JP3852623B2 - Method for producing ferrite sintered body - Google Patents
Method for producing ferrite sintered body Download PDFInfo
- Publication number
- JP3852623B2 JP3852623B2 JP14888795A JP14888795A JP3852623B2 JP 3852623 B2 JP3852623 B2 JP 3852623B2 JP 14888795 A JP14888795 A JP 14888795A JP 14888795 A JP14888795 A JP 14888795A JP 3852623 B2 JP3852623 B2 JP 3852623B2
- Authority
- JP
- Japan
- Prior art keywords
- iron oxide
- ferrite
- powder
- raw material
- composite iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compounds Of Iron (AREA)
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、従来技術による製品と同等以上の特性を持つMn―Zn系ソフトフェライトを、安価に製造するためのソフトフェライト原料粉に関し、特に高透磁率特性を有するMn―Zn系ソフトフェライト原料粉、フェライト焼結体及びその製造方法に関するものである。
【0002】
【従来の技術】
従来のMn―Zn系ソフトフェライトは、Fe2O3、Mn3O4、ZnOの各酸化物を所定量に秤量し、混合し、その混合体を800〜1000℃で仮焼し、仮焼された仮焼体を粉砕し、所望の添加物及びバインダーを添加し、造粒し、それを金型内に充填し、所定の形状に成形し、1300〜1400℃の高温で焼成して、研磨工程等の必要な加工を経て、Mn―Zn系ソフトフェライトコアが得られている。
このように、従来のMn―Zn系ソフトフェライトを得る方法は、工程が長く、煩雑で、仮焼及び本焼成と2回の焼成工程を経る為、コストが嵩むという問題があった。
この仮焼を行う理由は、成分の均質化、フェライト化反応の促進等であり(平賀・奥谷・尾島著、フェライト、丸善、昭61.11.30、p48〜51)、もし仮焼をしていない生の原料粉を直接造粒、成形、焼成すると、500〜900℃でのフェライト化反応による体積膨張、及びそれに引き続く焼結反応による体積収縮により、変形やひび割れが起こるという問題が生じる。
【0003】
一方で、仮焼工程省略及び品質向上を狙った改良技術として、Fe、Mn等を含む複合酸化鉄粉を得る方法もいくつか提案されている。
例えば、特公昭47―11550号、特公昭63―17776号のように、フェライト構成金属の塩化物を水溶液状態で混合した後、高温ガス中で噴霧・焙焼し、直接仮焼粉相当の粉体を得る方法がある。この方法は、仮焼工程省略によるコストダウンの他に、溶融状態での混合の為、従来より成分の均質化に優れ、品質が向上するというメリットも期待されている。
【0004】
また、このMn―Zn系ソフトフェライト原料粉の主要な用途の一つに、通信機器等のトランスおよびノイズフィルタ等がある。このような通信機器に使用されるMn―Zn系ソフトフェライトは、製品の軽量化、薄型化および小型化のために、高透磁率であることが望まれている。この高透磁率を得るには、結晶粒径が大きく、かつ均一であることが良いとされ、焼成工程では、高温で長時間焼成が行われている。
【0005】
【発明が解決しようとする課題】
従来の複合酸化鉄粉を得る方法では、特公昭63―17776号にも記述されている様に、塩化物の蒸気圧が高いZnが先に揮散してしまい焙焼後の複合酸化鉄粉体に取り込まれ難い、という問題がある。
この問題を解決する為に、特公昭63―17776号では、ZnOはフェライト化反応を起こし易いという特長を利用して、塩化物蒸気圧の低いFeとMnの塩化物水溶液のみを混合・噴霧焙焼し、得られた粉体に後からZnO粉末を混合して造粒・成形・焼成している。この改良技術により、仮焼工程の省略は一応可能となったが、成形体の変形やひび割れの問題は完全には解決されていなかった。その理由は、Znフェライトは一旦形成されると安定であるが、Mnフェライトは高温で形成されても冷却時に酸化されて一部再分解する為、Znを全く含まないMn―Fe複合酸化鉄ではフェライト化が不十分な場合がある為と考えられる。
【0006】
また、噴霧焙焼技術の改良により、塩化物蒸気圧の高いZnを揮散させずに複合酸化鉄粉体に取り込む方法も各種研究されており、燃焼後の還元性物質を含まない高温度の高速ガス流に原料液を噴霧し、熱ガス流と並流させて焙焼する方法(特開平1―192708号)や、それと類似の並流焙焼法(特開平3―40921号)、或は噴霧焙焼時の噴霧液滴径や、焙焼中又は焙焼後の温度・時間・雰囲気等を規定したもの(特開平5―51218号、特開平5―330828号、特開平6―244015号、特開平6―293521号)等、多数の改良技術が開示されている。
これらの改良技術により、確かにZnが複合酸化鉄中に取り込まれ、例えば特開平6―293521号に見られる様に、ミクロな組成偏差も殆ど無い均質なフェライト化した原料粉が得られ、それらを直接造粒・成形・焼成した場合、従来よりも特性の大幅に優れたコアが得られる事は判った。
しかし、これらの改良噴霧焙焼法の問題点は、Znを取り込む為にガス流れと液滴流れを並行とし、急速加熱・急速冷却を行なう為、従来の噴霧焙焼法に比べて熱原単位が大幅に悪化し、コストアップにつながる。折角、Fe、Mn、Znの複合酸化鉄を作り、仮焼工程を省略してもその原料粉が高価になってしまい、結局フェライト製品のコストダウンにはつながらないという問題点があった。
【0007】
また、この金属塩の水溶液を噴霧焙焼して得られたフェライト原料粉を用いて、高透磁率フェライトを得ることも既に提案されている(特開平6―342716号)。しかし、Zn含有率の高いMn―Zn系ソフトフェライトでは、金属塩の水溶液を噴霧焙焼してフェライト原料粉を得る場合、焙焼時のZnOの蒸発に伴い、組成コントロールが非常に困難となる。
また、金属塩の水溶液を噴霧焙焼して得られたフェライト原料粉は、細かい粒子径の原料粉となり易く、この粒子径の細かい原料粉を用いてフェライト焼結体を製造する場合、低い温度で反応性を抑えながら焼結させることにより、比較的結晶粒径の小さいフェライト焼結体を得ることは出来るが、結晶粒径を大きくしようとして、焼結温度を上げると、たちまち急激な粒成長を生じ、結晶が粗大化して、透磁率が逆に低下してしまい、使用出来なくなる。
本発明は、複合酸化鉄粉を使用して、仮焼工程の省略を行うことができる安価なソフトフェライト原料粉を提供し、金属塩の水溶液を噴霧焙焼して得られた粒子径が細かいフェライト原料粉を用いて、結晶粒径をコントロールし、結晶粒径が大きく、かつ均一なMn―Zn系ソフトフェライトを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、Fe、Mn又はFe、Mn、Znの各塩化物の水溶液を噴霧焙焼して、比表面積が4〜25m2/gで、且つFe、Mn、Znの含有量がFe2O3、MnO、ZnOのモル比に換算して、各40〜65%、10〜50%、0〜35%の比率で含む複合酸化鉄粉を用意し、
この複合酸化鉄粉を全体の20〜80重量%とし、これに酸化鉄、酸化亜鉛、及び焼成してMnOになるMn化合物の粉末をそれぞれ所定のモル比で80〜20重量%混合したソフトフェライト原料粉に、更に焼結後にLi、B、Mg、Si、K、Ca、Ti、V、Cr、Co、Y、Zr、Nb、Mo、In、Sn、Te、Ba、Hf、Ta、W、TlおよびBiの酸化物となる成分を1種乃至2種以上副成分として加え混合の後、このソフトフェライト原料粉を未仮焼のまま所定形状に成形して成形体となし、前記成形体を酸素濃度1%〜10%で焼結し、焼結密度が理論密度の95%以上で、かつ平均結晶粒径が10〜50μmであり、全体のFe、Mn、Zn含有量をFe2O3、MnO、ZnOのモル比に換算して、各50〜55%、20〜35%、15〜30%のフェライト焼結体を得るフェライト焼結体の製造方法である。
【0009】
【作用】
本発明では、複合酸化鉄粉と各酸化物などの生原料粉とを混ぜて使用することにより、仮焼なしで割れや変形のないソフトフェライトを得ることができる。即ち、Fe2O3、Mn3O4、ZnOが混合された生原料粉中に、フェライト化が始まる500〜600℃の温度で焼結反応が起こり始めるような、比表面積の大きい活性度の高い複合酸化鉄粉が、重量比で20%程度以上混合されていれば、フェライト化による体積膨張と焼結による体積収縮が打ち消し合い、焼結体の変形や割れは抑えられることが判った。混合比率の上限は、仮焼工程省略の観点からは特に制約が無いが、コストダウンの目的からは高価な複合酸化鉄粉を多く使用することは得策でなく、80%以下が良い。また、複合酸化鉄粉の比表面積は、4〜25m2/gが適当となる。4m2/gより小さいと焼結助剤としての効果が不十分であり、25m2/gより大きいとスラリー粘度が上がり過ぎ、使用し難い。好ましくは、6〜20m2/gである。また、複合酸化鉄は、スピネル化率が高い方が望ましく、好ましくは、90%以上である。また、組成の均一性に関しては、仮焼していない生原料粉が混合されていても、低温で焼結反応が始まる活性度の高い複合酸化鉄粉が60%以上混合されていれば1100〜1200℃程度、20〜60%の混合比率でも1200〜1300℃程度の焼成温度で十分拡散が起こり、実用上問題がないことが判った。この、焼成温度によって、焼結体の結晶粒径が変わり、従って、複合酸化鉄の混合比率、焼成温度の選択により、結晶粒径、電磁気特性を変更可能である。また、本発明では、複合酸化鉄粉に各酸化物などの生原料粉を混ぜて使用するため、複合酸化鉄粉の組成ずれが多少大きくても、後で混ぜる生原料により調整できるので、複合酸化鉄の噴霧焙焼時の精密制御が不要となり、設備費等のコストを低減できる。即ち、Fe、Mn、Znの組成比をミクロに見ても均一であるように厳密に制御しようとすると、揮散し易いZnを逃がさぬよう、例えば特開平6―293521号にあるように、噴霧焙焼時の液滴径、温度、雰囲気、冷却条件を厳しく制御しなければならず、急速加熱・急速冷却による熱ロスも大きくなるが、本発明によれば、焙焼時の組成ずれやミクロな組成の不均一はあまり問題にならず、製造方法の自由度が増し、コストダウンが可能となる。例えば、焙焼後のガスを冷却せずに、バグフィルターで製品を捕集した後、ダストの無いガスから十分に熱回収することもできる。また、本発明では、複合酸化鉄粉に各酸化物などの生原料粉を混ぜて使用するため、一つの複合酸化鉄粉から、組成の異なる複数種のフェライト製品の製造が可能である。もちろん、複合酸化鉄の混合量を20〜80重量%とし、目標とする組成も決定されれば、自ずと複合酸化鉄の組成範囲も制限される。これに対し、特開平6―293521号の様に複合酸化鉄粉を100%使用する場合や、特公昭63―17776号の様に後から添加する粉の大部分はZnOでFe2O3、Mn3O4は微調整にしか用いない場合は、本発明の様にはできず、それぞれの複合酸化鉄粉を作り分けなければならない為、ロット切り替え時のロスが生じる。以上のことから、複合酸化鉄粉のFe、Mn、Znの含有量は、Fe2O3、MnO、ZnOのモル比に換算して、各40〜65%、10〜50%、0〜35%が適当である。もちろん、最終組成と同様の各50〜55%、20〜35%、15〜30%の範囲とする事は好ましく、また本発明は高透磁率材であるが、低損失材との共用を考えた場合、各々45〜60%、30〜45%、5〜15%とすることもできる。また、全体のFe、Mn、Zn含有量をFe2O3、MnO、ZnOのモル比に換算して、各50〜55%、20〜35%、15〜30%としたのは、この範囲以外では、高透磁率特性を得ることが困難であるからである。複合酸化鉄粉と各酸化物などの生原料粉とを混ぜて使用することにより、焼結性のコントロールが可能となり、フェライト焼結体の焼結密度が理論密度の95%以上で、かつ平均結晶粒径が10〜50μmの範囲で制御できる。なお、本発明による技術が適用されるフェライトとしては、副成分として焼結後にLi、B、Mg、Si、K、Ca、Ti、V、Cr、Co、Y、Zr、Nb、Mo、In、Sn、Te、Ba、Hf、Ta、W、TlおよびBiの酸化物となる成分を1種乃至2種以上含んでも良い。
【0010】
【実施例】
以下に、本発明に係るフェライト材料の実施例を詳細に説明する。
実施例1
Feの塩化物とMnの塩化物とZnの塩化物とを混合した水溶液を噴霧焙焼して、Fe2O3、MnO、ZnOのモル比に換算して、Fe2O3 52.5mol%、MnO 25.5mol%、ZnO 22.0mol%の成分を有する複合酸化鉄粉を用意し、この複合酸化鉄粉に対して、Fe2O3、Mn3O4、ZnOの酸化物原料粉末(生原料粉)のそれぞれの粉末を上記と同組成となるように添加含有して、フェライト原料粉を作成した。このとき、複合酸化鉄粉の含有量を表1に示す種々の割合で作製した。尚、最終組成は、上記の組成となる様に設定した。このとき、Fe3O3の平均一次粒子径は、0.78μm、Mn3O4の平均一次粒子径は、0.56μm、ZnOの平均一次粒子径は、0.65μm、噴霧焙焼して得た複合酸化鉄粉の平均一次粒子径は、0.08μm(比表面積が約17m2/g)であった。これに、CaCO3 100ppm、Bi2O3 400ppm、さらに所定量のイオン交換水および分散剤を添加した後、アトライタにて1時間混合し、これに原料に対して2wt%のバインダー(ポリビニルアルコール)を加え、スプレードライヤにて造粒し、50メッシュのふるいにて整粒した顆粒を乾式圧縮成形機と金型を用いて、外径16.8mm、内径8.5mm、高さ5.4mmのリング状コアに成形圧力2.5ton/cm2で成形した。これをバッチ式焼成炉を用いて、焼成温度1340℃、酸素分圧10%で焼成し、得られた焼結体の焼結密度、初透磁率、平均結晶粒径を測定した。この結果を表1に示す。又、表1の備考欄に本発明の範囲のものは、本発明品とし、本発明の範囲外のものは比較例とした。
【0011】
【表1】
【0012】
この表1に示すとおり、噴霧焙焼して得た複合酸化鉄粉のみを使用した(No.6、100%)場合、平均結晶粒径が113μmと粗大化し、初透磁率が低下するが、本発明のように、酸化物粉末を混合することにより、平均結晶粒径が20〜34μmとなり、高透磁率フェライト焼結体を得ることができた。また、本発明品の焼結密度は、理論密度(5100kg/m3)の95%(4850kg/m3)以上の密度を得ている。
【0013】
実施例2
実施例1と同一手順で作製したリング状コアを、バッチ式焼成炉を用いて、焼成温度1280℃、酸素分圧1%で焼成し、得られた焼結体の焼結密度、初透磁率、平均結晶粒径を測定した。この結果を表2に示す。又、表2の備考欄に本発明の範囲のものは、本発明品とし、本発明の範囲外のものは比較例とした。
【0014】
【表2】
【0015】
この表2に示すとおり、本発明によれば、酸化物粉末を混合することにより、平均結晶粒径が11〜15μmで、高透磁率のフェライト焼結体を得ることができた。また、本発明品の焼結密度は、理論密度(5100kg/m3)の95%(4850kg/m3)以上の密度を得ている。
【0016】
実施例3
Feの塩化物とMnの塩化物とZnの塩化物を混合し、噴霧焙焼して得た複合酸化鉄粉であって、Fe、Mn、Znの含有量がFe2O3、MnO、ZnOのモル比に換算して、Fe2O3 52.5mol%、MnO 25.5mol%、ZnO 22.0mol%の複合酸化鉄粉と、Fe2O3、Mn3O4、ZnOの相当量のそれぞれの酸化物原料粉末とを表3に示す最終組成になるように、種々の割合で配合した。このとき、複合酸化鉄粉の含有量が60wt%となるように設定した。そして、Fe2O3の平均一次粒子径は、0.78μm、Mn3O4の平均一次粒子径は、0.56μm、ZnOの平均一次粒子径は、0.65μm、噴霧焙焼して得たフェライト原料粉の平均一次粒子径は、0.08μmであった。これに、表3に示す所定量の添加物を副成分として加え、さらに所定量のイオン交換水および分散剤を添加した後、アトライタにて1時間混合し、これに原料に対して2wt%のバインダー(ポリビニルアルコール)を加え、スプレードライヤにて造粒し、50メッシュのふるいにて整粒した顆粒を乾式圧縮成形機と金型を用いて、外径16.8mm、内径8.5mm、高さ5.4mmのリング状コアに成形圧力2.5ton/cm2で成形した。これをバッチ式焼成炉を用いて、表4の焼成条件で焼成し、得られた焼結体の焼結密度、初透磁率、平均結晶粒径を測定した。この結果を表4に示す。
【0017】
【表3】
【0018】
【表4】
【0019】
上記表3、表4において、試料No.13は比較例であり、試料No.14,15は実施例である。本発明の実施例では、噴霧焙焼して得た複合酸化鉄粉の含有量を60wt%とし、これに生原料粉を添加して、種々の所望の組成のソフトフェライトを得ることができた。しかも、高透磁率であり、焼結密度が理論密度の95%以上であって、平均結晶粒径が10〜50μmの範囲である。
【0020】
実施例4
Feの塩化物とMnの塩化物とZnの塩化物とを混合した水溶液を噴霧焙焼して、Fe2O3、MnO、ZnOのモル比に換算して、Fe2O3 52.5mol%、MnO 25.5mol%、ZnO 22.0mol%の成分を有する複合酸化鉄粉を用意し、この複合酸化鉄粉に対して、Fe2O3、Mn3O4、ZnOの酸化物原料粉末(生原料粉)のそれぞれの粉末を上記と同組成となるように添加含有して、フェライト原料粉を作成した。このとき、複合酸化鉄粉の含有量が60wt%となるように作製した。尚、最終組成は、上記の組成となる様に設定した。このとき、Fe2O3の平均一次粒子径は、0.78μm、Mn3O4の平均一次粒子径は、0.56μm、ZnOの平均一次粒子径は、0.65μm、噴霧焙焼して得た複合酸化鉄粉の平均一次粒子径は、0.08μm(比表面積が約17m2/g)であった。これに、CaCO3 100ppm、Bi2O3 400ppm、さらに所定量のイオン交換水および分散剤を添加した後、アトライタにて1時間混合し、これに原料に対して2wt%のバインダー(ポリビニルアルコール)を加え、スプレードライヤにて造粒し、50メッシュのふるいにて整粒した顆粒を乾式圧縮成形機と金型を用いて、外径16.8mm、内径8.5mm、高さ5.4mmのリング状コアに成形圧力2.5ton/cm2で成形した。これをバッチ式焼成炉を用いて、表5に示す焼成温度、酸素分圧で焼成し、得られた焼結体の焼結密度、初透磁率、平均結晶粒径を測定した。この結果を表5に示す。
【0021】
【表5】
【0022】
この表5に示すように、本発明では、焼成条件により結晶粒径のコントロールが可能であり、それにより所望の高透磁率を得ることができる。
また、この表5において、試料No.19は、焼成時に成形体を同組成のフェライトケースで囲って焼成させたものである。
【0023】
以上、実施例に示すように、本発明の実施例は、噴霧焙焼して得た複合酸化鉄粉の含有量としては、20〜80wt%とし、これに生原料粉を所定量添加して、所望の組成のソフトフェライトを得ることができた。しかも、本発明の実施例は、高透磁率フェライトとして使用可能なものであり、焼結密度が理論密度の95%以上であって、平均結晶粒径が10〜50μmの範囲で制御することが出来ている。
【0024】
【発明の効果】
本発明によれば、複合酸化鉄粉と生原料粉とを所定量混合して使用することにより、仮焼工程を省略して、ソフトフェライトの製造が可能となるものであり、高透磁率Mn―Zn系ソフトフェライトを安価に製造することが可能となる。また、本発明によれば、フェライト焼結体の結晶粒径のコントロールも可能となる。[0001]
[Industrial application fields]
