JP3854568B2 - Pre-plating method for stainless steel parts joined with dissimilar materials - Google Patents

Pre-plating method for stainless steel parts joined with dissimilar materials Download PDF

Info

Publication number
JP3854568B2
JP3854568B2 JP2002317487A JP2002317487A JP3854568B2 JP 3854568 B2 JP3854568 B2 JP 3854568B2 JP 2002317487 A JP2002317487 A JP 2002317487A JP 2002317487 A JP2002317487 A JP 2002317487A JP 3854568 B2 JP3854568 B2 JP 3854568B2
Authority
JP
Japan
Prior art keywords
stainless steel
plating
fluoride
aqueous solution
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002317487A
Other languages
Japanese (ja)
Other versions
JP2004149870A (en
Inventor
泉 武藤
修司 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002317487A priority Critical patent/JP3854568B2/en
Publication of JP2004149870A publication Critical patent/JP2004149870A/en
Application granted granted Critical
Publication of JP3854568B2 publication Critical patent/JP3854568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、ステンレス鋼にそれ以外の異種金属を接合した部品のメッキ処理に際して、ステンレス鋼表面へのメッキ金属の析出を防止するメッキ前処理方法に関する。
【0002】
【従来の技術】
電子部品などの分野においては、ステンレス鋼を樹脂を介してCuやNiなどの異種金属と積層・接合した小型部品を作製することが多い。この際、小型部品のステンレス鋼以外の金属にのみメッキを施したいという場合がある。このような時、ステンレス鋼部分に電気絶縁性のあるレジスト膜を形成し、メッキ処理を施し、その後にレジストを剥離するという工程をへるのが通常である。しかし、部品が極めて小型な場合には、レジスト膜形成が精度良く行えず、場合によってはステンレス鋼表面にまでメッキがなされてしまうなどの不良が発生するという問題がある。また、部品形状が複雑な場合には、そもそもステンレス鋼表面にのみレジスト膜を形成することが不可能な場合も多い。意図しない部分へのメッキ金属の付着は、精密電子部品の分野では、ステンレス鋼とメッキ部材との絶縁不良、ステンレス鋼から剥離・脱落したメッキ金属による故障など装置の致命的欠陥につながる可能性がある。
【0003】
ステンレス鋼の表面にメッキ金属を付着しにくくする方法としては、不働態化処理を行う方法が知られている。例えは、特許文献1には、硝酸を電解液として目的とするステンレス鋼を陽極電解することで、メッキ金属が付着しにくくなる前処理方法が開示されている。
【0004】
【特許文献1】
特開平02−11775号公報
【0005】
【発明が解決しようとする課題】
ステンレス鋼単独で構成されている部品の場合には、このような不働態化処理法が有効である。しかし、ステンレス鋼にCuなどのステンレス鋼よりも耐食性の低い金属が接合されてる部品の場合には、不働態処理による電位貴化や使用する薬液により、これらの溶解しやすい金属の表面を痛めることになり、精密電子部品などへ適用することはできない。
【0006】
このように、硝酸電解や硝酸処理のように、金属部品の電極電位を貴化することなく、しかもCuなどの耐食性の低い金属を溶解しないマイルドな水溶液を用い、ステンレス鋼へのメッキ金属付着を防止する方法は未だ開発されていない。特に、硝酸などの電位を貴化する不働態化処理ではない手法は開発されていない。
【0007】
【課題を解決するための手段】
本発明は上記の課題を解決すべくなされたもので、ステンレス鋼にそれ以外の異種金属を接合した部品のメッキ処理に際して、ステンレス鋼表面へのメッキ金属の析出を防止するメッキ前処理方法に関する。
【0008】
本発明の主旨は、以下の通りである。
(1)メッキ処理に先立ち、フッ化物イオンを0.01mol/L以上含み、硝酸を含まない水溶液にステンレス鋼部品を浸漬し、ステンレス鋼表面へのメッキ金属の析出を防止することを特徴とする異材と接合されたステンレス鋼部品のメッキ前処理方法。
(2)上記(1)の方法において、フッ化物イオンがアルカリ金属のフッ化物により添加することを特徴とする異材と接合されたステンレス鋼部品のメッキ前処理方法。
(3)上記(1)あるいは(2)の方法において、水溶液が0.006mol/L以上の塩化物イオンを含むことを特徴とする異材と接合されたステンレス鋼部品のメッキ前処理方法。
(4)上記(1)〜(3)のいずれかの方法において、水溶液のpHが0.5以上6.0以下であることを特徴とする異材と接合されたステンレス鋼部品のメッキ前処理方法。
【0009】
【発明の実施の形態】
以下に、本発明の範囲の限定理由について述べる。
【0010】
フッ化物はステンレス鋼表面の不働態皮膜の特性を改質し、メッキ金属が析出する起点を無害化する作用がある。フッ化物イオン(F-)は少量であっても、メッキの起点となる部分に優先的に作用し、その量が多いほど効果が増す。そのため、本発明では、フッ化物イオンの濃度を0.01mol/L以上に規定した。メッキ処理時間が長いなど高い特性を要求される際には、0.1mol/L以上とすることが好ましい。尚、フッ化物イオン濃度で0.01mol/Lとは、質量を単位とするppm表示で、190ppmに相当し、通常自然界には存在しない高い濃度の水溶液である。
【0011】
フッ化物イオンを含む水溶液は、各種の金属フッ化物から作製できる。しかし、詳細な理由は不明であるが、ステンレス鋼不働態皮膜へのメッキ防止作用を高めるには、アルカリ金属のフッ化物での添加が好ましい。そのため、本発明では、高い効果を期待するには、フッ化物イオンをフッ化ナトリウムで添加した水溶液を使用することができる。特に、フッ化ナトリウム(NaF)、あるいはフッ化カリウム(KF)での添加が好ましい。
【0012】
塩化物イオン(Cl-)は、フッ化物イオンと共存した際に、フッ化物イオンがステンレス鋼表面の不働態皮膜の特性を改質しメッキ金属が析出する起点を無害化する作用を高める。塩化物イオンの作用は少量でも作用は発現し、その濃度が高まるほど効果が強くなる。そこで、本発明では、高い効果を期待する際には、塩化物イオンの濃度を0.006mol/L以上にすることが好ましい。尚、塩化物イオン濃度0.006mol/Lは、質量を単位とするppm表示で213ppmに相当し、水道水の水質基準などを上回る高い塩化物イオン濃度である。
【0013】
水溶液のpHは、フッ化物イオンがステンレス鋼表面の不働態皮膜の特性を改質し、メッキ金属が析出する起点を無害化する作用に影響を及ぼす。例えば、水溶液pHが低い場合にはフッ化物イオン濃度が高くてもメッキの付着を防止する作用は現れない。そこで、本発明では、メッキ防止特性を特に高める際には、前処理液のpHを0.5以上6.0以下にすることが好ましい。
【0014】
フッ化物を水溶液に溶解すると、カチオン種などに依存して溶液のpHは変化する。このような場合には、酸性あるいはアルカリ性物質を少量加えpHを制御して前処理液とすることで、高い金属メッキ防止効果を期待できる。
【0015】
【実施例】
以下、実施例に基づいて本発明を詳細に説明する。
【0016】
SUS304(Fe−18Cr−8Ni)ステンレス鋼の箔(厚さ20μm)と、純銅箔(厚さ50μm)をエポキシ系接着剤で貼り合わせて、大きさ30mm×30mmのラミネート箔部品を作製した。これを表1に示す前処理液に浸漬(50℃、30秒浸漬)した後に、表2に示す無電解金メッキ浴に浸漬してAuメッキを施した。その後、試験片を水洗乾燥後、GDS(グロー放電発光分光分析法)にて、ステンレス鋼表面のAu濃度から付着しているAuメッキの程度を判断した。GDSは約6mmφの平均分析値であり、たとえ0.01%であってもAuが検出されるということは、Auが微粒子状に析出していることを示唆していると思われ、振動などで脱落する危険性のあることを意味している。したがって、GDSで検出されるAu濃度が低いほど、メッキ金属の脱落によるトラブルの程度も軽減することになる。GDS分析は、Ar圧力775Pa、電流値40mA(700V)で行った。校正には、日本鉄鋼標準試料JISS410−2、同650−13、同652−13、同654−13、同1001−1を使用した。
【0017】
尚、いずれのメッキ条件でも、Cu箔側には目視でAuメッキの形成を確認することができた。
【0018】
最初に、表1の実施例1〜9を用いて請求項1を詳細に説明する。ここでは、フッ化アンモニウム水溶液を作製し、これに少量の硫酸と水酸化ナトリウムを加えpHを4.0に調整した溶液を作製、前処理と耐メッキ性との関係を調査した。図1に、実施例1〜9までのAu付着濃度をフッ化物イオン濃度の関数としてプロットしたものを示す。フッ化物イオンを0.01mol/L以上の濃度にすることで、Auメッキ濃度を極端に低下させることができる。したがって、ステンレス鋼表面へのメッキ付着を回避するには、フッ化物イオンを0.01mol/L以上の濃度にする必要がある。また、この図において、フッ化物イオン濃度を0.1mol/L以上にすると、更にAuメッキ付着を防止できることが分かる。したがって、メッキ処理時間が長いなど高い特性を要求される際には、フッ化物イオン濃度を0.1mol/L以上とすることが好ましいことが分かる。
【0019】
尚、実施例10、11はpHを0.0および8.5に調整した例である。後述するように、pHが0.5未満になると耐メッキ性の効果が弱くはなるものの、フッ化物イオンが0.01mol/L未満の比較例1、2よりも耐メッキ性に優れていることが分かる。
【0020】
次に、表1の実施例1〜9と実施例12〜19を用いて、請求項2を詳細に説明する。この実施例12〜19では、フッ化物をフッ化ナトリウムもしくはフッ化カリウムに変えて溶液を作製した。pHは先の実施例と同じく、少量の硫酸と水酸化ナトリウムでpH4.0に調整した。図2に、実施例1〜9と実施例12〜19を対比したものを示す。フッ化物イオンをアルカリ金属のフッ化物であるNaF(フッ化ナトリウム)もしくはKF(フッ化カリウム)で添加することにより極めて高いメッキ防止効果が得られることが分かる。
【0021】
次いで、実施例20〜29を用いて、請求項3を詳細に説明する。これらの実施例は、塩化物イオンの影響を見たものである。溶液は、NaF水溶液にNaClを加えることで作製した。そして、今までの実施例と同様に、少量の硫酸と水酸化ナトリウムでpHを4.0に調整した。図3に、これらの実施例における塩化物イオン濃度と耐メッキ性との関係を整理した。この図から分かるように、0.006mol/L以上の塩化物イオンをフッ化物イオンと共存させることにより、極めて高いメッキ防止能力を得ることができることが分かる。
【0022】
同様に、実施例30〜37は、pHの影響を見たものである。図4にこれらの結果を整理した。処理溶液のpHを0.5以上6.0以下に保つことにより高い高いメッキ防止能力を得ることができることが分かる。
【0023】
【表1】

Figure 0003854568
【0024】
【表2】
Figure 0003854568
【0025】
【発明の効果】
本発明によれば、電解処理や硝酸浸漬のように、金属部品の電極電位を貴化させたり、過度に高い侵食性の薬品を使用することなく、ステンレス鋼へのメッキ金属付着を防止することが可能である。ステンレス鋼にそれ以外の異種金属を接合した部品のメッキ処理に際して、寸法が小型であったり形状が複雑であったりして、ステンレス鋼表面にレジスト膜を形成することが不可能な場合でも、ステンレス鋼表面へのメッキ金属の析出を防止することが可能であり、精密電子部品の製造の高精度化、省力化、信頼性向上、耐久性向上などが可能となる。
【図面の簡単な説明】
【図1】水溶液のフッ化物イオン濃度とAu付着濃度の関係を示す図である。
【図2】水溶液のフッ化物イオン濃度とAu付着濃度の関係を示す図である。
【図3】水溶液の塩化物イオン濃度とAu付着濃度の関係を示す図である。
【図4】水溶液のpHとAu付着濃度の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plating pretreatment method for preventing the deposition of a plating metal on the surface of a stainless steel during the plating treatment of a component in which other kinds of metals are joined to stainless steel.
[0002]
[Prior art]
In the field of electronic parts, small parts are often produced by laminating and joining stainless steel with dissimilar metals such as Cu and Ni via a resin. At this time, there are cases where it is desired to apply plating only to a metal other than stainless steel as a small component. In such a case, it is usual to form a resist film having an electrical insulation property on the stainless steel portion, apply a plating process, and then peel off the resist. However, when the parts are extremely small, there is a problem that the resist film cannot be formed with high precision, and in some cases, defects such as plating on the stainless steel surface occur. In addition, when the part shape is complicated, it is often impossible to form a resist film only on the stainless steel surface. In the field of precision electronic components, adhesion of plated metal to unintended parts may lead to fatal defects in equipment such as poor insulation between stainless steel and plated members, and failure due to plated metal that has peeled off or dropped from stainless steel. is there.
[0003]
As a method for making it difficult for the plated metal to adhere to the surface of stainless steel, a method of performing passivation treatment is known. For example, Patent Document 1 discloses a pretreatment method in which plating metal is less likely to adhere by anodic electrolysis of a target stainless steel using nitric acid as an electrolyte.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 02-11775
[Problems to be solved by the invention]
In the case of a component made of stainless steel alone, such a passivation treatment method is effective. However, in the case of parts in which stainless steel, such as Cu, has a lower corrosion resistance than stainless steel, it is possible to damage the surface of these easily soluble metals due to the noble potential treatment and chemicals used. Therefore, it cannot be applied to precision electronic parts.
[0006]
In this way, as in nitric acid electrolysis and nitric acid treatment, a mild aqueous solution that does not dissolve metals with low corrosion resistance such as Cu is used without making the electrode potential of metal parts noble, and plating metal adheres to stainless steel. A method to prevent it has not been developed yet. In particular, no method has been developed that is not a passivating treatment that makes the potential of nitric acid or the like noble.
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems, and relates to a plating pretreatment method for preventing the deposition of a plating metal on the surface of stainless steel when plating a component in which another metal is joined to stainless steel.
[0008]
The gist of the present invention is as follows.
(1) Prior to the plating process, see contains fluoride ions 0.01 mol / L or more, and characterized in that the stainless steel parts are immersed in an aqueous solution that does not contain nitric acid, to prevent the deposition of the plating metal to the stainless steel surfaces A pre-plating method for stainless steel parts joined with dissimilar materials.
(2) A plating pretreatment method for a stainless steel part joined to a dissimilar material, characterized in that, in the method of (1), fluoride ions are added by an alkali metal fluoride.
(3) In the method of (1) or (2) above, a plating pretreatment method for stainless steel parts joined to a dissimilar material, characterized in that the aqueous solution contains chloride ions of 0.006 mol / L or more.
(4) In any one of the above methods (1) to (3), the pH of the aqueous solution is 0.5 or more and 6.0 or less, and the plating pretreatment method for stainless steel parts joined to a different material .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The reasons for limiting the scope of the present invention will be described below.
[0010]
Fluoride has the effect of modifying the characteristics of the passive film on the surface of the stainless steel and detoxifying the starting point where the plated metal is deposited. Even a small amount of fluoride ion (F ) acts preferentially on the starting point of plating, and the effect increases as the amount increases. Therefore, in this invention, the density | concentration of the fluoride ion was prescribed | regulated to 0.01 mol / L or more. When high characteristics such as a long plating time are required, it is preferably 0.1 mol / L or more. The fluoride ion concentration of 0.01 mol / L is a high concentration aqueous solution that corresponds to 190 ppm in terms of ppm in terms of mass and does not normally exist in nature.
[0011]
Aqueous solutions containing fluoride ions can be made from various metal fluorides. However, although the detailed reason is unknown, addition of an alkali metal fluoride is preferable in order to enhance the plating preventing effect on the stainless steel passive film. Therefore, in this invention, in order to expect a high effect, the aqueous solution which added the fluoride ion with sodium fluoride can be used. In particular, addition with sodium fluoride (NaF) or potassium fluoride (KF) is preferable.
[0012]
When chloride ions (Cl ) coexist with fluoride ions, the fluoride ions improve the properties of the passive film on the surface of the stainless steel and enhance the action of detoxifying the starting point of plating metal deposition. The action of chloride ions is manifest even in a small amount, and the effect increases as the concentration increases. Therefore, in the present invention, when high effects are expected, the chloride ion concentration is preferably 0.006 mol / L or more. The chloride ion concentration of 0.006 mol / L corresponds to 213 ppm in terms of ppm in terms of mass, and is a high chloride ion concentration exceeding the water quality standard of tap water.
[0013]
The pH of the aqueous solution affects the effect of fluoride ions modifying the characteristics of the passive film on the surface of the stainless steel and rendering the starting point for the plating metal deposits harmless. For example, when the aqueous solution pH is low, the effect of preventing the adhesion of plating does not appear even if the fluoride ion concentration is high. Therefore, in the present invention, it is preferable to set the pH of the pretreatment liquid to 0.5 or more and 6.0 or less when particularly improving the plating prevention characteristic.
[0014]
When fluoride is dissolved in an aqueous solution, the pH of the solution changes depending on the cation species. In such a case, a high effect of preventing metal plating can be expected by adding a small amount of an acidic or alkaline substance and controlling the pH to obtain a pretreatment liquid.
[0015]
【Example】
Hereinafter, the present invention will be described in detail based on examples.
[0016]
A SUS304 (Fe-18Cr-8Ni) stainless steel foil (thickness 20 μm) and a pure copper foil (thickness 50 μm) were bonded together with an epoxy adhesive to produce a laminate foil part having a size of 30 mm × 30 mm. This was immersed in a pretreatment solution shown in Table 1 (50 ° C., 30 seconds immersion), and then immersed in an electroless gold plating bath shown in Table 2 to perform Au plating. Thereafter, the test piece was washed with water and dried, and then the degree of Au plating adhering from the Au concentration on the stainless steel surface was determined by GDS (glow discharge emission spectrometry). GDS is an average analytical value of about 6 mmφ, and even if it is 0.01%, the detection of Au seems to suggest that Au is precipitated in the form of fine particles, such as vibration. It means that there is a risk of dropping out. Therefore, the lower the Au concentration detected by GDS, the less trouble is caused by the plating metal falling off. The GDS analysis was performed at an Ar pressure of 775 Pa and a current value of 40 mA (700 V). For the calibration, Japanese steel standard samples JIS 410-2, 650-13, 652-13, 654-13, and 1001-1 were used.
[0017]
In any of the plating conditions, it was possible to visually confirm the formation of Au plating on the Cu foil side.
[0018]
First, claim 1 will be described in detail using Examples 1 to 9 in Table 1. Here, an aqueous ammonium fluoride solution was prepared, and a solution in which a small amount of sulfuric acid and sodium hydroxide were added to adjust the pH to 4.0 was prepared, and the relationship between pretreatment and plating resistance was investigated. FIG. 1 shows a plot of Au adhesion concentration for Examples 1-9 as a function of fluoride ion concentration. By setting the fluoride ion concentration to 0.01 mol / L or more, the Au plating concentration can be extremely reduced. Therefore, in order to avoid plating adhesion to the stainless steel surface, it is necessary to adjust the fluoride ion concentration to 0.01 mol / L or more. Further, in this figure, it can be seen that when the fluoride ion concentration is 0.1 mol / L or more, Au plating adhesion can be further prevented. Therefore, it is understood that when high characteristics such as a long plating time are required, the fluoride ion concentration is preferably 0.1 mol / L or more.
[0019]
Examples 10 and 11 are examples in which the pH was adjusted to 0.0 and 8.5. As will be described later, when the pH is less than 0.5, the effect of the plating resistance is weakened, but the plating ion is superior to Comparative Examples 1 and 2 having a fluoride ion of less than 0.01 mol / L. I understand.
[0020]
Next, Claim 2 will be described in detail using Examples 1 to 9 and Examples 12 to 19 in Table 1. In Examples 12 to 19, solutions were prepared by changing the fluoride to sodium fluoride or potassium fluoride. The pH was adjusted to 4.0 with a small amount of sulfuric acid and sodium hydroxide as in the previous examples. In FIG. 2, what contrasted Examples 1-9 and Examples 12-19 is shown. It can be seen that a very high anti-plating effect can be obtained by adding fluoride ions with NaF (sodium fluoride) or KF (potassium fluoride), which are alkali metal fluorides.
[0021]
Next, using Examples 20 to 29, Claim 3 will be described in detail. These examples look at the effect of chloride ions. The solution was made by adding NaCl to an aqueous NaF solution. As in the previous examples, the pH was adjusted to 4.0 with a small amount of sulfuric acid and sodium hydroxide. FIG. 3 shows the relationship between the chloride ion concentration and the plating resistance in these examples. As can be seen from this figure, it can be seen that extremely high plating preventing ability can be obtained by coexisting 0.006 mol / L or more of chloride ions with fluoride ions.
[0022]
Similarly, Examples 30 to 37 look at the influence of pH. FIG. 4 summarizes these results. It can be seen that a high anti-plating ability can be obtained by maintaining the pH of the treatment solution at 0.5 or more and 6.0 or less.
[0023]
[Table 1]
Figure 0003854568
[0024]
[Table 2]
Figure 0003854568
[0025]
【The invention's effect】
According to the present invention, it is possible to prevent plating metal adhesion to stainless steel without making the electrode potential of metal parts noble or using excessively erosive chemicals, such as electrolytic treatment and nitric acid immersion. Is possible. Even when it is impossible to form a resist film on the surface of stainless steel due to its small size or complicated shape during plating of parts made by joining different types of metals to stainless steel It is possible to prevent the plating metal from precipitating on the steel surface, and it is possible to increase the precision, labor saving, reliability and durability of precision electronic components.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between fluoride ion concentration of an aqueous solution and Au adhesion concentration.
FIG. 2 is a diagram showing the relationship between the fluoride ion concentration of an aqueous solution and the Au adhesion concentration.
FIG. 3 is a graph showing the relationship between the chloride ion concentration of an aqueous solution and the Au adhesion concentration.
FIG. 4 is a graph showing the relationship between the pH of an aqueous solution and the Au adhesion concentration.

Claims (4)

メッキ処理に先立ち、フッ化物イオンを0.01mol/L以上含み、硝酸を含まない水溶液にステンレス鋼部品を浸漬し、ステンレス鋼表面へのメッキ金属の析出を防止することを特徴とする異材と接合されたステンレス鋼部品のメッキ前処理方法。Prior to plating, see contains fluoride ions 0.01 mol / L or more, and dissimilar, characterized in that the stainless steel parts are immersed in an aqueous solution that does not contain nitric acid, to prevent the deposition of the plating metal to the stainless steel surfaces Pre-plating method for joined stainless steel parts. 請求項1記載の方法において、フッ化物イオンがアルカリ金属のフッ化物により添加することを特徴とする異材と接合されたステンレス鋼部品のメッキ前処理方法。  The method according to claim 1, wherein fluoride ions are added by an alkali metal fluoride. 請求項1あるいは2記載の方法において、水溶液が0.006mol/L以上の塩化物イオンを含むことを特徴とする異材と接合されたステンレス鋼部品のメッキ前処理方法。  3. The method according to claim 1 or 2, wherein the aqueous solution contains 0.006 mol / L or more of chloride ions. 請求項1〜3のいずれかに記載された方法において、水溶液のpHが0.5以上6.0以下であることを特徴とする異材と接合されたステンレス鋼部品のメッキ前処理方法。  The method according to any one of claims 1 to 3, wherein the pH of the aqueous solution is 0.5 or more and 6.0 or less, and is a pretreatment method for plating a stainless steel part joined with a different material.
JP2002317487A 2002-10-31 2002-10-31 Pre-plating method for stainless steel parts joined with dissimilar materials Expired - Fee Related JP3854568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002317487A JP3854568B2 (en) 2002-10-31 2002-10-31 Pre-plating method for stainless steel parts joined with dissimilar materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317487A JP3854568B2 (en) 2002-10-31 2002-10-31 Pre-plating method for stainless steel parts joined with dissimilar materials

Publications (2)

Publication Number Publication Date
JP2004149870A JP2004149870A (en) 2004-05-27
JP3854568B2 true JP3854568B2 (en) 2006-12-06

Family

ID=32460875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317487A Expired - Fee Related JP3854568B2 (en) 2002-10-31 2002-10-31 Pre-plating method for stainless steel parts joined with dissimilar materials

Country Status (1)

Country Link
JP (1) JP3854568B2 (en)

Also Published As

Publication number Publication date
JP2004149870A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
US8808525B2 (en) Cyanide free electrolyte composition for the galvanic deposition of a copper layer
JP2002100718A (en) Lead frame for semiconductor device, manufacturing method thereof, and semiconductor device using the lead frame
JP2835287B2 (en) Plating method for nickel titanium alloy members
EP1487646B1 (en) Method of stripping silver from a printed circuit board
TWI645071B (en) Electroless palladium / gold plating method
TW583349B (en) Method for enhancing the solderability of a surface
KR101266901B1 (en) Non-cyanide electroless gold plating solution and method for electroless gold plating
WO2015058999A1 (en) Method of selectively treating copper in the presence of further metal
JP3854568B2 (en) Pre-plating method for stainless steel parts joined with dissimilar materials
JP5740727B2 (en) Sealing treatment agent and sealing treatment method
US7270734B1 (en) Near neutral pH cleaning/activation process to reduce surface oxides on metal surfaces prior to electroplating
JP6869890B2 (en) Gold electroplating solution and method
JPS5836071B2 (en) Manufacturing method for silver-plated iron and iron alloys
JPS6340864B2 (en)
KR101847439B1 (en) Direct zinc electroplating method on aluminium or aluminium alloys
JPH07173676A (en) Surface treatment of tin or tin-lead alloy plated material
JPH03197686A (en) Method for plating die-cast product of aluminum alloy with nickel
JP2015134960A (en) Copper strike plating solution
JP3500239B2 (en) Electrolytic etching solution and electrolytic etching method for precipitation strengthened copper alloy products
JP3398116B2 (en) Stripper for stripping tin or tin alloys on nickel or iron nickel alloys
JP2004323872A (en) Electroless plating bath
JP2008240083A (en) Electroless gold plating solution
SU638643A1 (en) Gilding electrolyte
JP3144158B2 (en) Plating solution for copper electrodeposition
JPH01247578A (en) Production of high-density mounted part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060908

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees