertical axis. In the figure, the alternate long and short dash line indicates the case where the target discharge temperature is constant (target discharge temperature Tg1). In this case, the discharge pressure increases as the feed water temperature rises, and sometimes exceeds the upper limit discharge pressure.

そこで、冷媒対水熱交換器2の水側入口水温である給水温度がTwxの時に、目標吐出温度Tg1を、この目標吐出温度Tg1より低い目標吐出温度Tg2(Tg1>Tg2)に変更する。さらに、制御手段11は吐出温度検出手段13からの信号で吐出温度を検出する。   Therefore, when the feed water temperature that is the water-side inlet water temperature of the refrigerant-to-water heat exchanger 2 is Twx, the target discharge temperature Tg1 is changed to a target discharge temperature Tg2 (Tg1> Tg2) that is lower than the target discharge temperature Tg1. Further, the control means 11 detects the discharge temperature with a signal from the discharge temperature detection means 13.

この場合、今の吐出温度は目標吐出温度よりも高いので、制御手段11は減圧装置3の開度を大きくする(開く)ように制御する。その結果、図25の実線に示すように、吐出圧力はP1からP2(P1>P2)に減少する。   In this case, since the current discharge temperature is higher than the target discharge temperature, the control means 11 controls to increase (open) the opening of the decompression device 3. As a result, as shown by the solid line in FIG. 25, the discharge pressure decreases from P1 to P2 (P1> P2).

上記のように、貯湯槽5における混合層から冷媒対水熱交換器2に送られた給水温度が高くなった時に目標吐出温度を低く設定し、さらに、この低く設定した目標吐出温度になるように減圧装置3の弁開度を制御するため、給水温度が変化しても常に冷媒回路に適正な冷媒が循環するので、異常温度上昇や異常圧力上昇がなく、耐久性が高く、運転効率を良くするこことができる。   As described above, when the feed water temperature sent from the mixed layer in the hot water tank 5 to the refrigerant-to-water heat exchanger 2 becomes high, the target discharge temperature is set low, and further, this low target discharge temperature is set. In order to control the valve opening of the pressure reducing device 3, the appropriate refrigerant circulates in the refrigerant circuit at all times even if the feed water temperature changes, so there is no abnormal temperature rise or abnormal pressure rise, high durability, and high operating efficiency. Can do better.

(実施例12)
図26は本発明の実施の形態12のヒートポンプ給湯機の構成図、図27は同ヒートポンプ給湯機の沸き上げ温度に対する目標吐出温度を示す説明図である。
(Example 12)
FIG. 26 is a configuration diagram of the heat pump water heater according to the twelfth embodiment of the present invention, and FIG. 27 is an explanatory diagram showing a target discharge temperature with respect to the boiling temperature of the heat pump water heater.

本実施の形態において、実施の形態1と異なる点は、冷媒対水熱交換器2の水側出口水温である沸き上げ温度の到達目標温度である目標沸き上げ温度を記憶している目標沸き上げ温度記憶手段19に応じて、目標吐出温度を決定する制御手段11を設けた構成としていることである。なお、実施例1と同符号の部分は同一構成を有し、説明は省略する。   In the present embodiment, the difference from the first embodiment is that the target boiling temperature that stores the target boiling temperature that is the target temperature of the boiling temperature that is the water-side outlet water temperature of the refrigerant-to-water heat exchanger 2 is stored. The control means 11 for determining the target discharge temperature is provided according to the temperature storage means 19. In addition, the part of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.

次に動作、作用について説明する。一般に、沸き上げ温度を高くするには、冷媒対水熱交換器2を循環する冷媒の温度を高くする必要がある。そこで、予め、実施の形態1で示した図2の関係を沸き上げ温度を変えて求める。   Next, the operation and action will be described. Generally, in order to raise the boiling temperature, it is necessary to raise the temperature of the refrigerant circulating in the refrigerant-to-water heat exchanger 2. Therefore, the relationship of FIG. 2 shown in Embodiment 1 is obtained in advance by changing the boiling temperature.

そして、その沸き上げ温度に対して目標吐出温度Yを求めると図27のようになる。すなわち、図27は横軸に沸き上げ温度をとり、縦軸に目標吐出温度をとって、沸き上げ温度に対する目標吐出温度の関係を示したものである。   And when the target discharge temperature Y is calculated | required with respect to the boiling temperature, it will become like FIG. That is, FIG. 27 shows the relationship of the target discharge temperature with respect to the boiling temperature, with the boiling temperature on the horizontal axis and the target discharge temperature on the vertical axis.

そこで、この沸き上げ温度に対する目標吐出温度の関係を予め求めておいて、目標吐出温度記憶手段12に記憶させておく。給湯運転の起動時に、制御手段11は目標沸き上げ温度記憶手段19からの信号と目標吐出温度記憶手段12からの信号とによって、目標吐出温度を求める。   Therefore, the relationship between the target discharge temperature and the boiling temperature is obtained in advance and stored in the target discharge temperature storage means 12. At the start of the hot water supply operation, the control means 11 obtains the target discharge temperature from the signal from the target boiling temperature storage means 19 and the signal from the target discharge temperature storage means 12.

さらに、制御手段11は吐出温度検出手段13からの信号で吐出温度を検出する。そして、吐出温度が目標吐出温度になるように減圧装置3の弁開度を制御する。   Further, the control means 11 detects the discharge temperature with a signal from the discharge temperature detection means 13. And the valve opening degree of the decompression device 3 is controlled so that the discharge temperature becomes the target discharge temperature.

図27に示す沸き上げ温度に対する目標吐出温度の関係の代わりに、次のように簡略化した関係で目標吐出温度を求めてもほぼ同様の効果が得られる。すなわち、目標吐出温度を目標沸き上げ温度よりも所定の温度ΔTだけ高く設定する。動作、作用は上述と同様なので説明は省略する。   Instead of the relationship between the target discharge temperature and the boiling temperature shown in FIG. 27, substantially the same effect can be obtained even if the target discharge temperature is obtained by the following simplified relationship. That is, the target discharge temperature is set higher by a predetermined temperature ΔT than the target boiling temperature. Since the operation and action are the same as described above, description thereof is omitted.

なお、上記各実施の形態においては冷媒を特に記載していないが、このような装置に使用する冷媒であればどのようなものであっても良く、例えばHCFC(R22)冷媒、HFC冷媒(R410A)冷媒、CO2冷媒、プロパン冷媒等が考えられる。   In each of the above embodiments, the refrigerant is not particularly described. However, any refrigerant may be used as long as it is used in such a device, for example, HCFC (R22) refrigerant, HFC refrigerant (R410A). ) Refrigerant, CO2 refrigerant, propane refrigerant, etc. are conceivable.

上記のように、目標吐出温度になるように減圧装置3の弁開度を制御するため、沸き上げ温度を変更しても常に冷媒回路に適正な冷媒が循環するので、異常温度上昇や異常圧力上昇がなく、耐久性が高く、運転効率も良くすることができる。   As described above, in order to control the valve opening degree of the pressure reducing device 3 so as to reach the target discharge temperature, even if the boiling temperature is changed, an appropriate refrigerant always circulates in the refrigerant circuit. There is no increase, durability is high, and driving efficiency can be improved.

以上のように、本発明にかかるヒートポンプ給湯機によれば、目標吐出温度になるように減圧装置の弁開度を制御するため、常に冷媒回路に適正な冷媒が循環して運転効率を良くすることができるものであり、給湯機以外の熱機器への展開が期待できるものである。   As described above, according to the heat pump water heater of the present invention, since the valve opening degree of the pressure reducing device is controlled so as to reach the target discharge temperature, the appropriate refrigerant is always circulated in the refrigerant circuit to improve the operation efficiency. It can be expected to expand to thermal equipment other than water heaters.

本発明の実施の形態1のヒートポンプ給湯機を示す構成図The block diagram which shows the heat pump water heater of Embodiment 1 of this invention 同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す説明図Explanatory drawing which shows discharge temperature with respect to the opening degree of the decompression device of the heat pump water heater, discharge pressure, and efficiency 本発明の実施の形態2のヒートポンプ給湯機の構成図The block diagram of the heat pump water heater of Embodiment 2 of this invention 同ヒートポンプ給湯機の運転時間に対する吐出温度を示す説明図Explanatory drawing which shows the discharge temperature with respect to the operation time of the heat pump water heater 本発明の実施の形態3のヒートポンプ給湯機の構成図The block diagram of the heat pump water heater of Embodiment 3 of this invention 同ヒートポンプ給湯機の運転時間に対する吐出温度を示す説明図Explanatory drawing which shows the discharge temperature with respect to the operation time of the heat pump water heater 本発明の実施の形態4のヒートポンプ給湯機の構成図The block diagram of the heat pump water heater of Embodiment 4 of this invention 同ヒートポンプ給湯機の運転停止後の圧縮機の温度に対する吐出温度検出手段を付けている配管の温度を示す説明図Explanatory drawing which shows the temperature of piping which has attached the discharge temperature detection means with respect to the temperature of the compressor after the operation stop of the heat pump water heater 本発明の実施の形態5のヒートポンプ給湯機の構成図Configuration diagram of heat pump water heater of Embodiment 5 of the present invention 本発明の実施の形態6のヒートポンプ給湯機の構成図The block diagram of the heat pump water heater of Embodiment 6 of this invention 同ヒートポンプ給湯機の運転停止後の時間に対する吐出温度検出手段を付けている配管の温度を示す説明図Explanatory drawing which shows the temperature of piping which has the discharge temperature detection means with respect to the time after the operation stop of the heat pump water heater 同ヒートポンプ給湯機の外気温度に対する熱時冷時判定時間を示す説明図Explanatory drawing which shows the determination time at the time of hot and cold with respect to the outside temperature of the heat pump water heater 本発明の実施の形態7のヒートポンプ給湯機の構成図The block diagram of the heat pump water heater of Embodiment 7 of this invention 同ヒートポンプ給湯機の外気温度に対する減圧装置の弁開度と冷媒循環量とを示す説明図Explanatory drawing which shows the valve opening degree of the decompression device with respect to the outside temperature of the heat pump water heater, and the refrigerant circulation amount 本発明の実施の形態8のヒートポンプ給湯機の構成図The block diagram of the heat pump water heater of Embodiment 8 of this invention 同ヒートポンプ給湯機の貯湯槽の高さ方向に対する貯湯槽内の湯の温度を示す説明図Explanatory drawing which shows the temperature of the hot water in a hot water tank with respect to the height direction of the hot water tank of the heat pump water heater 同ヒートポンプ給湯機の給水温度に対する吐出圧力を示す説明図Explanatory drawing which shows the discharge pressure with respect to the feed water temperature of the heat pump water heater 同ヒートポンプ給湯機の給水温度に対する減圧装置の弁開度を示す説明図Explanatory drawing which shows the valve opening degree of the pressure reduction device with respect to the feed water temperature of the heat pump water heater 本発明の実施の形態9のヒートポンプ給湯機の構成図The block diagram of the heat pump water heater of Embodiment 9 of this invention 同ヒートポンプ給湯機の給水温度に対する吐出圧力を示す説明図Explanatory drawing which shows the discharge pressure with respect to the feed water temperature of the heat pump water heater 同ヒートポンプ給湯機の給水温度に対する減圧装置の弁開度を示す説明図Explanatory drawing which shows the valve opening degree of the pressure reduction device with respect to the feed water temperature of the heat pump water heater 本発明の実施の形態10のヒートポンプ給湯機の構成図Configuration diagram of heat pump water heater of Embodiment 10 of the present invention 同ヒートポンプ給湯機の外気温度に対する目標吐出温度を示す説明図Explanatory drawing which shows the target discharge temperature with respect to the outside temperature of the heat pump water heater 本発明の実施の形態11のヒートポンプ給湯機の構成図The block diagram of the heat pump water heater of Embodiment 11 of this invention 同ヒートポンプ給湯機の給水温度に対する目標吐出温度と吐出圧力とを示す説明図Explanatory drawing which shows the target discharge temperature and discharge pressure with respect to the feed water temperature of the heat pump water heater 本発明の実施の形態12のヒートポンプ給湯機の構成図The block diagram of the heat pump water heater of Embodiment 12 of this invention 同ヒートポンプ給湯機の沸き上げ温度に対する目標吐出温度を示す説明図Explanatory drawing which shows the target discharge temperature with respect to the boiling temperature of the heat pump water heater 従来例におけるヒートポンプ給湯機の構成図Configuration diagram of heat pump water heater in conventional example

符号の説明Explanation of symbols

1 圧縮機
2 冷媒対水熱交換器
3 減圧装置
4 蒸発器
5 貯湯槽
6 循環ポンプ
8 給水温度検出手段
11 制御手段
13 吐出温度検出手段
16 外気温度検出手段
17 圧縮機温度検出手段
18 時間計測手段
DESCRIPTION OF SYMBOLS 1 Compressor 2 Refrigerant to water heat exchanger 3 Pressure reducing device 4 Evaporator 5 Hot water storage tank 6 Circulating pump 8 Feed water temperature detection means 11 Control means 13 Discharge temperature detection means 16 Outside air temperature detection means 17 Compressor temperature detection means 18 Time measurement means

Claims (1)

圧縮機、冷媒対水熱交換器、冷媒の流量を制御する減圧装置、蒸発器を設けた冷媒循環回路と、貯湯槽、循環ポンプ、前記冷媒対水熱交換器を設けた給湯回路と、前記圧縮機の吐出温度を検出する吐出温度検出手段と、前記冷媒対水熱交換器の水側入口水温を検出する給水温度検出手段とを具備し、前記圧縮機の起動時は、前記給水温度検出手段からの信号に応じて、前記減圧装置の弁開度を予め設定された初期弁開度に設定するようにしたヒートポンプ給湯機。 A compressor, a refrigerant-to-water heat exchanger, a decompression device for controlling the flow rate of the refrigerant, a refrigerant circulation circuit provided with an evaporator, a hot water storage tank, a circulation pump, a hot water supply circuit provided with the refrigerant-to-water heat exchanger, and a discharge temperature detection means for detecting the discharge temperature of the compressor, comprising a feed water temperature detecting means for detecting the water side inlet temperature of the refrigerant to water heat exchanger, startup of the compressor, the feedwater temperature detected A heat pump water heater in which the valve opening of the pressure reducing device is set to a preset initial valve opening in accordance with a signal from the means .
JP2004313598A 2000-10-13 2004-10-28 Heat pump water heater Expired - Fee Related JP3856028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004313598A JP3856028B2 (en) 2000-10-13 2004-10-28 Heat pump water heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000313146 2000-10-13
JP2004313598A JP3856028B2 (en) 2000-10-13 2004-10-28 Heat pump water heater

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001314897A Division JP3632645B2 (en) 2000-10-13 2001-10-12 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2005069680A JP2005069680A (en) 2005-03-17
JP3856028B2 true JP3856028B2 (en) 2006-12-13

Family

ID=34424985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004313598A Expired - Fee Related JP3856028B2 (en) 2000-10-13 2004-10-28 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3856028B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5032284B2 (en) * 2007-12-05 2012-09-26 株式会社コロナ Heat pump water heater

Also Published As

Publication number Publication date
JP2005069680A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP3915770B2 (en) Heat pump water heater
JP3632645B2 (en) Heat pump water heater
JP3659197B2 (en) Heat pump water heater
JP2002188860A5 (en)
JP6609198B2 (en) Combined heat source heat pump device
JP5934916B2 (en) Refrigeration cycle apparatus and hot water generator provided with the same
JP5176474B2 (en) Heat pump water heater
JP2007139275A (en) Heat pump type water heater
JP3937715B2 (en) Heat pump water heater
JP2010025517A (en) Heat pump type water heater
JP5194492B2 (en) Heat pump water heater
JP3800862B2 (en) Heat pump water heater
JP3755422B2 (en) Heat pump water heater
JP3900186B2 (en) Heat pump water heater
JP5478403B2 (en) Heat pump water heater
JP2005140439A (en) Heat pump water heater
JP3856028B2 (en) Heat pump water heater
JP3703995B2 (en) Heat pump water heater
JP3856025B2 (en) Heat pump water heater
JP3849577B2 (en) Heat pump bath water heater
JP2017198383A (en) Heat pump type water heater
JP2001208434A (en) Heat pump hot water supplier
JP2009085476A (en) Heat pump water heater
JP2008116184A (en) Refrigerating cycle device
JP2002310532A (en) Heat pump hot water feeding apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R151 Written notification of patent or utility model registration

Ref document number: 3856028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees