JP3850000B2 - Drill - Google Patents

Drill Download PDF

Info

Publication number
JP3850000B2
JP3850000B2 JP36299697A JP36299697A JP3850000B2 JP 3850000 B2 JP3850000 B2 JP 3850000B2 JP 36299697 A JP36299697 A JP 36299697A JP 36299697 A JP36299697 A JP 36299697A JP 3850000 B2 JP3850000 B2 JP 3850000B2
Authority
JP
Japan
Prior art keywords
blade
finishing
main
drill
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36299697A
Other languages
Japanese (ja)
Other versions
JPH11170106A (en
Inventor
公志 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP36299697A priority Critical patent/JP3850000B2/en
Publication of JPH11170106A publication Critical patent/JPH11170106A/en
Application granted granted Critical
Publication of JP3850000B2 publication Critical patent/JP3850000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高精度に穴明け加工を行なうドリルに関するものである。
【0002】
【従来の技術】
リーマ加工は、予めドリル加工により穿設された下穴に倣って拡径する加工であり、所望の穴径と仕上面などを得るための仕上加工である。しかし、ドリル加工とリーマ加工とによる2工程の加工は加工能率が悪く、また、穿設された下穴径の良否によって切込み量が変動し、期待する精度に加工できない場合があった。
【0003】
そこで、期待する精度を得るためと加工能率の向上を図るために、ドリル加工とリーマ加工とを同時に行い得る工具が開発され、提供されている。
【0004】
先ず、図7に示すドリルは、円柱状のシャンクに連なる異形断面のドリル本体の先端部に互いに対向する切れ刃20とこの切れ刃20に連なる回転方向x後方の斜面21とこの斜面21の縁から軸方向後方に延びる案内面22とを形成しているものである。切れ刃20は、先端部の軸心から径方向外側にいくにしたがい後端側に後退する一定の切れ刃角を有している。切れ刃20の軸心近傍は超硬合金で構成され、外周側はろう付けにて固定されたダイヤモンド焼結体で構成されている。
【0005】
次に、実公平7−31926号公報に開示されたものは図8に示す如く、シャンクに連なる円柱状のドリル本体の先端部に、ドリル本体の最大外径より小さい小径部30が段部から先端側に向けて形成されている。この小径部30の先端には、径外方向にいくにしたがいシャンクに近付く方向に第1の切れ刃角をもって傾斜する第1の切れ刃31が形成されている。先端視、第1の切れ刃31と直交する方向の小径部先端外周には、径外方向にいくにしたがいシャンクから遠ざかる方向に第2の切れ刃角をもって傾斜する第2の切れ刃32が形成されている。
【0006】
【発明が解決しようとする課題】
ここで以下に、従来技術の問題点を記述する。
【0007】
前記第1の従来技術は、殊に、切削初期の喰い付き性が悪いため、ドリル本体先端部に振れ回りを誘発する場合があり、それによって、穴径の拡大代を増大させたり、穴内壁面の仕上面粗さを悪くすることがある。また、外周刃をダイヤモンド焼結体により形成し、加工精度の向上を図ったものであるものの、仕上代の一定しない加工はチッピングや欠損を生ずることがあり、切削不能となる場合がある。これは、ダイヤモンド焼結体自体の性質が高硬度である反面脆い材料であることによるものである。
【0008】
また、次に、前記第2の従来技術は、第1の切れ刃と第2の切れ刃とがドリル本体の同一の軸心に対して交差するように配置されたものであり、それぞれの切れ刃に切りくず排出溝が隣接されている。仕上刃としての第2の切れ刃においては、一定量の仕上代を確保できる構成となっているため、前記第1の従来技術の弊害が防止され、切削安定性、加工穴の寸法精度・仕上面粗さを向上させることができるものである。
【0009】
しかしながら、ドリル本体の軸方向の送り量を高めて高能率に加工を行なう場合には、切れ刃の負担が増大し、チッピングを誘発する場合がある。このような場合に、ダイヤモンド焼結体は、特に、不利となりやすい。また、仕上刃とされる第2の切れ刃によって生成する切りくずを排出するための空間が浅く・幅狭とならざるを得なく、ドリル本体の先端側から基端側に切りくずを円滑に搬出することが困難となる。加工中に切りくずが滞留すると、切れ刃が切りくずを噛み込むことによりチッピングを誘発したり、ドリル本体の側面と穴内壁との間に切りくずを巻き込んだりして、加工穴内壁面にキズを付けたりすることがある。また、切削液も侵入し難いため、切れ刃の発熱を招き、切れ刃の摩耗を早めたり、溶着物・付着物の生成により仕上面粗さを低下させたりすることがある。
【0010】
そこで、本発明は、主刃と仕上刃との間に中間刃を形成するとともに、仕上刃を主切りくず排出溝に隣接して形成することにより、切れ刃の損傷を防止し、併せて穴精度・仕上面粗さを向上させることのできる工具を提供するものである。
【0011】
【課題を解決するための手段】
この発明は、上記の如き課題に鑑みなされたもので、円柱状をなすドリル本体の一端にシャンク部を形成し、他端に刃部を形成し、刃部の外周上には主切りくず排出溝を設けるとともに、主切りくず排出溝の回転方向前方には軸方向に沿って平行に延びる押圧部を設け、さらに前記刃部の先端には所定の先端角なる一対の主刃6を備えたドリルにおいて、前記主刃の外周コーナにはダイヤモンド焼結体から成る面取形の仕上刃を形成し、当該仕上刃の回転方向後方の略90°位相の異なる位置にあり、前記主刃の回転半径より大径、かつ、前記仕上刃の回転半径より小径の回転半径なる刃部の外周に、所定の切れ刃角なる面取形の中間刃を形成し、当該中間刃の最外点の軸方向の位置を、前記主刃の最外点と前記仕上刃の最外点との間に配置するとともに、回転軌跡においては前記仕上刃より軸方向前方に突出して配置していることを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の実施の一形態について図を参照しながら説明する。
【0013】
図1乃至図3は本発明によるドリルを示したものである。ドリル本体1は円柱形状を成すシャンク部と円の一部が扇状に切欠きされた異形断面の刃部2とから概略構成されている。刃部2の外周には、切りくずを搬出するための主切りくず排出溝3と副切りくず排出溝4とがドリル本体1の軸方向に沿って平行に並設されるとともに、主切りくず排出溝3の回転方向x前方に押圧部5が軸方向に延在して配設されている。
【0014】
切りくず排出溝は、加工中に生成された切りくずを切削液とともにこれらの溝を通じてドリル本体1の先端側から基端側に円滑に搬出するためのものである。しかし、切りくずの排出性は、切りくず排出溝の深さ・幅によって異なるものである。この点、深く・幅広の主切りくず排出溝3は円滑に切りくずを排出することができる。
【0015】
押圧部5は、ドリル本体1の振動を抑制し、求心性のよい加工を行なうためのものである。押圧部5の先端は、ドリル本体1の先端より離間して軸方向に後退して位置している。押圧部5の外周側面は、加工穴内壁の曲率と同一又は幾分小さい湾曲した円弧形状に形成されており、これにより、加工穴内壁面の仕上面粗さが向上する。
【0016】
図1に示す如く、刃部2の先端内周側には、下穴加工を行なうための主刃6が備えられ、刃部2の先端外周側には下穴を拡径するための中間刃7および仕上刃8とが備えられている。先端視、主刃6および仕上刃8は同一面上に配列して位置し、中間刃7はそれらより回転方向x後方に離間して位置している。各切れ刃の最外点の半径方向の位置関係は、主刃6・中間刃7・仕上刃8の順に大径をなす関係にある。
【0017】
先ず、主刃6は、軸心を含むチゼル部9に続いて先端から外周側へ向かう方向に所定の角度α(以下「先端角」という。)でもって、刃部外周の手前まで延在して形成されている。主刃6の中心軸o近傍の小領域には、主刃6に隣接する凹溝が形成されている(以下単に「シンニング」という)。通常、この部分は切削作用よりも押し込み作用を行なう部分として、先端の一部を構成しているものであるが、シンニングを形成することによって切削速度の低い中心軸o近傍のこの小領域にも切削作用を行わせることが可能となる。これにより、ドリル本体1軸方向への押し込み力が減少し、求心性・喰付き性、位置決め精度の向上等を図ることが可能となる。
【0018】
主刃6の回転方向x後方には、半径方向外側にいくにしたがい軸方向後方に傾斜する先端部逃げ面10が形成されている。この先端部逃げ面10には油穴を形成することもできる。さらに、この先端部逃げ面10に連なって、ドリル本体1の軸方向に平行に延在する外周部逃げ面11が形成されている。これら逃げ面を形成することにより、加工中に、切れ刃以外の部分が加工穴内壁面に干渉することを防止している。
【0019】
次に、中間刃7は、主刃6および後述する仕上刃8に対して回転方向x後方の略90°位相の異なる位置にあり、主刃6の回転半径R1より大径、かつ、仕上刃8の回転半径R3より小径の回転半径R2なる刃部2の外周に、切れ刃角βなる面取形の切れ刃を形成している。図3より、中間刃7の最外点は、先端角αにて半径方向外側へ延びる主刃6の最外点と刃部2の最外径上にある仕上刃8の最外点との間に位置するとともに、回転軌跡においては仕上刃8より軸方向前方に突出して位置する。これにより、中間刃7は、後続する仕上刃8の負担軽減、加工能率の向上、ドリル本体1の回転バランスの向上等に寄与する。
【0020】
すなわち、中間刃7と仕上刃8とにより、本来の仕上代δがε1とε2とに2段に分担され、低切削抵抗のバランスのよい加工が行われる。また、軸方向の送り量を高めることができ、高能率加工も可能となる。なお、削り代ε2は、仕上面の傷や微小の凹凸などを除去することができる程度に設定される。削り代ε2を大きくし過ぎると、取り代δを2段に分担したことの意義が薄れ、切削抵抗の増大を招来することになるからである。
【0021】
仕上刃8は、先端角αなる主刃6に連なり、所定の切れ刃角γなる面取形の切れ刃に形成されている。切れ刃角γは切れ刃強度と切れ味との均衡を考慮して決定されるものであり、本構成では切れ刃強度を優先した構成としている。また、仕上刃8は深く・幅広の主切りくず排出溝3に隣接して形成されており、切りくずが加工穴内壁と切れ刃との間又は加工穴内壁とドリル本体1側面との間に入り込み、加工穴内壁に筋状の傷を残すという問題も生じない。したがって、前述した如く良好な仕上面粗さを確保することができる。
【0022】
更に、仕上刃8により所望の穴径精度および仕上面あらさを得るためには、切れ刃の摩耗や溶着についての配慮も必要である。
【0023】
いわゆるすきとり摩耗は、切削距離に比例して摩耗量が増大する摩耗形態であり、すなわち刃部2の内周側より外周側で摩耗量が大きくなる。したがって、刃部2の外周側に位置する仕上刃8には、靭性の高い材料よりも、例えばダイヤモンド焼結体の如き硬度の高い材料がより好適し、また切れ刃角γを配設した形状でもって強度低下をカバーしている。反面、刃部2の内周側に位置する主刃6には、硬度の高い材料よりも靭性の高い材料が適する。
【0024】
溶着は、加工物の種類、切れ刃の構成材料などによる影響を受けやすい。特に、アルミニウム合金を加工物とする場合には、溶着物や構成刃先の発生が問題になる。ダイヤモンド焼結体は耐溶着性が高く、アルミニウム合金などの切削に適し、また耐摩耗性も高いため鋭利な切れ刃形状が維持され、仕上面のむしれや掘り起こし等も避けることができる。
【0025】
したがって、切れ刃の摩耗を抑制し、溶着を回避するためにも、仕上刃8にはダイヤモンド焼結体がより好適な選択である。
【0026】
図4乃至図6は本発明の第2の実施形態を示したものである。第1の実施形態と同一構成部分は同一番号を付して詳細な説明を省略する。
【0027】
主刃6の外周コーナには、ドリル本体1の軸方向後方に延在する面12(以下適宜「段部案内面」という。)および径方向外側に延在する面13(以下適宜「段部端面」という。)とにより形成された段差部14が切欠きして形成されている。仕上刃8は、主切りくず排出溝3を立設する溝側面15と当該段部端面13との交差稜線に形成されている。また、仕上刃8は第1の実施形態とは異なり、主刃6と分離して形成されている。
【0028】
段部案内面12を軸方向に傾斜して形成した場合、すなわちドリル本体1の先端より基端に向かうにしたがい小径となるように形成した場合には、切りくずの破断に有利な構成となる。反面、逆の場合には、主切りくず排出溝3を立設する溝側面15と段部案内面12との交差稜線に切削作用を生ずることになり、好ましくない。
【0029】
段部端面13は、中心軸oに対して軸直角方向に延びて形成されている。ここで、段部端面13を半径方向外側にいくにしたがいドリル本体1の先端側に近付くように形成した場合には、いわゆる切れ味が良くなるとともに、主刃6の傾斜方向と仕上刃8の傾斜方向とが逆の向きとなるため、各切れ刃による切りくずの流出方向が相違し、切りくずの破断に有利となる。
【0030】
【発明の効果】
前述したように、本来の仕上刃の仕上代が、中間刃と仕上刃とに2段に分担されているため、切削抵抗が低減し、切れ刃の損傷を防止することができる。さらに、仕上刃を主切りくず排出溝に隣接して配置することにより、切りくずを滞留させることなく、円滑に排出することが可能となり、良好な寸法精度および仕上面粗さを維持することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示すドリルの正面図である。
【図2】図1の側面図である。
【図3】図2の刃部外縁の拡大図である。
【図4】本発明の第2の実施形態を示すドリルの正面図である。
【図5】図4の側面図である。
【図6】図5の刃部外縁の拡大図である。
【図7】従来のドリルの一例を示す正面図である。
【図8】従来のドリルの他の一例を示す正面図である。
【符号の説明】
1 ドリル本体
2 刃部
3 主切りくず排出溝
6 主刃
7 中間刃
8 仕上刃
14 段差部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drill that performs drilling with high accuracy.
[0002]
[Prior art]
The reamer process is a process of expanding the diameter following a pilot hole previously drilled, and is a finishing process for obtaining a desired hole diameter and finished surface. However, the two-step machining by drilling and reamer machining has poor machining efficiency, and the amount of cutting varies depending on the quality of the drilled prepared hole diameter, and there are cases where machining cannot be performed with the expected accuracy.
[0003]
Therefore, in order to obtain the expected accuracy and to improve the machining efficiency, a tool capable of simultaneously performing drilling and reaming has been developed and provided.
[0004]
First, the drill shown in FIG. 7 has a cutting edge 20 facing each other at the tip of a drill body having an irregular cross section connected to a cylindrical shank, a slope 21 behind the cutting direction 20 in the rotational direction x, and an edge of the slope 21. And a guide surface 22 extending rearward in the axial direction. The cutting edge 20 has a constant cutting edge angle that recedes toward the rear end side as it goes radially outward from the axial center of the front end portion. The vicinity of the axis of the cutting edge 20 is made of cemented carbide, and the outer peripheral side is made of a diamond sintered body fixed by brazing.
[0005]
Next, as disclosed in Japanese Utility Model Publication No. 7-31926, as shown in FIG. 8, a small-diameter portion 30 smaller than the maximum outer diameter of the drill main body is provided from the stepped portion at the tip of the cylindrical drill main body connected to the shank. It is formed toward the tip side. A first cutting edge 31 that is inclined at a first cutting edge angle in a direction approaching the shank as it goes in the radially outward direction is formed at the tip of the small diameter portion 30. A second cutting edge 32 that is inclined with a second cutting edge angle in the direction away from the shank is formed on the outer periphery of the distal end of the small-diameter portion in the direction orthogonal to the first cutting edge 31 as viewed from the front end. Has been.
[0006]
[Problems to be solved by the invention]
Here, the problems of the prior art are described below.
[0007]
In the first prior art, in particular, since the biting property at the initial stage of cutting is poor, there is a case where a swinging motion is induced at the tip end portion of the drill body. The finished surface roughness may be deteriorated. In addition, although the outer peripheral blade is formed of a diamond sintered body to improve the processing accuracy, processing with a constant finishing allowance may cause chipping or chipping, which may make cutting impossible. This is because the diamond sintered body itself has a high hardness but is a brittle material.
[0008]
In the second prior art, the first cutting edge and the second cutting edge are arranged so as to intersect with the same axis of the drill body. A chip discharge groove is adjacent to the blade. Since the second cutting edge as the finishing blade is configured to ensure a certain amount of finishing allowance, the adverse effect of the first prior art is prevented, and the cutting stability, the dimensional accuracy / finishing of the machining hole are prevented. The surface roughness can be improved.
[0009]
However, when machining is performed with high efficiency by increasing the feed amount in the axial direction of the drill body, the burden on the cutting edge increases, which may induce chipping. In such a case, the diamond sintered body is particularly disadvantageous. In addition, the space for discharging chips generated by the second cutting edge, which is the finishing blade, must be shallow and narrow, and the chips can be smoothly moved from the distal end side to the proximal end side of the drill body. It becomes difficult to carry out. If chips remain during machining, the cutting blade bites the chips and induces chipping, or entrains chips between the side of the drill body and the inner wall of the hole, and scratches the inner wall of the processed hole. Sometimes it is attached. In addition, since the cutting fluid hardly penetrates, the cutting edge may generate heat, and the wear of the cutting edge may be accelerated, or the finish surface roughness may be reduced due to the formation of welds and deposits.
[0010]
Therefore, the present invention forms an intermediate blade between the main blade and the finishing blade, and prevents the cutting blade from being damaged by forming the finishing blade adjacent to the main chip discharge groove. The present invention provides a tool capable of improving accuracy and finished surface roughness.
[0011]
[Means for Solving the Problems]
The present invention has been made in view of the above-described problems. A shank portion is formed at one end of a cylindrical drill body, a blade portion is formed at the other end, and main chips are discharged on the outer periphery of the blade portion. A groove is provided, a pressing portion extending in parallel with the axial direction is provided in front of the main chip discharging groove in the rotation direction, and a pair of main blades 6 having a predetermined tip angle are provided at the tip of the blade portion. In the drill, a chamfered finishing blade made of a diamond sintered body is formed at the outer peripheral corner of the main blade, and is located at a position that is substantially 90 ° behind the rotation direction of the finishing blade. A chamfered intermediate blade having a predetermined cutting edge angle is formed on the outer periphery of the blade portion having a diameter larger than the radius and smaller than the radius of rotation of the finishing blade, and the outermost axis of the intermediate blade. Position in the direction between the outermost point of the main blade and the outermost point of the finishing blade Rutotomoni, the rotational locus is characterized by being arranged to protrude axially forward from the finishing blades.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0013]
1 to 3 show a drill according to the present invention. The drill main body 1 is roughly constituted by a shank portion having a cylindrical shape and a blade portion 2 having an irregular cross-section in which a part of a circle is cut out in a fan shape. A main chip discharge groove 3 and a sub chip discharge groove 4 for carrying out chips are arranged in parallel along the axial direction of the drill body 1 on the outer periphery of the blade portion 2, and the main chip A pressing portion 5 is disposed extending in the axial direction in front of the rotation direction x of the discharge groove 3.
[0014]
The chip discharge groove is for smoothly carrying out chips generated during machining from the distal end side of the drill body 1 to the proximal end side through the grooves together with the cutting fluid. However, the chip discharge performance varies depending on the depth and width of the chip discharge groove. In this respect, the deep and wide main chip discharge groove 3 can discharge chips smoothly.
[0015]
The pressing portion 5 is for suppressing vibration of the drill body 1 and performing processing with good centripetality. The tip of the pressing portion 5 is positioned away from the tip of the drill body 1 and retracted in the axial direction. The outer peripheral side surface of the pressing portion 5 is formed in a curved arc shape that is the same as or slightly smaller than the curvature of the inner wall of the processed hole, and thereby the finished surface roughness of the inner surface of the processed hole is improved.
[0016]
As shown in FIG. 1, a main blade 6 for drilling a pilot hole is provided on the inner peripheral side of the tip of the blade portion 2, and an intermediate blade for expanding the diameter of the pilot hole on the outer peripheral side of the tip of the blade portion 2. 7 and a finishing blade 8 are provided. When viewed from the front end, the main blade 6 and the finishing blade 8 are arranged on the same plane, and the intermediate blade 7 is positioned away from them in the rotational direction x rearward. The positional relationship in the radial direction of the outermost point of each cutting edge is such that the main blade 6, the intermediate blade 7, and the finishing blade 8 have a larger diameter in this order.
[0017]
First, the main blade 6 extends to the front of the outer periphery of the blade portion at a predetermined angle α (hereinafter referred to as “tip angle”) in a direction from the tip toward the outer peripheral side following the chisel portion 9 including the shaft center. Is formed. A concave groove adjacent to the main blade 6 is formed in a small region near the central axis o of the main blade 6 (hereinafter simply referred to as “thinning”). Normally, this part forms part of the tip as a part that performs a pushing action rather than a cutting action. However, by forming a thinning, this part is also located in the vicinity of the central axis o where the cutting speed is low. A cutting action can be performed. As a result, the pushing force in the axial direction of the drill main body is reduced, and it becomes possible to improve centripetality, biting property, positioning accuracy, and the like.
[0018]
At the rear of the main blade 6 in the rotational direction x, there is formed a tip flank 10 that is inclined axially rearward as it goes radially outward. An oil hole may be formed in the tip flank 10. Further, an outer peripheral flank 11 extending in parallel with the axial direction of the drill body 1 is formed continuously with the tip flank 10. By forming these flank faces, portions other than the cutting edge are prevented from interfering with the inner wall surface of the machining hole during machining.
[0019]
Next, the intermediate blade 7 is located at a position where the phase of the main blade 6 and the finishing blade 8 to be described later are substantially 90 ° behind the rotational direction x and has a diameter larger than the rotation radius R1 of the main blade 6 and the finishing blade. A chamfered cutting edge having a cutting edge angle β is formed on the outer periphery of the blade portion 2 having a rotation radius R2 smaller than the rotation radius R3. From FIG. 3, the outermost point of the intermediate blade 7 is the outermost point of the main blade 6 extending radially outward at the tip angle α and the outermost point of the finishing blade 8 on the outermost diameter of the blade portion 2. In addition to being positioned in the middle, the rotation locus is positioned so as to protrude forward in the axial direction from the finishing blade 8. As a result, the intermediate blade 7 contributes to reducing the burden on the subsequent finishing blade 8, improving the working efficiency, improving the rotational balance of the drill body 1, and the like.
[0020]
That is, the intermediate finishing edge 8 and the finishing edge 8 divide the original finishing allowance δ into ε1 and ε2 in two stages, and processing with a good balance of low cutting resistance is performed. Further, the feed amount in the axial direction can be increased, and high-efficiency machining can be performed. The cutting allowance ε2 is set to such an extent that scratches on the finished surface and minute irregularities can be removed. This is because if the machining allowance ε2 is excessively increased, the significance of sharing the machining allowance δ in two steps is reduced, leading to an increase in cutting resistance.
[0021]
The finishing blade 8 is connected to the main blade 6 having a tip angle α, and is formed into a chamfered cutting blade having a predetermined cutting angle γ. The cutting edge angle γ is determined in consideration of the balance between cutting edge strength and sharpness. In this configuration, the cutting edge strength is given priority. Further, the finishing blade 8 is formed adjacent to the deep and wide main chip discharge groove 3, and the chip is formed between the inner wall of the machining hole and the cutting edge or between the inner wall of the machining hole and the side surface of the drill body 1. There is no problem of entering and leaving streak-like scratches on the inner wall of the processed hole. Therefore, it is possible to ensure a good finished surface roughness as described above.
[0022]
Furthermore, in order to obtain desired hole diameter accuracy and finished surface roughness by the finishing blade 8, consideration must be given to wear and welding of the cutting blade.
[0023]
The so-called scraping wear is a wear form in which the wear amount increases in proportion to the cutting distance, that is, the wear amount becomes larger on the outer peripheral side than on the inner peripheral side of the blade portion 2. Therefore, for the finishing blade 8 positioned on the outer peripheral side of the blade portion 2, a material having high hardness such as a diamond sintered body is more preferable than a material having high toughness, and a shape in which a cutting edge angle γ is disposed. So it covers the decrease in strength. On the other hand, a material having higher toughness than a material having high hardness is suitable for the main blade 6 located on the inner peripheral side of the blade portion 2.
[0024]
Welding is easily affected by the type of workpiece, the constituent material of the cutting edge, and the like. In particular, when an aluminum alloy is used as a workpiece, the generation of welds and constituent cutting edges becomes a problem. The diamond sintered body has high welding resistance, is suitable for cutting aluminum alloys and the like, and has high wear resistance, so that a sharp cutting edge shape can be maintained, and peeling and digging of the finished surface can be avoided.
[0025]
Accordingly, a diamond sintered body is a more preferable choice for the finishing blade 8 in order to suppress wear of the cutting edge and avoid welding.
[0026]
4 to 6 show a second embodiment of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0027]
The outer peripheral corner of the main blade 6 has a surface 12 extending rearward in the axial direction of the drill body 1 (hereinafter referred to as “step guide surface” as appropriate) and a surface 13 extending outward in the radial direction (hereinafter referred to as “step portion” as appropriate). The step portion 14 formed by “the end face” is cut out and formed. The finishing blade 8 is formed on the intersecting ridge line between the groove side surface 15 where the main chip discharge groove 3 is erected and the stepped end surface 13. Further, unlike the first embodiment, the finishing blade 8 is formed separately from the main blade 6.
[0028]
When the stepped guide surface 12 is formed so as to be inclined in the axial direction, that is, when it is formed to have a smaller diameter from the distal end of the drill body 1 toward the proximal end, the configuration is advantageous for chip breaking. . On the other hand, in the opposite case, a cutting action is generated on the intersecting ridgeline between the groove side surface 15 where the main chip discharge groove 3 is erected and the step guide surface 12, which is not preferable.
[0029]
The stepped end face 13 is formed extending in a direction perpendicular to the central axis o. Here, when the stepped end face 13 is formed so as to approach the distal end side of the drill body 1 as it goes radially outward, the so-called sharpness is improved and the inclination direction of the main blade 6 and the inclination of the finishing blade 8 are improved. Since the direction is opposite to the direction, the flow direction of chips from each cutting edge is different, which is advantageous for chip breaking.
[0030]
【The invention's effect】
As described above, since the finishing allowance of the original finishing blade is shared by the intermediate blade and the finishing blade in two stages, the cutting resistance can be reduced and damage to the cutting blade can be prevented. Furthermore, by disposing the finishing blade adjacent to the main chip discharge groove, it becomes possible to discharge the chips smoothly without retaining them, and it is possible to maintain good dimensional accuracy and finished surface roughness. it can.
[Brief description of the drawings]
FIG. 1 is a front view of a drill showing a first embodiment of the present invention.
FIG. 2 is a side view of FIG.
FIG. 3 is an enlarged view of the outer edge of the blade part of FIG. 2;
FIG. 4 is a front view of a drill showing a second embodiment of the present invention.
FIG. 5 is a side view of FIG. 4;
6 is an enlarged view of the outer edge of the blade portion of FIG.
FIG. 7 is a front view showing an example of a conventional drill.
FIG. 8 is a front view showing another example of a conventional drill.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Drill main body 2 Blade part 3 Main chip discharge groove 6 Main blade 7 Intermediate blade 8 Finishing blade 14 Step part

Claims (1)

円柱状をなすドリル本体1の一端にシャンク部を形成し、他端に刃部2を形成し、刃部2の外周上には主切りくず排出溝3を設けるとともに、主切りくず排出溝3の回転方向x前方には軸方向に沿って平行に延びる押圧部5を設け、さらに前記刃部2の先端には先端角αなる一対の主刃6を備えたドリルにおいて、
前記主刃6の外周コーナにはダイヤモンド焼結体から成る面取形の仕上刃8を形成し、当該仕上刃8の回転方向x後方の略90°位相の異なる位置にあり、前記主刃6の回転半径R1より大径、かつ、前記仕上刃8の回転半径R3より小径の回転半径R2なる刃部2の外周に、切れ刃角βなる面取形の中間刃7を形成し、当該中間刃7の最外点の軸方向の位置を、前記主刃6の最外点と前記仕上刃8の最外点との間に配置するとともに、回転軌跡においては前記仕上刃8より軸方向前方に突出して配置していることを特徴とするドリル。
A shank portion is formed at one end of a cylindrical drill body 1, a blade portion 2 is formed at the other end, a main chip discharge groove 3 is provided on the outer periphery of the blade portion 2, and a main chip discharge groove 3 is provided. In a drill provided with a pair of main blades 6 having a tip angle α at the front end of the blade portion 2 provided with a pressing portion 5 extending in parallel along the axial direction in front of the rotation direction x of
A chamfered finishing blade 8 made of a diamond sintered body is formed at the outer peripheral corner of the main blade 6, and the main blade 6 is located at a position that is substantially 90 ° behind the rotational direction x of the finishing blade 8. A chamfered intermediate blade 7 having a cutting edge angle β is formed on the outer periphery of the blade portion 2 having a rotation radius R2 larger than the rotation radius R1 and smaller than the rotation radius R3 of the finishing blade 8. The axial position of the outermost point of the blade 7 is arranged between the outermost point of the main blade 6 and the outermost point of the finishing blade 8, and in the rotational path, it is axially forward of the finishing blade 8. A drill characterized in that it is arranged to project.
JP36299697A 1997-12-12 1997-12-12 Drill Expired - Lifetime JP3850000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36299697A JP3850000B2 (en) 1997-12-12 1997-12-12 Drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36299697A JP3850000B2 (en) 1997-12-12 1997-12-12 Drill

Publications (2)

Publication Number Publication Date
JPH11170106A JPH11170106A (en) 1999-06-29
JP3850000B2 true JP3850000B2 (en) 2006-11-22

Family

ID=18478260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36299697A Expired - Lifetime JP3850000B2 (en) 1997-12-12 1997-12-12 Drill

Country Status (1)

Country Link
JP (1) JP3850000B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183335B2 (en) * 1999-05-10 2008-11-19 株式会社タンガロイ Drill with ultra high pressure sintered chip
JP2002361509A (en) * 2001-06-05 2002-12-18 Koyo Giken Kk Drill with reamer
JP4666282B2 (en) * 2005-06-24 2011-04-06 三菱マテリアル株式会社 Drill
US8714890B2 (en) * 2007-02-09 2014-05-06 The Boeing Company Cutter for drilling and reaming
DE102007050050A1 (en) 2007-10-17 2009-04-23 Kennametal Inc. Concentric tool, especially drills
IL211443A0 (en) * 2011-02-27 2011-06-30 Kennametal Inc Combined drill and reamer tool
JP6797873B2 (en) * 2018-09-19 2020-12-09 株式会社ビック・ツール Drill for carbon fiber composite material
JP6902285B2 (en) * 2019-03-29 2021-07-14 日進工具株式会社 Cutting tools
CN110548902B (en) * 2019-06-26 2024-06-14 承德石油高等专科学校 Mechanical clamping drill bit

Also Published As

Publication number Publication date
JPH11170106A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
JP2008264979A (en) Rotary cutting tool for drilling
JPWO2016158463A1 (en) drill
JP2010105119A (en) Drill reamer
JPH068029A (en) Cutting tool
JPS62188616A (en) Rotary cutting tool
JP3850000B2 (en) Drill
JP2006281407A (en) Machining drill for nonferrous metal
JPS625726B2 (en)
JP5622523B2 (en) Burnishing drill reamer
JPH0258042B2 (en)
WO2021230176A1 (en) Drill and method for manufacturing cut workpiece
JP3835902B2 (en) Drill
JP2003275913A (en) Drill
JP5103077B2 (en) drill
JP2002205212A (en) Drill
JP2009202288A (en) Drilling tool
JPH0615512A (en) Drill and formation of cutting blade of drill
JPH11138320A (en) Drill
JP3403586B2 (en) Reamer
JP2003136317A (en) Drill
JP2002066820A (en) Burnishing drill
JP2002036016A (en) Stepped boring tool
WO2024224769A1 (en) Drill and manufacturing method of cutting workpiece
JPH10263929A (en) Gun reamer
JP4954044B2 (en) drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term