JP3854169B2 - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP3854169B2
JP3854169B2 JP2002039478A JP2002039478A JP3854169B2 JP 3854169 B2 JP3854169 B2 JP 3854169B2 JP 2002039478 A JP2002039478 A JP 2002039478A JP 2002039478 A JP2002039478 A JP 2002039478A JP 3854169 B2 JP3854169 B2 JP 3854169B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
storage tank
water
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002039478A
Other languages
Japanese (ja)
Other versions
JP2003240342A (en
Inventor
賢雄 冨田
彰 伊藤
幸治 小島
徳純 広野
圭 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2002039478A priority Critical patent/JP3854169B2/en
Publication of JP2003240342A publication Critical patent/JP2003240342A/en
Application granted granted Critical
Publication of JP3854169B2 publication Critical patent/JP3854169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、貯湯タンク内の湯水を循環してヒートポンプ回路によって沸き上げ、且つ貯湯タンク内の高温水を循環させて暖房あるいは風呂の追焚き/保温の熱源として用いるヒートポンプ式給湯装置に関するものである。
【0002】
【従来の技術】
従来よりこの種のものにおいては、図10に示すようなものがあった。
ここで、101はヒートポンプ回路、102は貯湯タンクで、この貯湯タンク102下部から取り出した5〜25℃程度の低温水をヒートポンプ回路101で70〜90℃程度に加熱して貯湯タンク102の上部から積層貯湯していくものである。
【0003】
前記貯湯タンク102には、その下端に給水管103が接続され、また上端には出湯管104が接続されているものである。105は電動ミキシング弁で、出湯管104からの高温水と給水管103からの低温水をリモコン(図示せず)等で設定された任意の給湯設定温度に混合して給湯栓106から出湯するものである。
【0004】
107は暖房あるいは風呂の追焚き/保温の熱源としての熱交換器で、出湯管104から分岐した熱交往き管108および給水管103に合流する熱交戻り管109により貯湯タンク102と循環可能に接続されており、貯湯タンク102内の高温水を熱交換器107に流入させて暖房回路あるいは風呂の追焚き/保温回路等の2次側回路(図示せず)の温水を加熱するものである。
【0005】
そして、貯湯タンク102の上部から取り出された高温水は、前記熱交換器107で熱交換されて温度低下し、30〜50℃程度の中温水となって貯湯タンク102の下部から貯湯タンク102内に戻るものである。
【0006】
【発明が解決しようとする課題】
しかし、この従来のものでは、熱交換器107での熱交換により30〜50℃程度の中温水が貯湯タンク102に貯まっていくが、この中温水は暖房あるいは追焚きの熱源として利用するには温度が低いため適さず、しかも湯切れするまで給湯を行わないと容量当たりの保有熱量が少ない中温水がいつまでも貯湯タンク102内に残留し、貯湯タンク102の保有熱量を減らしてしまい貯湯タンク容量の有効利用ができず、さらに貯湯タンク102内の水の沸き上げを行う場合、中温水をヒートポンプ回路101で再加熱するには温度が高いため効率が悪く、ヒートポンプ式給湯装置のCOP(エネルギー消費効率)を低下させてしまうという課題があった。
【0007】
【課題を解決するための手段】
そこで、本発明はこれらの課題を解決するために、請求項1では、給水管から低温水を流入させる給水口を下端部に有すると共に貯湯している高温水を第1出湯管から流出させる第1出湯口を上端部に有する貯湯タンクと、圧縮機と蒸発器と凝縮器を有したヒートポンプ回路と、前記貯湯タンク下部に設けられたヒーポン往き口から取り出した低温水を前記ヒートポンプ回路の凝縮器によって加熱し、加熱された高温水を前記貯湯タンク上部に設けられたヒーポン戻り口から前記貯湯タンク内に戻すヒーポン循環回路と、前記貯湯タンク上部に設けられた高温水取出し口から取り出した高温水によって暖房し、温度低下した中温水を前記貯湯タンク下部に設けられた中温水戻り口に戻す熱利用循環回路と、給湯温度設定スイッチを有し給湯温度を任意の給湯設定温度に設定可能としたリモコンと、前記第1出湯口から流出する高温水と前記給水管からの低温水とを前記リモコンにて設定した前記任意の給湯設定温度に混合する第1混合弁と、その下流に設けた給湯温度センサを備えたヒートポンプ式給湯装置であって、前記貯湯タンクの前記中温水戻り口よりも高く且つ前記第1出湯口よりも低い位置に中温水を流出させるための第2出湯口および第2出湯管を設けると共に、前記第1混合弁と前記第1出湯口の間の前記第1出湯管途中に前記第2出湯管からの中温水を混合する第2混合弁と、その下流に混合温度センサを設け、前記第1出湯口からの高温水と前記第2出湯口からの中温水を前記第2混合弁によって前記混合温度センサの出力に応じて前記任意の給湯設定温度よりも所定温度高い温度に混合し、さらに前記第1混合弁にて前記第2混合弁で混合された前記任意の給湯設定温度よりも所定温度高い温度の温水と前記給水管からの低温水とを前記給湯温度センサの出力に応じて前記任意の給湯設定温度に混合して給湯するようにしたものである。
【0008】
これにより、貯湯タンク上部の高温水取出し口から取出して暖房に利用し、貯湯タンク下部の中温水戻り口に戻す容量当たりの保有熱量が少ない中温水を、この中温水戻り口よりも高い位置に設けた第2出湯口から取り出して、貯湯タンク上部から取り出す高温水と第2混合弁によって任意の給湯設定温度より所定温度高い温度に混合し、その後この第2混合弁で混合された任意の給湯設定温度より所定温度高い温度の温水と給水管からの低温水とを第1混合弁によって任意の給湯設定温度に混合して給湯することができる。この時、中温水および高温水が出湯される分だけ貯湯タンク下部には給水管からの低温水が流入し、貯湯タンク内の温水の沸き上げを行う際は、この貯湯タンク下部に貯められている低温水をヒートポンプ回路で沸き上げるので、効率の良い沸き上げを行うことができる。なお、貯湯タンクから取り出した高温水を暖房に直接用いても熱交換して間接的に用いても構わないものである。
【0009】
また、請求項2では、給水管から低温水を流入させる給水口を下端部に有すると共に貯湯している高温水を第1出湯管から流出させる第1出湯口を上端部に有する貯湯タンクと、圧縮機と蒸発器と凝縮器を有したヒートポンプ回路と、前記貯湯タンク下部に設けられたヒーポン往き口から取り出した低温水を前記ヒートポンプ回路の凝縮器によって加熱し、加熱された高温水を前記貯湯タンク上部に設けられたヒーポン戻り口から前記貯湯タンク内に戻すヒーポン循環回路と、前記貯湯タンク上部に設けられた高温水取出し口から取り出した高温水を2次側回路の温水を加熱するための熱交換器に循環させ、前記2次側回路の温水と熱交換して温度低下した中温水を前記貯湯タンク下部に設けられた中温水戻り口に戻す熱利用循環回路と、給湯温度設定スイッチを有し給湯温度を任意の給湯設定温度に設定可能としたリモコンと、前記第1出湯口から流出する高温水と前記給水管からの低温水とを前記リモコンにて設定した前記任意の給湯設定温度に混合する第1混合弁と、その下流に設けた給湯温度センサを備えたヒートポンプ式給湯装置であって、前記貯湯タンクの前記中温水戻り口よりも高く且つ前記第1出湯口よりも低い位置に中温水を流出させるための第2出湯口および第2出湯管を設けると共に、前記第1混合弁と前記第1出湯口の間の前記第1出湯管途中に前記第2出湯管からの中温水を混合する第2混合弁と、その下流に混合温度センサを設け、前記第1出湯口からの高温水と前記第2出湯口からの中温水を前記第2混合弁によって前記混合温度センサの出力に応じて前記任意の給湯設定温度よりも所定温度高い温度に混合し、さらに前記第1混合弁にて前記第2混合弁で混合された前記任意の給湯設定温度よりも所定温度高い温度の温水と前記給水管からの低温水とを前記給湯温度センサの出力に応じて前記任意の給湯設定温度に混合して給湯するようにしたものである。
【0010】
これにより、貯湯タンク上部の高温水取出し口から取出して二次側回路の加熱源として利用し、貯湯タンク下部の中温水戻り口に戻す容量当たりの保有熱量が少ない中温水を、この中温水戻り口よりも高い位置に設けた第2出湯口から取り出して、貯湯タンク上部から取り出す高温水と第2混合弁によって任意の給湯設定温度より所定温度高い温度に混合し、その後この第2混合弁で混合された任意の給湯設定温度より所定温度高い温度の温水と給水管からの低温水とを第1混合弁によって任意の給湯設定温度に混合して給湯することができる。この時、中温水および高温水が出湯される分だけ貯湯タンク下部には給水管からの低温水が流入し、貯湯タンク内の温水の沸き上げを行う際は、この貯湯タンク下部に貯められている低温水をヒートポンプ回路で沸き上げるので、効率の良い沸き上げを行うことができる。
【0015】
【発明の実施の形態】
次に、本発明の第1の実施形態を図1〜図7に基づき説明する。
1はヒートポンプユニット、2は貯湯タンクユニット、3は給湯混合水栓、4は床暖房パネル等の暖房負荷端末である。
【0016】
前記ヒートポンプユニット1は、圧縮機5と凝縮器としての冷媒−水熱交換器6と減圧器7と蒸発器8で構成されたヒートポンプ回路9と、被加熱水を冷媒−水熱交換器6に循環させるヒーポン循環ポンプ10と、それらの駆動を制御するヒーポン制御部11とを備えており、ヒートポンプ回路9内には冷媒として二酸化炭素が用いられて超臨界ヒートポンプサイクルを構成しているものである。なお、冷媒に二酸化炭素を用いているので、低温水を電熱ヒータなしで約90℃の高温まで沸き上げることが可能なものである。
【0017】
ここで、前記冷媒−水熱交換器6は冷媒と被加熱水とが対向して流れる対向流方式を採用しており、超臨界ヒートポンプサイクルでは熱交換時において冷媒は超臨界状態のまま凝縮されるため効率良く高温まで被加熱水を加熱することができ、被加熱水の冷媒−水熱交換器6入口温度と冷媒の出口温度との温度差が一定になるように前記減圧器7または圧縮機5を制御することで、被加熱水の冷媒−水熱交換器6の入口温度が5〜20℃程度の低い温度であるとCOP(エネルギー消費効率)が3.0以上のとても良い状態で被加熱水を加熱することが可能なものである。
【0018】
前記貯湯タンクユニット2は、上端に第1出湯管12と連なる第1出湯口13を有し、下端に給水管14と連なる給水口15を有した貯湯タンク16を備えている。この貯湯タンク16の下部にはヒーポン往き口17が、上部にはヒーポン戻り口18が設けられ、前記ヒートポンプユニット1の冷媒−水熱交換器6に連通するヒーポン循環回路19によって貯湯タンク16内の湯水が循環可能に接続されている。なお、この貯湯タンク16は約370L程度の容量を保有しているものである。
【0019】
20は前記床暖パネル4の加熱源としての熱交換器で、その一次側には貯湯タンク16上部に連通する高温水取出し口21と貯湯タンク16下部の中温水戻り口22とを熱利用循環ポンプ23を備えた熱利用循環回路24で貯湯タンク16内の湯水が循環可能に接続されており、また、二次側には床暖パネル4と循環可能に接続する二次側回路25と二次側循環ポンプ26が備えられているものである。
【0020】
次に、27は第1出湯管12からの湯水と給水管14からの低温水を混合する電動ミキシング弁より構成された第1混合弁であり、その下流の給湯管28に設けた給湯温度センサ29で検出した湯温がリモコン30でユーザーが設定した給湯設定温度になるように混合比率を制御するものである。このリモコン30は給湯温度設定スイッチ31を有しており、給湯温度を35〜60℃の範囲で任意に設定可能としていると共に、暖房を開始させる暖房スイッチ32を有しているものである。
【0021】
33は貯湯タンク16の中間高さ位置に設けた第2出湯口で、第1出湯管12の第1出湯口13と第1混合弁27との間に設けた第2混合弁34の入力側に第2出湯管35を介して接続されている。この第2出湯口33および第2出湯管35は前記熱交換器20で二次側と熱交換して温度低下した中温水を貯湯タンク16から出湯するもので、この中温水を前記第2混合弁34にて第1出湯管12を流れる高温水と混合して第1混合弁27の供給するものである。
【0022】
前記第2混合弁34は図5に示すようにサーモワックス混合弁より構成されており、出力ポート側に設けられた感温変形するサーモワックス34aの伸縮により入口側ポートの弁体34bの位置が変り、それによって混合比率を調整するもので、給湯設定温度範囲の上限温度である60℃より高い約65℃に自動的に混合するものである。なお、この第2混合弁34の混合温度は調整ノブ34cにより調節可能としているものである。なお、ここではサーモワックス混合弁を用いたが、これの代わりに感温変形する形状記憶合金より構成された感温バネやバイメタルなどの感温変形部材を用いた感温自動混合弁でも良い。また、第2混合弁34は図示した弁および弁座形状や流路形状のものに限られるものではなく、要は感温変形部材の変形により設定混合温度に自動的に混合されるものであれば弁および弁座や流路の形状は発明の要旨を変更しない範囲で変更可能なものである。
【0023】
36は貯湯タンク16の上下方向に複数個配置された貯湯温度センサで、この貯湯温度センサ36がどの高さ位置まで所定温度(例えば50℃)以上を検出しているかによって、貯湯タンク16内にどれだけの熱量が残っているかを検知するものである。
【0024】
37は貯湯タンクユニット内のセンサの入力を受けアクチュエータの駆動を制御するマイコンを有した給湯制御部である。この給湯制御部37に前記リモコン30が無線または有線により接続されユーザーが任意の給湯設定温度を設定できるようにしているものである。
【0025】
なお、38は貯湯タンク16の過圧を防止する過圧防止弁、39は給水の温度を検出する給水温度センサ、40は給水の圧力を減圧する減圧弁、41は給湯する温水の量をカウントする流量カウンタである。
【0026】
次に、この第1の実施形態の作動を説明する。
まず、図2に示す沸き上げ運転について説明すると、深夜電力時間帯になって貯湯温度センサ36が貯湯タンク16内に翌日に必要な熱量が残っていないことを検出すると、給湯制御部37はヒーポン制御部11に対して沸き上げ開始指令を発する。指令を受けたヒーポン制御部11は圧縮機5を起動した後にヒーポン循環ポンプ10を駆動開始し、貯湯タンク16下部のヒーポン往き口17から取り出した5〜20℃程度の低温水を冷媒−水熱交換器6で70〜90℃程度の高温に加熱し、ヒーポン循環回路19を介して貯湯タンク16上部のヒーポン戻り口18から貯湯タンク16内に戻してやり、貯湯タンク16の上部から順次積層して高温水を貯湯していく。貯湯温度センサ36が必要な熱量が貯湯されたことを検出すると、給湯制御部37はヒーポン制御部11に対して沸き上げ停止指令を発し、ヒーポン制御部11は圧縮機5を停止すると共にヒーポン循環ポンプ10も停止して沸き上げ動作を終了するものである。
【0027】
次に、図3に示す暖房運転について説明すると、リモコン30の暖房スイッチ32をONすると、給湯制御部37は熱利用循環ポンプ23および二次側循環ポンプ26を駆動開始し、高温水取出し口21から取り出した70〜90℃程度の高温水を熱交換器20に流入させ、二次側回路25の温水と熱交換させ、熱交換により30〜50℃程度に温度低下した中温水が中温水戻り口22から貯湯タンク16下部に戻り、高温水と入れ替わる形で高温水と中温水の境界面を押し上げるようにして中温水が貯湯されるものである。二次側では、熱交換器20にて加熱された温水が床暖房パネル4に流入し、被暖房空間を暖房して再度熱交換器20に循環するものである。そして、リモコン30の暖房スイッチ32をOFFすると、給湯制御部37は熱利用循環ポンプ23および二次側循環ポンプ26を駆動停止して暖房運転を停止する。
【0028】
そして、図4に示す給湯運転について説明すると、給湯混合水栓3を開くと、給水管14からの給水圧により貯湯タンク16内の高温水が上端部の第1出湯口13から押し出されると同時に中温水が第2出湯口33より押し出される。押し出された70〜90℃程度の高温水および30〜50℃程度の中温水はそれぞれ第1出湯管12および第2出湯管35を介して第2混合弁34へ流入し、約65℃の温水に混合される。混合された温水は第1混合弁27へ流入し、給水管14からの5〜20℃程度の低温水と混合されてユーザーがリモコン30で設定した給湯設定温度に調節され、給湯混合水栓3から給湯される。
【0029】
このとき、前記中温水戻り口22は貯湯タンク16最下端の給水口15および下部のヒーポン往き口17よりも高い位置の貯湯タンク16に設けているため、暖房運転により中温水戻り口22から中温水が貯湯タンク16の下部に戻されても、給湯の使用により貯湯タンク16下端から給水管からの低温水が流入することで貯湯タンク16の最下端には低温水が確保されることとなり、次回の沸き上げの際には必ず低温水から沸き上げることができるという効果がある。また、前記高温水取出し口21は第1出湯口13から連なる第1出湯管12途中に設けられていて、貯湯タンク16の開口部を減らすことができるものである。
【0030】
また、第2出湯口33が中温水戻り口22よりも高い位置に設けられているので、中温水戻り口22と第2出湯口33との間にある程度の容量を確保でき、熱交換器20で温度低下した中温水をその容量分だけ一時的に貯めておくことができることとなり、第2出湯口33より高い位置に貯められてしまう中温水の量を少なくすることができる。詳しくは、第2出湯口33が貯湯タンク16の中間高さ位置程度にあるので中温水戻り口22と第2出湯口33との間に約90〜120L程度の容量を確保でき、熱交換器20で温度低下した中温水をその容量分だけ一時的に貯めておくことができることとなり、第2出湯口33より高い位置に貯められてしまう中温水の量を少なくすることができる。すなわち第2出湯口33から取り出すことができない中温水を極力少なくすることができるものである。
【0031】
ここで、もし中温水戻り口22と第2出湯口33とが同じ高さにあった場合には、中温水が中温水戻り口22より高い位置に貯められてしまう場合があり、これを中温水戻り口22と同じ高さにある第2出湯口33から取り出すことができないため、中温水が発生すると同時にこの中温水を給湯に用いる必要があり、さもなければ多量に給湯を行って中温水が貯湯タンク16上端部の第1出湯口13にまで押し上げられるまで貯湯タンク16内に中温水が貯湯されてしまうこととなる。しかし、この第1の実施形態では上記のように中温水戻り口22よりも高い位置に第2出湯口33が設けられているため、この高さの差分の容量だけ中温水の発生から利用までの容量的あるいは時間的余裕ができ、中温水をある程度の容量分発生させてから時間的間隔をおいて給湯を行っても中温水を給湯に用いることができる効果がある。
【0032】
また、図6に示すように、暖房を行わなかったり沸き上げ完了直後の給湯では貯湯タンク16内に中温水がなく、第2出湯口33位置に高温水がある場合には、第2混合弁34のサーモワックス34aは設定混合温度以上の温度雰囲気にさらされるために膨張して、第1出湯管12側の弁体34bを閉じて第2出湯管35側の弁体34bが開かれることとなる。結果的に設定混合温度以上の温度の温水を第1混合弁27へ供給するが、第1混合弁で給水管14からの低温水と混合してユーザーがリモコン30で設定した給湯設定温度に調節されることとなる。
【0033】
また、図7に示すように、貯湯タンク16内の上部には高温水があるが、第2出湯口33付近に低温水がある場合には、第2混合弁34のサーモワックス34aが第1出湯管12からの高温水と第2出湯管35からの低温水とが混合された温水にさらされるため、その温度に応じて伸縮して設定混合温度の約65℃になるように自動的に調節されるものである。なお、図5〜7においては、説明に必要な構成要素のみを抜き出して開示しており、図示しなかったが図1の構成と同一のものである。
【0034】
このように、給湯の際に暖房熱源として利用された中温水を高温水よりも優先して貯湯タンク16の途中から取り出して給湯するので、高温水を給湯しきるまで中温水を給湯できないと行った不具合がなく、給湯を行う度に貯湯タンク16内の中温水が減って給水管14からの低温水に入れ替わって、深夜の沸き上げ動作を行う時には沸き上げ効率の悪い中温水ではなく、温度の低い低温水をヒートポンプ回路9で沸き上げることとなり、沸き上げの効率が向上しヒートポンプ式給湯装置としてのCOP(エネルギー消費効率)が良くなるものである。
【0035】
また、第2混合弁34は第1混合弁27で調整する給湯設定温度範囲の上限温度以上の温度に混合し、その後に第1混合弁27にて任意の給湯設定温度に混合して給湯するので、ユーザー側で特別な操作をすることなくリモコン30で設定した任意の給湯設定温度の湯を常に確実に給湯できるものである。
【0036】
また、第2混合弁34はサーモワックス混合弁のような感温変形部材を用いた自動混合弁としたので、給湯制御部37に用いられているマイコンの出力ポートおよび入力ポートを全く利用せずに設定温度に混合でき、ポートの少ない安価なマイコンを用いることができる他、余ったポートを他の機能に割り振ることができ、安価かつ多機能な給湯装置の実現に貢献することができるものである。
【0037】
次に、第2の実施形態を図8に基づいて説明する。なお、前記第1の実施形態と同一のものには同一の符号を付してその説明を省略する。
【0038】
この第2の実施形態では、貯湯タンク16内の高温水を熱利用循環回路24を介して直接暖房負荷端末4に循環させるものである。暖房スイッチ32のON操作により暖房開始が指示されると、熱利用循環ポンプ23が駆動され、貯湯タンク16内の高温水を高温水取出し口21から暖房負荷端末4に循環させ、浴室等の比較的負荷の小さい被暖房室を暖房して30〜50℃程度に温度低下した中温水となって貯湯タンク16内に低温水戻り口22より戻るものである。
【0039】
このように第2の実施形態では、貯湯タンク16から取り出した高温水を熱源として直接用いるか間接的に用いるかが前記第1の実施形態と異なるのみで、他の作用効果は何ら変ることがないものであるので、その説明は第1の実施形態を参照することとして省略することとする。なお、暖房負荷端末としては例示した床暖房パネルに限定されるものではなく、例えば温水式温風暖房器や温水式パネルコンベクタ、温水式パネルラジエータ等でも良いもので、要は暖房を行うものであれば本発明の要旨を変更しない範囲での実施形態の変更をすることを妨げるものではない。
【0040】
次に、第3の実施形態を図9に基づいて説明する。なお、前記第1または第2の実施形態と同一のものには同一の符号を付してその説明を省略する。
【0041】
34’は第1出湯管12の第1混合弁27と第1出湯口13の間に設けた電動ミキシング弁よりなる第2混合弁で、その下流に設けた混合温度センサ42の検出する温度に応じてリモコン30で設定した任意の給湯設定温度より所定温度高い温度になるよう混合比率を調節するものである。
【0042】
また、前記熱交換器20と熱利用循環ポンプ23と二次側循環ポンプ26は貯湯タンクユニット2とは別体の熱交換ユニット43に収納されており、この熱交換ユニット43内に設けた熱交換制御部44によって各ポンプ23、26が制御されると共に、この熱交換制御部44と有線または無線によって第2リモコン45が接続されているものである。暖房の開始および停止は第2リモコン45の操作によって入力されるものである。なお、前記リモコン30は給湯に関する操作だけができるようにし、暖房に関する操作は第2リモコン45によって行うようにしているものである。
【0043】
このように第2混合弁34’を電動ミキシング弁として、リモコン30で設定した任意の給湯設定温度より所定温度高い温度になるよう混合比率を調節するようにしたので、中温水をその時々の任意の給湯設定温度に応じて多量に用いることができて、中温水の利用を促進できるものである。例えば任意の給湯設定温度が60℃であれば、電動ミキシング弁の第2混合弁34’の混合温度を60℃より5degだけ高い65℃にし、65℃に混合した温水を第1混合弁27で任意の給湯設定温度である60℃に調整して給湯を行う。また、任意の給湯設定温度が42℃であれば、電動ミキシング弁の第2混合弁34’の混合温度を42℃より5degだけ高い47℃にし、47℃に混合した温水を第1混合弁27で任意の給湯設定温度である42℃に調整して給湯を行う。このように、その時々の任意の給湯設定温度に応じて中温水を可能な限り多く使って給湯を行うことができるものである。
【0044】
なお、前記第1の実施形態と第3の実施形態とでは、熱交換器20と熱利用循環ポンプ23と二次側循環ポンプ26の設置の形態が異なるが、第1の実施形態で熱交換ユニット43を設けても良く、また逆に第2の実施形態で貯湯タンクユニット2内に設けても良く、本発明の要旨を変更しない範囲での実施形態の変更をすることを妨げるものではない。
【0045】
また、第1の実施形態および第3の実施形態では、床暖房パネルから成る暖房負荷端末4を二次側回路25の負荷としているが、これに限られることはなく、温水式温風暖房器や温水式パネルコンベクタ、温水式パネルラジエータ等でも良い。また、二次側回路25の負荷は暖房利用に限らず、例えば浴槽の温水を循環させて風呂の追焚きまたは保温に用いても良く、要は貯湯タンク16内の高温水の熱を熱交換器20で熱交換して利用する熱機器であれば何でも良いものである。
【0046】
【発明の効果】
以上のように、本発明の請求項1によれば、暖房熱源として利用した容量当たりの保有熱量が少ない中温水を給湯時に貯湯タンク上部から取り出す高温水と混合して給湯に用いることができるため、ヒートポンプ回路で沸き上げを行う際に効率の良い沸き上げを行うことができ、ヒートポンプ式給湯装置としてのCOP(エネルギー消費効率)を低下させることがないものであると共に、中温水を取り出す第2出湯口が中温水戻り口よりも高い位置に設けられているため、中温水をある程度の容量分貯湯タンクに貯めてから時間的に間隔をおいて給湯を行っても、この中温水を給湯に用いることができ、第2混合弁の設定混合温度を第1混合弁での任意の給湯設定温度より高い温度としているので、その時々の任意の給湯設定温度に応じて中温水を可能な限り多く使って給湯を行うことができるものである。
【0047】
また、請求項2によれば、二次側回路の加熱源として利用した容量当たりの保有熱量が少ない中温水を給湯時に貯湯タンク上部から取り出す高温水と混合して給湯に用いることができるため、ヒートポンプ回路で沸き上げを行う際に効率の良い沸き上げを行うことができ、ヒートポンプ式給湯装置としてのCOP(エネルギー消費効率)を低下させることがないものであると共に、中温水を取り出す第2出湯口が中温水戻り口よりも高い位置に設けられているため、中温水をある程度の容量分貯湯タンクに貯めてから時間的に間隔をおいて給湯を行っても、この中温水を給湯に用いることができ、第2混合弁の設定混合温度を第1混合弁での任意の給湯設定温度より高い温度としているので、その時々の任意の給湯設定温度に応じて中温水を可能な限り多く使って給湯を行うことができるものである。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の概略構成図。
【図2】同第1の実施形態の沸き上げ運転の作動を説明する図。
【図3】同第1の実施形態の暖房運転の作動を説明する図。
【図4】同第1の実施形態の給湯運転の作動を説明する図。
【図5】同第1の実施形態の貯湯タンク内の第2出湯口付近に中温水が存在する場合の給湯運転時の第2混合弁の作動を説明する図。
【図6】同第1の実施形態の貯湯タンク内の第2出湯口付近に高温水が存在する場合の給湯運転時の第2混合弁の作動を説明する図。
【図7】同第1の貯湯タンク内の第2出湯口付近に低温水が存在する場合の給湯運転時の第2混合弁の作動を説明する図。
【図8】本発明の第2の実施形態の概略構成図。
【図9】本発明の第3の実施形態の概略構成図。
【図10】従来例の概略構成図。
【符号の説明】
4 暖房負荷端末
5 圧縮機
6 冷媒−水熱交換器(凝縮器)
8 蒸発器
9 ヒートポンプ回路
12 第1出湯管
13 第1出湯口
14 給水管
15 給水口
16 貯湯タンク
17 ヒーポン往き口
18 ヒーポン戻り口
19 ヒーポン循環回路
20 熱交換器
21 高温水取出し口
22 中温水戻り口
23 熱利用循環ポンプ
24 熱利用循環回路
25 二次側回路
27 第1混合弁(電動ミキシング弁)
28 給湯管
33 第2出湯口
34 第2混合弁(サーモワックス混合弁)
34’ 第2混合弁(電動ミキシング弁)
34a サーモワックス(感温変形部材)
35 第2出湯管
42 混合温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump type hot water supply apparatus that circulates hot water in a hot water storage tank and is boiled by a heat pump circuit, and circulates high temperature water in the hot water storage tank and is used as a heat source for heating or reheating / holding a bath. .
[0002]
[Prior art]
Conventionally, this type has been shown in FIG.
Here, 101 is a heat pump circuit, 102 is a hot water storage tank, and low temperature water of about 5 to 25 ° C. taken out from the lower part of the hot water storage tank 102 is heated to about 70 to 90 ° C. by the heat pump circuit 101, and from the upper part of the hot water storage tank 102. Laminated hot water storage.
[0003]
A water supply pipe 103 is connected to the lower end of the hot water storage tank 102, and a hot water discharge pipe 104 is connected to the upper end. An electric mixing valve 105 mixes high-temperature water from the hot water discharge pipe 104 and low-temperature water from the water supply pipe 103 with an arbitrary hot water supply set temperature set by a remote controller (not shown) or the like and discharges the hot water from the hot water tap 106. It is.
[0004]
Reference numeral 107 denotes a heat exchanger as a heat source for heating or bath reheating / keeping heat, which can be circulated with the hot water storage tank 102 by a heat transfer pipe 108 branched from the hot water discharge pipe 104 and a heat exchange return pipe 109 joined to the water supply pipe 103. The hot water in the hot water storage tank 102 is connected to the heat exchanger 107 to heat the hot water in a secondary circuit (not shown) such as a heating circuit or a bath reheating / warming circuit. .
[0005]
The high-temperature water taken out from the upper part of the hot water storage tank 102 is subjected to heat exchange by the heat exchanger 107 and the temperature is lowered to become medium-temperature water of about 30 to 50 ° C. from the lower part of the hot water storage tank 102 in the hot water storage tank 102. Return to.
[0006]
[Problems to be solved by the invention]
However, in this conventional one, medium temperature water of about 30 to 50 ° C. is stored in the hot water storage tank 102 by heat exchange in the heat exchanger 107. This medium temperature water is used as a heat source for heating or reheating. Since the temperature is low, it is not suitable, and if hot water is not supplied until the hot water runs out, medium-temperature water with a small amount of retained heat per capacity remains in the hot water storage tank 102 indefinitely. When the water in the hot water storage tank 102 cannot be effectively used and the water in the hot water storage tank 102 is boiled, the efficiency is low due to the high temperature to reheat the medium temperature water by the heat pump circuit 101, and the COP (energy consumption efficiency) of the heat pump hot water supply device ) Is reduced.
[0007]
[Means for Solving the Problems]
  Therefore, in order to solve these problems, the present invention has a water supply port for allowing low temperature water to flow in from the water supply pipe at the lower end portion, and the high temperature water stored in the hot water is discharged from the first outlet pipe. A hot water storage tank having a hot water outlet at its upper end, a heat pump circuit having a compressor, an evaporator and a condenser, and low-temperature water taken out from a heat pump outlet provided at the lower part of the hot water storage tank And a hot water circulation circuit for returning the heated high temperature water from the heat pump return port provided in the upper part of the hot water storage tank into the hot water storage tank, and the high temperature water taken out from the high temperature water outlet provided in the upper part of the hot water storage tank. A heat-use circulation circuit that heats the medium-temperature water whose temperature has been reduced to return to the medium-temperature water return port provided in the lower part of the hot water storage tank;A remote control that has a hot water temperature setting switch and can set the hot water temperature to an arbitrary hot water temperature., High temperature water flowing out from the first outlet and low temperature water from the water supply pipeSet by the remote controlA first mixing valve for mixing at an arbitrary hot water supply set temperature;Hot water temperature sensor provided downstreamA second hot water outlet and a second hot water pipe for letting the hot water flow out to a position higher than the intermediate hot water return port and lower than the first hot water outlet in the hot water storage tank. And a second mixing valve for mixing intermediate temperature water from the second tapping pipe in the middle of the first tapping pipe between the first mixing valve and the first tapping outletAnd the mixing temperature sensor downstream of itHigh temperature water from the first outlet and intermediate temperature water from the second outlet by the second mixing valveAccording to the output of the mixed temperature sensorAny hot water set temperatureHigher than the predetermined temperatureThe arbitrary hot water supply set temperature mixed in the temperature and further mixed in the first mixing valve by the second mixing valveHigher than the predetermined temperatureHot water and low-temperature water from the water supply pipeAccording to the output of the hot water temperature sensorThe hot water is mixed to the arbitrary hot water supply set temperature to supply hot water.
[0008]
  As a result, the medium-temperature water that is taken out from the high-temperature water outlet at the top of the hot water tank and used for heating and returned to the medium-temperature water return port at the bottom of the hot water tank is returned to a position higher than this medium-temperature water return port. From hot water supply set temperature by the high temperature water taken out from the provided second hot water outlet and taken out from the hot water storage tank and the second mixing valvePredetermined temperatureMixing to a higher temperature and then mixing with this second mixing valvePredetermined temperatureHot water having a high temperature and low-temperature water from the water supply pipe can be mixed with an arbitrary hot water supply set temperature by the first mixing valve to supply hot water. At this time, low-temperature water from the water supply pipe flows into the lower part of the hot water tank as much as the hot and warm water is discharged, and when the hot water in the hot water tank is boiled, it is stored in the lower part of the hot water tank. Since the low-temperature water is boiled in the heat pump circuit, it is possible to boil efficiently. The high temperature water taken out from the hot water storage tank may be used directly for heating or indirectly by heat exchange.
[0009]
  Moreover, in Claim 2, the hot water storage tank which has the 1st hot water outlet which has the water supply port which flows in low-temperature water from a water supply pipe in a lower end part, and discharges the hot water currently stored in a hot water from a 1st hot water discharge pipe in an upper end part, A heat pump circuit having a compressor, an evaporator, and a condenser; and low temperature water taken out from a heat pump outlet provided at a lower portion of the hot water storage tank is heated by the condenser of the heat pump circuit, and the heated high temperature water is heated to the hot water storage A heat pump circulating circuit for returning the hot water from the heat pump return port provided in the upper part of the tank into the hot water storage tank, and hot water taken out from the hot water outlet provided in the upper part of the hot water storage tank for heating the hot water in the secondary circuit. A heat-use circulation circuit that circulates in a heat exchanger and returns medium-temperature water whose temperature has been reduced by exchanging heat with the warm water in the secondary-side circuit to a medium-temperature water return port provided in the lower part of the hot water storage tank;A remote control that has a hot water temperature setting switch and can set the hot water temperature to an arbitrary hot water temperature., High temperature water flowing out from the first outlet and low temperature water from the water supply pipeSet by the remote controlA first mixing valve for mixing at an arbitrary hot water supply set temperature;Hot water temperature sensor provided downstreamA second hot water outlet and a second hot water pipe for letting the hot water flow out to a position higher than the intermediate hot water return port and lower than the first hot water outlet in the hot water storage tank. And a second mixing valve for mixing intermediate temperature water from the second tapping pipe in the middle of the first tapping pipe between the first mixing valve and the first tapping outletAnd the mixing temperature sensor downstream of itHigh temperature water from the first outlet and intermediate temperature water from the second outlet by the second mixing valveAccording to the output of the mixed temperature sensorAny hot water set temperatureHigher than the predetermined temperatureThe arbitrary hot water supply set temperature mixed in the temperature and further mixed in the first mixing valve by the second mixing valveHigher than the predetermined temperatureHot water and low-temperature water from the water supply pipeAccording to the output of the hot water temperature sensorThe hot water is mixed to the arbitrary hot water supply set temperature to supply hot water.
[0010]
  As a result, medium hot water with a small amount of heat per capacity that is taken out from the hot water outlet at the top of the hot water tank and used as a heating source for the secondary circuit and returned to the hot water return port at the bottom of the hot water tank is returned to this medium hot water. Take out from the second hot water outlet provided at a position higher than the mouth, hot water taken out from the upper part of the hot water storage tank and the second mixing valve from any hot water set temperaturePredetermined temperatureMixing to a higher temperature and then mixing with this second mixing valvePredetermined temperatureHot water having a high temperature and low-temperature water from the water supply pipe can be mixed with an arbitrary hot water supply set temperature by the first mixing valve to supply hot water. At this time, low-temperature water from the water supply pipe flows into the lower part of the hot water tank as much as the hot and warm water is discharged, and when the hot water in the hot water tank is boiled, it is stored in the lower part of the hot water tank. Since the low-temperature water is boiled in the heat pump circuit, it is possible to boil efficiently.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, the 1st Embodiment of this invention is described based on FIGS.
Reference numeral 1 denotes a heat pump unit, 2 denotes a hot water storage tank unit, 3 denotes a hot water mixing tap, 4 denotes a heating load terminal such as a floor heating panel.
[0016]
The heat pump unit 1 includes a compressor 5, a refrigerant-water heat exchanger 6 as a condenser 6, a decompressor 7, and an evaporator 8, and water to be heated into the refrigerant-water heat exchanger 6. A heat pump circulation pump 10 that circulates and a heat pump control unit 11 that controls driving thereof are provided, and carbon dioxide is used as a refrigerant in the heat pump circuit 9 to constitute a supercritical heat pump cycle. . Since carbon dioxide is used as the refrigerant, low-temperature water can be boiled up to a high temperature of about 90 ° C. without an electric heater.
[0017]
Here, the refrigerant-water heat exchanger 6 employs a counter flow system in which the refrigerant and the water to be heated flow opposite to each other, and in the supercritical heat pump cycle, the refrigerant is condensed in a supercritical state during heat exchange. Therefore, the water to be heated can be efficiently heated to a high temperature, and the decompressor 7 or the compressor is compressed so that the temperature difference between the refrigerant-water heat exchanger 6 inlet temperature and the refrigerant outlet temperature is constant. By controlling the machine 5, the COP (energy consumption efficiency) is very good at 3.0 or more when the inlet temperature of the refrigerant-water heat exchanger 6 to be heated is a low temperature of about 5 to 20 ° C. It is possible to heat the water to be heated.
[0018]
The hot water storage tank unit 2 includes a hot water storage tank 16 having a first hot water outlet 13 connected to the first hot water pipe 12 at the upper end and a water supply opening 15 connected to the water supply pipe 14 at the lower end. A heat pump outlet 17 is provided at the lower portion of the hot water storage tank 16 and a heat pump return port 18 is provided at the upper portion. The heat pump circulation circuit 19 communicates with the refrigerant-water heat exchanger 6 of the heat pump unit 1 to store the water in the hot water storage tank 16. Hot water is connected so that it can circulate. The hot water storage tank 16 has a capacity of about 370L.
[0019]
Reference numeral 20 denotes a heat exchanger as a heating source for the warm floor panel 4. On the primary side, a high temperature water outlet 21 communicating with the upper part of the hot water tank 16 and an intermediate hot water return port 22 below the hot water tank 16 are used for heat circulation. Hot water in the hot water storage tank 16 is circulated by a heat utilization circuit 24 having a pump 23, and a secondary side circuit 25 and a secondary circuit 25 connected to the floor warming panel 4 are circulated on the secondary side. A secondary circulation pump 26 is provided.
[0020]
Next, reference numeral 27 denotes a first mixing valve composed of an electric mixing valve that mixes hot water from the first hot water discharge pipe 12 and low temperature water from the water supply pipe 14, and a hot water supply temperature sensor provided in the hot water supply pipe 28 downstream thereof. The mixing ratio is controlled so that the hot water temperature detected at 29 becomes the hot water supply set temperature set by the user with the remote controller 30. The remote controller 30 has a hot water supply temperature setting switch 31, which can arbitrarily set the hot water supply temperature in a range of 35 to 60 ° C. and has a heating switch 32 for starting heating.
[0021]
Reference numeral 33 denotes a second hot water outlet provided at an intermediate height position of the hot water storage tank 16, and an input side of the second mixing valve 34 provided between the first hot water outlet 13 of the first hot water pipe 12 and the first mixing valve 27. Are connected via a second hot water discharge pipe 35. The second hot water outlet 33 and the second hot water discharge pipe 35 are used to discharge hot water from the hot water storage tank 16 from the hot water storage tank 16 with the temperature lowered by heat exchange with the secondary side in the heat exchanger 20. The first mixing valve 27 is mixed with high-temperature water flowing through the first hot water discharge pipe 12 by the valve 34.
[0022]
The second mixing valve 34 is composed of a thermo wax mixing valve as shown in FIG. 5, and the position of the valve body 34b of the inlet side port is changed by expansion and contraction of the thermo wax 34a provided on the output port side. The mixing ratio is adjusted accordingly, and the mixing is automatically performed at about 65 ° C., which is higher than 60 ° C., which is the upper limit temperature of the hot water supply set temperature range. The mixing temperature of the second mixing valve 34 can be adjusted by the adjusting knob 34c. Although the thermowax mixing valve is used here, a temperature-sensitive automatic mixing valve using a temperature-sensitive deformation member such as a temperature-sensitive spring or a bimetal made of a shape memory alloy that is temperature-sensitive deformed may be used instead. Further, the second mixing valve 34 is not limited to the illustrated valve, valve seat shape, and flow path shape, and the main point is that the second mixing valve 34 is automatically mixed to the set mixing temperature by deformation of the temperature-sensitive deformation member. The shape of the valve, the valve seat, and the flow path can be changed without changing the gist of the invention.
[0023]
A plurality of hot water storage temperature sensors 36 are arranged in the vertical direction of the hot water storage tank 16, and the hot water storage temperature sensor 36 detects whether a predetermined temperature (for example, 50 ° C.) or higher is detected in the hot water storage tank 16. This is to detect how much heat is left.
[0024]
Reference numeral 37 denotes a hot water supply control unit having a microcomputer that receives an input from a sensor in the hot water storage tank unit and controls driving of the actuator. The remote controller 30 is connected to the hot water supply control unit 37 by radio or wire so that the user can set an arbitrary hot water supply set temperature.
[0025]
In addition, 38 is an overpressure prevention valve for preventing overpressure of the hot water storage tank 16, 39 is a water supply temperature sensor for detecting the temperature of the water supply, 40 is a pressure reducing valve for reducing the pressure of the water supply, and 41 is an amount of hot water to supply hot water. This is a flow counter.
[0026]
Next, the operation of the first embodiment will be described.
First, the boiling operation shown in FIG. 2 will be described. When the hot water storage temperature sensor 36 detects that the necessary amount of heat does not remain in the hot water storage tank 16 in the late-night power time zone, the hot water supply control unit 37 operates as a heat pump. A boiling start command is issued to the control unit 11. Upon receiving the command, the heat pump control unit 11 starts driving the heat pump circulation pump 10 after starting the compressor 5, and cools the water at a temperature of about 5 to 20 ° C. taken out from the heat pump outlet 17 at the bottom of the hot water storage tank 16. Heated to a high temperature of about 70 to 90 ° C. with the exchanger 6, returned to the hot water storage tank 16 through the heat pump return circuit 18 at the upper part of the hot water storage tank 16 through the heat pump circulation circuit 19, and sequentially stacked from the upper part of the hot water storage tank 16. Hot water is stored. When the hot water storage temperature sensor 36 detects that the required amount of heat has been stored, the hot water supply control unit 37 issues a boiling stop command to the heat pump control unit 11, and the heat pump control unit 11 stops the compressor 5 and heat pump circulation. The pump 10 is also stopped and the boiling operation is finished.
[0027]
Next, the heating operation shown in FIG. 3 will be described. When the heating switch 32 of the remote controller 30 is turned ON, the hot water supply control unit 37 starts driving the heat utilization circulation pump 23 and the secondary circulation pump 26, and the high-temperature water outlet 21. The high temperature water of about 70 to 90 ° C. taken out from the flow is introduced into the heat exchanger 20 to exchange heat with the warm water of the secondary circuit 25, and the medium temperature water whose temperature has been lowered to about 30 to 50 ° C. by the heat exchange is returned to the medium temperature water. The hot water is stored in such a manner as to return to the lower part of the hot water storage tank 16 from the port 22 and push up the boundary surface of the high temperature water and the intermediate temperature water so as to replace the high temperature water. On the secondary side, hot water heated by the heat exchanger 20 flows into the floor heating panel 4, heats the space to be heated, and circulates again to the heat exchanger 20. Then, when the heating switch 32 of the remote controller 30 is turned off, the hot water supply control unit 37 stops driving the heat utilization circulation pump 23 and the secondary side circulation pump 26 to stop the heating operation.
[0028]
The hot water supply operation shown in FIG. 4 will be described. When the hot water supply mixer tap 3 is opened, the hot water in the hot water storage tank 16 is pushed out from the first hot water outlet 13 at the upper end by the supply water pressure from the water supply pipe 14. Medium temperature water is pushed out from the second hot water outlet 33. The extruded high-temperature water of about 70 to 90 ° C. and medium-temperature water of about 30 to 50 ° C. flow into the second mixing valve 34 through the first hot water pipe 12 and the second hot water pipe 35 respectively, and hot water of about 65 ° C. To be mixed. The mixed hot water flows into the first mixing valve 27, is mixed with low temperature water of about 5 to 20 ° C. from the water supply pipe 14, is adjusted to a hot water supply set temperature set by the user with the remote controller 30, and the hot water mixed tap 3 Hot water is supplied from.
[0029]
At this time, since the intermediate hot water return port 22 is provided in the hot water storage tank 16 at a position higher than the water supply port 15 at the lowermost end of the hot water storage tank 16 and the lower heat pump outlet port 17, Even if the hot water is returned to the lower part of the hot water storage tank 16, the low temperature water from the water supply pipe flows from the lower end of the hot water storage tank 16 due to the use of the hot water supply, so that the low temperature water is secured at the lowermost end of the hot water storage tank 16. At the time of the next boiling, there is an effect that it can be heated from low temperature water. Further, the high temperature water outlet 21 is provided in the middle of the first hot water pipe 12 connected to the first hot water outlet 13, and the opening of the hot water storage tank 16 can be reduced.
[0030]
In addition, since the second hot water outlet 33 is provided at a position higher than the intermediate hot water return port 22, a certain amount of capacity can be secured between the intermediate hot water return port 22 and the second hot water outlet 33, and the heat exchanger 20. Thus, it is possible to temporarily store the medium-temperature water whose temperature has been lowered by that amount, and the amount of medium-temperature water that is stored at a position higher than the second hot water outlet 33 can be reduced. Specifically, since the second hot water outlet 33 is at an intermediate height position of the hot water storage tank 16, a capacity of about 90 to 120L can be secured between the intermediate hot water return port 22 and the second hot water outlet 33, and the heat exchanger Accordingly, the medium-temperature water whose temperature has been lowered at 20 can be temporarily stored by the amount, and the amount of medium-temperature water that is stored at a position higher than the second hot water outlet 33 can be reduced. That is, it is possible to reduce the amount of medium-temperature water that cannot be taken out from the second hot water outlet 33 as much as possible.
[0031]
Here, if the intermediate warm water return port 22 and the second hot water outlet 33 are at the same height, the intermediate warm water may be stored at a position higher than the intermediate warm water return port 22. Since it cannot be taken out from the second hot water outlet 33 at the same height as the hot water return port 22, it is necessary to use the intermediate warm water for hot water supply at the same time as the intermediate hot water is generated. The hot water is stored in the hot water storage tank 16 until the hot water is pushed up to the first hot water outlet 13 at the upper end of the hot water storage tank 16. However, in the first embodiment, since the second hot water outlet 33 is provided at a position higher than the intermediate warm water return port 22 as described above, from the generation to use of the intermediate warm water by the capacity corresponding to the difference in height. Therefore, there is an effect that even if hot water is supplied at a time interval after intermediate warm water is generated for a certain volume, the hot water can be used for hot water supply.
[0032]
In addition, as shown in FIG. 6, when there is no hot water in the hot water storage tank 16 in the hot water supply without heating or immediately after the completion of boiling, there is no hot water in the second hot water outlet 33 position. The thermo-wax 34a 34 expands because it is exposed to a temperature atmosphere equal to or higher than the set mixing temperature, the valve body 34b on the first hot water discharge pipe 12 side is closed, and the valve body 34b on the second hot water discharge pipe 35 side is opened. Become. As a result, hot water having a temperature equal to or higher than the set mixing temperature is supplied to the first mixing valve 27. The hot water is mixed with the low temperature water from the water supply pipe 14 by the first mixing valve and adjusted to the hot water supply set temperature set by the user using the remote controller 30. Will be.
[0033]
In addition, as shown in FIG. 7, hot water is present in the upper part of the hot water storage tank 16, but when low temperature water is present near the second hot water outlet 33, the thermowax 34 a of the second mixing valve 34 is the first. Since it is exposed to the hot water in which the high temperature water from the tapping pipe 12 and the low temperature water from the second tapping pipe 35 are mixed, it expands and contracts according to the temperature and automatically reaches a set mixing temperature of about 65 ° C. It is to be adjusted. In FIGS. 5 to 7, only the components necessary for the explanation are extracted and disclosed, and although not shown, the configuration is the same as that of FIG. 1.
[0034]
In this way, since the hot water used as a heating heat source during hot water supply is taken out from the hot water storage tank 16 in preference to the hot water, hot water is supplied until the hot water can be fully supplied. When there is no problem, the hot water in the hot water storage tank 16 decreases every time hot water is supplied, and is replaced with low-temperature water from the water supply pipe 14, and when performing a boiling operation at midnight, the temperature of the hot water is not low. The low-temperature water is boiled by the heat pump circuit 9, which improves the efficiency of boiling and improves the COP (energy consumption efficiency) as a heat pump type hot water supply apparatus.
[0035]
Further, the second mixing valve 34 mixes to a temperature equal to or higher than the upper limit temperature of the hot water supply set temperature range adjusted by the first mixing valve 27, and then mixes to an arbitrary hot water set temperature by the first mixing valve 27 to supply hot water. Therefore, hot water having an arbitrary hot water supply set temperature set by the remote controller 30 can always be reliably supplied without any special operation on the user side.
[0036]
Further, since the second mixing valve 34 is an automatic mixing valve using a temperature sensitive deformation member such as a thermo wax mixing valve, the output port and the input port of the microcomputer used in the hot water supply control unit 37 are not used at all. In addition to being able to mix with the set temperature and using an inexpensive microcomputer with few ports, the surplus ports can be allocated to other functions, contributing to the realization of an inexpensive and multifunctional hot water supply system. is there.
[0037]
Next, a second embodiment will be described based on FIG. In addition, the same code | symbol is attached | subjected to the same thing as the said 1st Embodiment, and the description is abbreviate | omitted.
[0038]
In the second embodiment, the hot water in the hot water storage tank 16 is circulated directly to the heating load terminal 4 via the heat utilization circulation circuit 24. When the start of heating is instructed by turning on the heating switch 32, the heat-use circulation pump 23 is driven to circulate the high-temperature water in the hot water storage tank 16 from the high-temperature water outlet 21 to the heating load terminal 4 to compare the bathroom and the like. The heated room with a small target load is heated to become medium-temperature water whose temperature has dropped to about 30 to 50 ° C., and returns to the hot water storage tank 16 from the low-temperature water return port 22.
[0039]
As described above, in the second embodiment, whether the high-temperature water taken out from the hot water storage tank 16 is directly or indirectly used as a heat source is different from the first embodiment, and other functions and effects can be changed. Therefore, the description thereof will be omitted as referring to the first embodiment. The heating load terminal is not limited to the illustrated floor heating panel, and may be, for example, a hot water hot air heater, a hot water panel convector, a hot water panel radiator, etc. Therefore, it does not prevent the embodiment from being changed without changing the gist of the present invention.
[0040]
Next, a third embodiment will be described based on FIG. In addition, the same code | symbol is attached | subjected to the same thing as the said 1st or 2nd embodiment, and the description is abbreviate | omitted.
[0041]
Reference numeral 34 'denotes a second mixing valve formed by an electric mixing valve provided between the first mixing valve 27 of the first tap pipe 12 and the first tap port 13, and the temperature detected by the mixing temperature sensor 42 provided downstream thereof. Accordingly, the mixing ratio is adjusted so that the temperature becomes a predetermined temperature higher than an arbitrary hot water supply set temperature set by the remote controller 30.
[0042]
The heat exchanger 20, the heat utilization circulation pump 23, and the secondary circulation pump 26 are housed in a heat exchange unit 43 that is separate from the hot water tank unit 2, and the heat provided in the heat exchange unit 43. The pumps 23 and 26 are controlled by the exchange control unit 44, and the second remote controller 45 is connected to the heat exchange control unit 44 by wire or wirelessly. The start and stop of heating are input by operating the second remote controller 45. The remote controller 30 can perform only operations related to hot water supply, and the operation related to heating can be performed by the second remote controller 45.
[0043]
As described above, the second mixing valve 34 ′ is used as an electric mixing valve, and the mixing ratio is adjusted so as to be a predetermined temperature higher than an arbitrary hot water supply set temperature set by the remote controller 30. The hot water supply can be used in a large amount according to the set hot water temperature, and the use of medium temperature water can be promoted. For example, if an arbitrary hot water supply set temperature is 60 ° C., the mixing temperature of the second mixing valve 34 ′ of the electric mixing valve is set to 65 ° C., which is 5 degrees higher than 60 ° C., and the hot water mixed at 65 ° C. is supplied to the first mixing valve 27. Hot water is supplied by adjusting to an arbitrary hot water supply set temperature of 60 ° C. If the arbitrary hot water supply set temperature is 42 ° C., the mixing temperature of the second mixing valve 34 ′ of the electric mixing valve is set to 47 ° C., which is 5 degrees higher than 42 ° C., and the hot water mixed at 47 ° C. is mixed with the first mixing valve 27. Then, hot water is supplied by adjusting to an arbitrary hot water supply set temperature of 42 ° C. In this way, hot water can be supplied using as much medium hot water as possible according to any hot water set temperature at that time.
[0044]
In the first embodiment and the third embodiment, the heat exchanger 20, the heat utilization circulation pump 23, and the secondary circulation pump 26 are installed in different forms, but the heat exchange in the first embodiment is different. The unit 43 may be provided, and conversely, it may be provided in the hot water storage tank unit 2 in the second embodiment, and does not preclude changing the embodiment without changing the gist of the present invention. .
[0045]
Moreover, in 1st Embodiment and 3rd Embodiment, although the heating load terminal 4 which consists of a floor heating panel is made into the load of the secondary side circuit 25, it is not restricted to this, A hot water type hot air heater Or a hot water panel convector or a hot water panel radiator may be used. Further, the load on the secondary circuit 25 is not limited to heating, but for example, the hot water in the bathtub may be circulated and used for bathing or keeping warm. In short, the heat of the hot water in the hot water storage tank 16 is exchanged. Any thermal device can be used as long as it is used by exchanging heat in the vessel 20.
[0046]
【The invention's effect】
  As described above, according to claim 1 of the present invention, the medium-temperature water having a small amount of retained heat per capacity used as the heating heat source can be mixed with the high-temperature water taken out from the upper part of the hot water storage tank during hot water supply and used for hot water supply. In addition, when boiling is performed in the heat pump circuit, efficient boiling can be performed, and COP (energy consumption efficiency) as a heat pump type hot water supply device is not lowered, and second hot water is taken out. Since the hot water outlet is located higher than the return port for medium hot water, even if the hot water is stored in the hot water storage tank for a certain amount of time and then hot water is supplied at intervals, the intermediate hot water is used for hot water supply. Can be usedBecause the set mixing temperature of the second mixing valve is higher than the arbitrary hot water supply set temperature in the first mixing valve, hot water is supplied using as much medium hot water as possible according to the arbitrary hot water set temperature at that time. Is something that can be done.
[0047]
  Further, according to claim 2, since the medium temperature water having a small amount of retained heat per capacity used as a heating source for the secondary circuit can be mixed with high temperature water taken out from the hot water storage tank at the time of hot water supply, it can be used for hot water supply. When boiling in a heat pump circuit, efficient boiling can be performed, and COP (energy consumption efficiency) as a heat pump type hot water supply device is not reduced, and the second output for taking out the medium temperature water The hot water tap is located higher than the return port of the medium temperature water, so even if the hot water is stored in the hot water storage tank for a certain amount of time and the hot water is supplied at intervals, this medium temperature water is used for the hot water supply. It is possibleBecause the set mixing temperature of the second mixing valve is higher than the arbitrary hot water supply set temperature in the first mixing valve, hot water is supplied using as much medium hot water as possible according to the arbitrary hot water set temperature at that time. Is something that can be done.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a first embodiment of the present invention.
FIG. 2 is a view for explaining an operation of a boiling operation according to the first embodiment.
FIG. 3 is a view for explaining the operation of the heating operation of the first embodiment.
FIG. 4 is a view for explaining an operation of a hot water supply operation according to the first embodiment.
FIG. 5 is a view for explaining the operation of a second mixing valve during a hot water supply operation when medium-temperature water is present in the vicinity of a second hot water outlet in the hot water storage tank of the first embodiment.
FIG. 6 is a view for explaining the operation of the second mixing valve during a hot water supply operation when high-temperature water is present in the vicinity of a second hot water outlet in the hot water storage tank of the first embodiment.
FIG. 7 is a view for explaining the operation of the second mixing valve during a hot water supply operation when low temperature water is present near the second hot water outlet in the first hot water storage tank.
FIG. 8 is a schematic configuration diagram of a second embodiment of the present invention.
FIG. 9 is a schematic configuration diagram of a third embodiment of the present invention.
FIG. 10 is a schematic configuration diagram of a conventional example.
[Explanation of symbols]
4 Heating load terminal
5 Compressor
6 Refrigerant-water heat exchanger (condenser)
8 Evaporator
9 Heat pump circuit
12 First tap pipe
13 First tap
14 Water supply pipe
15 Water inlet
16 Hot water storage tank
17 Heaton
18 Heaton Return Exit
19 Heaton circuit
20 Heat exchanger
21 Hot water outlet
22 Middle hot water return port
23 Heat-use circulation pump
24 Heat utilization circuit
25 Secondary circuit
27 First mixing valve (electric mixing valve)
28 Hot water supply pipe
33 Second tap
34 Second mixing valve (thermo wax mixing valve)
34 '2nd mixing valve (electric mixing valve)
34a Thermo wax (temperature-sensitive deformation member)
35 Second tap pipe
42 Mixed temperature sensor

Claims (2)

給水管から低温水を流入させる給水口を下端部に有すると共に貯湯している高温水を第1出湯管から流出させる第1出湯口を上端部に有する貯湯タンクと、圧縮機と蒸発器と凝縮器を有したヒートポンプ回路と、前記貯湯タンク下部に設けられたヒーポン往き口から取り出した低温水を前記ヒートポンプ回路の凝縮器によって加熱し、加熱された高温水を前記貯湯タンク上部に設けられたヒーポン戻り口から前記貯湯タンク内に戻すヒーポン循環回路と、前記貯湯タンク上部に設けられた高温水取出し口から取り出した高温水によって暖房し、温度低下した中温水を前記貯湯タンク下部に設けられた中温水戻り口に戻す熱利用循環回路と、給湯温度設定スイッチを有し給湯温度を任意の給湯設定温度に設定可能としたリモコンと、前記第1出湯口から流出する高温水と前記給水管からの低温水とを前記リモコンにて設定した前記任意の給湯設定温度に混合する第1混合弁と、その下流に設けた給湯温度センサを備えたヒートポンプ式給湯装置であって、前記貯湯タンクの前記中温水戻り口よりも高く且つ前記第1出湯口よりも低い位置に中温水を流出させるための第2出湯口および第2出湯管を設けると共に、前記第1混合弁と前記第1出湯口の間の前記第1出湯管途中に前記第2出湯管からの中温水を混合する第2混合弁と、その下流に混合温度センサを設け、前記第1出湯口からの高温水と前記第2出湯口からの中温水を前記第2混合弁によって前記混合温度センサの出力に応じて前記任意の給湯設定温度よりも所定温度高い温度に混合し、さらに前記第1混合弁にて前記第2混合弁で混合された前記任意の給湯設定温度よりも所定温度高い温度の温水と前記給水管からの低温水とを前記給湯温度センサの出力に応じて前記任意の給湯設定温度に混合して給湯するようにしたことを特徴とするヒートポンプ式給湯装置。A hot water storage tank having a water supply port through which a low temperature water flows from a water supply pipe at the lower end and a first hot water outlet for discharging hot water stored in the hot water from the first hot water discharge pipe at the upper end, a compressor, an evaporator and a condenser A heat pump circuit having a heater, and a low temperature water taken out from a heat pump outlet provided at a lower part of the hot water storage tank is heated by a condenser of the heat pump circuit, and the heated high temperature water is provided at an upper part of the hot water storage tank. Heat pump circulation circuit for returning from the return port into the hot water storage tank, and heating by the high temperature water taken out from the high temperature water outlet provided at the upper part of the hot water storage tank. and heat utilization circulation circuit back to the hot water return port, a remote controller and the hot water supply temperature can be set to any hot water set temperature has a hot water temperature setting switch, out of the first A first mixing valve for mixing the cold water from the hot water and the water supply pipe flowing out of the mouth to the arbitrary hot water set temperature set by the remote controller, heat pump having a hot-water supply temperature sensor provided downstream thereof A hot water supply apparatus, wherein a second hot water outlet and a second hot water outlet pipe are provided for allowing the intermediate hot water to flow out at a position higher than the intermediate hot water return port of the hot water storage tank and lower than the first hot water outlet; A second mixing valve for mixing medium temperature water from the second tapping pipe in the middle of the first tapping pipe between the first mixing valve and the first tapping outlet, and a mixing temperature sensor provided downstream thereof; The hot water from the hot water outlet and the medium hot water from the second hot water outlet are mixed by the second mixing valve to a temperature higher than the arbitrary hot water supply set temperature by a predetermined temperature according to the output of the mixing temperature sensor , and Said second at the first mixing valve To hot water mixed with the optional hot water temperature setting in accordance with than the arbitrary hot water set temperature is mixed jointly with a predetermined temperature higher temperature of the hot water and cold water from the water supply pipe to the output of the hot water supply temperature sensor A heat pump type hot water supply apparatus characterized by being made as described above. 給水管から低温水を流入させる給水口を下端部に有すると共に貯湯している高温水を第1出湯管から流出させる第1出湯口を上端部に有する貯湯タンクと、圧縮機と蒸発器と凝縮器を有したヒートポンプ回路と、前記貯湯タンク下部に設けられたヒーポン往き口から取り出した低温水を前記ヒートポンプ回路の凝縮器によって加熱し、加熱された高温水を前記貯湯タンク上部に設けられたヒーポン戻り口から前記貯湯タンク内に戻すヒーポン循環回路と、前記貯湯タンク上部に設けられた高温水取出し口から取り出した高温水を2次側回路の温水を加熱するための熱交換器に循環させ、前記2次側回路の温水と熱交換して温度低下した中温水を前記貯湯タンク下部に設けられた中温水戻り口に戻す熱利用循環回路と、給湯温度設定スイッチを有し給湯温度を任意の給湯設定温度に設定可能としたリモコンと、前記第1出湯口から流出する高温水と前記給水管からの低温水とを前記リモコンにて設定した前記任意の給湯設定温度に混合する第1混合弁と、その下流に設けた給湯温度センサを備えたヒートポンプ式給湯装置であって、前記貯湯タンクの前記中温水戻り口よりも高く且つ前記第1出湯口よりも低い位置に中温水を流出させるための第2出湯口および第2出湯管を設けると共に、前記第1混合弁と前記第1出湯口の間の前記第1出湯管途中に前記第2出湯管からの中温水を混合する第2混合弁と、その下流に混合温度センサを設け、前記第1出湯口からの高温水と前記第2出湯口からの中温水を前記第2混合弁によって前記混合温度センサの出力に応じて前記任意の給湯設定温度よりも所定温度高い温度に混合し、さらに前記第1混合弁にて前記第2混合弁で混合された前記任意の給湯設定温度よりも所定温度高い温度の温水と前記給水管からの低温水とを前記給湯温度センサの出力に応じて前記任意の給湯設定温度に混合して給湯するようにしたことを特徴とするヒートポンプ式給湯装置。A hot water storage tank having a water supply port through which a low temperature water flows from a water supply pipe at the lower end and a first hot water outlet for discharging hot water stored in the hot water from the first hot water discharge pipe at the upper end, a compressor, an evaporator and a condenser A heat pump circuit having a heater, and a low temperature water taken out from a heat pump outlet provided at a lower part of the hot water storage tank is heated by a condenser of the heat pump circuit, and the heated high temperature water is provided at an upper part of the hot water storage tank. Circulating a high temperature water taken out from a high temperature water outlet provided in the upper part of the hot water storage tank to a heat exchanger for heating the hot water in the secondary side circuit; and heat utilization circulation circuit back to the hot water return port in which is provided a hot water lower the hot water storage tank in which the temperature was lowered to hot water heat exchanger of the secondary circuit, the hot water temperature setting switch A remote controller and the hot water supply temperature can be set to any of the water heater setting temperature, on the arbitrary hot water set temperature and low-temperature water has been set by the remote control from the water supply pipe and the hot water flowing out from the first tapping port A heat pump type hot water supply apparatus including a first mixing valve to be mixed and a hot water supply temperature sensor provided downstream thereof, at a position that is higher than the intermediate hot water return port of the hot water storage tank and lower than the first hot water outlet. A second hot water outlet and a second hot water outlet pipe for allowing the intermediate hot water to flow out are provided, and intermediate hot water from the second hot water outlet pipe is provided in the middle of the first hot water outlet pipe between the first mixing valve and the first hot water outlet. A mixing temperature sensor is provided downstream of the second mixing valve, and high-temperature water from the first outlet and intermediate-temperature water from the second outlet are output from the mixing temperature sensor by the second mixing valve. wherein any of the hot water supply set in accordance with the Than the temperature were mixed at a predetermined temperature higher temperatures, lower temperatures water from the water supply pipe to a predetermined temperature higher temperatures of the hot water than the second mixing valve wherein any hot water set temperature is mixed with at the first mixing valve A heat pump type hot water supply apparatus, wherein hot water is mixed with the arbitrary hot water supply set temperature in accordance with the output of the hot water temperature sensor .
JP2002039478A 2002-02-18 2002-02-18 Heat pump type water heater Expired - Fee Related JP3854169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002039478A JP3854169B2 (en) 2002-02-18 2002-02-18 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002039478A JP3854169B2 (en) 2002-02-18 2002-02-18 Heat pump type water heater

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005134814A Division JP3908768B2 (en) 2005-05-06 2005-05-06 Heat pump type water heater

Publications (2)

Publication Number Publication Date
JP2003240342A JP2003240342A (en) 2003-08-27
JP3854169B2 true JP3854169B2 (en) 2006-12-06

Family

ID=27780486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002039478A Expired - Fee Related JP3854169B2 (en) 2002-02-18 2002-02-18 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP3854169B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484213B2 (en) * 2005-01-25 2010-06-16 東芝機器株式会社 Water heater
JP4485406B2 (en) * 2005-04-25 2010-06-23 株式会社デンソー Hot water storage water heater
JP4725202B2 (en) * 2005-06-09 2011-07-13 パナソニック株式会社 Hot water storage water heater
JP4591221B2 (en) * 2005-06-09 2010-12-01 パナソニック株式会社 Hot water storage water heater
JP4752347B2 (en) * 2005-06-22 2011-08-17 パナソニック株式会社 Hot water storage water heater
JP4654846B2 (en) * 2005-09-05 2011-03-23 パナソニック株式会社 Hot water storage water heater
JP4654845B2 (en) * 2005-09-05 2011-03-23 パナソニック株式会社 Hot water storage water heater
JP4654844B2 (en) * 2005-09-05 2011-03-23 パナソニック株式会社 Hot water storage water heater
JP4654851B2 (en) * 2005-09-12 2011-03-23 パナソニック株式会社 Hot water storage water heater
JP2008151467A (en) * 2006-12-20 2008-07-03 Matsushita Electric Ind Co Ltd Hot water storage type water heater
JP4876899B2 (en) * 2006-12-25 2012-02-15 パナソニック電工株式会社 Hot water system
JP4962104B2 (en) * 2007-04-09 2012-06-27 パナソニック株式会社 Hot water storage water heater
JP2009109177A (en) * 2007-10-09 2009-05-21 Panasonic Corp Bath heating device and heat pump water heater having the same
KR101047280B1 (en) * 2008-05-26 2011-07-07 주식회사 한 에너지 시스템 Boiler system with double hot water tank
AU2018411936B2 (en) 2018-03-08 2022-05-26 Mitsubishi Electric Corporation Hot water supply apparatus

Also Published As

Publication number Publication date
JP2003240342A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
JP3854169B2 (en) Heat pump type water heater
JP3977382B2 (en) Hot water storage water heater
JP2004286307A (en) Storage type water heater
JP3977241B2 (en) Hot water storage water heater
JP4053451B2 (en) Hot water storage water heater
JP2007139345A (en) Hot water storage-type water heater and method for changing standby opening of hot water supply mixing valve therefor
JP4030394B2 (en) Hot water storage water heater
JP4114930B2 (en) Heat pump water heater / heater
JP3950031B2 (en) Hot water storage water heater
JP3908768B2 (en) Heat pump type water heater
JP4226533B2 (en) Hot water storage water heater
JP4294612B2 (en) Hot water storage water heater
JP4037781B2 (en) Hot water storage water heater
JP2004116890A (en) Hot water storage-type hot water supply device
JP4351967B2 (en) Hot water storage water heater
JP2006308123A (en) Storage water heater
JP4064332B2 (en) Hot water storage water heater
JP4354389B2 (en) Hot water storage water heater
JP3987015B2 (en) Hot water storage water heater
JP4078673B2 (en) Heat pump water heater
JP4094514B2 (en) Hot water storage water heater
JP2004101135A (en) Heat pump type hot-water feeder
JP2007198691A (en) Heat pump water heater
JP2004324912A (en) Storage type hot water supply device
JP4157074B2 (en) Heating control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Ref document number: 3854169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees