JP2004101135A - Heat pump type hot-water feeder - Google Patents

Heat pump type hot-water feeder Download PDF

Info

Publication number
JP2004101135A
JP2004101135A JP2002266761A JP2002266761A JP2004101135A JP 2004101135 A JP2004101135 A JP 2004101135A JP 2002266761 A JP2002266761 A JP 2002266761A JP 2002266761 A JP2002266761 A JP 2002266761A JP 2004101135 A JP2004101135 A JP 2004101135A
Authority
JP
Japan
Prior art keywords
hot water
temperature
storage tank
heat pump
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002266761A
Other languages
Japanese (ja)
Inventor
Yoshitoshi Nagumo
南雲 佐敏
Toshio Hirokawa
広川 敏雄
Masao Tomita
冨田 賢雄
Akira Ito
伊藤 彰
Koji Kojima
小島 幸治
Tokujiyun Hirono
広野 徳純
Kei Maeda
前田 圭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2002266761A priority Critical patent/JP2004101135A/en
Publication of JP2004101135A publication Critical patent/JP2004101135A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Abstract

<P>PROBLEM TO BE SOLVED: To improve COP (Coefficient of Performance) of a heat pump circuit when water is boiled. <P>SOLUTION: A heat pump type hot water feeder comprises a hot water storage tank 16 to store hot water, a heat pump circuit 9 having a compressor 5, an evaporator 6 and a condenser 8, a heat pump circulation circuit 19 which heats low-temperature water taken out of a heat pump outlet 17 formed in a lower part of the hot water storage tank 16 by the condenser 6 of the heat pump circuit 9 and returns heated high-temperature water from a heat pump return port 18 provided in an upper part of the hot water storage tank 16 into the hot water storage tank 16, and a heat utilization circulating circuit 24 which circulates high-temperature water taken out of the hot water storage tank 16 to a heat exchanger 20 and returns temperature-dropped moderate-temperature water to a moderate-temperature water return port 22 formed in a lower part of the hot water storage tank 16. The moderate-temperature water return port 22 is formed at a position higher than the water feed port 15 and the heat pump outlet 17. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、貯湯タンク内の湯水を循環してヒートポンプ回路によって沸き上げ、且つ貯湯タンク内の高温水を循環させて暖房あるいは風呂の追焚き/保温等の熱源として用いるヒートポンプ式給湯装置に関するものである。
【0002】
【従来の技術】
従来よりこの種のものにおいては、図6に示すようなものがあった。
ここで、101はヒートポンプ回路、102は貯湯タンクで、この貯湯タンク102下部から取り出した5〜25℃程度の低温水をヒートポンプ回路101で70〜90℃程度に加熱して貯湯タンク102の上部から積層貯湯していくものである。
【0003】
前記貯湯タンク102には、その下端に給水管103が接続され、また上端には出湯管104が接続されているものである。105は電動ミキシング弁で、出湯管104からの高温水と給水管103からの低温水をリモコン(図示せず)等で設定された任意の給湯設定温度に混合して給湯栓106から出湯するものである。
【0004】
107は暖房あるいは風呂の追焚き/保温の熱源としての熱交換器で、出湯管104から分岐した熱交往き管108および給水管103に合流する熱交戻り管109により貯湯タンク102と循環可能に接続されており、貯湯タンク102内の高温水を熱交換器107に流入させて暖房回路あるいは風呂の追焚き/保温回路等の2次側回路(図示せず)の温水を加熱するものである。
【0005】
そして、貯湯タンク102の上部から取り出された高温水は、前記熱交換器107で熱交換されて温度低下し、30〜50℃程度の中温水となって貯湯タンク102の下部から貯湯タンク102内に戻るものである。
【0006】
なお、このような従来の貯湯式給湯装置にかかる公知の刊行物を本願出願人は発見することができないが、貯湯タンク内に貯湯された高温水を熱源として暖房を行うものとして例えば特許文献1が挙げられる。
【0007】
【特許文献1】
特許第2663637号公報(図1)
【0008】
【発明が解決しようとする課題】
しかし、この従来のものでは、貯湯タンク102内の水の沸き上げを行う場合、熱交換によって生成された中温水が貯湯タンク102の最下部から貯湯タンク102内に戻されるので、戻された中温水が貯湯タンク102下部に貯められている低温水に混じって、ヒートポンプ回路で沸き上げる水の温度を高くしてしまい、ヒートポンプ式給湯装置のCOP(エネルギー消費効率)を低下させ、例えば沸き上げる水の温度が40℃の場合、5℃の水を沸き上げる時の半分程度のCOPとなってしまうという課題があった。
【0009】
【課題を解決するための手段】
そこで、本発明はこれらの課題を解決するために、請求項1では、給水管からの低温水を流入させる給水口を下端部に有すると共に貯湯している高温水を第1出湯管から流出させる第1出湯口を上端部に有する貯湯タンクと、圧縮機と蒸発器と凝縮器を有したヒートポンプ回路と、前記貯湯タンク下部に設けられたヒーポン往き口から取り出した低温水を前記ヒートポンプ回路の凝縮器によって加熱し、加熱された高温水を前記貯湯タンク上部に設けられたヒーポン戻り口から前記貯湯タンク内に戻すヒーポン循環回路と、熱交換器と熱交循環ポンプを有し前記貯湯タンク上部に設けられた高温水取出し口から取り出した高温水を前記熱交換器に循環させ、温度低下した中温水を前記貯湯タンク下部に設けられた中温水戻り口に戻す熱利用循環回路とを備えたヒートポンプ式給湯装置において、前記中温水戻り口を前記給水口および前記ヒーポン往き口よりも高い位置に設けたものである。
【0010】
これにより、給湯の使用によって給水管からの低温水が貯湯タンクの下端から流入すると共に、熱源として使用されて温度低下した中温水は、前記給水口および前記ヒーポン戻り口よりも高い位置に設けられた中温水戻り口から貯湯タンク内に流入するので、貯湯タンクの最下端には中温水と混合されない低温水が確保されることとなり、そして、沸き上げの際には中温水戻り口よりも低い位置に設けられているヒーポン往き口から湯水を取り出すので、必ず低温水から沸き上げることができ、沸き上げの効率が向上しヒートポンプ式給湯装置としてのCOP(エネルギー消費効率)が良くなるものである。
【0011】
また、請求項2では、前記ヒートポンプ回路を、二酸化炭素冷媒を用いたヒートポンプ回路として超臨界ヒートポンプサイクルを構成したものである。
【0012】
これにより、COP(エネルギー消費効率)が良い状態で低温水を高温まで沸き上げることができ、ヒートポンプ式給湯装置の貯湯熱量を多くすることができるものである。
【0013】
【発明の実施の形態】
次に、本発明の第1の実施形態を図1〜図4に基づき説明する。
1はヒートポンプユニット、2は貯湯タンクユニット、3は給湯混合水栓、4は床暖房パネル等の暖房負荷端末である。
【0014】
前記ヒートポンプユニット1は、圧縮機5と凝縮器としての冷媒−水熱交換器6と減圧器7と蒸発器8で構成されたヒートポンプ回路9と、被加熱水を冷媒−水熱交換器6に循環させるヒーポン循環ポンプ10と、それらの駆動を制御するヒーポン制御部11とを備えており、ヒートポンプ回路9内には冷媒として二酸化炭素が用いられて超臨界ヒートポンプサイクルを構成しているものである。なお、冷媒に二酸化炭素を用いているので、低温水を電熱ヒータなしで約90℃の高温まで沸き上げることが可能なものである。
【0015】
ここで、前記冷媒−水熱交換器6は冷媒と被加熱水とが対向して流れる対向流方式を採用しており、超臨界ヒートポンプサイクルでは熱交換時において冷媒は超臨界状態のまま凝縮されるため効率良く高温まで被加熱水を加熱することができ、被加熱水の冷媒−水熱交換器6入口温度と冷媒の出口温度との温度差が一定になるように前記減圧器7または圧縮機5を制御することで、被加熱水の冷媒−水熱交換器6の入口温度が5〜20℃程度の低い温度であるとCOP(エネルギー消費効率)が3.0以上のとても良い状態で被加熱水を加熱することが可能なものである。
【0016】
前記貯湯タンクユニット2は、上端に第1出湯管12と連なる第1出湯口13を有し、下端に給水管14と連なる給水口15を有した貯湯タンク16を備えている。この貯湯タンク16の下部にはヒーポン往き口17が、上部にはヒーポン戻り口18が設けられ、前記ヒートポンプユニット1の冷媒−水熱交換器6に連通するヒーポン循環回路19によって貯湯タンク16内の湯水が循環可能に接続されている。なお、この貯湯タンク16は約370L程度の容量を保有しているものである。
【0017】
20は前記床暖パネル4の加熱源としての熱交換器で、その一次側には貯湯タンク16上部に連通する高温水取出し口21と貯湯タンク16下部の中温水戻り口22とを熱利用循環ポンプ23を備えた熱利用循環回路24で貯湯タンク16内の湯水が循環可能に接続されており、また、二次側には床暖パネル4と循環可能に接続する二次側回路25と二次側循環ポンプ26が備えられているものである。
【0018】
次に、27は第1出湯管12からの湯水と給水管14からの低温水を混合する電動ミキシング弁より構成された第1混合弁であり、その下流の給湯管28に設けた給湯温度センサ29で検出した湯温がリモコン30でユーザーが設定した給湯設定温度になるように混合比率を制御するものである。このリモコン30は給湯温度設定スイッチ31を有しており、給湯温度を35〜60℃の範囲で任意に設定可能としていると共に、暖房を開始させる暖房スイッチ32を有しているものである。
【0019】
33は貯湯タンク16の中間高さ位置に設けた第2出湯口で、第1出湯管12の第1出湯口13と第1混合弁27との間に設けた第2混合弁34の入力側に第2出湯管35を介して接続されている。この第2出湯口33および第2出湯管35は前記熱交換器20で二次側と熱交換して温度低下した中温水を貯湯タンク16から出湯するもので、この中温水を前記第2混合弁34にて第1出湯管12を流れる高温水と混合して第1混合弁27の供給するものである。
【0020】
前記第2混合弁34は電動ミキシング弁より構成され、その下流に設けた混合温度センサ42の検出する温度に応じてリモコン30で設定した任意の給湯設定温度より所定温度高い温度になるよう混合比率を調節するものである。例えば任意の給湯設定温度が60℃であれば、電動ミキシング弁である第2混合弁34の混合温度を60℃より5degだけ高い65℃にし、65℃に混合した温水を第1混合弁27で任意の給湯設定温度である60℃に調整して給湯を行う。また、任意の給湯設定温度が42℃であれば、電動ミキシング弁である第2混合弁34の混合温度を42℃より5degだけ高い47℃にし、47℃に混合した温水を第1混合弁27で任意の給湯設定温度である42℃に調整して給湯を行う。このように、その時々の任意の給湯設定温度に応じて中温水を可能な限り多く使って給湯を行うことができるものである。
【0021】
36は貯湯タンク16の上下方向に複数個配置された貯湯温度センサで、この貯湯温度センサ36がどの高さ位置まで所定温度(例えば50℃)以上を検出しているかによって、貯湯タンク16内にどれだけの熱量が残っているかを検知するものである。
【0022】
37は貯湯タンクユニット内のセンサの入力を受けアクチュエータの駆動を制御するマイコンを有した給湯制御部である。この給湯制御部37に前記リモコン30が無線または有線により接続されユーザーが任意の給湯設定温度を設定できるようにしているものである。
【0023】
なお、38は貯湯タンク16の過圧を防止する過圧防止弁、39は給水の温度を検出する給水温度センサ、40は給水の圧力を減圧する減圧弁、41は給湯する温水の量をカウントする流量カウンタである。
【0024】
次に、この第1の実施形態の作動を説明する。
まず、図2に示す沸き上げ運転について説明すると、深夜電力時間帯になって貯湯温度センサ36が貯湯タンク16内に翌日に必要な熱量が残っていないことを検出すると、給湯制御部37はヒーポン制御部11に対して沸き上げ開始指令を発する。指令を受けたヒーポン制御部11は圧縮機5を起動した後にヒーポン循環ポンプ10を駆動開始し、貯湯タンク16下部のヒーポン往き口17から取り出した5〜20℃程度の低温水を冷媒−水熱交換器6で70〜90℃程度の高温に加熱し、ヒーポン循環回路19を介して貯湯タンク16上部のヒーポン戻り口18から貯湯タンク16内に戻してやり、貯湯タンク16の上部から順次積層して高温水を貯湯していく。貯湯温度センサ36が必要な熱量が貯湯されたことを検出すると、給湯制御部37はヒーポン制御部11に対して沸き上げ停止指令を発し、ヒーポン制御部11は圧縮機5を停止すると共にヒーポン循環ポンプ10も停止して沸き上げ動作を終了するものである。
【0025】
次に、図3に示す暖房運転について説明すると、リモコン30の暖房スイッチ32をONすると、給湯制御部37は熱利用循環ポンプ23および二次側循環ポンプ26を駆動開始し、高温水取出し口21から取り出した70〜90℃程度の高温水を熱交換器20に流入させ、二次側回路25の温水と熱交換させ、熱交換により30〜50℃程度に温度低下した中温水が中温水戻り口22から貯湯タンク16下部に戻り、高温水と入れ替わる形で高温水と中温水の境界面を押し上げるようにして中温水が貯湯されるものである。二次側では、熱交換器20にて加熱された温水が床暖房パネル4に流入し、被暖房空間を暖房して再度熱交換器20に循環するものである。そして、リモコン30の暖房スイッチ32をOFFすると、給湯制御部37は熱利用循環ポンプ23および二次側循環ポンプ26を駆動停止して暖房運転を停止する。
【0026】
そして、図4に示す給湯運転について説明すると、給湯混合水栓3を開くと、給水管14からの給水圧により貯湯タンク16内の高温水が上端部の第1出湯口13から押し出されると同時に中温水が第2出湯口33より押し出される。押し出された70〜90℃程度の高温水および30〜50℃程度の中温水はそれぞれ第1出湯管12および第2出湯管35を介して第2混合弁34へ流入し、約65℃の温水に混合される。混合された温水は第1混合弁27へ流入し、給水管14からの5〜20℃程度の低温水と混合されてユーザーがリモコン30で設定した給湯設定温度に調節され、給湯混合水栓3から給湯される。
【0027】
このとき、前記中温水戻り口22は貯湯タンク16最下端の給水口15および下部のヒーポン往き口17よりも高い位置の貯湯タンク16に設けているため、暖房運転により中温水戻り口22から中温水が貯湯タンク16の下部に戻されても、給湯の使用により貯湯タンク16下端から給水管からの低温水が流入することで貯湯タンク16の最下端には低温水が確保されることとなり、次回の沸き上げの際には必ず低温水から沸き上げることができるという効果がある。また、前記高温水取出し口21は第1出湯口13から連なる第1出湯管12途中に設けられていて、貯湯タンク16の開口部を減らすことができるものである。
【0028】
また、第2出湯口33が中温水戻り口22よりも高い位置に設けられているので、中温水戻り口22と第2出湯口33との間にある程度の容量を確保でき、熱交換器20で温度低下した中温水をその容量分だけ一時的に貯めておくことができることとなり、第2出湯口33より高い位置に貯められてしまう中温水の量を少なくすることができる。詳しくは、第2出湯口33が貯湯タンク16の中間高さ位置程度にあるので中温水戻り口22と第2出湯口33との間に約90〜120L程度の容量を確保でき、熱交換器20で温度低下した中温水をその容量分だけ一時的に貯めておくことができることとなり、第2出湯口33より高い位置に貯められてしまう中温水の量を少なくすることができる。すなわち第2出湯口33から取り出すことができない中温水を極力少なくすることができるものである。
【0029】
ここで、もし中温水戻り口22と第2出湯口33とが同じ高さにあった場合には、中温水が中温水戻り口22より高い位置に貯められてしまう場合があり、これを中温水戻り口22と同じ高さにある第2出湯口33から取り出すことができないため、中温水が発生すると同時にこの中温水を給湯に用いる必要があり、さもなければ多量に給湯を行って中温水が貯湯タンク16上端部の第1出湯口13にまで押し上げられるまで貯湯タンク16内に中温水が貯湯されてしまうこととなる。しかし、この第1の実施形態では上記のように中温水戻り口22よりも高い位置に第2出湯口33が設けられているため、この高さの差分の容量だけ中温水の発生から利用までの容量的あるいは時間的余裕ができ、中温水をある程度の容量分発生させてから時間的間隔をおいて給湯を行っても中温水を給湯に用いることができる効果がある。
【0030】
また、暖房を行わなかったり沸き上げ完了直後の給湯では貯湯タンク16内に中温水がなく、第2出湯口33位置に高温水がある場合には、第2混合弁34は第1出湯管12側を閉じて第2出湯管35側を開くようにしている。結果的に設定混合温度以上の温度の温水を第1混合弁27へ供給するが、第1混合弁で給水管14からの低温水と混合してユーザーがリモコン30で設定した給湯設定温度に調節されることとなる。
【0031】
また、貯湯タンク16内の上部には高温水があるが、第2出湯口33付近に低温水がある場合には、第2混合弁34が設定混合温度の約65℃になるように自動的に調節されるものである。
【0032】
このように、給湯の際に暖房熱源として利用された中温水を高温水よりも優先して貯湯タンク16の途中から取り出して給湯するので、高温水を給湯しきるまで中温水を給湯できないと行った不具合がなく、給湯を行う度に貯湯タンク16内の中温水が減って給水管14からの低温水に入れ替わって、深夜の沸き上げ動作を行う時には沸き上げ効率の悪い中温水ではなく、温度の低い低温水をヒートポンプ回路9で沸き上げることとなり、沸き上げの効率が向上しヒートポンプ式給湯装置としてのCOP(エネルギー消費効率)が良くなるものである。
【0033】
また、第2混合弁34は第1混合弁27で調整する給湯設定温度範囲の上限温度以上の温度に混合し、その後に第1混合弁27にて任意の給湯設定温度に混合して給湯するので、ユーザー側で特別な操作をすることなくリモコン30で設定した任意の給湯設定温度の湯を常に確実に給湯できるものである。
【0034】
なお、この一実施形態では、前記中温水戻り口22を前記給水口15および前記ヒーポン往き口17よりも高い位置で貯湯タンク16に直接接続して設けているが、これに限らず、図5に示すように貯湯タンク16の下部から配管を内部まで差し込んで、差し込んだ先端の開口部を中温水戻り口22として、前記給水口15および前記ヒーポン往き口17よりも高い位置に設けるようにしても良いものである。
【0035】
また、この一実施形態では、熱交換器20と熱利用循環ポンプ23と二次側循環ポンプ26を貯湯式タンクユニット2内に設けているが、これに限られることなく、例えばこれらを貯湯式タンクユニット2とは別体の熱交換ユニット内に設けても良く、本発明の要旨を変更しない範囲での実施形態の変更をすることを妨げるものではない。
【0036】
また、この一実施形態では、床暖房パネルから成る暖房負荷端末4を二次側回路25の負荷としているが、これに限られることはなく、温水式温風暖房器や温水式パネルコンベクタ、温水式パネルラジエータ等でも良い。また、二次側回路25の負荷は暖房利用に限らず、例えば浴槽の温水を循環させて風呂の追焚きまたは保温に用いても良く、要は貯湯タンク16内の高温水の熱を熱交換器20で熱交換して利用する熱機器であれば何でも良いものである。
【0037】
【発明の効果】
以上のように、本発明の請求項1によれば、給湯の使用によって給水管からの低温水が貯湯タンクの下端から流入すると共に、熱源として使用されて温度低下した中温水は、前記給水口および前記ヒーポン戻り口よりも高い位置に設けられた中温水戻り口から貯湯タンク内に流入するので、貯湯タンクの最下端には中温水と混合されない低温水が確保されることとなり、そして、沸き上げの際には中温水戻り口よりも低い位置に設けられているヒーポン往き口から湯水を取り出すので、必ず低温水から沸き上げることができ、沸き上げの効率が向上しヒートポンプ式給湯装置としてのCOP(エネルギー消費効率)が良くなるものである。
【0038】
また、請求項2によれば、COP(エネルギー消費効率)が良い状態で低温水を高温まで沸き上げることができ、ヒートポンプ式給湯装置の貯湯熱量を多くすることができるものである。
【図面の簡単な説明】
【図1】本発明の一実施形態の概略構成図。
【図2】同一実施形態の沸き上げ運転の作動を説明する図。
【図3】同一の実施形態の暖房運転の作動を説明する図。
【図4】同一実施形態の給湯運転の作動を説明する図。
【図5】本発明の他の一実施形態の概略構成図。
【図6】従来例の概略構成図。
【符号の説明】
5 圧縮機
6 冷媒−水熱交換器(凝縮器)
8 蒸発器
9 ヒートポンプ回路
12 第1出湯管
13 第1出湯口
14 給水管
15 給水口
16 貯湯タンク
17 ヒーポン往き口
18 ヒーポン戻り口
19 ヒーポン循環回路
20 熱交換器
21 高温水取出し口
22 中温水戻り口
23 熱交循環ポンプ
24 熱利用循環回路
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a heat pump type hot water supply apparatus for circulating hot water in a hot water storage tank and boiling it up by a heat pump circuit, and circulating high temperature water in the hot water storage tank and using it as a heat source for heating or additional heating / heating of a bath. is there.
[0002]
[Prior art]
Conventionally, this type has been shown in FIG.
Here, 101 is a heat pump circuit, 102 is a hot water storage tank, and the low-temperature water of about 5 to 25 ° C. taken out from the lower part of the hot water storage tank 102 is heated to about 70 to 90 ° C. by the heat pump circuit 101, and from the upper part of the hot water storage tank 102 The hot water is stored in layers.
[0003]
A water supply pipe 103 is connected to a lower end of the hot water storage tank 102, and a tapping pipe 104 is connected to an upper end thereof. Reference numeral 105 denotes an electric mixing valve which mixes high-temperature water from a tapping pipe 104 and low-temperature water from a water supply pipe 103 with an optional hot-water supply set temperature set by a remote controller (not shown) or the like, and discharges water from a hot-water tap 106. It is.
[0004]
Reference numeral 107 denotes a heat exchanger as a heat source for additional heating / heating of a heating or bath. The heat exchanger 107 can be circulated with the hot water storage tank 102 by a heat exchange pipe 108 branched from the hot water supply pipe 104 and a heat exchange pipe 109 joining the water supply pipe 103. The high-temperature water in the hot water storage tank 102 flows into the heat exchanger 107 to heat hot water in a secondary circuit (not shown) such as a heating circuit or a reheating / heating circuit of a bath. .
[0005]
Then, the high-temperature water taken out from the upper part of the hot water storage tank 102 is subjected to heat exchange in the heat exchanger 107 to lower the temperature, becomes medium-temperature water of about 30 to 50 ° C., and enters the hot water storage tank 102 from the lower part of the hot water storage tank 102. It is to return to.
[0006]
The applicant of the present application cannot find any known publication relating to such a conventional hot water supply type hot water supply apparatus. However, Patent Literature 1 discloses an example in which heating is performed using high-temperature water stored in a hot water storage tank as a heat source. Is mentioned.
[0007]
[Patent Document 1]
Japanese Patent No. 2663637 (FIG. 1)
[0008]
[Problems to be solved by the invention]
However, in this conventional apparatus, when boiling water in the hot water storage tank 102, the medium-temperature water generated by heat exchange is returned from the bottom of the hot water storage tank 102 into the hot water storage tank 102. The hot water mixes with the low-temperature water stored in the lower part of the hot water storage tank 102 and raises the temperature of the water to be boiled by the heat pump circuit, thereby lowering the COP (energy consumption efficiency) of the heat pump hot water supply device, for example, the boiling water If the temperature is 40 ° C., there is a problem that the COP becomes about half that of boiling water at 5 ° C.
[0009]
[Means for Solving the Problems]
In order to solve these problems, the present invention has a water supply port at a lower end portion through which low-temperature water flows from a water supply pipe at the lower end, and allows the stored hot water to flow out of the first tapping pipe. A hot water storage tank having a first hot water outlet at an upper end, a heat pump circuit having a compressor, an evaporator, and a condenser; and a heat pump circuit condensing low-temperature water taken out from a heap outlet provided at a lower portion of the hot water storage tank. Heated by a vessel, a heated circulation circuit that returns the heated high-temperature water into the hot water storage tank from a heap return port provided at the top of the hot water storage tank, and a heat exchanger and a heat exchange circulation pump. A heat utilization circuit that circulates high-temperature water taken out from the provided high-temperature water discharge port to the heat exchanger and returns medium-temperature water whose temperature has dropped to a medium-temperature water return port provided at the lower part of the hot water storage tank. In the heat pump type hot water supply device including a circuit, in which the warm water return port provided at a position higher than the water supply port and the Hipon forward port.
[0010]
Thereby, while using the hot water supply, the low-temperature water from the water supply pipe flows in from the lower end of the hot water storage tank, and the medium-temperature water used as a heat source and lowered in temperature is provided at a position higher than the water supply port and the heapon return port. Flows into the hot water storage tank from the return port of the medium-temperature water, so that low-temperature water that is not mixed with the medium-temperature water is secured at the lowermost end of the hot-water storage tank, and is lower than the medium-temperature water return port when boiling. Since the hot water is taken out from the heapon outlet provided at the position, the water can always be heated from the low-temperature water, the efficiency of the heating is improved, and the COP (energy consumption efficiency) as the heat pump hot water supply device is improved. .
[0011]
According to a second aspect of the present invention, a supercritical heat pump cycle is configured as the heat pump circuit using a carbon dioxide refrigerant as a heat pump circuit.
[0012]
This makes it possible to boil low-temperature water to a high temperature with good COP (energy consumption efficiency), and to increase the amount of heat stored in the heat pump hot water supply apparatus.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a first embodiment of the present invention will be described with reference to FIGS.
1 is a heat pump unit, 2 is a hot water storage tank unit, 3 is a hot water supply mixing faucet, and 4 is a heating load terminal such as a floor heating panel.
[0014]
The heat pump unit 1 includes a compressor 5, a refrigerant-water heat exchanger 6 serving as a condenser, a decompressor 7, a heat pump circuit 9 including an evaporator 8, and water to be heated to the refrigerant-water heat exchanger 6. A heat pump circulation pump 10 for circulation and a heat pump control unit 11 for controlling their driving are provided, and carbon dioxide is used as a refrigerant in a heat pump circuit 9 to constitute a supercritical heat pump cycle. . Since carbon dioxide is used as the refrigerant, low-temperature water can be heated to a high temperature of about 90 ° C. without an electric heater.
[0015]
Here, the refrigerant-water heat exchanger 6 adopts a counter flow system in which the refrigerant and the water to be heated flow in opposition to each other. In a supercritical heat pump cycle, the refrigerant is condensed in a supercritical state during heat exchange. Therefore, the water to be heated can be efficiently heated to a high temperature, and the decompressor 7 or the compression unit 7 is compressed so that the temperature difference between the refrigerant-water heat exchanger 6 inlet temperature and the refrigerant outlet temperature is constant. By controlling the machine 5, when the inlet temperature of the refrigerant-water heat exchanger 6 of the water to be heated is a low temperature of about 5 to 20 ° C, the COP (energy consumption efficiency) is very good at 3.0 or more. It is possible to heat the water to be heated.
[0016]
The hot water storage tank unit 2 includes a hot water storage tank 16 having a first hot water outlet 13 connected to the first hot water pipe 12 at an upper end and a water supply port 15 continuous to a water supply pipe 14 at a lower end. A hot water outlet 17 is provided at a lower portion of the hot water storage tank 16, and a hot water return port 18 is provided at an upper portion thereof, and a hot water circulation circuit 19 communicating with the refrigerant-water heat exchanger 6 of the heat pump unit 1 has a hot water circulation circuit 19. Hot water is circulated. The hot water storage tank 16 has a capacity of about 370 L.
[0017]
Reference numeral 20 denotes a heat exchanger as a heating source of the floor warming panel 4. On its primary side, a high-temperature water outlet 21 communicating with the upper part of the hot water storage tank 16 and a medium-temperature water return port 22 at the lower part of the hot water storage tank 16 are circulated using heat. The hot water in the hot water storage tank 16 is circulated by a heat circulation circuit 24 provided with a pump 23. The secondary circuit 25 is connected to the floor warm panel 4 by a circulation on the secondary side. A secondary circulation pump 26 is provided.
[0018]
Next, reference numeral 27 denotes a first mixing valve constituted by an electric mixing valve for mixing hot water from the first hot water supply pipe 12 and low-temperature water from the water supply pipe 14, and a hot water supply temperature sensor provided in a hot water supply pipe 28 downstream thereof. The mixing ratio is controlled so that the hot water temperature detected at 29 becomes the hot water supply set temperature set by the user with the remote controller 30. The remote controller 30 has a hot water supply temperature setting switch 31, which allows the hot water supply temperature to be arbitrarily set within a range of 35 to 60 ° C., and has a heating switch 32 for starting heating.
[0019]
Reference numeral 33 denotes a second tap hole provided at an intermediate height position of the hot water storage tank 16, and an input side of a second mixing valve 34 provided between the first tap port 13 of the first tap pipe 12 and the first mixing valve 27. Is connected via a second tapping pipe 35. The second tap hole 33 and the second tapping pipe 35 are for exchanging heat with the secondary side in the heat exchanger 20 to discharge the medium-temperature water whose temperature has dropped from the hot-water storage tank 16 to the second mixing port. The mixture with high-temperature water flowing through the first tapping pipe 12 is supplied to the first mixing valve 27 by the valve 34.
[0020]
The second mixing valve 34 is constituted by an electric mixing valve, and the mixing ratio is set such that the temperature becomes higher by a predetermined temperature than an arbitrary hot water supply set temperature set by the remote controller 30 according to the temperature detected by the mixing temperature sensor 42 provided downstream thereof. Is to adjust. For example, if an arbitrary hot water supply set temperature is 60 ° C., the mixing temperature of the second mixing valve 34, which is an electric mixing valve, is set to 65 ° C., which is 5 deg higher than 60 ° C., and hot water mixed at 65 ° C. is supplied to the first mixing valve 27. Hot water supply is performed by adjusting the temperature to an arbitrary hot water supply set temperature of 60 ° C. If the desired hot water supply temperature is 42 ° C., the mixing temperature of the second mixing valve 34, which is an electric mixing valve, is set to 47 ° C., which is 5 deg higher than 42 ° C., and the hot water mixed at 47 ° C. is mixed with the first mixing valve 27. The hot water supply is performed by adjusting the temperature to 42 ° C., which is an arbitrary hot water supply set temperature. In this way, hot water can be supplied using as much medium-temperature water as possible in accordance with a given hot water supply temperature at that time.
[0021]
Reference numeral 36 denotes a plurality of hot water storage temperature sensors arranged in the vertical direction of the hot water storage tank 16. Depending on the height of the hot water storage temperature sensor 36 which has detected a predetermined temperature (for example, 50 ° C.) or higher, the hot water storage temperature sensor 36 This is to detect how much heat remains.
[0022]
Reference numeral 37 denotes a hot water supply control unit having a microcomputer that receives input from a sensor in the hot water storage tank unit and controls driving of the actuator. The remote controller 30 is connected to the hot water supply control unit 37 wirelessly or by wire so that a user can set an arbitrary hot water supply set temperature.
[0023]
In addition, 38 is an overpressure prevention valve for preventing overpressure of the hot water storage tank 16, 39 is a feedwater temperature sensor that detects the temperature of feedwater, 40 is a pressure reducing valve that reduces the pressure of feedwater, and 41 is a count of the amount of hotwater to be fed. This is a flow rate counter.
[0024]
Next, the operation of the first embodiment will be described.
First, the boiling operation shown in FIG. 2 will be described. When the hot water storage temperature sensor 36 detects that the required amount of heat does not remain in the hot water storage tank 16 in the late night power time zone, the hot water supply controller 37 sets A boiling start command is issued to the control unit 11. Upon receiving the command, the heap control unit 11 starts driving the compressor 5 after activating the compressor 5, and cools the low-temperature water of about 5 to 20 ° C. taken out from the heap outlet 17 below the hot water storage tank 16 into the refrigerant-water heat. Heated to a high temperature of about 70 to 90 ° C. in the exchanger 6, returned to the hot water storage tank 16 from the heapon return port 18 at the upper part of the hot water storage tank 16 via the heapon circulation circuit 19, and sequentially stacked from the upper part of the hot water storage tank 16. Hot water is stored. When the hot water storage temperature sensor 36 detects that the required amount of heat has been stored, the hot water supply control unit 37 issues a boiling stop command to the heapon control unit 11, and the heapon control unit 11 stops the compressor 5 and circulates the heapon. The pump 10 is also stopped to end the boiling operation.
[0025]
Next, the heating operation shown in FIG. 3 will be described. When the heating switch 32 of the remote control 30 is turned on, the hot water supply control unit 37 starts driving the heat utilization circulation pump 23 and the secondary circulation pump 26, and the hot water outlet 21 The high-temperature water of about 70 to 90 ° C. taken out of the hot water flows into the heat exchanger 20 and exchanges heat with the hot water of the secondary circuit 25. The medium-temperature water whose temperature has dropped to about 30 to 50 ° C. by the heat exchange returns to the medium-temperature water. The medium-temperature water is stored by returning to the lower part of the hot-water storage tank 16 from the port 22 and pushing up the boundary surface between the high-temperature water and the medium-temperature water in a form to replace the high-temperature water. On the secondary side, the hot water heated by the heat exchanger 20 flows into the floor heating panel 4, heats the space to be heated, and circulates again to the heat exchanger 20. Then, when the heating switch 32 of the remote controller 30 is turned off, the hot water supply control unit 37 stops driving the heat utilization circulation pump 23 and the secondary circulation pump 26 to stop the heating operation.
[0026]
Then, the hot water supply operation shown in FIG. 4 will be described. When the hot water mixing faucet 3 is opened, hot water in the hot water storage tank 16 is pushed out from the first hot water outlet 13 at the upper end by the water supply pressure from the water supply pipe 14. Medium-temperature water is pushed out from the second tap 33. The extruded high-temperature water of about 70 to 90 ° C. and medium-temperature water of about 30 to 50 ° C. flow into the second mixing valve 34 via the first hot water pipe 12 and the second hot water pipe 35, respectively. Is mixed. The mixed hot water flows into the first mixing valve 27, is mixed with low-temperature water of about 5 to 20 ° C. from the water supply pipe 14, is adjusted to the hot water supply set temperature set by the user with the remote controller 30, and is supplied with the hot water mixing faucet 3. Hot water is supplied from.
[0027]
At this time, since the medium-temperature water return port 22 is provided in the hot-water storage tank 16 at a position higher than the water supply port 15 at the lowermost end of the hot-water storage tank 16 and the heapon outflow port 17 at the bottom, the medium-temperature water return port 22 is heated by the heating operation. Even if the hot water is returned to the lower part of the hot water storage tank 16, low-temperature water will be secured at the lowermost end of the hot water storage tank 16 by the flow of low-temperature water from the water supply pipe from the lower end of the hot water storage tank 16 by using the hot water supply. In the next boil, there is an effect that it can be boiled from low-temperature water without fail. In addition, the high-temperature water outlet 21 is provided in the middle of the first tapping pipe 12 connected to the first tapping port 13 so that the opening of the hot water storage tank 16 can be reduced.
[0028]
Further, since the second tap hole 33 is provided at a position higher than the middle-temperature water return port 22, a certain capacity can be secured between the middle-temperature water return port 22 and the second tap port 33, and the heat exchanger 20 As a result, the medium-temperature water whose temperature has dropped can be temporarily stored by the capacity thereof, and the amount of medium-temperature water that is stored at a position higher than the second tap hole 33 can be reduced. Specifically, since the second tap hole 33 is located at an intermediate height position of the hot water storage tank 16, a capacity of about 90 to 120 L can be secured between the intermediate-temperature water return port 22 and the second tap port 33, and the heat exchanger is provided. The medium-temperature water whose temperature has dropped in 20 can be temporarily stored by the capacity thereof, and the amount of medium-temperature water stored at a position higher than the second tap 33 can be reduced. That is, the amount of medium-temperature water that cannot be taken out of the second tap 33 can be reduced as much as possible.
[0029]
Here, if the medium-temperature water return port 22 and the second tap 33 are at the same height, the medium-temperature water may be stored at a position higher than the medium-temperature water return port 22. Since the hot water cannot be taken out from the second tap 33 at the same height as the hot water return port 22, it is necessary to use the hot water at the same time as the hot water is generated. Medium-temperature water is stored in the hot-water storage tank 16 until the water is pushed up to the first tap 13 at the upper end of the hot-water storage tank 16. However, in the first embodiment, since the second tap hole 33 is provided at a position higher than the intermediate-temperature water return port 22 as described above, from the generation of the intermediate-temperature water to the use thereof by the capacity of the difference in height. There is an effect that the medium-temperature water can be used for hot water supply even if hot water is supplied at a time interval after the medium-temperature water is generated for a certain volume after the generation of the medium-temperature water.
[0030]
When hot water is not supplied or hot water is supplied immediately after boiling is completed, if there is no medium-temperature water in the hot water storage tank 16 and high-temperature water is present at the position of the second tap 33, the second mixing valve 34 is connected to the first tap pipe 12. The side is closed and the second tapping pipe 35 side is opened. As a result, hot water having a temperature equal to or higher than the set mixing temperature is supplied to the first mixing valve 27. The first mixing valve mixes with the low-temperature water from the water supply pipe 14 and adjusts the hot water setting temperature set by the user with the remote controller 30. Will be done.
[0031]
When high-temperature water is present in the upper part of the hot-water storage tank 16 but low-temperature water is present in the vicinity of the second tap 33, the second mixing valve 34 is automatically set to about 65 ° C. of the set mixing temperature. It is adjusted to.
[0032]
As described above, the medium-temperature water used as a heating heat source at the time of hot water supply is taken out of the middle of the hot water storage tank 16 with priority over the high-temperature water and is supplied with hot water. Therefore, it was performed that the medium-temperature water could not be supplied until the high-temperature water was completely supplied. Each time hot water is supplied, the medium-temperature water in the hot-water storage tank 16 decreases and is replaced with low-temperature water from the water supply pipe 14. The low-temperature low-temperature water is boiled by the heat pump circuit 9, so that the efficiency of the boil-up is improved and the COP (energy consumption efficiency) as the heat pump hot water supply device is improved.
[0033]
Further, the second mixing valve 34 mixes to a temperature equal to or higher than the upper limit temperature of the hot water supply set temperature range adjusted by the first mixing valve 27, and then mixes to an arbitrary hot water supply set temperature by the first mixing valve 27 to supply hot water. Therefore, hot water at an arbitrary hot water supply set temperature set by the remote controller 30 can always be reliably supplied without any special operation on the user side.
[0034]
In this embodiment, the medium-temperature water return port 22 is provided directly above the hot water storage tank 16 at a position higher than the water supply port 15 and the heapon outlet 17. However, the present invention is not limited to this. As shown in the figure, a pipe is inserted from the lower part of the hot water storage tank 16 to the inside, and the opening at the inserted tip is provided as a medium-temperature water return port 22 at a position higher than the water supply port 15 and the heapon outlet 17. Is also good.
[0035]
In this embodiment, the heat exchanger 20, the heat utilization circulation pump 23, and the secondary circulation pump 26 are provided in the hot water storage tank unit 2. However, the present invention is not limited to this. It may be provided in a heat exchange unit separate from the tank unit 2, and this does not prevent the embodiment from being changed without changing the gist of the present invention.
[0036]
Further, in this embodiment, the heating load terminal 4 composed of a floor heating panel is used as the load of the secondary circuit 25. However, the present invention is not limited to this, and a hot water hot air heater, a hot water panel convector, A hot water panel radiator may be used. Further, the load of the secondary circuit 25 is not limited to the heating use, and may be used for reheating or maintaining the temperature of a bath by circulating hot water in a bathtub. Any heat equipment can be used as long as the heat equipment is used by exchanging heat in the vessel 20.
[0037]
【The invention's effect】
As described above, according to the first aspect of the present invention, the low-temperature water from the water supply pipe flows in from the lower end of the hot water storage tank due to the use of the hot water supply, and the medium-temperature water that has been used as a heat source and whose temperature has decreased is supplied to the water supply port. And since it flows into the hot water storage tank from the medium-temperature water return port provided at a position higher than the heapon return port, low-temperature water that is not mixed with the medium-temperature water is secured at the lowermost end of the hot-water storage tank, and When the water is raised, hot water is taken out from the heapon outlet provided at a position lower than the medium temperature water return port, so it can be boiled from low-temperature water without fail, improving the efficiency of boiling and improving the heat pump water supply system. COP (energy consumption efficiency) is improved.
[0038]
According to the second aspect, the low-temperature water can be boiled to a high temperature in a state where the COP (energy consumption efficiency) is good, and the amount of heat stored in the heat pump hot water supply device can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention.
FIG. 2 is a view for explaining the operation of the boiling operation of the same embodiment.
FIG. 3 is a diagram illustrating an operation of a heating operation according to the same embodiment.
FIG. 4 is a diagram illustrating the operation of the hot water supply operation of the same embodiment.
FIG. 5 is a schematic configuration diagram of another embodiment of the present invention.
FIG. 6 is a schematic configuration diagram of a conventional example.
[Explanation of symbols]
5 Compressor 6 Refrigerant-water heat exchanger (condenser)
Reference Signs List 8 evaporator 9 heat pump circuit 12 first hot water pipe 13 first hot water outlet 14 water supply pipe 15 water supply port 16 hot water storage tank 17 heapon outlet 18 heapon return port 19 heapon circulation circuit 20 heat exchanger 21 high temperature water outlet 22 medium hot water return Port 23 Heat exchange circulation pump 24 Heat utilization circulation circuit

Claims (2)

給水管からの低温水を流入させる給水口を下端部に有すると共に貯湯している高温水を第1出湯管から流出させる第1出湯口を上端部に有する貯湯タンクと、圧縮機と蒸発器と凝縮器を有したヒートポンプ回路と、前記貯湯タンク下部に設けられたヒーポン往き口から取り出した低温水を前記ヒートポンプ回路の凝縮器によって加熱し、加熱された高温水を前記貯湯タンク上部に設けられたヒーポン戻り口から前記貯湯タンク内に戻すヒーポン循環回路と、熱交換器と熱交循環ポンプを有し前記貯湯タンク上部に設けられた高温水取出し口から取り出した高温水を前記熱交換器に循環させ、温度低下した中温水を前記貯湯タンク下部に設けられた中温水戻り口に戻す熱利用循環回路とを備えたヒートポンプ式給湯装置において、前記中温水戻り口を前記給水口および前記ヒーポン往き口よりも高い位置に設けたことを特徴とするヒートポンプ式給湯装置。A hot water storage tank having a water supply port at a lower end portion through which low-temperature water flows from a water supply pipe at a lower end portion and a first hot water outlet at an upper end portion to discharge hot water stored therein from a first hot water supply tube; a compressor and an evaporator; A heat pump circuit having a condenser, and low-temperature water taken out from a heapon outlet provided at a lower part of the hot water storage tank was heated by a condenser of the heat pump circuit, and heated high-temperature water was provided at an upper part of the hot water storage tank. A heap circulation circuit for returning the hot water from the heap return port into the hot water storage tank, and having a heat exchanger and a heat exchange circulation pump, circulating high-temperature water taken out from a high-temperature water outlet provided at an upper portion of the hot water storage tank to the heat exchanger; And a heat utilization circulation circuit for returning the temperature-reduced medium-temperature water to a medium-temperature water return port provided below the hot-water storage tank. The heat pump type hot water supply apparatus, wherein a mouth is positioned higher than the water supply port and the Hipon forward port. 前記ヒートポンプ回路を、二酸化炭素冷媒を用いたヒートポンプ回路として超臨界ヒートポンプサイクルを構成したことを特徴とする請求項1記載のヒートポンプ式給湯装置。The heat pump type hot water supply apparatus according to claim 1, wherein the heat pump circuit is a heat pump circuit using a carbon dioxide refrigerant, and a supercritical heat pump cycle is configured.
JP2002266761A 2002-09-12 2002-09-12 Heat pump type hot-water feeder Pending JP2004101135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002266761A JP2004101135A (en) 2002-09-12 2002-09-12 Heat pump type hot-water feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266761A JP2004101135A (en) 2002-09-12 2002-09-12 Heat pump type hot-water feeder

Publications (1)

Publication Number Publication Date
JP2004101135A true JP2004101135A (en) 2004-04-02

Family

ID=32265482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266761A Pending JP2004101135A (en) 2002-09-12 2002-09-12 Heat pump type hot-water feeder

Country Status (1)

Country Link
JP (1) JP2004101135A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096056A (en) * 2006-10-13 2008-04-24 Matsushita Electric Works Ltd Hot water supply system
EP2051016A3 (en) * 2007-10-18 2013-02-27 Mitsubishi Electric Corporation Storage type hot water supply system
CN107270582A (en) * 2017-06-09 2017-10-20 青岛海尔空调电子有限公司 The control method and heat pump of source pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096056A (en) * 2006-10-13 2008-04-24 Matsushita Electric Works Ltd Hot water supply system
EP2051016A3 (en) * 2007-10-18 2013-02-27 Mitsubishi Electric Corporation Storage type hot water supply system
CN107270582A (en) * 2017-06-09 2017-10-20 青岛海尔空调电子有限公司 The control method and heat pump of source pump

Similar Documents

Publication Publication Date Title
JP3977382B2 (en) Hot water storage water heater
JP4995032B2 (en) Hot water storage water heater
JP3977241B2 (en) Hot water storage water heater
JP2004286307A (en) Storage type water heater
JP3854169B2 (en) Heat pump type water heater
JP4295241B2 (en) Water heater
JP4778299B2 (en) Hot water storage type hot water supply device and method for changing standby opening of hot water mixing valve
JP4030394B2 (en) Hot water storage water heater
JP4053451B2 (en) Hot water storage water heater
JP2007333332A (en) Hot water storage type heating apparatus
JP4226533B2 (en) Hot water storage water heater
JP3950031B2 (en) Hot water storage water heater
JP4158694B2 (en) Hot water storage type heat pump water heater
JP2005315480A (en) Heat pump type water heater
JP4037781B2 (en) Hot water storage water heater
JP2004101135A (en) Heat pump type hot-water feeder
JP2006308124A (en) Storage type water heater
JP3950032B2 (en) Hot water storage water heater
JP2007198637A (en) Heat pump type water heater
JP2011141069A (en) Bath device
JP2009068818A (en) Hot water storage type water heater
JP3908768B2 (en) Heat pump type water heater
JP5009743B2 (en) Hot water storage water heater
JP4354389B2 (en) Hot water storage water heater
JP2006308123A (en) Storage water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115