The present invention relates to a soft ferrite raw material powder for inexpensively producing Mn—Zn soft ferrite having characteristics equivalent to or better than those of products according to the prior art, and in particular, an Mn—Zn soft ferrite raw material powder having high magnetic permeability characteristics. The present invention relates to a ferrite sintered body and a method for producing the same.
[0002]
[Prior art]
Conventional Mn—Zn-based soft ferrites are prepared by weighing and mixing Fe 2 O 3 , Mn 3 O 4 , and ZnO oxides in predetermined amounts, and calcining the mixture at 800 to 1000 ° C. Pulverizing the calcined body, adding desired additives and binder, granulating it, filling it into a mold, forming it into a predetermined shape, firing at a high temperature of 1300-1400 ° C, An Mn—Zn-based soft ferrite core is obtained through necessary processing such as a polishing process.
As described above, the conventional method for obtaining Mn—Zn-based soft ferrite has a long process and is complicated, and there is a problem that the cost is increased because it undergoes calcination and main firing and two firing steps.
The reason for this calcining is to homogenize the components and promote the ferritization reaction (Hiraga, Okutani, Ojima, Ferrite, Maruzen, Sho 61.11.30, p48-51). When raw raw powder that is not directly granulated, shaped, and fired, there arises a problem that deformation and cracking occur due to volume expansion by a ferritization reaction at 500 to 900 ° C. and subsequent volume shrinkage by a sintering reaction.
[0003]
On the other hand, several methods for obtaining composite iron oxide powder containing Fe, Mn, and the like have been proposed as improved techniques aimed at omitting the calcination step and improving quality.
For example, as described in Japanese Examined Patent Publication Nos. 47-11550 and 63-177776, a ferrite-constituting metal chloride is mixed in an aqueous solution, then sprayed and roasted in a high-temperature gas, and directly equivalent to a calcined powder. There is a way to get a body. In addition to cost reduction due to omission of the calcination step, this method is expected to have a merit of superior homogenization of components and improved quality because of mixing in a molten state.
[0004]
One of the main uses of this Mn—Zn soft ferrite raw material powder is a transformer and a noise filter for communication equipment. The Mn—Zn soft ferrite used in such communication devices is desired to have a high magnetic permeability in order to reduce the weight, thickness and size of the product. In order to obtain this high magnetic permeability, the crystal grain size should be large and uniform. In the firing step, firing is performed at a high temperature for a long time.
[0005]
[Problems to be solved by the invention]
In the conventional method of obtaining composite iron oxide powder, as described in Japanese Patent Publication No. 63-17776, Zn having a high vapor pressure of chloride is volatilized first, and the composite iron oxide powder after roasting is obtained. There is a problem that it is difficult to be taken in.
In order to solve this problem, Japanese Patent Publication No. 63-17776 uses only the feature that ZnO easily causes a ferritization reaction, so that only an aqueous chloride solution of Fe and Mn having a low chloride vapor pressure is mixed and sprayed. After baking, the obtained powder is mixed with ZnO powder and granulated, molded and fired. With this improved technique, the calcination step can be omitted, but the problems of deformation and cracking of the molded body have not been completely solved. The reason is that once the Zn ferrite is formed, it is stable, but even if the Mn ferrite is formed at a high temperature, it is oxidized during cooling and partially re-decomposed. This is thought to be due to the fact that ferritization may be insufficient.
[0006]
In addition, various methods have been studied for improving the spray roasting technology to incorporate Zn with high chloride vapor pressure into the composite iron oxide powder without volatilization. A method of spraying a raw material liquid into a gas flow and co-firing with a hot gas flow (Japanese Patent Laid-Open No. 1-192708), a similar co-current roasting method (Japanese Patent Laid-Open No. 3-40921), or Specified spray droplet diameter at spray roasting, temperature, time, atmosphere, etc. during or after roasting (JP-A-5-51218, JP-A-5-330828, JP-A-6-244015) JP-A-6-293521) and many other improved techniques are disclosed.
With these improved techniques, Zn is certainly incorporated into the composite iron oxide, and as shown in, for example, JP-A-6-293521, homogeneous ferritized raw material powders having almost no micro compositional deviation can be obtained. It was found that a core with significantly improved characteristics can be obtained by directly granulating, molding, and firing.
However, the problem with these improved spray roasting methods is that the gas flow and droplet flow are parallel in order to incorporate Zn, and rapid heating and cooling are performed. Will greatly deteriorate, leading to increased costs. Even if a complex iron oxide of Fe, Mn, and Zn is made and the calcining step is omitted, the raw material powder becomes expensive, and there is a problem that it does not lead to cost reduction of the ferrite product.
[0007]
In addition, it has already been proposed to obtain high permeability ferrite by using ferrite raw material powder obtained by spray roasting of an aqueous solution of this metal salt (Japanese Patent Laid-Open No. 6-342716). However, in the case of Mn—Zn soft ferrite having a high Zn content, when ferrite raw material powder is obtained by spray roasting an aqueous solution of a metal salt, composition control becomes very difficult as ZnO evaporates during roasting. .
Moreover, the ferrite raw material powder obtained by spray roasting an aqueous solution of a metal salt is likely to be a raw material powder having a fine particle size, and when a ferrite sintered body is produced using the raw material powder having a fine particle size, the temperature is low. By sintering while suppressing the reactivity, a ferrite sintered body with a relatively small crystal grain size can be obtained. However, if the sintering temperature is raised to increase the crystal grain size, rapid grain growth is achieved. And the crystal becomes coarse, and the magnetic permeability is decreased, making it unusable.
The present invention provides an inexpensive soft ferrite raw material powder capable of omitting the calcination step using composite iron oxide powder, and has a fine particle size obtained by spray roasting an aqueous solution of a metal salt. An object of the present invention is to provide a uniform Mn—Zn-based soft ferrite having a large crystal grain size and a uniform crystal grain size by using ferrite raw material powder.
[0008]
[Means for Solving the Problems]
In the present invention, an aqueous solution of each chloride of Fe, Mn or Fe, Mn, and Zn is spray roasted to have a specific surface area of 4 to 25 m 2 / g and a content of Fe, Mn, and Zn of Fe 2 O. 3 , Prepared composite iron oxide powder containing 40 to 65%, 10 to 50%, and 0 to 35% ratio in terms of molar ratio of MnO and ZnO,
Soft ferrite in which this composite iron oxide powder is mixed in an amount of 20 to 80% by weight and mixed with iron oxide, zinc oxide, and powder of Mn compound that is fired to become MnO at a predetermined molar ratio of 80 to 20% by weight. After sintering further to Li, B, Mg, Si, K, Ca, Ti, V, Cr, Co, Y, Zr, Nb, Mo, In, Sn, Te, Ba, Hf, Ta, W, After adding and mixing one or more components that become oxides of Tl and Bi as subcomponents, this soft ferrite raw material powder is formed into a predetermined shape without being pre- calcined to form a molded body. Sintering is performed at an oxygen concentration of 1% to 10%, the sintered density is 95% or more of the theoretical density, the average crystal grain size is 10 to 50 μm, and the total Fe, Mn, Zn content is Fe 2 O 3. , 50 to 55 in terms of molar ratio of MnO and ZnO , From 20 to 35% the manufacturing method of the ferrite sintered body to obtain a 15% to 30% of the ferrite sintered body.
[0009]
[Action]
In the present invention, soft ferrite free from cracking and deformation can be obtained without calcining by mixing and using composite iron oxide powder and raw material powder such as each oxide. That is, in the raw material powder in which Fe 2 O 3 , Mn 3 O 4 and ZnO are mixed, an activity with a large specific surface area such that a sintering reaction starts to occur at a temperature of 500 to 600 ° C. where ferritization starts. It has been found that if high composite iron oxide powder is mixed in a weight ratio of about 20% or more, volume expansion due to ferritization and volume shrinkage due to sintering cancel each other, and deformation and cracking of the sintered body can be suppressed. The upper limit of the mixing ratio is not particularly limited from the viewpoint of omitting the calcining step, but for the purpose of cost reduction, it is not a good idea to use a large amount of expensive composite iron oxide powder, and 80% or less is good. The specific surface area of the composite iron oxide powder is suitably 4 to 25 m 2 / g. If it is smaller than 4 m 2 / g, the effect as a sintering aid is insufficient, and if it is larger than 25 m 2 / g, the slurry viscosity is excessively increased and is difficult to use. Preferably, it is 6-20 m < 2 > / g. The composite iron oxide preferably has a higher spinelization rate, and is preferably 90% or more. In addition, regarding the uniformity of composition, even if raw raw powder that has not been calcined is mixed, if composite iron oxide powder having a high activity at which the sintering reaction starts at a low temperature is mixed by 60% or more, 1100 It was found that even at a mixing ratio of about 1200 ° C. and 20 to 60%, sufficient diffusion occurred at a firing temperature of about 1200 to 1300 ° C. and there was no practical problem. The crystal grain size of the sintered body varies depending on the firing temperature. Therefore, the crystal grain size and electromagnetic characteristics can be changed by selecting the mixing ratio of the composite iron oxide and the firing temperature. In the present invention, since raw material powder such as each oxide is mixed with the composite iron oxide powder, even if the composition deviation of the composite iron oxide powder is somewhat large, it can be adjusted by the raw material to be mixed later. Precise control at the time of iron oxide spray roasting is not necessary, and costs such as equipment costs can be reduced. That is, if the composition ratio of Fe, Mn, and Zn is strictly controlled so as to be uniform even when viewed microscopically, Zn that is easily volatilized is not escaped. For example, as disclosed in JP-A-6-293521, The droplet diameter, temperature, atmosphere, and cooling conditions during roasting must be strictly controlled, and heat loss due to rapid heating / cooling increases. Such a non-uniform composition is not a significant problem, increasing the degree of freedom of the manufacturing method and reducing the cost. For example, after collecting the product with a bag filter without cooling the gas after roasting, it is possible to sufficiently recover heat from the dust-free gas. Moreover, in this invention, since raw raw material powders, such as each oxide, are mixed and used for composite iron oxide powder, the manufacture of the multiple types of ferrite product from which a composition differs from one composite iron oxide powder is possible. Of course, if the mixing amount of the composite iron oxide is 20 to 80% by weight and the target composition is determined, the composition range of the composite iron oxide is naturally limited. On the other hand, when 100% of the composite iron oxide powder is used as in JP-A-6-293521, or most of powder added later as in JP-B 63-17776 is ZnO, Fe 2 O 3 , When Mn 3 O 4 is used only for fine adjustment, it cannot be performed as in the present invention, and each composite iron oxide powder must be prepared separately, resulting in loss during lot switching. From the above, the Fe, Mn, and Zn contents of the composite iron oxide powder are each 40 to 65%, 10 to 50%, and 0 to 35 in terms of the molar ratio of Fe 2 O 3 , MnO, and ZnO. % Is appropriate. Of course, it is preferable to make each of the ranges from 50 to 55%, 20 to 35%, and 15 to 30% similar to the final composition, and the present invention is a high permeability material, but it is considered to be shared with a low loss material. In this case, it may be 45 to 60%, 30 to 45%, and 5 to 15%, respectively. In addition, it is this range that the total Fe, Mn, and Zn contents are converted to molar ratios of Fe 2 O 3 , MnO, and ZnO to be 50 to 55%, 20 to 35%, and 15 to 30%, respectively. This is because it is difficult to obtain high magnetic permeability characteristics except for the above. By mixing and using composite iron oxide powder and raw material powder such as each oxide, it becomes possible to control the sinterability, the sintered density of the ferrite sintered body is 95% or more of the theoretical density, and the average The crystal grain size can be controlled in the range of 10 to 50 μm. The ferrite to which the technology according to the present invention is applied includes Li, B, Mg, Si, K, Ca, Ti, V, Cr, Co, Y, Zr, Nb, Mo, In, and the like after sintering as subcomponents. One or two or more types of components that form oxides of Sn, Te, Ba, Hf, Ta, W, Tl, and Bi may be included.
[0010]
【Example】
Below, the example of the ferrite material concerning the present invention is described in detail.
Example 1
An aqueous solution in which Fe chloride, Mn chloride and Zn chloride are mixed is spray-roasted and converted to a molar ratio of Fe 2 O 3 , MnO and ZnO, and Fe 2 O 3 is 52.5 mol%. , MnO 25.5 mol% and ZnO 22.0 mol% of the composite iron oxide powder is prepared, Fe 2 O 3 , Mn 3 O 4 , ZnO oxide raw material powder ( Each raw material powder) was added and contained so as to have the same composition as described above to prepare a ferrite raw material powder. At this time, the content of the composite iron oxide powder was prepared at various ratios shown in Table 1. The final composition was set to be the above composition. At this time, the average primary particle diameter of Fe 3 O 3 is 0.78 μm, the average primary particle diameter of Mn 3 O 4 is 0.56 μm, the average primary particle diameter of ZnO is 0.65 μm, and spray roasting is performed. The average primary particle diameter of the obtained composite iron oxide powder was 0.08 μm (specific surface area was about 17 m 2 / g). To this, 100 ppm of CaCO 3 , 400 ppm of Bi 2 O 3 , a predetermined amount of ion exchange water and a dispersing agent were added, and then mixed for 1 hour in an attritor, and 2 wt% binder (polyvinyl alcohol) with respect to the raw material. , Granulated with a spray dryer, and granulated with a 50 mesh sieve, using a dry compression molding machine and a mold, the outer diameter is 16.8 mm, the inner diameter is 8.5 mm, and the height is 5.4 mm. The ring-shaped core was molded at a molding pressure of 2.5 ton / cm 2 . This was fired at a firing temperature of 1340 ° C. and an oxygen partial pressure of 10% using a batch-type firing furnace, and the sintered density, initial permeability, and average crystal grain size of the obtained sintered body were measured. The results are shown in Table 1. Also, in the remarks column of Table 1, those within the scope of the present invention are those of the present invention, and those outside the scope of the present invention are comparative examples.
[0011]
[Table 1]
[0012]
As shown in Table 1, when only the composite iron oxide powder obtained by spray roasting was used (No. 6, 100%), the average crystal grain size was coarsened to 113 μm, and the initial permeability decreased. As in the present invention, by mixing the oxide powder, the average crystal grain size became 20 to 34 μm, and a high permeability ferrite sintered body could be obtained. Further, the sintered density of the product of the present invention is 95% (4850 kg / m 3 ) or more of the theoretical density (5100 kg / m 3 ).
[0013]
Example 2
The ring-shaped core produced in the same procedure as in Example 1 was fired at a firing temperature of 1280 ° C. and an oxygen partial pressure of 1% using a batch-type firing furnace, and the sintered density and initial permeability of the obtained sintered body. The average crystal grain size was measured. The results are shown in Table 2. Further, in the remarks column of Table 2, those within the scope of the present invention are those of the present invention, and those outside the scope of the present invention are comparative examples.
[0014]
[Table 2]
[0015]
As shown in Table 2, according to the present invention, a ferrite sintered body having an average crystal grain size of 11 to 15 μm and a high magnetic permeability could be obtained by mixing oxide powder. Further, the sintered density of the product of the present invention is 95% (4850 kg / m 3 ) or more of the theoretical density (5100 kg / m 3 ).
[0016]
Example 3
A composite iron oxide powder obtained by mixing Fe chloride, Mn chloride, and Zn chloride and spray roasting, wherein the content of Fe, Mn, Zn is Fe 2 O 3 , MnO, ZnO In terms of the molar ratio of Fe 2 O 3 52.5 mol%, MnO 25.5 mol%, ZnO 22.0 mol% of complex iron oxide powder, and Fe 2 O 3 , Mn 3 O 4 , ZnO Each oxide raw material powder was blended in various proportions so as to have the final composition shown in Table 3. At this time, it set so that content of complex iron oxide powder might be 60 wt%. The average primary particle diameter of Fe 2 O 3 is 0.78 μm, the average primary particle diameter of Mn 3 O 4 is 0.56 μm, the average primary particle diameter of ZnO is 0.65 μm, and obtained by spray roasting. The average primary particle diameter of the ferrite raw material powder was 0.08 μm. To this, a predetermined amount of additives shown in Table 3 were added as subcomponents, a predetermined amount of ion-exchanged water and a dispersant were added, and then mixed for 1 hour in an attritor. Add a binder (polyvinyl alcohol), granulate with a spray dryer, and adjust the size of the granules with a 50-mesh sieve using a dry compression molding machine and a mold, outer diameter 16.8 mm, inner diameter 8.5 mm, high A 5.4 mm ring-shaped core was molded at a molding pressure of 2.5 ton / cm 2 . This was fired under the firing conditions shown in Table 4 using a batch-type firing furnace, and the sintered density, initial permeability, and average crystal grain size of the obtained sintered body were measured. The results are shown in Table 4.
[0017]
[Table 3]
[0018]
[Table 4]
[0019]
In Tables 3 and 4 above , Sample No. 13 is a comparative example. Reference numerals 14 and 15 are examples. In the examples of the present invention, the content of the composite iron oxide powder obtained by spray roasting is 60 wt%, and raw raw material powder can be added thereto to obtain soft ferrites having various desired compositions. It was. In addition, the magnetic permeability is high, the sintered density is 95% or more of the theoretical density, and the average crystal grain size is in the range of 10 to 50 μm.
[0020]
Example 4
An aqueous solution in which Fe chloride, Mn chloride and Zn chloride are mixed is spray-roasted and converted to a molar ratio of Fe 2 O 3 , MnO and ZnO, and Fe 2 O 3 is 52.5 mol%. , MnO 25.5 mol% and ZnO 22.0 mol% of the composite iron oxide powder is prepared, Fe 2 O 3 , Mn 3 O 4 , ZnO oxide raw material powder ( Each raw material powder) was added and contained so as to have the same composition as described above to prepare a ferrite raw material powder. At this time, it produced so that content of composite iron oxide powder might be 60 wt%. The final composition was set to be the above composition. At this time, the average primary particle diameter of Fe 2 O 3 is 0.78 μm, the average primary particle diameter of Mn 3 O 4 is 0.56 μm, the average primary particle diameter of ZnO is 0.65 μm, and spray roasting is performed. The average primary particle diameter of the obtained composite iron oxide powder was 0.08 μm (specific surface area was about 17 m 2 / g). To this, 100 ppm of CaCO 3 , 400 ppm of Bi 2 O 3 , a predetermined amount of ion exchange water and a dispersing agent were added, and then mixed for 1 hour in an attritor, and 2 wt% binder (polyvinyl alcohol) with respect to the raw material. , Granulated with a spray dryer, and granulated with a 50 mesh sieve, using a dry compression molding machine and a mold, the outer diameter is 16.8 mm, the inner diameter is 8.5 mm, and the height is 5.4 mm. The ring-shaped core was molded at a molding pressure of 2.5 ton / cm 2 . This was fired at a firing temperature and an oxygen partial pressure shown in Table 5 using a batch-type firing furnace, and the sintered density, initial permeability, and average crystal grain size of the obtained sintered body were measured. The results are shown in Table 5.
[0021]
[Table 5]
[0022]
As shown in Table 5, in the present invention, the crystal grain size can be controlled by the firing conditions, whereby a desired high magnetic permeability can be obtained.
In Table 5, Sample No. No. 19 is a product which is fired by being surrounded by a ferrite case of the same composition during firing.
[0023]
As mentioned above, as shown in the Examples, the content of the composite iron oxide powder obtained by spray roasting is 20 to 80 wt%, and a predetermined amount of raw material powder is added thereto. Thus, soft ferrite having a desired composition could be obtained. Moreover, the examples of the present invention can be used as high permeability ferrite, and the sintered density is 95% or more of the theoretical density, and the average crystal grain size can be controlled in the range of 10 to 50 μm. It is done.
[0024]
【The invention's effect】
According to the present invention, by mixing and using a predetermined amount of composite iron oxide powder and raw material powder, it is possible to produce a soft ferrite by omitting the calcination step, and high permeability Mn -Zn-based soft ferrite can be manufactured at low cost. Further, according to the present invention, the crystal grain size of the ferrite sintered body can be controlled.
Claims (1)
この複合酸化鉄粉を全体の20〜80重量%とし、これに酸化鉄、酸化亜鉛、及び焼成してMnOになるMn化合物の粉末をそれぞれ所定のモル比で80〜20重量%混合したソフトフェライト原料粉に、更に焼結後にLi、B、Mg、Si、K、Ca、Ti、V、Cr、Co、Y、Zr、Nb、Mo、In、Sn、Te、Ba、Hf、Ta、W、TlおよびBiの酸化物となる成分を1種乃至2種以上副成分として加え混合の後、このソフトフェライト原料粉を未仮焼のまま所定形状に成形して成形体となし、前記成形体を酸素濃度1%〜10%で焼結し、焼結密度が理論密度の95%以上で、かつ平均結晶粒径が10〜50μmであり、全体のFe、Mn、Zn含有量をFe2O3、MnO、ZnOのモル比に換算して、各50〜55%、20〜35%、15〜30%のフェライト焼結体を得ることを特徴とするフェライト焼結体の製造方法。An aqueous solution of Fe, Mn or Fe, Mn, and Zn chlorides is spray roasted to have a specific surface area of 4 to 25 m 2 / g and Fe, Mn, and Zn contents of Fe 2 O 3 , MnO, In terms of the molar ratio of ZnO, a composite iron oxide powder containing 40 to 65%, 10 to 50%, and 0 to 35% ratio is prepared.
Soft ferrite in which this composite iron oxide powder is mixed in an amount of 20 to 80% by weight and mixed with iron oxide, zinc oxide, and powder of Mn compound that is fired to become MnO at a predetermined molar ratio of 80 to 20% by weight. After sintering further to Li, B, Mg, Si, K, Ca, Ti, V, Cr, Co, Y, Zr, Nb, Mo, In, Sn, Te, Ba, Hf, Ta, W, After adding and mixing one or more components that become oxides of Tl and Bi as subcomponents, this soft ferrite raw material powder is formed into a predetermined shape without being pre- calcined to form a molded body. Sintering is performed at an oxygen concentration of 1% to 10%, the sintered density is 95% or more of the theoretical density, the average crystal grain size is 10 to 50 μm, and the total Fe, Mn, Zn content is Fe 2 O 3. , 50 to 55 in terms of molar ratio of MnO and ZnO 20 to 35% the manufacturing method of the ferrite sintered body, characterized in that to obtain a 15% to 30% of the ferrite sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14888795A JP3852623B2 (en) | 1995-06-15 | 1995-06-15 | Method for producing ferrite sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14888795A JP3852623B2 (en) | 1995-06-15 | 1995-06-15 | Method for producing ferrite sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08337466A JPH08337466A (en) | 1996-12-24 |
JP3852623B2 true JP3852623B2 (en) | 2006-12-06 |
Family
ID=15462930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14888795A Expired - Fee Related JP3852623B2 (en) | 1995-06-15 | 1995-06-15 | Method for producing ferrite sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3852623B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6649799B2 (en) * | 2016-02-25 | 2020-02-19 | 株式会社トーキン | Ferrite core and method of manufacturing ferrite core |
-
1995
- 1995-06-15 JP JP14888795A patent/JP3852623B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08337466A (en) | 1996-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5712645B2 (en) | Ferrite composition and electronic component | |
CN1700370B (en) | Ferrite material | |
CN113233885B (en) | Low-temperature sintered YIG gyromagnetic ferrite material and preparation method thereof | |
JP2016060656A (en) | Ferrite composition for electromagnetic wave absorber and electromagnetic wave absorber | |
JP3871149B2 (en) | Manufacturing method of low-loss ferrite sintered body | |
JP3852623B2 (en) | Method for producing ferrite sintered body | |
JP6488602B2 (en) | Ferrite composition for radio wave absorber and radio wave absorber | |
JPH02225367A (en) | Production of dielectric ceramics | |
JP5240312B2 (en) | Ferrite composition for radio wave absorber and ferrite core for radio wave absorber | |
CN116323491A (en) | MnZn ferrite and method for producing same | |
JP2012204638A (en) | Ferrite composition for radio wave absorber and ferrite core for radio wave absorber | |
JPH11307336A (en) | Manufacture of soft magnetic ferrite | |
JPS6131601B2 (en) | ||
JP3545438B2 (en) | Method for producing Ni-Zn ferrite powder | |
JPH06333724A (en) | Sintered ferrite with crystallite particle and manufacture thereof | |
JP2005289667A (en) | MnZn BASED FERRITE AND METHOD OF MANUFACTURING THE SAME | |
JP3406382B2 (en) | Method for producing ferrite magnetic powder | |
JP2824603B2 (en) | Ferrite particle powder for bonded magnetic material and method for producing the same | |
JPH09205031A (en) | Production of multilayered inductance element | |
JPH06131915A (en) | High-frequency dielectric ceramic and its manufacture | |
JPH06260321A (en) | Sintered ferrite with fine crystalline grains and manufacture thereof | |
JP2003321273A (en) | Method for producing spinel-type ferrite core and spinel- type ferrite core produced thereby | |
JPH06349625A (en) | High-magnetic permeability oxide magnetic material and manufacure thereof | |
CN117285354A (en) | Silver niobate-based relaxation type ternary solid solution ceramic material with high energy storage characteristic and preparation method thereof | |
JPH0971455A (en) | Ferrite material and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050715 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060602 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060817 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060830 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |