JP3855869B2 - Method for measuring the injection amount of each nozzle of a fuel injection nozzle - Google Patents

Method for measuring the injection amount of each nozzle of a fuel injection nozzle Download PDF

Info

Publication number
JP3855869B2
JP3855869B2 JP2002202178A JP2002202178A JP3855869B2 JP 3855869 B2 JP3855869 B2 JP 3855869B2 JP 2002202178 A JP2002202178 A JP 2002202178A JP 2002202178 A JP2002202178 A JP 2002202178A JP 3855869 B2 JP3855869 B2 JP 3855869B2
Authority
JP
Japan
Prior art keywords
fluid
nozzle
fuel injection
weight
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002202178A
Other languages
Japanese (ja)
Other versions
JP2004044464A (en
Inventor
克哉 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2002202178A priority Critical patent/JP3855869B2/en
Publication of JP2004044464A publication Critical patent/JP2004044464A/en
Application granted granted Critical
Publication of JP3855869B2 publication Critical patent/JP3855869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジン等に用いられる多噴口燃料噴射ノズルの各噴口毎の噴射量を個別に測定する方法に関する。
【0002】
【従来の技術】
一般に、ディーゼルエンジン用の燃料噴射ノズルでは、複数且つ比較的細径の噴口がノズル先端に穿設され、これら複数の噴口から同時に燃料を噴射するようになっている。
【0003】
図3に示されるように、従来の燃料噴射ノズルの噴射量測定装置は、タンク51に貯留された流体Fをポンプ52により供給管55を通じて燃料噴射ノズル53に圧送供給し、燃料噴射ノズル53の各噴口から流体Fを噴射させると共に、その噴射された流体Fをタンク51に回収し、ポンプ52と燃料噴射ノズル53との間に設けられた流量測定器54により全噴口から噴射される噴射量の合計(合計流量)を測定するようになっていた。なお特開平8−121287号公報にも同様の技術が開示されている。
【0004】
しかし、近年では排ガス規制の要求により噴口が微小化し、加工が難しくなってきている。この現状で各噴口からの燃料噴射量を均一にするには、噴口毎に噴射量を測定し、各噴射量のバラツキを評価する必要がある。逆にこれを行わないと、ノズル全体の噴射量が適正値に合致していても、噴口毎に噴射量がバラツキ、ひいては燃料噴霧状態がバラついてしまう。その結果排ガスの悪化を招いてしまう。なお実験によれば噴口毎に基準噴射量に対する20%以上のバラツキが生じる場合がある。
【0005】
この観点から、従来では図4に示すような噴射量測定装置もある。即ち、前記同様に燃料噴射ノズル53に流体を供給し、噴口から噴射される流体Fを噴口56毎に個別にストロー状のパイプ57を介してメスシリンダ58に導き、一定時間の間にメスシリンダ58に溜まる流体Fの体積を測定し、噴口毎の各体積同士を比較して噴口毎の噴射量のバラツキを評価する、というものである。
【0006】
【発明が解決しようとする課題】
しかし、この方法によれば、流体をメスシリンダに溜める作業を噴口毎に順番に時間を変えて行っていたため、流体供給ポンプからの流体供給量のバラツキや貯留時間のバラツキ等、測定条件のバラツキが生じやすく、測定精度を確保するのが困難である。
【0007】
そこで、以上の問題に鑑みて本発明は創案され、その目的は、噴口毎の噴射量測定に際し高精度な測定を可能にすることにある。
【0008】
【課題を解決するための手段】
本発明によれば、複数の噴口を有する燃料噴射ノズルの各噴口に対し個別に設けられ、上記噴口から噴射される流体を導入する入口及びその流体を排出する出口を有する複数の流体管と、上記各流体管に対し個別に設けられ、上記流体管の出口から排出された流体を貯留するための複数の容器と、上記各流体管にそれぞれ設けられ、上記流体管に導入された流体を上記流体管の出口側又は外部の排出側のいずれか一方に導くべく容器側又は外部側に切換可能な複数の三方弁と、それぞれの上記三方弁を容器側又は外部側に同時に切り換えるための切換手段と、上記各容器に対し個別に設けられ、上記容器及びこれに貯留された流体の重量を測定するための複数の重量測定手段と、上記燃料噴射ノズルに供給するための流体が貯留されたタンクと、そのタンク内の流体を供給通路を通じて上記燃料噴射ノズルに圧送するポンプとを備えた燃料噴射ノズルの噴射量測定装置を用い、上記燃料噴射ノズルの各噴口を常時開口させた状態で、その燃料噴射ノズルに上記ポンプにより流体を圧送して、上記燃料噴射ノズルから噴射する流体の上記各噴口毎の噴射量を測定する方法であって、上記切換手段により全ての上記三方弁を同時に外部側に切り換えるステップと、上記ポンプにて上記タンク内の流体を上記供給通路を通じて上記燃料噴射ノズルに供給して上記各噴口から流体を噴射させると共に、それら噴射された流体を上記各流体管及び上記各三方弁を通じさせた後外部に排出するステップと、上記各重量測定手段により上記各容器毎の初期重量をそれぞれ測定するステップと、上記切換手段により全ての上記三方弁を同時に容器側に切り換え、上記各流体管に導入される流体を上記各容器に排出させ、上記各容器に流体を溜めるステップと、上記三方弁を容器側に切り換えた時から所定時間経過後、上記切換手段により全ての上記三方弁を同時に外部側に切り換え、上記各流体管に導入される流体を外部に排出することにより上記各容器への流体の貯留を停止するステップと、上記各重量測定手段により上記各容器毎の貯留後重量を測定し、上記貯留後重量と上記初期重量との差を上記各容器毎に算出して上記各噴口毎の噴射量を測定するステップとを備えたことを特徴とする燃料噴射ノズルの各噴口毎噴射量測定方法が提供される。
【0011】
本発明によれば、各噴口に対し流体管、三方弁及び容器が設けられると共に、全ての三方弁が同時に切り換えられて容器への流体貯留作業が行われるため、各噴口に対する噴射量測定作業が一時期に同時に行われ、同一の測定条件下での測定が可能となり、測定精度が大幅に向上する。
【0012】
【発明の実施の形態】
以下、本発明の好適な実施の形態を添付図面に基づいて詳述する。
【0013】
図1に本実施形態に係る燃料噴射量測定装置を示す。1が測定対象となる燃料噴射ノズルで、これは一部のみが図示される。図示されるのは燃料噴射ノズル1のノズルボディ2のみが評価される場合であり、この場合には内部の針弁やリターンスプリング等が取り除かれる。ノズルボディ2は図示しない手段により一定位置に固定される。ノズルボディ2の先端の尖頭状部分3に、比較的細径(例えばφ0.1〜0.3mm)の複数(例えば5〜8個)の噴口4が、斜め下向きに穿設される。ノズルボディ2の中心部には針弁及びリターンスプリングを収容するための針弁室5が形成され、針弁室5の途中には針弁のテーパ部(圧力作用部)を収容するための油溜まり室6が形成され、油溜まり室6には燃料導入通路7が連通される。本来、燃料噴射ノズルでは燃料導入通路7から油溜まり室6に導入された燃料の圧力で針弁を上昇させ、噴口4から燃料噴射を行うが、この測定試験時においては燃料導入通路7が図示しない手段により閉塞され、針弁室5に試験用流体F(本実施形態ではオイル)が供給され、流体Fが各噴口4から同時に噴射される。
【0014】
なお、針弁等の影響を合わせて評価される場合もあり、この場合には針弁室5に針弁及びリターンスプリング(図示せず)がセットされ、図に破線で示されるように燃料導入通路7に流体Fが供給される。
【0015】
流体Fはタンク8に貯留されている。タンク8には温度制御装置が備えられ、流体Fの温度を調節できると共に、その温度を一定に保てるようになっている。タンク8に溜められた流体Fはポンプ9により供給管10を通じて燃料噴射ノズル1に圧送される。ポンプ9は高圧ポンプとされ、流体Fの圧力を所定の高圧(例えば10〜160MPa)まで高めて圧送する。これは実際の燃料噴射時と同条件に近付けるためである。ポンプ9には圧力制御装置が備えられ、流体Fの圧力を調節できると共に、その圧力を一定に保てるようになっている。供給管10の途中には、全噴口4の合計の噴射量を測定するための合計噴射量測定手段、本実施形態では合計の噴射流量を測定するための流量測定器11が設けられる。供給管10は針弁室5に連通され、針弁室5に流体Fを直接供給する。
【0016】
なお、タンク8、ポンプ9、供給管10及び流量測定器11からなる流体供給装置の構成は、図3に示した従来の装置と同様である。
【0017】
噴口4から噴射された流体Fは流体管12を通じて容器13に溜められる。但し本実施形態では従来(図4)と異なり、各噴口4或いは全ての噴口4に対し流体管12と容器13とが個別に設けられる。即ち、流体管12と容器13とは、一つの噴口4に対し1つずつ、噴口数と同数設けられる。なお図では二つの流体管12と容器13のみが代表的に明瞭に描かれる。
【0018】
流体管12は、例えば金属管からなり、図示例では直管であるが、湾曲管、屈曲管等を適宜用いることもできる。流体管12は適宜な固定手段により一定位置に固定される。流体管12は、噴口4から噴射された流体Fを導入する入口14と、その流体Fを排出する出口15とを有し、少なくとも出口15が入口14の下方に位置され、管内で流体Fを重力により流下させるようになっている。本実施形態では流体管12が流体流れ方向に沿って斜め下向きになるよう傾斜して配置される。入口14は、噴口4から噴射された流体Fを漏れなく導入するよう、噴口4にできるだけ接近され、又は噴口4の周囲の尖頭状部分3に接触される。
【0019】
容器13は、上方が開放された有底筒体状のものであり、出口15の真下に位置され、出口15から排出されて流下する流体Fを上方の開口部から導入する。容器13及びこれに貯留された流体Fの重量を測定するための重量測定手段、即ち重量測定器16が設けられる。重量測定器16は各容器13に対し個別に設けられ、即ち、一つの容器13に対し1つずつ、容器数(即ち噴口数)と同数設けられる。各容器13は各重量測定器16の上に載置される。本実施形態では高精度の測定を行えるようにするため、重量測定器16として電子天秤が用いられる。
【0020】
各流体管12にはそれぞれ三方弁17が設けられる。即ち三方弁17は、一つの流体管12に対し1つずつ、流体管12の数(即ち噴口数)と同数設けられる。三方弁17は排出ポート(図示せず)を有し、排出ポートは流体排出管19を介してタンク8に接続される。
【0021】
三方弁17は本実施形態の場合電磁弁とされ、切換手段としてのコントローラ18により全て同時にON/OFFされ、一方側A又は他方側Bに切り換えられる。三方弁17がONされて一方側Aに切り換えられたとき、流体管12に導入された流体Fは流体管12の出口15側に導かれる。一方、三方弁17がOFFされて他方側Bに切り換えられたとき、流体管12に導入された流体Fは、排出ポート及び流体排出管19を通じてタンク8(即ち外部の排出側)に導かれる。
【0022】
コントローラ18は時間計測手段としてのタイマ22を備え、三方弁17のON/OFFの切換えをタイマ22の設定時間経過と同時に自動的に行える。またコントローラ18には手動スイッチ23も設けられ、手動スイッチ23のON/OFFにより三方弁17を手動でON/OFFすることもできる。
【0023】
各容器13の出口は排出管20を介してタンク8に接続され、各容器13内の流体Fをタンク8に戻せるようになっている。各容器13から延出される排出管20は途中で合流され、この合流部の下流側に切換弁21が設けられる。測定時は切換弁21が閉じられ、容器13内への流体Fの貯留が可能とされる。そして測定時でない適当な時期に切換弁21が開かれ、容器13内の流体Fがタンク8に戻される。なお、切換弁21は手動で開閉されても良いし、コントローラ18により自動で開閉されても良い。
【0024】
次に、本装置による各噴口毎噴射量測定方法、並びに各噴口毎噴射量評価方法を説明する。
【0025】
まず、全ての三方弁17を他方側Bに切り換えた状態でポンプ9により流体Fを燃料噴射ノズル1に連続的に供給する。すると流体Fが各噴口4から噴射され、各流体管12に導入されると共に、各三方弁17から流体排出管19を通じてタンク8に戻される。この流体循環状態を所定時間継続し、全ての流体経路に流体Fを行き渡らせるウォーミングアップを行う。なお、このときからタンク8の温度制御装置及びポンプ9の圧力制御装置により流体Fの温度及び圧力が一定に制御され、流量測定器11により全噴口4からの合計の噴射流量が常時測定される。
【0026】
このウォーミングアップ中に、各重量測定器16により各容器13毎の重量即ち初期重量W0を測定する。なおここで測定されるのは容器13とその中にある流体Fとの合計重量であるが、後に分かるように、容器13の重量は減算されてしまう。
【0027】
この後、タイマ22を所定時間(例えば1分、これを測定時間という)にセットし、全ての三方弁17を手動スイッチ23により一方側Aに同時に切り換える。すると、各噴口4から噴射され各流体管12に導入された流体Fは、出口15から排出され、各容器13内に順次溜められていく。
【0028】
前記測定時間が経過すると、コントローラ18から全ての三方弁17に自動的にOFF信号が送られ、全ての三方弁17が自動的に他方側Bに同時に切り換えられる。これと同時に流体管12に導入された流体Fはタンク8に導かれるようになり、容器13への流体貯留作業が停止する。
【0029】
この後、流体管12における残留流体の滴下を待った後、各重量測定器16により各容器13毎の重量即ち貯留後重量W1を測定する。そして各容器13毎に、貯留後重量W1から初期重量W0を減算してその差である測定重量W(=W1−W0)を算出する。なお、貯留後重量W1も容器13とその中にある流体Fとの合計重量であるから、この減算により容器13の重量は差し引かれてしまい、実質的には、貯留作業で増加した分の流体Fの重量、即ち上記測定時間中に噴射された流体Fの噴射量のみが測定されることになる。
【0030】
この後各容器13毎、即ち各噴口4毎の測定重量Wを比較することにより、各噴口4毎の噴射量のバラツキを評価する。このとき各噴口4毎の測定重量Wを測定時間で割って、流量の単位として比較、評価を行っても良い。
【0031】
この後、同一の測定作業を繰り返したい場合は、貯留後重量W1を初期重量W0に置き換えて前記作業を繰り返せばよい。また必要に応じて切換弁21を開き、容器13内の流体Fをタンク8に排出し、容器13内に次回の測定分の流体Fを溜められるようにしておく。少なくとも貯留作業中に重量測定器16の許容荷重を越えぬよう、容器13内の流体Fを排出する必要があるが、許容荷重を越えそうでない場合は必ずしも流体Fを毎回排出する必要はない。
【0032】
図2に本装置及び方法を用いて行った測定試験の結果の一例を示す。試験は6噴口の燃料噴射ノズルに対して行い、噴口毎の測定重量Wを測定時間で割って流量の単位として比較を行ってみた。また測定は複数回行った。グラフの横軸が噴口No.、縦軸が流量(g/min)である。この結果から、No.1の噴口が他の噴口に比べて流量のバラツキが大きく、不良であることが分かる。
【0033】
以上のように、本実施形態にかかる噴射量測定装置によれば、全ての噴口に対し噴射量測定が同時に実施されるため、測定条件のバラツキが無くなり、同一条件で測定が行えるようになる。これにより測定精度を大幅に向上することができる。
【0034】
また各噴口毎の噴射量バラツキの評価も高精度で行えるので、排ガスの清浄化に大きく寄与することができる。
【0035】
そして、全噴口分の測定を一時期に行えるため、噴口毎に順番に測定する場合に比べて全測定時間が大幅に短縮でき、量産ラインへの適用及び量産ライン中での全数検査が可能になり、量産品の信頼性をも大いに向上できる。
【0036】
また、本実施形態の装置は、タンク8から燃料噴射ノズル1に至るまでの流体供給装置の構成が図3に示した従来装置と同様なので、従来装置の流用が可能であり、また、大幅な装置改造やサイクルタイムの増加を免れることができる。そして燃料噴射ノズル単体での或いは全噴口からの合計噴射量も測定できるため、燃料噴射ノズル単体としての評価や管理も従来通り行える。
【0037】
なお、本発明の実施の形態は他にも様々なものが考えられる。例えば、試験流体としてはオイル以外の液体を用いることができ、或いは空気等の気体を用いることもできる。気体を用いた場合、容器を密閉容器とすると共に容器内の圧力を測定し、噴射に伴う容器内の圧力増加を噴射量とみなして測定を行うことが可能である。三方弁は電磁弁に限らず機械式の弁であっても良い。そして各三方弁を同時に切り換える切換手段も、手動操作により各弁を切り換えるような機械的機構であっても良い。本実施形態では容器に溜められた流体の重量を測定するようにしたが、流体の容積を測定するようにしてもよい。
【0038】
【発明の効果】
以上要するに本発明によれば、燃料噴射ノズルの各噴口毎の噴射量を測定するに際し、測定精度を大幅に向上できるという、優れた効果が発揮される。
【図面の簡単な説明】
【図1】本発明の実施形態に係る噴射量測定装置を示す構成図である。
【図2】本発明の実施形態に係る噴射量測定装置を用いて行った測定試験の結果を示すグラフである。
【図3】従来の噴射量測定装置を示す構成図である。
【図4】従来の噴射量測定装置を示す構成図である。
【符号の説明】
1 燃料噴射ノズル
4 噴口
8 タンク
9 ポンプ
12 流体管
13 容器
14 入口
15 出口
16 重量測定器
17 三方弁
18 コントローラ
22 タイマ
A 一方側
B 他方側
F 流体
W0 初期重量
W1 貯留後重量
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for individually measuring an injection amount for each injection port of a multi-injection fuel injection nozzle used in a diesel engine or the like.
[0002]
[Prior art]
In general, in a fuel injection nozzle for a diesel engine, a plurality of relatively small-diameter nozzle holes are formed at the tip of the nozzle, and fuel is simultaneously injected from the nozzle holes.
[0003]
As shown in FIG. 3, the conventional fuel injection nozzle injection amount measuring apparatus pumps and supplies the fluid F stored in the tank 51 to the fuel injection nozzle 53 through the supply pipe 55 by the pump 52. The fluid F is ejected from each ejection port, and the ejected fluid F is collected in the tank 51 and ejected from all the ejection ports by the flow rate measuring device 54 provided between the pump 52 and the fuel injection nozzle 53. The total (total flow rate) was to be measured. A similar technique is disclosed in Japanese Patent Laid-Open No. 8-121287.
[0004]
However, in recent years, the nozzle has become smaller due to the requirement of exhaust gas regulations, making it difficult to process. In order to make the fuel injection amount from each nozzle hole uniform in this state of the art, it is necessary to measure the injection amount for each nozzle hole and evaluate the variation of each injection amount. On the other hand, if this is not performed, even if the injection amount of the entire nozzle matches the appropriate value, the injection amount varies from nozzle to nozzle, and the fuel spray state also varies. As a result, exhaust gas is deteriorated. According to the experiment, there may be a variation of 20% or more with respect to the reference injection amount for each nozzle.
[0005]
From this point of view, there is a conventional injection amount measuring apparatus as shown in FIG. That is, the fluid is supplied to the fuel injection nozzle 53 in the same manner as described above, and the fluid F injected from the injection port is individually guided to the measuring cylinder 58 through the straw-like pipe 57 for each injection port 56, and the measuring cylinder is set for a certain period of time. The volume of the fluid F collected in 58 is measured, and each volume for each nozzle is compared, and the variation in the injection amount for each nozzle is evaluated.
[0006]
[Problems to be solved by the invention]
However, according to this method, the operation of accumulating the fluid in the graduated cylinder is performed by changing the time in order for each nozzle, so that the measurement conditions such as the variation in the amount of fluid supplied from the fluid supply pump and the variation in the storage time vary. Is likely to occur, and it is difficult to ensure measurement accuracy.
[0007]
Accordingly, the present invention has been devised in view of the above problems, and an object of the present invention is to enable highly accurate measurement when measuring the injection amount for each nozzle hole.
[0008]
[Means for Solving the Problems]
According to the present invention, provided separately For each injection port of the fuel injection nozzle having a plurality of nozzle holes, a plurality of fluid conduit having an outlet for discharging the inlet and the fluid introducing a fluid ejected from the spray port A plurality of containers individually provided for each of the fluid pipes for storing the fluid discharged from the outlet of the fluid pipe; and the fluids respectively provided in the fluid pipes and introduced into the fluid pipes. A plurality of three-way valves that can be switched to the container side or the external side to be guided to either the outlet side or the external discharge side of the fluid pipe, and switching for simultaneously switching each of the three-way valves to the container side or the external side A plurality of weight measuring means for measuring the weight of the container and the fluid stored in the container, and a fluid to be supplied to the fuel injection nozzle. tank A fuel injection nozzle injection amount measuring device comprising a pump for pumping the fluid in the tank to the fuel injection nozzle through a supply passage, and the fuel injection nozzle with the nozzles being open at all times. A method of measuring the injection amount of each of the injection ports of the fluid injected from the fuel injection nozzle by pumping the fluid to the injection nozzle by the pump, and simultaneously switching all the three-way valves to the outside by the switching means. A step of switching, and the fluid in the tank is supplied to the fuel injection nozzle through the supply passage by the pump to inject the fluid from the injection ports, and the injected fluid is supplied to the fluid pipes and the three-way Discharging through the valve and then discharging to the outside; measuring each initial weight of each container by each of the weight measuring means; and All the three-way valves are simultaneously switched to the container side by the exchange means, the fluid introduced into the fluid pipes is discharged to the containers, the fluid is stored in the containers, and the three-way valve is switched to the container side. After a predetermined time has elapsed, all the three-way valves are simultaneously switched to the outside by the switching means, and the fluid introduced into the fluid pipes is discharged to the outside to stop the fluid from being stored in the containers. Measuring the post-retention weight for each of the containers by the weight measuring means, calculating the difference between the post-retention weight and the initial weight for each of the containers, and calculating the injection amount for each of the nozzles. And a step of measuring. An injection amount measuring method for each injection port of the fuel injection nozzle is provided.
[0011]
According to the present invention, a fluid pipe, a three-way valve, and a container are provided for each nozzle, and all three-way valves are simultaneously switched to perform a fluid storage operation in the container. Measurements can be performed at the same time and under the same measurement conditions, greatly improving measurement accuracy.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[0013]
FIG. 1 shows a fuel injection amount measuring apparatus according to this embodiment. Reference numeral 1 denotes a fuel injection nozzle to be measured, only a part of which is shown. Only the nozzle body 2 of the fuel injection nozzle 1 is evaluated. In this case, the internal needle valve, the return spring, etc. are removed. The nozzle body 2 is fixed at a fixed position by means not shown. A plurality of (for example, 5 to 8) nozzle holes 4 having a relatively small diameter (for example, φ0.1 to 0.3 mm) are formed in the pointed portion 3 at the tip of the nozzle body 2 in an obliquely downward direction. A needle valve chamber 5 for accommodating a needle valve and a return spring is formed in the central portion of the nozzle body 2, and oil for accommodating a taper portion (pressure acting portion) of the needle valve is provided in the middle of the needle valve chamber 5. A reservoir chamber 6 is formed, and a fuel introduction passage 7 communicates with the oil reservoir chamber 6. Originally, in the fuel injection nozzle, the needle valve is raised by the pressure of the fuel introduced from the fuel introduction passage 7 into the oil sump chamber 6 and the fuel injection is performed from the injection port 4. In this measurement test, the fuel introduction passage 7 is illustrated. The test fluid F (oil in this embodiment) is supplied to the needle valve chamber 5, and the fluid F is simultaneously ejected from the nozzles 4.
[0014]
In addition, in some cases, the influence of the needle valve or the like may be evaluated. In this case, a needle valve and a return spring (not shown) are set in the needle valve chamber 5, and fuel is introduced as indicated by a broken line in the figure. A fluid F is supplied to the passage 7.
[0015]
The fluid F is stored in the tank 8. The tank 8 is provided with a temperature control device so that the temperature of the fluid F can be adjusted and the temperature can be kept constant. The fluid F stored in the tank 8 is pumped by the pump 9 to the fuel injection nozzle 1 through the supply pipe 10. The pump 9 is a high-pressure pump, and the pressure of the fluid F is increased to a predetermined high pressure (for example, 10 to 160 MPa) and pumped. This is in order to approach the same conditions as during actual fuel injection. The pump 9 is provided with a pressure control device so that the pressure of the fluid F can be adjusted and the pressure can be kept constant. In the middle of the supply pipe 10, there is provided a total injection amount measuring means for measuring the total injection amount of all the nozzle holes 4, and in this embodiment, a flow rate measuring device 11 for measuring the total injection flow rate. The supply pipe 10 communicates with the needle valve chamber 5 and directly supplies the fluid F to the needle valve chamber 5.
[0016]
The configuration of the fluid supply apparatus including the tank 8, the pump 9, the supply pipe 10, and the flow rate measuring device 11 is the same as that of the conventional apparatus shown in FIG.
[0017]
The fluid F ejected from the nozzle 4 is stored in the container 13 through the fluid pipe 12. However, in the present embodiment, unlike the conventional case (FIG. 4), the fluid pipe 12 and the container 13 are individually provided for each nozzle hole 4 or all the nozzle holes 4. That is, the fluid pipes 12 and the containers 13 are provided as many as the number of nozzle holes, one for each nozzle hole 4. In the figure, only two fluid pipes 12 and a container 13 are representatively drawn clearly.
[0018]
The fluid pipe 12 is made of, for example, a metal pipe and is a straight pipe in the illustrated example, but a curved pipe, a bent pipe, or the like can be used as appropriate. The fluid pipe 12 is fixed at a fixed position by appropriate fixing means. The fluid pipe 12 has an inlet 14 for introducing the fluid F ejected from the nozzle 4 and an outlet 15 for discharging the fluid F. At least the outlet 15 is located below the inlet 14, and the fluid F is contained in the pipe. It is designed to flow down due to gravity. In the present embodiment, the fluid pipe 12 is disposed so as to be inclined downward along the fluid flow direction. The inlet 14 is as close as possible to the nozzle 4 or contacts the pointed portion 3 around the nozzle 4 so as to introduce the fluid F ejected from the nozzle 4 without leakage.
[0019]
The container 13 is in the shape of a bottomed cylinder whose upper side is open, and is positioned directly below the outlet 15 and introduces the fluid F discharged from the outlet 15 and flowing down through the upper opening. A weight measuring means for measuring the weight of the container 13 and the fluid F stored therein, that is, a weight measuring device 16 is provided. The weight measuring devices 16 are individually provided for each container 13, that is, one weight 13 is provided for each container 13 as many as the number of containers (that is, the number of nozzles). Each container 13 is placed on each weight measuring device 16. In the present embodiment, an electronic balance is used as the weight measuring device 16 in order to perform highly accurate measurement.
[0020]
Each fluid pipe 12 is provided with a three-way valve 17. That is, one three-way valve 17 is provided for each fluid pipe 12 as many as the number of fluid pipes 12 (that is, the number of nozzles). The three-way valve 17 has a discharge port (not shown), and the discharge port is connected to the tank 8 via a fluid discharge pipe 19.
[0021]
In the present embodiment, the three-way valve 17 is an electromagnetic valve, and is simultaneously turned ON / OFF by a controller 18 as a switching means and switched to one side A or the other side B. When the three-way valve 17 is turned on and switched to the one side A, the fluid F introduced into the fluid pipe 12 is guided to the outlet 15 side of the fluid pipe 12. On the other hand, when the three-way valve 17 is turned off and switched to the other side B, the fluid F introduced into the fluid pipe 12 is guided to the tank 8 (that is, the external discharge side) through the discharge port and the fluid discharge pipe 19.
[0022]
The controller 18 includes a timer 22 as time measuring means, and can automatically switch ON / OFF of the three-way valve 17 at the same time as the set time of the timer 22 elapses. The controller 18 is also provided with a manual switch 23, and the three-way valve 17 can be manually turned on / off by turning on / off the manual switch 23.
[0023]
The outlet of each container 13 is connected to the tank 8 via the discharge pipe 20 so that the fluid F in each container 13 can be returned to the tank 8. The discharge pipes 20 extending from the respective containers 13 are joined on the way, and a switching valve 21 is provided on the downstream side of the joining part. At the time of measurement, the switching valve 21 is closed, and the fluid F can be stored in the container 13. Then, the switching valve 21 is opened at an appropriate time not during measurement, and the fluid F in the container 13 is returned to the tank 8. The switching valve 21 may be manually opened and closed, or may be automatically opened and closed by the controller 18.
[0024]
Next, a method for measuring the injection quantity for each nozzle hole and a method for evaluating the injection quantity for each nozzle hole according to the present apparatus will be described.
[0025]
First, fluid F is continuously supplied to the fuel injection nozzle 1 by the pump 9 with all the three-way valves 17 switched to the other side B. Then, the fluid F is ejected from each nozzle 4, introduced into each fluid pipe 12, and returned from each three-way valve 17 to the tank 8 through the fluid discharge pipe 19. This fluid circulation state is continued for a predetermined time, and warming up for spreading the fluid F through all the fluid paths is performed. From this time, the temperature and pressure of the fluid F are controlled to be constant by the temperature control device of the tank 8 and the pressure control device of the pump 9, and the total injection flow rate from all the injection ports 4 is constantly measured by the flow rate measuring device 11. .
[0026]
During this warming up, each weight measuring device 16 measures the weight of each container 13, that is, the initial weight W0. In addition, although the total weight of the container 13 and the fluid F in it is measured here, the weight of the container 13 will be subtracted so that it may understand later.
[0027]
Thereafter, the timer 22 is set to a predetermined time (for example, 1 minute, which is called a measurement time), and all the three-way valves 17 are simultaneously switched to the one side A by the manual switch 23. Then, the fluid F ejected from each nozzle 4 and introduced into each fluid pipe 12 is discharged from the outlet 15 and is sequentially stored in each container 13.
[0028]
When the measurement time has elapsed, an OFF signal is automatically sent from the controller 18 to all the three-way valves 17, and all the three-way valves 17 are automatically switched to the other side B simultaneously. At the same time, the fluid F introduced into the fluid pipe 12 is guided to the tank 8 and the fluid storing operation in the container 13 is stopped.
[0029]
Thereafter, after waiting for dripping of the residual fluid in the fluid pipe 12, the weight for each container 13, that is, the post-storage weight W <b> 1 is measured by each weight measuring device 16. Then, for each container 13, the initial weight W0 is subtracted from the post-storage weight W1, and the measured weight W (= W1-W0) that is the difference is calculated. Since the post-retention weight W1 is also the total weight of the container 13 and the fluid F in the container 13, the weight of the container 13 is subtracted by this subtraction, and substantially the amount of fluid increased by the storage operation. Only the weight of F, that is, the injection amount of the fluid F injected during the measurement time is measured.
[0030]
Thereafter, by comparing the measured weight W for each container 13, that is, for each nozzle 4, the variation in the injection amount for each nozzle 4 is evaluated. At this time, the measurement weight W for each nozzle 4 may be divided by the measurement time to compare and evaluate as a unit of flow rate.
[0031]
Thereafter, when it is desired to repeat the same measurement work, the post-storage weight W1 may be replaced with the initial weight W0 and the above work may be repeated. If necessary, the switching valve 21 is opened to discharge the fluid F in the container 13 to the tank 8 so that the fluid F for the next measurement can be stored in the container 13. It is necessary to discharge the fluid F in the container 13 so as not to exceed the allowable load of the weight measuring device 16 at least during the storage operation. However, if the allowable load is not exceeded, it is not always necessary to discharge the fluid F every time.
[0032]
FIG. 2 shows an example of the result of a measurement test performed using the present apparatus and method. The test was performed on the fuel injection nozzles having 6 nozzles, and the measured weight W for each nozzle was divided by the measurement time and compared as a unit of flow rate. The measurement was performed several times. The horizontal axis of the graph is the nozzle number. The vertical axis represents the flow rate (g / min). From this result, no. It can be seen that one nozzle hole has a larger flow rate variation than the other nozzle holes, and is defective.
[0033]
As described above, according to the injection amount measuring apparatus according to the present embodiment, since the injection amount measurement is simultaneously performed for all the injection holes, there is no variation in measurement conditions, and measurement can be performed under the same conditions. Thereby, the measurement accuracy can be greatly improved.
[0034]
In addition, since the injection amount variation for each nozzle can be evaluated with high accuracy, it can greatly contribute to the purification of exhaust gas.
[0035]
And since all the nozzles can be measured at the same time, the total measurement time can be greatly reduced compared to the case where each nozzle is measured in turn, making it possible to apply to the mass production line and to perform 100% inspection in the mass production line. The reliability of mass-produced products can be greatly improved.
[0036]
In addition, since the configuration of the fluid supply apparatus from the tank 8 to the fuel injection nozzle 1 is the same as that of the conventional apparatus shown in FIG. 3, the apparatus according to the present embodiment can be used for the conventional apparatus. It is possible to avoid equipment modification and increase in cycle time. Since the total injection amount of the fuel injection nozzle alone or from all the injection holes can be measured, the evaluation and management of the fuel injection nozzle alone can be performed as usual.
[0037]
Various other embodiments of the present invention are conceivable. For example, a liquid other than oil can be used as the test fluid, or a gas such as air can be used. When gas is used, the container can be a sealed container, the pressure in the container can be measured, and the increase in pressure in the container accompanying the injection can be regarded as the injection amount for measurement. The three-way valve is not limited to a solenoid valve, and may be a mechanical valve. The switching means for simultaneously switching the three-way valves may be a mechanical mechanism that switches the valves by manual operation. In this embodiment, the weight of the fluid stored in the container is measured, but the volume of the fluid may be measured.
[0038]
【The invention's effect】
In short, according to the present invention, when measuring the injection amount for each nozzle of the fuel injection nozzle, an excellent effect that the measurement accuracy can be greatly improved is exhibited.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an injection amount measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a graph showing the results of a measurement test performed using the injection amount measuring apparatus according to the embodiment of the present invention.
FIG. 3 is a configuration diagram showing a conventional injection amount measuring apparatus.
FIG. 4 is a block diagram showing a conventional injection amount measuring device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel injection nozzle 4 Injection hole 8 Tank 9 Pump 12 Fluid pipe 13 Container 14 Inlet 15 Outlet 16 Weight measuring instrument 17 Three-way valve 18 Controller 22 Timer A One side B Other side F Fluid W0 Initial weight W1 Weight after storage

Claims (1)

複数の噴口を有する燃料噴射ノズルの各噴口に対し個別に設けられ、上記噴口から噴射される流体を導入する入口及びその流体を排出する出口を有する複数の流体管と、上記各流体管に対し個別に設けられ、上記流体管の出口から排出された流体を貯留するための複数の容器と、上記各流体管にそれぞれ設けられ、上記流体管に導入された流体を上記流体管の出口側又は外部の排出側のいずれか一方に導くべく容器側又は外部側に切換可能な複数の三方弁と、
それぞれの上記三方弁を容器側又は外部側に同時に切り換えるための切換手段と、上記各容器に対し個別に設けられ、上記容器及びこれに貯留された流体の重量を測定するための複数の重量測定手段と、上記燃料噴射ノズルに供給するための流体が貯留されたタンクと、そのタンク内の流体を供給通路を通じて上記燃料噴射ノズルに圧送するポンプとを備えた燃料噴射ノズルの噴射量測定装置を用い、上記燃料噴射ノズルの各噴口を常時開口させた状態で、その燃料噴射ノズルに上記ポンプにより流体を圧送して、上記燃料噴射ノズルから噴射する流体の上記各噴口毎の噴射量を測定する方法であって、
上記切換手段により全ての上記三方弁を同時に外部側に切り換えるステップと、
上記ポンプにて上記タンク内の流体を上記供給通路を通じて上記燃料噴射ノズルに供給して上記各噴口から流体を噴射させると共に、それら噴射された流体を上記各流体管及び上記各三方弁を通じさせた後外部に排出するステップと、
上記各重量測定手段により上記各容器毎の初期重量をそれぞれ測定するステップと、
上記切換手段により全ての上記三方弁を同時に容器側に切り換え、上記各流体管に導入される流体を上記各容器に排出させ、上記各容器に流体を溜めるステップと、
上記三方弁を容器側に切り換えた時から所定時間経過後、上記切換手段により全ての上記三方弁を同時に外部側に切り換え、上記各流体管に導入される流体を外部に排出することにより上記各容器への流体の貯留を停止するステップと、
上記各重量測定手段により上記各容器毎の貯留後重量を測定し、上記貯留後重量と上記初期重量との差を上記各容器毎に算出して上記各噴口毎の噴射量を測定するステップと
を備えたことを特徴とする燃料噴射ノズルの各噴口毎噴射量測定方法。
Individually provided For each injection port of the fuel injection nozzle having a plurality of nozzle holes, a plurality of fluid conduit having an outlet for discharging the inlet and the fluid introducing a fluid ejected from the spray port, in each fluid conduit A plurality of containers provided separately for storing the fluid discharged from the outlet of the fluid pipe, and provided in each of the fluid pipes, and the fluid introduced into the fluid pipes on the outlet side of the fluid pipe Or a plurality of three-way valves that can be switched to the container side or the external side to lead to either the external discharge side,
Switching means for simultaneously switching each of the three-way valves to the container side or the external side , and a plurality of weight measurements for individually measuring the weight of the container and the fluid stored in the container. An injection amount measuring device for a fuel injection nozzle comprising means, a tank storing a fluid to be supplied to the fuel injection nozzle, and a pump for pumping the fluid in the tank to the fuel injection nozzle through a supply passage In use, with each nozzle hole of the fuel injection nozzle always open, fluid is pumped to the fuel injection nozzle by the pump, and the injection amount of the fluid injected from the fuel injection nozzle for each nozzle hole is measured. A method,
Switching all the three-way valves to the outside simultaneously by the switching means;
The fluid in the tank is supplied to the fuel injection nozzle through the supply passage by the pump to inject the fluid from the injection ports, and the injected fluid is allowed to pass through the fluid pipes and the three-way valves. A step of discharging to the outside, and
Measuring the initial weight for each of the containers by the weight measuring means,
All the three-way valves are simultaneously switched to the container side by the switching means, the fluid introduced into the fluid pipes is discharged to the containers, and the fluid is stored in the containers;
After a predetermined time has elapsed from when the three-way valve is switched to the container side, all the three-way valves are simultaneously switched to the external side by the switching means, and the fluid introduced into the fluid pipes is discharged to the outside. Stopping the storage of fluid in the container;
Measuring the post-retention weight for each of the containers by the weight measuring means, calculating the difference between the post-storage weight and the initial weight for each of the containers, and measuring the injection amount for each of the nozzles;
An injection amount measuring method for each injection port of the fuel injection nozzle.
JP2002202178A 2002-07-11 2002-07-11 Method for measuring the injection amount of each nozzle of a fuel injection nozzle Expired - Lifetime JP3855869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202178A JP3855869B2 (en) 2002-07-11 2002-07-11 Method for measuring the injection amount of each nozzle of a fuel injection nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202178A JP3855869B2 (en) 2002-07-11 2002-07-11 Method for measuring the injection amount of each nozzle of a fuel injection nozzle

Publications (2)

Publication Number Publication Date
JP2004044464A JP2004044464A (en) 2004-02-12
JP3855869B2 true JP3855869B2 (en) 2006-12-13

Family

ID=31708441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202178A Expired - Lifetime JP3855869B2 (en) 2002-07-11 2002-07-11 Method for measuring the injection amount of each nozzle of a fuel injection nozzle

Country Status (1)

Country Link
JP (1) JP3855869B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103184962A (en) * 2013-03-04 2013-07-03 同济大学 Fuel oil separating and collecting device for porous oil injector and using method of fuel oil separating and collecting device
KR101560978B1 (en) 2014-05-21 2015-10-16 주식회사 포스코 Apparatus for testing of spray piping nozzles of segment and sensor for measuring the discharge quantity of the nozzles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0713678D0 (en) * 2007-07-13 2007-08-22 Delphi Tech Inc Apparatus and methods for testing a fuel injector nozzle
US20160327003A1 (en) * 2016-07-19 2016-11-10 Caterpillar Inc. System for determining injector spray pattern
KR102115744B1 (en) * 2019-03-27 2020-05-27 서진영 Injector Tester Using Mass Flowmeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103184962A (en) * 2013-03-04 2013-07-03 同济大学 Fuel oil separating and collecting device for porous oil injector and using method of fuel oil separating and collecting device
KR101560978B1 (en) 2014-05-21 2015-10-16 주식회사 포스코 Apparatus for testing of spray piping nozzles of segment and sensor for measuring the discharge quantity of the nozzles

Also Published As

Publication number Publication date
JP2004044464A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
KR102002181B1 (en) System and method for dosing cylinder lubrication oil into large diesel engine cylinders
JP4942761B2 (en) Method and apparatus for automatically measuring oil consumption of an internal combustion engine and replacing the engine oil described above
US10010901B2 (en) Cleaning device and cleaning method for liquid material discharge device
JP2011526983A5 (en)
JP3855869B2 (en) Method for measuring the injection amount of each nozzle of a fuel injection nozzle
CN108708811B (en) Simulation test machine host structure for evaluating blockage rate of gasoline engine electric control fuel injector
CN108843475B (en) Simulation test machine control device for evaluating blockage rate of gasoline engine electric control fuel injector
CN104884291B (en) Vehicle liquid containment system and method of verifying integrity of the system
KR20190045706A (en) Water injection system and method for contolling the same
KR101159092B1 (en) Engine driving Apparatus
KR101182101B1 (en) Testing apparatus of cooling line
KR20170139595A (en) Method, device and apparatus for coating the inner surface of a substrate
KR102115744B1 (en) Injector Tester Using Mass Flowmeter
RU2311557C2 (en) Method of checking spray tip passage sections
CN208848033U (en) Feed system
WO2019222967A1 (en) Simulation test apparatus for detecting nozzle
JP4415260B2 (en) Flow rate measuring device and flow rate measuring method
JP3885588B2 (en) Injector oil-tight leak evaluation apparatus and evaluation method
RU2406989C2 (en) Diagnostic method of efficiency of atomisers and device for its implementation
KR20160017293A (en) An apparatus and a method for measuring fuel injection rate using liquid level sensor and directional control valve
RU2338921C1 (en) Diesel engine pump-injector and injector test bench
KR200368993Y1 (en) A fuel valve testing apparatus
CN219832714U (en) Water supplementing and exhausting device for engine cooling system
CZ295593B6 (en) Cleaning and diagnostic device of internal combustion engine fuel injection nozzles by means of a cleaning liquid, intended particularly for use in a shop
KR0145988B1 (en) Tester for oil pump of a boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6