JP3849591B2 - Circuit breaker manufacturing method - Google Patents

Circuit breaker manufacturing method Download PDF

Info

Publication number
JP3849591B2
JP3849591B2 JP2002184890A JP2002184890A JP3849591B2 JP 3849591 B2 JP3849591 B2 JP 3849591B2 JP 2002184890 A JP2002184890 A JP 2002184890A JP 2002184890 A JP2002184890 A JP 2002184890A JP 3849591 B2 JP3849591 B2 JP 3849591B2
Authority
JP
Japan
Prior art keywords
characteristic
bimetal
circuit breaker
adjustment
barcode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002184890A
Other languages
Japanese (ja)
Other versions
JP2004031086A (en
Inventor
昌広 桐ヶ谷
和司 川村
滋 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002184890A priority Critical patent/JP3849591B2/en
Publication of JP2004031086A publication Critical patent/JP2004031086A/en
Application granted granted Critical
Publication of JP3849591B2 publication Critical patent/JP3849591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Breakers (AREA)

Description

【0001】
【発明の属する技術分野】
回路遮断器の製造方法に関するものである。
【0002】
【従来の技術】
従来、製品を検査する検査装置による検査工程と、検査結果に基づいて特性調整を調整装置で行う調整工程とを工程に組み込んである組立工程とする方法がある(特開平7−13609号公報参照)。また製品系列の番号をバーコード化して、バーコード番号をキーとして、生産・品質の実績データを収集する製品の検査工程の管理にかかる方法もある(特開昭63−285999号公報参照)。
【0003】
【発明が解決しようとする課題】
前記の前者の従来例では、検査装置(後工程)より、特性調整工程(前工程)へフィードバックを行うため、無駄な時間が発生するという課題があった。つまり目標値の修正の結果ができるときには、既に多くのワークが後工程へ流れていると問題があった。
【0004】
また後者の従来例では、品質の管理はできるが、品質の制御は不可能という問題があった。
【0005】
本発明は、上述の点に鑑みて為されたもので、その目的とするところは、回路遮断器の回路遮断器の品質安定が図れる回路遮断器の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上述の目的を達成するために請求項1の発明では、特性測定された回路遮断器の各部品要素を順次組み付けて行く複数の組立過程と、最終の組立過程で完成した回路遮断器の諸特性を特性調整手段で調整する特性調整過程と、該特性調整過程の調整後の回路遮断器の所定の特性を特性検査手段で検査する特性検査過程とから成り、
最初の組み付けに用いる部品要素に与えるIDに対応付けて特性測定結果をデータベース登録するとともに、当該部品要素にバーコード付与手段により前記IDをバーコードで付し、
以後順次各部品要素を組み付けて行く組立過程を経る際に、前記部品要素のバーコードをバーコード読取手段で読み取って、該バーコードで示されるIDに対応付けて組み付ける部品要素の特性測定結果を前記データベースに順次登録し、特性調整過程においては、組み立て完成された回路遮断器における前記部品要素のバーコードを読み取って、当該バーコードで示されるIDに対応付けて登録されている各部品要素の特性測定結果を前記データベースから読み出し、読み出した特性測定結果に基づいて回路遮断器の所定の動作特性の調整目標値を調整目標値演算手段で演算して、特性調整手段で調整目標値に基づいた特性調整を行うとともに前記IDに対応付けて特性調整量を特性調整結果として前記データベースに登録し、
特性検査過程では、特性調整後の回路遮断器の前記部品要素のバーコードを読み取って、該バーコードで示されるIDに対応付けて、特性検査手段による検査結果を前記データベースに登録する回路遮断器の製造方法において、
前記回路遮断器の動作特性の調整目標値の演算を、予め特性測定結果収集用のサンプルとして所定数製造された回路遮断器の動作特性に関連する部品要素の複数の特性測定結果の値の関数で調整目標値を表す関係式を用いて行うことを特徴とする。
【0007】
請求項2の発明では、特性測定された回路遮断器の各部品要素を順次組み付けて行く複数の組立過程と、最終の組立過程で完成した回路遮断器の諸特性を特性調整手段で調整する特性調整過程と、該特性調整過程の調整後の回路遮断器の所定の特性を特性検査手段で検査する特性検査過程とから成り、
最初の組み付けに用いる部品要素に与えるIDに対応付けて特性測定結果をデータベースに登録するとともに、当該部品要素にバーコード付与手段により前記IDをバーコードで付し、
以後順次各部品要素を組み付けて行く組立過程を経る際に、前記部品要素のバーコードをバーコード読取手段で読み取って、該バーコードで示されるIDに対応付けて組み付ける部品要素の特性測定結果を前記データベースに順次登録し、特性調整過程においては、組み立て完成された回路遮断器における前記部品要素のバーコードを読み取って、当該バーコードで示されるIDに対応付けて登録されている各部品要素の特性測定結果を前記データベースから読み出し、読み出した特性測定結果に基づいて回路遮断器の所定の動作特性の調整目標値を調整目標値演算手段で演算して、特性調整手段で調整目標値に基づいた特性調整を行うとともに前記IDに対応付けて特性調整量を特性調整結果として前記データベースに登録し、
特性検査過程では、特性調整後の回路遮断器の前記部品要素のバーコードを読み取って、該バーコードで示されるIDに対応付けて、特性検査手段による検査結果を前記データベースに登録する回路遮断器の製造方法において、
前記回路遮断器の動作特性の調整目標値の演算を、予め特性測定結果収集用のサンプルとして所定数製造された回路遮断器の動作特性に関連する部品要素の属性データと調整目標値とを関連付けたテーブルを用いて行うことを特徴とする。
【0008】
請求項3の発明では、請求項1の発明において、前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの温度を変化させたときのバイメタルの変形量とすることを特徴とする。
【0009】
請求項4の発明では、請求項3の発明において、前記バイメタルの変形量を測定する場合に、バイメタルの温度の変化前若しくは変化後の測定温度のどちらか一方を、特性調整時の温度と同一としていることを特徴とする。
【0010】
請求項5の発明では、請求項3又は4の発明において、前記バイメタルに通電することよって該バイメタルの自己発熱させて該バイメタルの温度に変化を与え、前記バイメタルの変形量の測定を行うことを特徴とする。
【0011】
請求項6の発明では、請求項4の発明において、前記通電時の前記バイメタルの第1の変形量と、該通電時の時間より短くした通電時のバイメタルの第2の変形量との関係式を予め設けておき、該関係式を用いて前記第2の変形量の測定結果より、前記第1の変形量を算出することを特徴とする。
【0012】
請求項7の発明では、請求項3乃至6の何れかの発明において、前記バイメタルの温度測定点を複数箇所として、これら複数箇所の測定温度を用いてバイメタルの温度を決定することを特徴とする。
【0013】
請求項8の発明では、請求項4の発明において、前記バイメタルの変形量測定過程で、バイメタルの温度変化を加熱促進手段若しくは冷却促進手段により促進させることを特徴とする。
【0014】
請求項9の発明では、請求項5の発明において、前記バイメタルに通電してバイメタルの自己発熱によって変形させる場合に、バイメタルの通電電路から外れた部分における変形分を補正することを特徴とする。
【0015】
請求項10の発明では、請求項3の発明において、前記関係式に基づき算出される調整目標値に対応してバイメタルを機械的に変形させ、且つバイメタルの変形量の測定位置がバイメタルの自由端でない場合に、前記調整目標値を補正することを特徴とする。
【0016】
請求項11の発明では、請求項1の発明において、前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの抵抗値とすることを特徴とする。
【0017】
請求項12の発明では、請求項11の発明において、前記バイメタルが連結されている部材を組み立て、回路遮断器のケースに組み付けた後に、回路遮断器の電源側端子と負荷側端子との間の抵抗値を測定し、該抵抗値を前記バイメタルの抵抗値として用いることを特徴とする。
【0018】
請求項13の発明では、請求項1の発明において、前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの板厚とすることを特徴とする。
【0019】
請求項14の発明では、請求項13の発明において、複数の前記部品要素の特性測定結果の内の別の一つとして、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの温度を変化させたときのバイメタルの変形量を用い、該バイメタルの変形量の測定及び前記板厚の測定を、バイメタルの撮像画像データを用いた画像処理により行うことを特徴とする。
【0020】
請求項15の発明では、請求項13の発明において、前記バイメタルを構成するメタル層毎の板厚を計測して、前記調整目標値を補正することを特徴とする。
【0021】
請求項16の発明では、請求項1の発明において、前記特性検査特性による検査結果が不良の場合、前記特性調整過程で特性調整を再度行う再調整過程を有し、該再調整過程では、予めサンプルとして回路遮断器を製造した際に得た、動作特性に関連する部品要素の複数の特性測定結果、特性調整過程での複数の特性調整量、特性検査過程での複数の検査結果の何れかの関数で調整目標値を表す関係式を用いて行い、再調整対象の回路遮断器の対応する夫々の結果に基づいて夫々の調整目標値の演算し、この演算によって求められた複数の調整目標値から最終的な再調整の調整目標値を演算することを特徴とする。
【0022】
【発明の実施の形態】
以下本発明を実施形態により説明する。
【0023】
(実施形態1)
図1は製造装置全体の概要図を示しており、図の最も下段のI〜Vは部品から最終完成品(完成された回路遮断器)までの工程を示しており、工程(過程)Iは、回路遮断器を組み立てる際の最の組み付けに用いる部品要素(以下部品と称する)aが供される工程を示し、工程(過程)IIは他の部品bを部品aに組み付けて半完成品Aを得る工程を示し、工程(過程)IIIは半完成品Aに別の部品cを組み付けて半完成品Bを得る工程を示す。ここで説明を簡単にするために半完成品を得る工程をII,IIIの2つの工程で示すが、本来的には製造しようとする回路遮断器の組み付ける部品点数に対応した工程が存在するものである。最終的に得られた半完成品Bは回路遮断器を構成するための全ての部品の組み付けを終了したものに対応する。さてこの最終的な半完成品Bを得た後の、工程(過程)IVは半完成品Bの特性調整を行って暫定的な完成品Cを得る工程を示し、工程(過程)Vは完成品Cの特性を検査して、最終完成品Dを得る工程を示す。
【0024】
次に各工程I〜Vにおける処理を図1に基づいて説明する。
【0025】
まず工程Iでは最初に組み付けられる部品aの特性を測定する特性測定手段1aが設けられ、この特性測定手段1aにより部品a固有の特性を測定する。例えば回路遮断器のベースであればベースの大きさ等である。
【0026】
この測定結果に対応付けて以後の工程II〜Vにおける工程管理のための属性IDを生成するとともに、データベースDBに当該IDに対応付けて部品aの特性データを登録するデータ登録手段2aと、データ登録手段2aにより生成されたIDをバーコードとして部品(例えば後述するハウジング)aに印刷、レーザー等による焼き付けなど適宜手段からなるバーコード付与手段3により印す。この印す位置は以後の工程II〜Vに設けられるバーコード読取手段4a〜4dが読み取り可能な位置に設定しているのは勿論である。この工程Iで特定測定結果のデータベースDBへの登録とIDを示すバーコードが印された後、部品aは次の工程IIへ送られることになる。
【0027】
工程IIへ部品aが送られてくると、バーコード読取手段4aにより部品aに印されたバーコードを読み取って付与されているIDデータをデータ登録手段2bに渡す。一方この工程IIで部品aに組み付ける部品bの特性を測定した特性測定手段1bはその特性測定結果をデータ登録手段2bに送る。これによりデータ登録手段2bは、部品bの特性測定結果を読み取ったIDに対応付けてデータベースDBに登録する。さてこの工程IIにおいて、部品bを部品aに組み付けることで半完成品Aが組み立てられ、この半完成品Aは次の工程IIIへ送られることになる。
【0028】
工程IIIへ半完成品Aが送られてくると、バーコード読取手段4bにより部品aに印されたバーコードを読み取って付与されているIDデータをデータ登録手段2cに渡す。一方この工程IIIで半完成品Aに組み付ける部品cの特性を測定した特性測定手段1cはその特性測定結果をデータ登録手段2cに送る。これによりデータ登録手段2cは、部品cの特性測定結果を読み取ったIDに対応付けてデータベースDBに登録する。さてこの工程IIIで部品cを半完成品Aに組み付けることで組み立て完成された回路遮断器が得られることになるが、この回路遮断器は、特性調整や検査が終了していないため半完成品Bと見なされ、この半完成品Bは次の工程IVへ送られることになる。
【0029】
工程IVは特性調整工程(過程)を構成し、組み立て完成された回路遮断器における前記部品aに印されたバーコードを読み取って付与されているIDデータを演算処理部5へ渡す。演算処理部5は照合機能5aにおり当該IDに対応してデータベースDBに登録している構成部品a〜cの特性測定結果をデータベースDBから読み出す(照合する)。そしてこの読み出して特性測定結果と、予め登録されている各構成部品a〜cに対応して設定される規格としての特性値とに基づいて特性調整目標値(特性調整量)を調整目標値演算機能5bによって演算し、その演算結果に基づいて特性調整手段7を制御して送られてきた半完成品Bの所定の所定の部品の特性を調整し、完成品Cを得る。
【0030】
そして前記IDに対応付けて特性調整量をデータ登録手段2dによりデータベースDBに登録する。
【0031】
そして調整済みの完成品Cは次の工程V、つまり特性検査工程(過程)へ送られる。この工程Vでは、まず部品aに印されたバーコードを読み取って付与されているIDデータを読み取り、データ登録手段2eに渡す。そして特性検査手段7により回路遮断器として規格として設定されている特性値が得られるか否かを特性検査手段7により特性検査を行い、この検査において規格を満たす場合には良品として判断され、完成品Dとなる。一方規格を満たさない場合には、前の工程IVに戻されて、再度調整を行うために、工程IVに戻される処理が為される。
【0032】
またデータ登録手段2eにより前記IDに対応付けて検査結果(検査の判断結果及び特性検査結果値)をデータベースDBに登録される。
【0033】
このようにして最初に供される部品aに付したIDに基づいて組み付ける部品b…の特性、特性調整を行った際の特性調整量、そして検査結果がデータベースDBに登録されることで、このIDに基づいて製造された回路遮断器の部品の特性測定結果、完成品の検査結果、また特性調整時の特性調整量を読み出すことができて製品の製造管理が行えることになる。
【0034】
ところで、前記の特性調整の工程IVにおいて調整する特性は、具体的には回路遮断器としての特性検査に一番影響のあるものが調整される。例えば図2に示すよう過電流検出と引き外しにバイメタル10を用いる回路遮断器の場合にはバイメタル10が調整対象となる。
【0035】
この場合工程IVでの特性調整に当たって、演算処理部5はそのバイメタル10の特性測定結果の値(板厚、幅、体積抵抗率等の属性データ)を複数データベースDBから読み出し、この特性測定結果値に基づいてバイメタル10の自由端10aを変形させる量、つまり調整目標値を演算する。そして特性調整手段6により演算された調整目標値に対応する特性調整量でバイメタル10の自由端10aの変形させて動作特性を調整するのである。
【0036】
尚本実施形態における製造対象の回路遮断器は閉極時には、トリップ機構Tにより回動自在に枢支されている可動接点板21の一端がラッチ板20の係止部20aに係止された状態で保持され、他端の可動接点22を固定接点板24の固定接点23に接触された状態となっている。そして通電路に過大な電流が流れてバイメタル10が自己発熱などより熱変形してその自由端10aの位置が変位することで、ラッチ板20を作動すると、ラッチ板20の係止部20aが移動して可動接点板21の一端との係止状態が外れ、これによりトリップ機構Tがトリップ動作し、これに伴い図において反時計方向に可動接点板21が回動し、その先端の可動接点22が固定接点板24の固定接点23から開離し、強制開極状態となるのである。
【0037】
尚25は操作ハンドル、26は通電用導電板、27はハウジング、28は操作ハンドル25と可動接点板21とを連結する連結ばね、29は通電路を形成する編素線、30は分電盤内に配設される導電バーを結合する受け金具からなる電源側端子、31は速結端子からなる負荷側端子である。そしてハウジング27の外側面の一端側下隅に上述のバーコード32を印している。
【0038】
さて本実施形態において、上述のバイメタル10の自由端10aの変形量の調整目標値の演算を行う場合についての実施例を次に説明する。
【0039】
実施例1
まず特性測定結果値である属性データと調整目標値との間に、
Y=f(X1,X2、X3…)
(但しX1…属性データ1、X2…属性データ2、X3…属性データ3、Y…調整目標値)
という関係式を導入し、
例えば、関係式を
Y=0.5X1+0.04X2+0.3X3+0.37 …▲1▼
として、
1(バイメタルの板厚)=0.5mm
2(バイメタルメタルの抵抗値)=5.0mΩ
3(所定温度から一定温度(例えば+50℃)上昇させた場合のバイメタル10の自由端10aにおける変形量)=0.6mm
の場合、▲1▼式に値を代入すると、調整目標値はY=1mmと求めることができる。
【0040】
勿論、属性データの数は3つでなくても良い。
【0041】
2つの場合、Y=f(X1、X2
4つの場合、Y=f(Xl、X2、X3、X4
またそれ以上の場合も考えられる。
【0042】
ところでバイメタル10の変形測定は、リニアスケール等による接触式或いは、非接触式(レーザー変位計等)、或いは画像処理により行えるが、本実施毛形態では、後述する動作調整時に用いるリニアスケール13を利用し、バイメタル10が移動する方向から測定する。
【0043】
また板厚の測定は次のような画像処理を用いて行う。
【0044】
つまり回路遮断器のハウジング27内のバイメタル10の自由端10aを斜め側方から撮像するための窓孔Hを図2で示すように開口しておき、この窓孔Hを介して外部から撮像カメラで撮像することを可能としておく。この窓孔Hの形状は四角以外の形状でも良く、また窓孔Hの代わりに窓孔Hに対応するハウジング27の部分を少なくとも透明に形成していても良い。
【0045】
まず図3のようにバイメタル10を撮像し、撮像画像の左上座標を(0,0)とし、右下座標を(512,512)とする。つまり、撮像画像は512画素×512画素からなるものとする。
【0046】
次にバイメタル10の板厚が何画素になるかを適宜な画像処理装置を用いて測定する。すなわち図3において実線で示すバイメタル10の画像のB点とC点の画面上の(X)座標の差をとって、300−240=60画素とする。
【0047】
次に撮像カメラ若しくは回路遮断器を(X)方向に一定量(ここでは1mmとする)動かし、バイメタル10を撮像する。図3ではこのバイメタル10の画像を破線で示す。そして動かした一定量(1mm)とA点と、先に撮像したバイメタル10の画像のB点の画素の差(240−140=100画素)より、1画素が何mmに相当するか算出する。ここでは、1/100=0.01mm/画素であるから先に測定した画素数60から、60×0.01mm=0.6mmと求まることになる。
【0048】
このようにして板厚を測定し、その板厚を属性データとして用いることができるのである。
【0049】
この板厚による属性データとを、上述した温度変化によるバイメタル10の変形量を属性データとを組み合わせて調整目標量を演算する場合に、バイメタル10の変位測定と板厚測定とを画像処理により同時に行えことで、一つの過程で測定が行え、測定過程を一つ減らすことができる。
【0050】
而して上述のように調整目標値Yが求まると、この調整目標値Yに基づいて、次のように動作特性の調整を行う。つまりバイメタル10を支持している接続板(金属板)11を図4に示すようにモータMの先端に設けた冶具12に係合させ、モータMを回転させることで接続板11をひねって変形させ、バイメタル10の先端位置を変化させることで調整する。この場合リニアスケール13を用いてバイメタル10の変位を検出しながらモータMの回転を制御するようになっている。つまりリニアスケール13は変位量を電気量に変換し、その電気量信号はアンプ14で増幅された後、比較手段15に取り込まれ、比較手段15はこの電気量信号で示される変形量と演算処理部6から与えられる調整目標値Yとを比較して調整目標値Yと変形量が一致するとモータ駆動手段16に停止信号を出力してモータMによる接続板11に対するひねり動作を停止させる。ここでリニアスケール13,アンプ14、比較手段15,駆動手段16、モータM、冶具12により特性調整手段7が構成される。
【0051】
尚上述では調整目標値を演算するために用いる属性データの一つとしてバイメタル10の抵抗値を挙げたが、この場合バイメタル10単体で抵抗値を測定するのが、調整目標値を精度良く求めるのには理想である。
【0052】
しかし、バイメタル10単体で抵抗値を測定するのは経済的に不利である。
【0053】
つまり、バイメタル10単体で抵抗値を測定し、バーコード付与手段により、バイメタル10にバーコードを付与し、バイメタル10を電路に組み立て、回路遮断器のハウジング27に組み込んだ後に新たにバーコードをハウジング27に付与する場合(バイメタル10に付与されたバーコードはケース組み付け後は読み取ることができない)は、バーコード付与手段が複数必要なため、製造装置の費用が高額になってしまう。
【0054】
またバイメタル10を電路に組み立て、ハウジング27に組み込んだ後にバーコードを付与し、バイメタル10単体の抵抗値を測定する場合、ハウジング27に測定端子を挿入する穴を必要とし、また測定後にはその穴を塞ぐ蓋が必要なため、部品コストが上がる。
【0055】
このような理由でバイメタル10単体で抵抗値を測定するのには課題がある。
【0056】
そこで、本実施例では、電路の負荷側端子30と電源側端子31間の抵抗値を測定し、測定結果をバイメタル10の抵抗値として代用することで、バイメタル10の抵抗測定を複雑な構成の製造装置を用いることなく行える。つまり図1の製造装置に適合できるのである。また完成品の状態で抵抗値を測定できるので、抵抗値と特性検査時のデータをハウジング27の外側面に付与されたバーコード32でデータを管理することができることになる。
【0057】
尚複数のサンプル(回路遮断器)を予め製造して、この製造過程において、属性データとして用いる特性測定結果や検査結果等を収集し、これら収集した結果より、上述の関係式の各属性データに対応する定数等を予め求めて関係式を作るのである。
【0058】
実施例2
実施例1のような関係式では属性データと調整目標値との関係が複雑な場合、表されにくい場合ある。そこで、本実施例は、例えば、表1のようなテーブルを用いて容易に調整目標値を求めるようにしたのものである。
【0059】
【表1】

Figure 0003849591
【0060】
ここでバイメタル10の板厚が表1のテーブル内にない場合、例えばX1=0.64mm、X2=0.43mm場合このテーブルを用いて以下の様に求めることができる。
【0061】
1)0.64mmは0.6mmと0.7mmの間にあるので、どちらか一方を用いる。0.43mmは0.4mmと0.5mmの間にあるので、どちらか一方を用いる。
【0062】
表2は、値の下一桁を四捨五入して、調整目標値を0.9mmと求めた例であるが、下一桁を、切り上げ若しくは切り下げしても良い。
【0063】
【表2】
Figure 0003849591
【0064】
また2)0.64mmは0.6mmと0.7mmの間にあるので、両方を用いる。0.43mmは0.4mmと0.5mmの間にあるので、両方を用いる。つまり重み付けをする。
【0065】
以下にその手順を示す。
【0066】
まず板厚X1が0.64mmの場合の調整目標値を求める場合、表3のように+50℃における変形量[mm]のA,Bについて重み付けをして求める。
【0067】
A=(0.04×1.0+0.06×0.9)/0.1=0.94 …▲2▼
B=(0.04×1.2+0.06×1.0)/0.1=1.08 …▲3▼
尚式▲2▼、▲3▼中0.04は板厚0.6に対する板厚0.64の差分、0.06は板厚0.64に対する板厚0.7の差分、0.1は調整目標量の差分を示す。
【0068】
【表3】
Figure 0003849591
【0069】
そして板厚0.64mmのときの調整目標値を表4の様に抜き出す。
【0070】
【表4】
Figure 0003849591
【0071】
表4で示すテーブルより、X2が0.043mmのときの調整目標値を求める。
【0072】
調整目標値=(0.03×1.08+0.07×0.94)/0.1=0、982
この結果調整目標値は0.982mmと求められ、上述の1)の場合よりも正確に調整目標値を求めることができる。
【0073】
尚属性データが3つの場合でも、3つ目のパラメータ毎にテーブルを複数設けることで対応することができる。
【0074】
よって、このテーブルを用いることで運用時の補正が容易になる。勿論補正には、テーブルの値を変えることで対応する。
【0075】
ところで、本実施例では属性データとしてバイメタル10の板厚と50℃増加させたときのバイメタル10の自由端の変形量とを用いているが、このように属性データの一つとしてバイメタル10の温度Δtを変化させたときのバイメタル10の変形量ΔLを用いる場合において、調整目標値を決定する方法について説明する。
【0076】
まず関係式を求めるための特性測定結果収集用に複数のサンプル(回路遮断器)を製造し、この製造過程において、以下の手順で異なる温度でのバイメタル位置を測定し、一定温度差(△t)のバイメタルの変形量(△L)を計測し、調整目標値より関係式を算出する。
【0077】
つまり図5(a)に示すように組立過程における温度t0=20乃至25℃のの雰囲気を図5(b)に示すバイメタル10の自由端10aの位置の測定過程で、温度t1(例えば10℃)までバイメタル10を冷却装置で冷却してそのときのバイメタル10の変形量L1を測定し、次に図5(c)に示す測定過程で、温度t2(例えば60℃)までバイメタル10を加熱装置で加熱してそのときの変形量L2を測定し、この測定結果から一定温度差(60℃−10℃)Δtのバイメタル10変形量(L2−L1)ΔLを求め。また同時にバイメタル10に一定の大きさの微小電流を流してバイメタル10の両端間の電圧を測定してバイメタル10の抵抗値を求める。つまり一定温度差Δtにおけるバイメタル10の変形量ΔL及び抵抗値を属性データとしても用いる。
【0078】
さて図5(a)〜(c)は図1の工程IIIにおける組立と、特性測定との過程に相当し、これらその測定過程後、次の工程IVにおいて、演算処理部5によってデータベースDBから半完成品Bである当該回路遮断器の部品要素(バイメタル10)の特性測定値を読み出し、この特性測定値に基づいて△t(50℃変化させたとき)のバイメタル10の自由端10aの変形量△Lを算出して調整目標値を決定する。
【0079】
表5は調整目標値を求めるための関係式を算出する基礎としたサンプル1,2,3の測定結果を示す。
【0080】
【表5】
Figure 0003849591
【0081】
調整目標値決定後、この調整目標値より関係式を算出する。
【0082】
調整目標値=a×(ΔL/Δt)+b×(E/I)+α…▲1▼
次に各サンプル1〜3の測定値を
a=7.5 b=5.0 α=−35
となり、その関係式は
調整目標値=7.5×(ΔL/Δt)+5.0×(E/I)−35
と表せる。
【0083】
以後製造される回路遮断器の調整目標値演算は前記関係式を用いることになる。
【0084】
勿論、3つの属性データを用いる場合には求めるべき未知数が4つあるので、測定サンプル数を4つ、属性データが4つ有る場合は求めるべき未知数が5つあるので、測定サンプル数を5つにして連立法的式を解くことになる。
【0085】
而して前記サンプル1〜3の測定値及び調整目標値から算出された関係式を用いて行い、工程IIIを経て半完成品Bとして工程IVに送られてきた回路遮断器について、工程IIIで測定されたバイメタル10の自由端10aの上述の特性測定値(属性データ)に基づいて前記関係式から演算処理部5は目標調整値を演算し、この演算された目標調整値から特性調整手段6によりバイメタル10の自由端10aの変形量の調整を行うのであるが、この場合図5(d)に示すように雰囲気温度t3を通常の温度20〜25℃に冷却して行う
尚図5(a)〜(d)の過程では、加熱が1回、冷却が2回必要であるが、t2=t3=60℃にする(図5(c)のバイメタル位置測過程と図5(d)の特性調整過程を同じ温度内で行う)と、2回目の冷却が不要になりバイメタル10の自由端10aの位置測定後すぐに特性調整を行うことができるので過程(工程)の削減が可能になる。
【0086】
またt0=t1=10℃にする(図5(a)の組立過程と図5(b)のバイメタル10の自由端10aの位置測定の過程を同じ温度内で行う)と、組立後すぐにバイメタル位置測定を行うことができるので、時間短縮が可能になる。
【0087】
温度パラメータ(誤差要因)が3つある図5の場合に対して、上述したように温度パラメータを2つにすることで、誤差を減少させることができる。
【0088】
実施例3
実施例2では前記バイメタル10の温度を変化させる方法として、雰囲気温度を変化させる方法を採用しているが、本実施例ではバイメタル10に通電することで自己発熱させて、その温度を変化させる方法がある。つまり図2に示すように閉極状態の回路遮断器に電源側端子31と負荷側端子30間に大きな電流を流して自己発熱させる。
【0089】
この場合次の手順で一定温度差Δtのバイメタル10の自由端10aの変形量の特性測定を行う。
【0090】
まず図6(a)に示す組立過程の終了後、図6(b)のバイメタル10の自由端10aの位置測定過程において、バイメタル10の通電前のバイメタル10の温度(t1)と位置(L1)を測定し、次にバイメタル10の通電中(温度飽和状態)のバイメタル10の温度(t2)と位置(L2)を測定し、その測定値から△t=t2−t1、△L=L2−L1を求める。尚この属性データとして組み合わせる属性データとしては上述の場合と同様に通電時の電流値Iとバイメタル10の電圧値Eとで求めるバイメタル10の抵抗値とすれば良い。またバイメタル10の温度測定は直接温度センサをバイメタル10に接触させて測定するか輻射温度センサにより非接触で検出すれば良い。そして目標調整値の計算は演算処理部5で上述と同様な方法で算出する。
【0091】
この算出結果に基づいて図6(c)の特性調整過程で特性調整手段6によりバイメタル10の自由端10aの調整を行う。
【0092】
図7は前記のバイメタル10の通電前のバイメタル10の温度(t1)と位置(L1)からバイメタル10の通電開始をしてバイメタル10の温度が飽和状態するまでのバイメタル10の温度と位置の変化を示す。
【0093】
尚この通電によってバイメタル10の温度を変化させる方法は、回路遮断器の実使用時に即した方法であり、その方法によるバイメタル10の変形を用いて△Lの測定ができるため、誤差要因を減らすことができる。特に発熱、放熱等の周囲環境の影響も考慮したバイメタルの変形を測定できるため、測定精度が良い。
【0094】
実施例4
前記実施例3ではバイメタル5の通電はバイメタル5の温度が飽和するまでの時間が1200秒と長時間かかるため、本実施例では、通電時間を極めて短くするために通電時間を短くした場合のバイメタルの変形量Δsと、前記バイメタルの変形量ΔLとの関係式を予め求めておき、この関係式を用いてできるようにしたものである。
【0095】
つまり、予めサンプルを用いて通電開始から例えば5秒後のバイメタル10の自由端10aの変形量△sを測定し、温度上昇が飽和した温度との温度差ΔTでのバイメタルの変形量ΔLを測定し、これらの測定結果から、バイメタルの変形量の演算のための関係式を予め算出する。
【0096】
ここで本実施例では、ΔL=2Δs+0.2と言うバイメタルの変形量の演算式を採用していいる。
【0097】
而して、調整対象の回路遮断器の通電開始から例えば5秒後のバイメタル10の自由端10aの変形量を測定し、その測定値Δsから前記演算式により、通電開始時の温度t1から温度上昇が飽和した温度t2の温度差ΔTにおける変形量ΔLを求める。
【0098】
図8(b)は3台の調整対象の回路遮断器の通電開始から5秒後におけるバイメタル10の自由端10aの変形量の測定値Δs1(=017mm)、Δs2(=0.16mm),Δs3(=0.15mm)を夫々示しており、これら測定値Δs1,Δs2,Δs3に基づいて前記演算式から夫々の変形量ΔL1、ΔL2、ΔL3を求めると、ΔL1=0.54mm,ΔL2=0.52mm,ΔL3=0.50mmとなる。図8(a)はこのΔL1〜ΔL3をバイメタル10の温度が飽和した時点に対応して当てはめて、通電開始から温度が飽和するまでのバイメタル10の自由端10aの変形量の変化を示している。
【0099】
このようにして本実施例の方法では、通電開始から例えば5秒経過した時点で変形量ΔLを予測して、この予測した変形量ΔLから上述した調整目標値と属性データとの関係式により当該回路遮断器の目標調整量を求めることができるため、バイメタル10に通電してバイメタル10の温度を変化させる方法において、目標調整量を演算するまでの時間を、バイメタル10の温度が飽和してからΔLを測定する方法に比して大幅に短縮することができる。
【0100】
尚前記実施例2乃至実施例4のようにバイメタル10の温度を変化させて、その変化に伴うバイメタル10の自由端10aの変形量ΔLを測定し、この測定値を属性データとして用いる場合に、バイメタル10に対する温度測定箇所を複数箇所とし、その複数箇所の平均値をバイメタル10の温度とすることで、測定箇所による測定温度のばらつきを緩和できる。
【0101】
実施例5
ところで、実施形態1の実施例3,4のようにバイメタル10に通電して自己発熱させ、その発熱によって生じるバイメタル10の自由端10aの変形量を測定する方法を採用する場合、バイメタル10の通電電路から外れた部分の変形の仕方が通電電路となる部分の変形の仕方と異なる。そこで本実施例では、この通電電路から外れた部分の変形分を補正することでより精度の高い測定を行うようしたものである。
【0102】
つまり図2に示す回路遮断器の通電電路では、図9に示すようにバイメタル10の一端が固定端で他端が自由端10aであり、自由端10aがラッチ板20を作動させる作用点になっている。また、バイメタル10の固定端と作用点(自由端10a)の間に、通電電路を構成するために編素線28が溶接またはかしめにてバイメタル10に接合されている(A点)。
【0103】
変形測定時のバイメタルの変形は、固定端から自由端まで2次曲線になる。特性検査時には、実際に通電電路(矢印i)に電気を流して試験を行うため、固定端からA点までは2次曲線、A点から自由端10aまでは直線に変形する。矢印xは変形方向を示す。
【0104】
この両者のバイメタル10の変形の仕方の違いが、変形測定時と工程Vにおける特性検査時の誤差になるため、本実施例では演算処理部5で特性検査時の直線部分の変形を補正して調整目標値を算出する。
【0105】
ここで前記の誤差は以下の様に計算することができる。すなわち、kを2次曲線の変形度合いを表す定数、a’を通電時のA点でのバイメタル10の傾きとし、また固定端から自由端10aまでの長さをL。、固定端からA点までの長さをL0とすると、
kL2−[kL0 2+a'(L−L0)]=(l−L0)[k(L+L0)+a']
と誤差を表すことができる。
【0106】
そして通電時において、前記L、L0、a’を測定し、その値を前記式前記の値を叙述した方法によって演算して求めた補正前の調整目標値に加えて新たに調整目標値とすることで高精度に調整することができる。
(実施形態2)
実施例5ではバイメタル10の温度を変化させて変形させ、その変形量に基づいて調整目標値を演算する際に、特性検査時のバイメタル10の変形との違いを補正するものであったが、本実施形態は、特性調整手段6によりバイメタル10を調整目標値に基づいて変形させる際に、変形測定点の位置によって調整時の変形量測定と、特性検査時のバイメタル10の変形量測定との間に誤差が生じる点に対応させる方法である。
【0107】
つまり図10(a)に示すように回路遮断器のバイメタル10を調整ネジ40を螺進させ、その先端部でバイメタル10の固定端を押圧変位させて自由端10aの位置を調整する方法、図10(b)に示すように固定端部位を塑性変形させて自由端10aの位置を調整する方法のように機械的変形で動作特性を調整する場合、バイメタル10は直線的に変形する。一方特性検査時のように通電を行って動作を検査する場合、バイメタル10は上述したように2次曲線で変形する。図10は特性調整時の変形(イ)と、特性検査時のバイメタル10の変形(ロ)の違いを示しており、自由端10a(作用点)を変形測定点とする場合には誤差は生じないが、スペースの関係で変形測定点を自由端10aより固定端側の位置とした場合、作用点でのバイメタル10の変形は同じでも、変形測定点でのバイメタル10の変形に誤差が生じる(図11のA点とB点)。
【0108】
この誤差は以下の様に計算することができる。すなわち、kを特性検査時の2次曲線の変形度合いを表す定数、a”を調整時の傾きとし、固定端から変形測定点(A点,B点)までの高さの距離をL0,固定端から自由端10aまでの高さの距離をLとした場合、作用点(自由端10a)でのバイメタル10の変形は同じであるので、
kL2=a”L a”=kL
よって測定位置での誤差は
a”L0−kL0 2=kLL0−kL0 2=kL0(L−L0
と表すことができる。
【0109】
従って演算処理部5はこの値を補正前に演算した調整目標値に減じて新たに調整目標値とし、この補正した調整目標値を特性調整手段6に与えることで高精度に調整することができることになる。
【0110】
ところで前記の各実施形態では、調整目標値を演算する際に用いる属性データとしてはバイメタル10の抵抗値とバイメタル10を温度変化させたときの変形量の組み合わせを用いた、それ以外にもバイメタル10の板厚等を用いることもできる。次にこれらの他の属性データについて説明する。
【0111】
尚補正の方法としては、バイメタル10のメタル層毎の板厚を上述と同様な画像処理を用いて測定し、そのデータを用いて調整目標値を補正するようにしても良い。つまりメタル層の板厚比が変わると湾曲係数、ヤング率、体積抵抗率、比熱、比重等が変わるため、この板厚比によって調整目標値を補正すれば、高い精度で特性調整が可能となる。
【0112】
また属性データとしては上記以外の属性データを用いても良い。例えば組立精度を属性データの一つとして用いることもできる。
【0113】
つまり回路遮断器において一番重要な要素である組立精度は、図12に示すようにラッチ板20の係止部20aにおける可動接点板21の掛かり代γです。掛かり代γが大きいと、電流を流してバイメタル10を変形させてもラッチが外れにくいため、この板厚の場合と同様に掛かり代γをハウジング27に設けた窓孔Hを介して外側から撮像カメラで撮像し、画像処理にて掛かり代γを測定する方法は板厚の場合と同様に行う。
【0114】
更に、最終出荷検査結果や加速試験結果を属性データとして用いることができる。
【0115】
ここで最終出荷検査結果とは、工程Vにおいて、実際に回路遮断器が使用される条件で試験を行ない、良品・不良品を判定する試験の結果である。つまり、定格の電流を流して回路遮断器がトリップ動作しないことと、定格よりも大きい電流値(例えば125%、20A定格の場合は25A)の電流を流し、1時間以内に落ちるとき良品とする試験の結果である。
【0116】
また加速試験結果とは、最終出荷試験では試験に非常に長い時間がかかるため、試験時に流す電流を大きくして(例えば200%、20A定格の場合は40A)ある時間(例えば15±3秒)の間に回路遮断器が落ちたら良品とする試験の結果である。尚これらの結果からなる属性データは工程Vを経るための、再調整のみに用いることができる。
【0117】
また他の属性データとしてはバイメタル10の体積抵抗率、ヤング率があり、また特性調整を行う特性調整手段のNo、周囲温度、湿度、工程Vにおいて特性検査を行う特性検査手段7のNo等もある。
【0118】
また上述のバイメタル10の変形量を測定する方法としては、上述のセンサや方法以外に渦電流式、静電式等の方法を採用しても勿論良い。
【0119】
【発明の効果】
請求項1の発明は、特性測定された回路遮断器の各部品要素を順次組み付けて行く複数の組立過程と、最終の組立過程で完成した回路遮断器の諸特性を特性調整手段で調整する特性調整過程と、該特性調整過程の調整後の回路遮断器の所定の特性を特性検査手段で検査する特性検査過程とから成り、
最初の組み付けに用いる部品要素に与えるIDに対応付けて特性測定結果をデータベース登録するとともに、当該部品要素にバーコード付与手段により前記IDをバーコードで付し、
以後順次各部品要素を組み付けて行く組立過程を経る際に、前記部品要素のバーコードをバーコード読取手段で読み取って、該バーコードで示されるIDに対応付けて組み付ける部品要素の特性測定結果を前記データベースに順次登録し、特性調整過程においては、組み立て完成された回路遮断器における前記部品要素のバーコードを読み取って、当該バーコードで示されるIDに対応付けて登録されている各部品要素の特性測定結果を前記データベースから読み出し、読み出した特性測定結果に基づいて回路遮断器の所定の動作特性の調整目標値を調整目標値演算手段で演算して、特性調整手段で調整目標値に基づいた特性調整を行うとともに前記IDに対応付けて特性調整量を特性調整結果として前記データベースに登録し、
特性検査過程では、特性調整後の回路遮断器の前記部品要素のバーコードを読み取って、該バーコードで示されるIDに対応付けて、特性検査手段による検査結果を前記データベースに登録する回路遮断器の製造方法において、
前記回路遮断器の動作特性の調整目標値の演算を、予め特性測定結果収集用のサンプルとして所定数製造された回路遮断器の動作特性に関連する部品要素の複数の特性測定結果の値の関数で調整目標値を表す関係式を用いて行うので、複数の回路遮断器の特性の管理・制御を個々に行え、また部品要素の特性の影響を精度良く、調整目標値に反映でき、結果回路遮断器の回路遮断器の品質安定が図れる。
【0120】
請求項2の発明は、特性測定された回路遮断器の各部品要素を順次組み付けて行く複数の組立過程と、最終の組立過程で完成した回路遮断器の諸特性を特性調整手段で調整する特性調整過程と、該特性調整過程の調整後の回路遮断器の所定の特性を特性検査手段で検査する特性検査過程とから成り、
最初の組み付けに用いる部品要素に与えるIDに対応付けて特性測定結果をデータベースに登録するとともに、当該部品要素にバーコード付与手段により前記IDをバーコードで付し、
以後順次各部品要素を組み付けて行く組立過程を経る際に、前記部品要素のバーコードをバーコード読取手段で読み取って、該バーコードで示されるIDに対応付けて組み付ける部品要素の特性測定結果を前記データベースに順次登録し、特性調整過程においては、組み立て完成された回路遮断器における前記部品要素のバーコードを読み取って、当該バーコードで示されるIDに対応付けて登録されている各部品要素の特性測定結果を前記データベースから読み出し、読み出した特性測定結果に基づいて回路遮断器の所定の動作特性の調整目標値を調整目標値演算手段で演算して、特性調整手段で調整目標値に基づいた特性調整を行うとともに前記IDに対応付けて特性調整量を特性調整結果として前記データベースに登録し、
特性検査過程では、特性調整後の回路遮断器の前記部品要素のバーコードを読み取って、該バーコードで示されるIDに対応付けて、特性検査手段による検査結果を前記データベースに登録する回路遮断器の製造方法において、
前記回路遮断器の動作特性の調整目標値の演算を、予め特性測定結果収集用のサンプルとして所定数製造された回路遮断器の動作特性に関連する部品要素の属性データと調整目標値とを関連付けたテーブルを用いて行うので、目標値を演算する運用時における補正が容易となる。
【0121】
請求項3の発明は、請求項1の発明において、前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの温度を変化させたときのバイメタルの変形量とするので、バイメタルの変形量からなる特性測定値を用いて調整目標値を算出することができる。
【0122】
請求項4の発明は、請求項3の発明において、前記バイメタルの変形量を測定する場合に、バイメタルの温度の変化前若しくは変化後の測定温度のどちらか一方を、特性調整時の温度と同一としているので、バイメタルの変形量の測定から目標調整値の演算、特性調整の一連の過程における時間経過を短縮することができる。
【0123】
請求項5の発明は、請求項3又は4の発明において、前記バイメタルに通電することよって該バイメタルの自己発熱させて該バイメタルの温度に変化を与え、前記バイメタルの変形量の測定を行うので、回路遮断器の実使用に即したバイメタルの変形量の測定ができ、そのため誤差要因を減らすことができる。
【0124】
請求項6の発明は、請求項4の発明において、前記通電時の前記バイメタルの第1の変形量と、該通電時の時間より短くした通電時のバイメタルの第2の変形量との関係式を予め設けておき、該関係式を用いて前記第2の変形量の測定結果より、前記第1の変形量を算出するので、バイメタルの変形量を求めるのようにようする時間を短縮することができる。
【0125】
請求項7の発明は、請求項3乃至6の何れかの発明において、前記バイメタルの温度測定点を複数箇所として、これら複数箇所の測定温度を用いてバイメタルの温度を決定するので、精度良い目標調整値を演算することが可能となる。
【0126】
請求項8の発明は、請求項4の発明において、前記バイメタルの変形量測定過程で、バイメタルの温度変化を加熱促進手段若しくは冷却促進手段により促進させるので、製造工程の短縮化が図れる。
【0127】
請求項9の発明は、請求項5の発明において、前記バイメタルに通電してバイメタルの自己発熱によって変形させる場合に、バイメタルの通電電路から外れた部分における変形分を補正するので、高精度に調整目標値を算出することができる。
【0128】
請求項10の発明は、請求項3の発明において、前記関係式に基づき算出される調整目標値に対応してバイメタルを機械的に変形させ、且つバイメタルの変形量の測定位置がバイメタルの自由端でない場合に、前記調整目標値を補正するので、高精度に調整目標値を算出することができる。
【0129】
請求項11の発明は、請求項1の発明において、前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの抵抗値とするので、バイメタルの抵抗値からなる特性測定値を用いて調整目標値を算出することができる。
【0130】
請求項12の発明は、請求項11の発明において、前記バイメタルが連結されている部材を組み立て、回路遮断器のケースに組み付けた後に、回路遮断器の電源側端子と負荷側端子との間の抵抗値を測定し、該抵抗値を前記バイメタルの抵抗値として用いるので、完成品の状態でバイメタルの抵抗値を測定することができので、製造装置を複雑化することもない。
【0131】
請求項13の発明は、請求項1の発明において、前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの板厚とするので、バイメタルの板厚からなる特性測定値を用いて調整目標値を算出することができる。
【0132】
請求項14の発明は、請求項13の発明において、複数の前記部品要素の特性測定結果の内の別の一つとして、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの温度を変化させたときのバイメタルの変形量を用い、該バイメタルの変形量の測定及び板厚の測定を、バイメタルの撮像画像データを用いた画像処理により行うので、属性データとして用いるバイメタルの変形量の測定と板厚を同時に行え、測定過程の簡略化画は枯れる。
【0133】
請求項15の発明は、請求項13の発明において、前記バイメタルを構成するメタル層毎の板厚を計測して、前記調整目標値を補正するので、高精度の調整目標値を得ることができる。
【0134】
請求項16の発明は、請求項1の発明において、前記特性検査特性による検査結果が不良の場合、前記特性調整過程で特性調整を再度行う再調整過程を有し、該再調整過程では、予めサンプルとして回路遮断器を製造した際に得た、動作特性に関連する部品要素の複数の特性測定結果、特性調整過程での複数の特性調整量、特性検査過程での複数の検査結果の何れかの関数で調整目標値を表す関係式を用いて行い、再調整対象の回路遮断器の対応する夫々の結果に基づいて夫々の調整目標値の演算し、この演算によって求められた複数の調整目標値から最終的な再調整の調整目標値を演算するので、再調整時おいて、特性検査過程での検査結果を用いて調整目標値を算出することができる。
【図面の簡単な説明】
【図1】本発明方法を用いる製造装置の概要説明図である。
【図2】本発明方法を用いる製造装置で製造される回路遮断器の概要構成図である。
【図3】同上の実施例1におけるバイメタルの板厚の測定方法の説明図である。
【図4】同上の実施例1に用いる特性調整手段の概要説明図である。
【図5】同上の実施例2におけるバイメタルの変形量の測定方法の説明図である。
【図6】同上の実施例3におけるバイメタルの自己発熱による変形量の測定の説明図である。
【図7】同上の実施例3のバイメタルの自己発熱による温度変化とバイメタルの変形(変位)量の測定値の関係説明図である。
【図8】同上の実施例4における温度上昇変化のバイメタルの変形量の予測方法の説明図である。
【図9】同上の実施例5における目標調整値の補正についての説明図である。
【図10】本発明の実施形態2におけるバイメタルの特性調整方法例の説明図である。
【図11】同上の特性調整時と特性検査時のバイメタルの変形の相違の説明図である。
【図12】属性データとして用いる組立精度の説明図である。
【符号の説明】
1a… 特性測定手段
2a… データ登録手段
3 バーコード付与手段
4a… バーコード読取手段
5 演算処理部
5a 照合機能
5b 調整目標演算機能
6 特性調整手段
7 特性検査手段
I… 工程
a… 部品
A,B 半完成品
C,D 完成品
DB データベース[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a circuit breaker.
[0002]
[Prior art]
Conventionally, there is a method in which an inspection process by an inspection apparatus for inspecting a product and an adjustment process in which adjustment of characteristics is performed by an adjustment apparatus based on the inspection result are incorporated into the process (see Japanese Patent Application Laid-Open No. 7-13609). ). There is also a method for managing the inspection process of a product in which product series numbers are converted into barcodes and production / quality result data is collected using the barcode numbers as keys (see Japanese Patent Laid-Open No. 63-285999).
[0003]
[Problems to be solved by the invention]
In the former conventional example, since feedback is performed from the inspection device (post process) to the characteristic adjustment process (pre process), there is a problem in that useless time is generated. In other words, when the result of the target value correction can be obtained, there is a problem that many workpieces are already flowing to the subsequent process.
[0004]
In the latter conventional example, there is a problem that quality can be controlled but quality cannot be controlled.
[0005]
The present invention has been made in view of the above points, and an object thereof is to provide a circuit breaker manufacturing method capable of stabilizing the quality of a circuit breaker of a circuit breaker.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, according to the first aspect of the present invention, there are provided a plurality of assembly processes in which the component elements of the circuit breaker whose characteristics are measured are sequentially assembled, and various characteristics of the circuit breaker completed in the final assembly process. A characteristic adjustment process for adjusting the characteristics of the circuit breaker after the adjustment of the characteristic adjustment process, and a characteristic inspection process for inspecting a predetermined characteristic of the circuit breaker by the characteristic inspection means.
The characteristic measurement result is registered in the database in association with the ID given to the component element used for the first assembly, and the ID is attached to the component element by a barcode by means of barcode provision,
Thereafter, when the assembly process of sequentially assembling each component element is performed, the barcode of the component element is read by the barcode reading means, and the characteristic measurement result of the component element to be assembled is associated with the ID indicated by the barcode. In the characteristic adjustment process, the barcode of the component element in the assembled circuit breaker is read, and each component element registered in association with the ID indicated by the barcode is registered in the database. A characteristic measurement result is read from the database, an adjustment target value of a predetermined operating characteristic of the circuit breaker is calculated by the adjustment target value calculation means based on the read characteristic measurement result, and based on the adjustment target value by the characteristic adjustment means Performing characteristic adjustment and registering the characteristic adjustment amount in the database as a characteristic adjustment result in association with the ID,
In the characteristic inspection process, the circuit breaker which reads the barcode of the component element of the circuit breaker after characteristic adjustment and registers the inspection result by the characteristic inspection means in the database in association with the ID indicated by the barcode. In the manufacturing method of
A function of a plurality of characteristic measurement result values of component elements related to the operation characteristics of the circuit breaker manufactured in advance as a sample for collecting characteristic measurement results, by calculating the adjustment target value of the operation characteristics of the circuit breaker. And using a relational expression representing an adjustment target value.
[0007]
  In the invention of claim 2,A plurality of assembling processes for sequentially assembling each component element of the circuit breaker whose characteristics have been measured, a characteristic adjusting process for adjusting various characteristics of the circuit breaker completed in the final assembling process by the characteristic adjusting means, and the characteristic adjustment Consisting of a characteristic inspection process for inspecting a predetermined characteristic of the circuit breaker after adjustment of the process by a characteristic inspection means,
The characteristic measurement result is registered in the database in association with the ID given to the component element used for the first assembly, and the barcode is attached to the component element by the barcode providing means,
Thereafter, when the assembly process of sequentially assembling each component element is performed, the barcode of the component element is read by the barcode reading means, and the characteristic measurement result of the component element to be assembled is associated with the ID indicated by the barcode. In the characteristic adjustment process, the barcode of the component element in the assembled circuit breaker is read, and each component element registered in association with the ID indicated by the barcode is registered in the database. A characteristic measurement result is read from the database, an adjustment target value of a predetermined operating characteristic of the circuit breaker is calculated by the adjustment target value calculation means based on the read characteristic measurement result, and based on the adjustment target value by the characteristic adjustment means Performing characteristic adjustment and registering the characteristic adjustment amount in the database as a characteristic adjustment result in association with the ID,
In the characteristic inspection process, the circuit breaker which reads the barcode of the component element of the circuit breaker after characteristic adjustment and registers the inspection result by the characteristic inspection means in the database in association with the ID indicated by the barcode. In the manufacturing method of
The calculation of the operation target adjustment value of the circuit breaker is associated with the attribute target data of the component element related to the operation characteristic of the circuit breaker manufactured in advance as a sample for collecting characteristic measurement results and the adjustment target value. Using a tableIt is characterized by that.
[0008]
According to a third aspect of the present invention, in the first aspect of the invention, one of the characteristic measurement results of the component element is deformed when an overcurrent flows through the main contact circuit, and the temperature of the bimetal that operates the trip mechanism is changed. It is characterized by the amount of deformation of the bimetal when it is made.
[0009]
In the invention of claim 4, in the invention of claim 3, when measuring the deformation amount of the bimetal, either the measurement temperature before or after the change of the temperature of the bimetal is the same as the temperature at the time of characteristic adjustment. It is characterized by that.
[0010]
In the invention of claim 5, in the invention of claim 3 or 4, the bimetal is self-heated by energizing the bimetal to change the temperature of the bimetal, and the amount of deformation of the bimetal is measured. Features.
[0011]
In the invention of claim 6, in the invention of claim 4, the relational expression between the first deformation amount of the bimetal during energization and the second deformation amount of the bimetal during energization that is shorter than the time during energization. Is provided in advance, and the first deformation amount is calculated from the measurement result of the second deformation amount using the relational expression.
[0012]
The invention of claim 7 is characterized in that, in the invention of any one of claims 3 to 6, the temperature of the bimetal is determined using a plurality of temperature measurement points of the bimetal, and the temperature measured at the plurality of locations is used. .
[0013]
The invention of claim 8 is characterized in that, in the invention of claim 4, in the process of measuring the deformation amount of the bimetal, a temperature change of the bimetal is promoted by a heating promoting means or a cooling promoting means.
[0014]
The invention according to claim 9 is characterized in that, in the invention according to claim 5, when the bimetal is energized and deformed by self-heating of the bimetal, the deformation in the portion deviated from the energization current path of the bimetal is corrected.
[0015]
In the invention of claim 10, in the invention of claim 3, the bimetal is mechanically deformed corresponding to the adjustment target value calculated based on the relational expression, and the measurement position of the bimetal deformation amount is the free end of the bimetal. If not, the adjustment target value is corrected.
[0016]
According to an eleventh aspect of the present invention, in the first aspect of the invention, one of the characteristic measurement results of the component elements is a bimetal resistance value that deforms when an overcurrent flows through the main contact circuit and operates the trip mechanism. It is characterized by doing.
[0017]
According to a twelfth aspect of the invention, in the invention of the eleventh aspect, after assembling the member to which the bimetal is connected and assembling the member to the case of the circuit breaker, between the power supply side terminal and the load side terminal of the circuit breaker A resistance value is measured, and the resistance value is used as a resistance value of the bimetal.
[0018]
According to a thirteenth aspect of the present invention, in the first aspect of the invention, one of the characteristic measurement results of the component elements is a bimetal plate thickness that deforms when an overcurrent flows through the main contact circuit and operates the trip mechanism. It is characterized by doing.
[0019]
According to the invention of claim 14, in the invention of claim 13, as another one of the characteristic measurement results of the plurality of component elements, the trip mechanism is operated by being deformed when an overcurrent flows in the main contact circuit. The amount of deformation of the bimetal when the temperature of the bimetal to be changed is used, and the amount of deformation of the bimetal and the measurement of the plate thickness are measured by image processing using imaged image data of the bimetal.
[0020]
According to a fifteenth aspect of the invention, in the thirteenth aspect of the invention, the adjustment target value is corrected by measuring a plate thickness of each metal layer constituting the bimetal.
[0021]
According to a sixteenth aspect of the present invention, in the first aspect of the present invention, when the inspection result by the characteristic inspection characteristic is defective, there is a readjustment process in which the characteristic adjustment is performed again in the characteristic adjustment process. One of multiple characteristic measurement results of component elements related to operating characteristics, multiple characteristic adjustment amounts in the characteristic adjustment process, and multiple inspection results in the characteristic inspection process obtained when the circuit breaker was manufactured as a sample Using the relational expression representing the adjustment target value with the function of, and calculating each adjustment target value based on each corresponding result of the circuit breaker to be readjusted, and a plurality of adjustment targets obtained by this calculation An adjustment target value for final readjustment is calculated from the value.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0023]
(Embodiment 1)
FIG. 1 shows a schematic diagram of the entire manufacturing apparatus, and I to V at the bottom of the drawing show processes from parts to final finished products (completed circuit breakers). , Shows a process in which a component element (hereinafter referred to as a component) a used for the final assembly when assembling a circuit breaker is provided, and a process (process) II is a semi-finished product A in which another component b is assembled to the component a. Step (process) III shows a step of assembling another part c to the semi-finished product A to obtain a semi-finished product B. Here, in order to simplify the explanation, the process of obtaining a semi-finished product is shown in two processes II and III, but there are processes corresponding to the number of parts to be assembled to the circuit breaker to be manufactured. It is. The semi-finished product B finally obtained corresponds to the product that has been assembled with all the components for constituting the circuit breaker. Now, after obtaining the final semi-finished product B, the process (process) IV shows the process of adjusting the characteristics of the semi-finished product B to obtain a provisional finished product C, and the process (process) V is completed. A process of inspecting characteristics of the product C to obtain a final finished product D is shown.
[0024]
Next, the process in each process I-V is demonstrated based on FIG.
[0025]
First, in step I, characteristic measuring means 1a for measuring the characteristic of the part a to be assembled first is provided, and the characteristic specific to the part a is measured by the characteristic measuring means 1a. For example, if it is the base of a circuit breaker, it is the size of the base.
[0026]
A data registration unit 2a that generates attribute IDs for process management in subsequent processes II to V in association with the measurement results, and registers the characteristic data of the component a in the database DB in association with the IDs, and data The ID generated by the registration means 2a is printed as a barcode on a part (for example, a housing to be described later) a by a barcode applying means 3 comprising an appropriate means such as printing or printing with a laser. Of course, this marking position is set to a position where bar code reading means 4a to 4d provided in the subsequent steps II to V can read. After the specific measurement result is registered in the database DB and a barcode indicating the ID is marked in this step I, the part a is sent to the next step II.
[0027]
When the part a is sent to the process II, the barcode data marked with the part a is read by the barcode reading means 4a and the assigned ID data is passed to the data registration means 2b. On the other hand, the characteristic measuring means 1b which has measured the characteristic of the part b assembled to the part a in this step II sends the characteristic measurement result to the data registration means 2b. Thereby, the data registration unit 2b registers the characteristic measurement result of the component b in the database DB in association with the read ID. In this step II, the semi-finished product A is assembled by assembling the component b to the component a, and this semi-finished product A is sent to the next step III.
[0028]
When the semi-finished product A is sent to the process III, the bar code reading unit 4b reads the bar code marked on the part a and passes the ID data provided to the data registration unit 2c. On the other hand, the characteristic measuring means 1c that has measured the characteristic of the part c assembled to the semi-finished product A in this step III sends the characteristic measurement result to the data registration means 2c. Thereby, the data registration unit 2c registers the characteristic measurement result of the component c in the database DB in association with the read ID. Now, the assembled circuit breaker can be obtained by assembling the part c to the semi-finished product A in this process III. However, this circuit breaker has not been subjected to characteristic adjustment and inspection, so it is a semi-finished product. This semi-finished product B will be sent to the next step IV.
[0029]
Step IV constitutes a characteristic adjustment step (process), and reads the barcode marked on the part a in the assembled circuit breaker and passes the ID data provided to the arithmetic processing unit 5. The arithmetic processing unit 5 is in the collation function 5a and reads out (collates) the characteristic measurement results of the component parts a to c registered in the database DB corresponding to the ID. Then, a characteristic adjustment target value (characteristic adjustment amount) is calculated based on the read characteristic measurement result and a characteristic value as a standard set corresponding to each of the component parts a to c registered in advance. Calculation is performed by the function 5b, and the characteristic adjustment means 7 is controlled on the basis of the calculation result to adjust the characteristics of predetermined predetermined parts of the semi-finished product B sent to obtain the finished product C.
[0030]
Then, the characteristic adjustment amount is registered in the database DB by the data registration means 2d in association with the ID.
[0031]
Then, the adjusted finished product C is sent to the next step V, that is, the characteristic inspection step (process). In this process V, first, the barcode attached to the part a is read to read the assigned ID data, which is then transferred to the data registration means 2e. Then, the characteristic inspection means 7 conducts a characteristic inspection to determine whether or not the characteristic value set as a standard as a circuit breaker can be obtained by the characteristic inspection means 7. If the inspection satisfies the standard, it is judged as a non-defective product and completed. It becomes goods D. On the other hand, when the standard is not satisfied, the process is returned to the previous process IV, and the process returned to the process IV is performed in order to perform the adjustment again.
[0032]
The data registration means 2e registers the inspection results (inspection judgment results and characteristic inspection result values) in the database DB in association with the ID.
[0033]
In this way, the characteristics of the part b... To be assembled based on the ID given to the part a first provided, the characteristic adjustment amount when the characteristic adjustment is performed, and the inspection result are registered in the database DB. It is possible to read out the characteristic measurement result of the circuit breaker component manufactured based on the ID, the inspection result of the finished product, and the characteristic adjustment amount at the time of the characteristic adjustment, and the production management of the product can be performed.
[0034]
Incidentally, the characteristic to be adjusted in the characteristic adjustment step IV is specifically adjusted to have the most influence on the characteristic inspection as a circuit breaker. For example, as shown in FIG. 2, in the case of a circuit breaker that uses the bimetal 10 for overcurrent detection and tripping, the bimetal 10 is an adjustment target.
[0035]
In this case, in the characteristic adjustment in step IV, the arithmetic processing unit 5 reads out the characteristic measurement result values (attribute data such as plate thickness, width, volume resistivity, etc.) of the bimetal 10 from a plurality of database DBs, and the characteristic measurement result values. Based on the above, the amount by which the free end 10a of the bimetal 10 is deformed, that is, the adjustment target value is calculated. Then, the operating characteristic is adjusted by deforming the free end 10a of the bimetal 10 with the characteristic adjustment amount corresponding to the adjustment target value calculated by the characteristic adjusting means 6.
[0036]
The circuit breaker to be manufactured in the present embodiment is in a state where one end of the movable contact plate 21 pivotally supported by the trip mechanism T is locked to the locking portion 20a of the latch plate 20 when the circuit breaker is closed. And the movable contact 22 at the other end is in contact with the fixed contact 23 of the fixed contact plate 24. Then, an excessive current flows through the energization path, the bimetal 10 is thermally deformed due to self-heating, etc., and the position of the free end 10a is displaced, so that when the latch plate 20 is operated, the locking portion 20a of the latch plate 20 moves. As a result, the state of engagement with the one end of the movable contact plate 21 is released, whereby the trip mechanism T trips, and the movable contact plate 21 rotates counterclockwise in the drawing, and the movable contact 22 at the tip of the trip mechanism T is rotated. Is separated from the fixed contact 23 of the fixed contact plate 24 and is in a forced open state.
[0037]
25 is an operation handle, 26 is a conductive plate for energization, 27 is a housing, 28 is a connecting spring for connecting the operation handle 25 and the movable contact plate 21, 29 is a braided wire forming an energization path, and 30 is a distribution board. A power supply side terminal 31 comprising a metal fitting for coupling a conductive bar disposed therein, and a load side terminal 31 comprising a quick connection terminal. The bar code 32 is marked on the lower corner of one end of the outer surface of the housing 27.
[0038]
Now, in the present embodiment, an example in the case of calculating the adjustment target value of the deformation amount of the free end 10a of the bimetal 10 will be described.
[0039]
Example 1
First, between the attribute data that is the characteristic measurement result value and the adjustment target value,
Y = f (X1, X2, XThree…)
(However, X1... attribute data 1, X2... Attribute data 2, XThree... attribute data 3, Y ... adjustment target value)
Introducing the relational expression
For example, the relational expression
Y = 0.5X1+ 0.04X2+ 0.3XThree+0.37… ▲ 1 ▼
As
X1(Bimetal thickness) = 0.5mm
X2(Bimetal metal resistance) = 5.0 mΩ
XThree(Deformation amount at the free end 10a of the bimetal 10 when the temperature is raised from a predetermined temperature to a certain temperature (for example, + 50 ° C.)) = 0.6 mm
In this case, if the value is substituted into the equation (1), the adjustment target value can be obtained as Y = 1 mm.
[0040]
Of course, the number of attribute data need not be three.
[0041]
In two cases, Y = f (X1, X2)
In the case of four, Y = f (Xl, X2, XThree, XFour)
More than that can be considered.
[0042]
By the way, the deformation measurement of the bimetal 10 can be performed by a contact type using a linear scale or the like, a non-contact type (laser displacement meter, etc.), or image processing. In this embodiment, the linear scale 13 used at the time of operation adjustment described later is used. Then, measurement is performed from the direction in which the bimetal 10 moves.
[0043]
The plate thickness is measured using the following image processing.
[0044]
That is, a window hole H for imaging the free end 10a of the bimetal 10 in the circuit breaker housing 27 from an oblique side is opened as shown in FIG. It is possible to take an image with. The shape of the window hole H may be a shape other than a square, and instead of the window hole H, the portion of the housing 27 corresponding to the window hole H may be formed at least transparently.
[0045]
First, as shown in FIG. 3, the bimetal 10 is imaged, and the upper left coordinate of the captured image is (0, 0), and the lower right coordinate is (512, 512). That is, the captured image is assumed to be composed of 512 pixels × 512 pixels.
[0046]
Next, the pixel thickness of the bimetal 10 is measured using an appropriate image processing apparatus. That is, the difference between the (X) coordinates on the screen of point B and point C of the bimetal 10 image indicated by the solid line in FIG. 3 is 300−240 = 60 pixels.
[0047]
Next, the imaging camera or the circuit breaker is moved in the (X) direction by a certain amount (here, 1 mm), and the bimetal 10 is imaged. In FIG. 3, the image of this bimetal 10 is shown with a broken line. Then, from the difference between the moved constant amount (1 mm), the point A, and the pixel at the point B of the image of the bimetal 10 previously picked up (240−140 = 100 pixels), how many mm one pixel corresponds to is calculated. Here, since 1/100 = 0.01 mm / pixel, 60 × 0.01 mm = 0.6 mm is obtained from the number of pixels 60 previously measured.
[0048]
In this way, the plate thickness can be measured and the plate thickness can be used as attribute data.
[0049]
When the adjustment target amount is calculated by combining the attribute data based on the plate thickness with the attribute data and the deformation amount of the bimetal 10 due to the temperature change described above, the displacement measurement and the plate thickness measurement of the bimetal 10 are simultaneously performed by image processing. By doing so, measurement can be performed in one process, and the measurement process can be reduced by one.
[0050]
Thus, when the adjustment target value Y is obtained as described above, the operation characteristics are adjusted based on the adjustment target value Y as follows. That is, the connecting plate (metal plate) 11 supporting the bimetal 10 is engaged with a jig 12 provided at the tip of the motor M as shown in FIG. 4, and the connecting plate 11 is twisted and deformed by rotating the motor M. And adjusting by changing the tip position of the bimetal 10. In this case, the rotation of the motor M is controlled while detecting the displacement of the bimetal 10 using the linear scale 13. In other words, the linear scale 13 converts the displacement amount into an electric amount, and the electric amount signal is amplified by the amplifier 14 and then taken into the comparison means 15. The comparison means 15 calculates the deformation amount indicated by the electric amount signal and the arithmetic processing. The adjustment target value Y given from the unit 6 is compared, and when the adjustment target value Y matches the deformation amount, a stop signal is output to the motor driving means 16 to stop the twisting operation of the motor M with respect to the connection plate 11. Here, the linear scale 13, the amplifier 14, the comparison means 15, the drive means 16, the motor M, and the jig 12 constitute the characteristic adjustment means 7.
[0051]
In the above description, the resistance value of the bimetal 10 is cited as one of the attribute data used for calculating the adjustment target value. In this case, the resistance value is measured with the bimetal 10 alone, so that the adjustment target value is obtained with high accuracy. Ideal for.
[0052]
However, it is economically disadvantageous to measure the resistance value with the bimetal 10 alone.
[0053]
That is, the resistance value of the bimetal 10 alone is measured, the barcode is applied to the bimetal 10 by the barcode applying means, the bimetal 10 is assembled to the electric circuit, and the barcode is newly installed in the housing 27 of the circuit breaker. In the case of attaching to 27 (the barcode attached to the bimetal 10 cannot be read after the case is assembled), since a plurality of barcode attaching means are required, the cost of the manufacturing apparatus becomes high.
[0054]
In addition, when the bimetal 10 is assembled on the electric circuit, and is attached to the housing 27, a bar code is applied to measure the resistance value of the bimetal 10 alone, and therefore a hole for inserting a measurement terminal into the housing 27 is required. The cost of parts increases because a lid that closes the door is required.
[0055]
For this reason, there is a problem in measuring the resistance value with the bimetal 10 alone.
[0056]
Therefore, in this embodiment, the resistance value between the load side terminal 30 and the power source side terminal 31 of the electric circuit is measured, and the measurement result is substituted for the resistance value of the bimetal 10, so that the resistance measurement of the bimetal 10 has a complicated configuration. This can be done without using a manufacturing apparatus. That is, it can be adapted to the manufacturing apparatus of FIG. Further, since the resistance value can be measured in the state of the finished product, the resistance value and the data at the time of the characteristic inspection can be managed by the bar code 32 provided on the outer surface of the housing 27.
[0057]
A plurality of samples (circuit breakers) are manufactured in advance, and in this manufacturing process, characteristic measurement results, inspection results, etc. used as attribute data are collected. From these collected results, each attribute data of the above relational expression is collected. Corresponding constants and the like are obtained in advance to create a relational expression.
[0058]
Example 2
In the relational expression as in the first embodiment, when the relationship between the attribute data and the adjustment target value is complicated, it may be difficult to be expressed. Therefore, in this embodiment, for example, the adjustment target value is easily obtained using a table such as Table 1.
[0059]
[Table 1]
Figure 0003849591
[0060]
Here, when the thickness of the bimetal 10 is not in the table of Table 1, for example, X1= 0.64mm, X2= 0.43 mm, this table can be used to determine as follows.
[0061]
1) Since 0.64 mm is between 0.6 mm and 0.7 mm, either one is used. Since 0.43 mm is between 0.4 mm and 0.5 mm, either one is used.
[0062]
Table 2 is an example in which the last digit of the value is rounded off to obtain the adjustment target value of 0.9 mm. However, the last digit may be rounded up or down.
[0063]
[Table 2]
Figure 0003849591
[0064]
2) Since 0.64 mm is between 0.6 mm and 0.7 mm, both are used. Since 0.43 mm is between 0.4 mm and 0.5 mm, both are used. In other words, weighting is performed.
[0065]
The procedure is shown below.
[0066]
First, plate thickness X1When the adjustment target value is obtained when A is 0.64 mm, A and B of the deformation [mm] at + 50 ° C. are weighted as shown in Table 3.
[0067]
A = (0.04 × 1.0 + 0.06 × 0.9) /0.1=0.94 (2)
B = (0.04 × 1.2 + 0.06 × 1.0) /0.1=1.08 (3)
In the formulas (2) and (3), 0.04 is the difference of the plate thickness 0.64 with respect to the plate thickness 0.6, 0.06 is the difference of the plate thickness 0.7 with respect to the plate thickness 0.64, 0.1 is The difference between the adjustment target amounts is shown.
[0068]
[Table 3]
Figure 0003849591
[0069]
And the adjustment target value when the plate thickness is 0.64 mm is extracted as shown in Table 4.
[0070]
[Table 4]
Figure 0003849591
[0071]
From the table shown in Table 4, X2The adjustment target value is obtained when is 0.043 mm.
[0072]
Adjustment target value = (0.03 × 1.08 + 0.07 × 0.94) /0.1=0, 982
As a result, the adjustment target value is obtained as 0.982 mm, and the adjustment target value can be obtained more accurately than in the case of 1) described above.
[0073]
Even when there are three attribute data, it is possible to cope with this by providing a plurality of tables for each third parameter.
[0074]
Therefore, correction at the time of operation becomes easy by using this table. Of course, the correction is handled by changing the value of the table.
[0075]
By the way, in this embodiment, the thickness of the bimetal 10 and the amount of deformation of the free end of the bimetal 10 when increased by 50 ° C. are used as attribute data. As described above, the temperature of the bimetal 10 is used as one of the attribute data. A method of determining the adjustment target value when using the deformation amount ΔL of the bimetal 10 when Δt is changed will be described.
[0076]
First, a plurality of samples (circuit breakers) are manufactured for collecting characteristic measurement results for obtaining a relational expression. In this manufacturing process, bimetal positions at different temperatures are measured by the following procedure, and a constant temperature difference (Δt ) Is measured, and a relational expression is calculated from the adjustment target value.
[0077]
That is, as shown in FIG. 5 (a), the temperature t1 (for example, 10 ° C.) is measured in the measurement process of the position of the free end 10a of the bimetal 10 shown in FIG. The bimetal 10 is cooled by a cooling device until the deformation amount L1 of the bimetal 10 at that time is measured, and then the bimetal 10 is heated to a temperature t2 (for example, 60 ° C.) in the measurement process shown in FIG. The amount of deformation L2 at that time is measured by heating, and the bimetal 10 deformation amount (L2-L1) ΔL of a constant temperature difference (60 ° C.-10 ° C.) Δt is obtained from this measurement result. At the same time, a small current of a certain magnitude is passed through the bimetal 10 to measure the voltage across the bimetal 10 to obtain the resistance value of the bimetal 10. That is, the deformation amount ΔL and resistance value of the bimetal 10 at a constant temperature difference Δt are also used as attribute data.
[0078]
5 (a) to 5 (c) correspond to the process of assembly and characteristic measurement in step III of FIG. 1, and after these measurement processes, in the next step IV, the arithmetic processing unit 5 performs half-processing from the database DB. A characteristic measurement value of the component element (bimetal 10) of the circuit breaker that is the finished product B is read, and the deformation amount of the free end 10a of the bimetal 10 by Δt (when changed by 50 ° C.) based on this characteristic measurement value ΔL is calculated to determine the adjustment target value.
[0079]
Table 5 shows the measurement results of Samples 1, 2, and 3 as a basis for calculating the relational expression for obtaining the adjustment target value.
[0080]
[Table 5]
Figure 0003849591
[0081]
After the adjustment target value is determined, a relational expression is calculated from the adjustment target value.
[0082]
Adjustment target value = a × (ΔL / Δt) + b × (E / I) + α (1)
Next, the measured value of each sample 1-3
a = 7.5 b = 5.0 α = −35
And the relational expression is
Adjustment target value = 7.5 × (ΔL / Δt) + 5.0 × (E / I) −35
It can be expressed.
[0083]
Subsequent adjustment target value calculation of the circuit breaker manufactured will use the above-mentioned relational expression.
[0084]
Of course, when three attribute data are used, there are four unknowns to be obtained, so there are four measurement samples, and when there are four attribute data, there are five unknowns to be obtained, so there are five measurement samples. The simultaneous legal formula will be solved.
[0085]
Thus, with respect to the circuit breaker that has been sent to the process IV as the semi-finished product B through the process III using the relational expression calculated from the measured values and the adjustment target values of the samples 1 to 3, Based on the measured characteristic value (attribute data) of the measured free end 10a of the bimetal 10, the arithmetic processing unit 5 calculates a target adjustment value from the relational expression, and the characteristic adjustment means 6 from the calculated target adjustment value. In this case, the amount of deformation of the free end 10a of the bimetal 10 is adjusted. In this case, as shown in FIG. 5D, the ambient temperature t3 is cooled to a normal temperature of 20 to 25 ° C.
In the process of FIGS. 5A to 5D, heating is required once and cooling is required twice, but t2 = t3 = 60 ° C. (the bimetal position measurement process of FIG. 5C and FIG. 5). The characteristic adjustment process of (d) is performed within the same temperature), and the second cooling is unnecessary, and the characteristic adjustment can be performed immediately after the position measurement of the free end 10a of the bimetal 10, so the process (process) is reduced. Is possible.
[0086]
When t0 = t1 = 10 ° C. (the assembly process of FIG. 5A and the position measurement process of the free end 10a of the bimetal 10 of FIG. 5B are performed within the same temperature), the bimetal is immediately after assembly. Since the position can be measured, the time can be shortened.
[0087]
In contrast to the case of FIG. 5 where there are three temperature parameters (error factors), the error can be reduced by using two temperature parameters as described above.
[0088]
Example 3
In the second embodiment, as a method of changing the temperature of the bimetal 10, a method of changing the ambient temperature is adopted. However, in this embodiment, a method of changing the temperature by energizing the bimetal 10 to cause self-heating. There is. That is, as shown in FIG. 2, a large current is passed between the power supply side terminal 31 and the load side terminal 30 in the circuit breaker in the closed state to cause self-heating.
[0089]
In this case, the characteristic measurement of the deformation amount of the free end 10a of the bimetal 10 having a constant temperature difference Δt is performed by the following procedure.
[0090]
First, after the assembly process shown in FIG. 6A is completed, in the process of measuring the position of the free end 10a of the bimetal 10 in FIG. 6B, the temperature (t1) and position (L1) of the bimetal 10 before the bimetal 10 is energized. Next, the temperature (t2) and position (L2) of the bimetal 10 during energization (temperature saturation state) of the bimetal 10 are measured, and Δt = t2-t1, ΔL = L2-L1 from the measured values. Ask for. The attribute data to be combined as this attribute data may be the resistance value of the bimetal 10 obtained from the current value I during energization and the voltage value E of the bimetal 10 as in the case described above. The temperature of the bimetal 10 may be measured by directly bringing the temperature sensor into contact with the bimetal 10 or by non-contact detection using a radiation temperature sensor. The target adjustment value is calculated by the arithmetic processing unit 5 in the same manner as described above.
[0091]
Based on this calculation result, the free end 10a of the bimetal 10 is adjusted by the characteristic adjusting means 6 in the characteristic adjusting process of FIG.
[0092]
FIG. 7 shows changes in the temperature and position of the bimetal 10 from when the bimetal 10 is energized until the temperature of the bimetal 10 is saturated from the temperature (t1) and position (L1) before the bimetal 10 is energized. Indicates.
[0093]
The method of changing the temperature of the bimetal 10 by energization is a method adapted to the actual use of the circuit breaker, and since ΔL can be measured using the deformation of the bimetal 10 by the method, the error factor is reduced. Can do. In particular, since the deformation of the bimetal considering the influence of the surrounding environment such as heat generation and heat dissipation can be measured, the measurement accuracy is good.
[0094]
Example 4
In the third embodiment, energization of the bimetal 5 takes a long time of 1200 seconds until the temperature of the bimetal 5 is saturated. Therefore, in this embodiment, the bimetal when the energization time is shortened to extremely shorten the energization time. A relational expression between the amount of deformation Δs and the amount of deformation ΔL of the bimetal is obtained in advance, and this relational expression can be used.
[0095]
That is, the deformation amount Δs of the free end 10a of the bimetal 10 for example 5 seconds after the start of energization is measured using a sample in advance, and the deformation amount ΔL of the bimetal at a temperature difference ΔT with respect to the temperature at which the temperature rise is saturated is measured. From these measurement results, a relational expression for calculating the deformation amount of the bimetal is calculated in advance.
[0096]
Here, in this embodiment, an arithmetic expression for the deformation amount of bimetal, ΔL = 2Δs + 0.2, is adopted.
[0097]
Thus, for example, the amount of deformation of the free end 10a of the bimetal 10 after 5 seconds from the start of energization of the circuit breaker to be adjusted is measured, and from the measured value Δs, the temperature is calculated from the temperature t1 at the start of energization according to the above equation. The deformation amount ΔL at the temperature difference ΔT of the temperature t2 at which the rise is saturated is obtained.
[0098]
FIG. 8B shows measured values Δs1 (= 017 mm), Δs2 (= 0.16 mm), and Δs3 of deformation amounts of the free end 10a of the bimetal 10 after 5 seconds from the start of energization of the three circuit breakers to be adjusted. (= 0.15 mm) are obtained, and when the deformation amounts ΔL1, ΔL2, and ΔL3 are obtained from the arithmetic expressions based on the measured values Δs1, Δs2, and Δs3, ΔL1 = 0.54 mm and ΔL2 = 0. 52 mm and ΔL3 = 0.50 mm. FIG. 8A shows changes in the deformation amount of the free end 10a of the bimetal 10 from the start of energization to the temperature saturation by applying ΔL1 to ΔL3 corresponding to the time when the temperature of the bimetal 10 is saturated. .
[0099]
Thus, in the method of the present embodiment, the deformation amount ΔL is predicted when, for example, 5 seconds elapses from the start of energization, and the above-described relationship between the adjustment target value and the attribute data is calculated from the predicted deformation amount ΔL. Since the target adjustment amount of the circuit breaker can be obtained, in the method of changing the temperature of the bimetal 10 by energizing the bimetal 10, the time until the target adjustment amount is calculated after the temperature of the bimetal 10 is saturated. Compared with the method of measuring ΔL, it can be greatly shortened.
[0100]
When the temperature of the bimetal 10 is changed as in the second to fourth embodiments, the deformation amount ΔL of the free end 10a of the bimetal 10 associated with the change is measured, and this measured value is used as attribute data. By making the temperature measurement location with respect to the bimetal 10 into a plurality of locations and setting the average value of the plurality of locations as the temperature of the bimetal 10, the variation in the measurement temperature due to the measurement locations can be alleviated.
[0101]
Example 5
By the way, when the method of measuring the amount of deformation of the free end 10a of the bimetal 10 caused by the heat generated by energizing the bimetal 10 and causing the bimetal 10 to self-heat as in Examples 3 and 4 of the first embodiment, the current to the bimetal 10 is energized. The way of deforming the part that is out of the electric circuit is different from the way of deforming the part that becomes the energizing electric circuit. Therefore, in the present embodiment, the measurement with higher accuracy is performed by correcting the deformation of the portion deviating from the energization circuit.
[0102]
That is, in the energizing circuit of the circuit breaker shown in FIG. 2, as shown in FIG. 9, one end of the bimetal 10 is a fixed end and the other end is a free end 10a, and the free end 10a is an operating point for operating the latch plate 20. ing. A braided wire 28 is joined to the bimetal 10 by welding or caulking (point A) between the fixed end of the bimetal 10 and the operating point (free end 10a) in order to form an energization circuit.
[0103]
The deformation of the bimetal during the deformation measurement becomes a quadratic curve from the fixed end to the free end. At the time of the characteristic inspection, since the test is actually performed by flowing electricity through the energization circuit (arrow i), the curve is deformed into a quadratic curve from the fixed end to the point A and from the point A to the free end 10a. An arrow x indicates a deformation direction.
[0104]
Since the difference between the deformation methods of the bimetal 10 is an error at the time of deformation measurement and the characteristic inspection in the process V, in this embodiment, the arithmetic processing unit 5 corrects the deformation of the straight line portion at the characteristic inspection. An adjustment target value is calculated.
[0105]
Here, the error can be calculated as follows. That is, k is a constant representing the degree of deformation of the quadratic curve, a ′ is the inclination of the bimetal 10 at point A when energized, and the length from the fixed end to the free end 10a is L. , The length from the fixed end to point A is L0Then,
kL2− [KL0 2+ A '(LL0]] = (L-L0) [K (L + L0) + A ']
And the error can be expressed.
[0106]
And when energized, said L, L0, A ′ is measured, and the value is adjusted with high accuracy by setting the value as a new adjustment target value in addition to the adjustment target value before correction obtained by calculating the value of the above formula. it can.
(Embodiment 2)
In Example 5, when the temperature of the bimetal 10 is changed and deformed, and the adjustment target value is calculated based on the deformation amount, the difference from the deformation of the bimetal 10 at the time of characteristic inspection is corrected. In the present embodiment, when the bimetal 10 is deformed by the characteristic adjusting means 6 based on the adjustment target value, the deformation amount measurement at the time of adjustment and the deformation amount measurement of the bimetal 10 at the time of characteristic inspection are performed according to the position of the deformation measurement point. This is a method of dealing with a point where an error occurs between them.
[0107]
That is, as shown in FIG. 10A, a method of adjusting the position of the free end 10a by screwing the adjustment screw 40 through the bimetal 10 of the circuit breaker and pressing and displacing the fixed end of the bimetal 10 at its tip. When the operation characteristics are adjusted by mechanical deformation as in the method of adjusting the position of the free end 10a by plastically deforming the fixed end portion as shown in 10 (b), the bimetal 10 is linearly deformed. On the other hand, when the operation is inspected by energizing as in the characteristic inspection, the bimetal 10 is deformed by a quadratic curve as described above. FIG. 10 shows the difference between the deformation (a) during characteristic adjustment and the deformation (b) of the bimetal 10 during characteristic inspection. An error occurs when the free end 10a (operation point) is used as a deformation measurement point. However, when the deformation measurement point is positioned on the fixed end side from the free end 10a due to space, an error occurs in the deformation of the bimetal 10 at the deformation measurement point even if the deformation of the bimetal 10 at the action point is the same ( (Point A and point B in FIG. 11).
[0108]
This error can be calculated as follows. That is, k is a constant representing the degree of deformation of the quadratic curve at the time of characteristic inspection, a ″ is the slope at the time of adjustment, and the height distance from the fixed end to the deformation measurement point (point A, point B) is fixed to L0. When the distance from the end to the free end 10a is L, the deformation of the bimetal 10 at the point of action (free end 10a) is the same,
kL2= A "L a" = kL
Therefore, the error at the measurement position is
a "L0-KL0 2= KLL0-KL0 2= KL0(LL0)
It can be expressed as.
[0109]
Accordingly, the arithmetic processing unit 5 can reduce the value to the adjustment target value calculated before the correction to obtain a new adjustment target value, and provide the corrected adjustment target value to the characteristic adjustment unit 6 so that the adjustment can be performed with high accuracy. become.
[0110]
By the way, in each of the embodiments described above, the attribute data used when calculating the adjustment target value uses a combination of the resistance value of the bimetal 10 and the deformation amount when the temperature of the bimetal 10 is changed. It is also possible to use a plate thickness or the like. Next, these other attribute data will be described.
[0111]
As a correction method, the thickness of each metal layer of the bimetal 10 may be measured using the same image processing as described above, and the adjustment target value may be corrected using the data. In other words, if the plate thickness ratio of the metal layer changes, the curvature coefficient, Young's modulus, volume resistivity, specific heat, specific gravity, etc. change, so if the adjustment target value is corrected by this plate thickness ratio, the characteristics can be adjusted with high accuracy. .
[0112]
Further, attribute data other than the above may be used as attribute data. For example, the assembly accuracy can be used as one of the attribute data.
[0113]
In other words, the assembly accuracy, which is the most important element in a circuit breaker, is the allowance γ of the movable contact plate 21 in the locking portion 20a of the latch plate 20 as shown in FIG. If the latching allowance γ is large, the latch is difficult to come off even if the bimetal 10 is deformed by passing an electric current. Therefore, the latching allowance γ is imaged from the outside through the window hole H provided in the housing 27 as in the case of this plate thickness. The method of taking an image with a camera and measuring the allowance γ by image processing is the same as in the case of the plate thickness.
[0114]
Furthermore, the final shipment inspection result and the acceleration test result can be used as attribute data.
[0115]
Here, the final shipment inspection result is a result of a test in which a test is performed in the process V under a condition in which a circuit breaker is actually used to determine a non-defective product or a defective product. In other words, a rated current is passed and the circuit breaker does not trip, and a current with a current value larger than the rated value (for example, 125%, 25A for a 20A rating) is passed and falls within 1 hour. It is a result of a test.
[0116]
The accelerated test result is that the test takes a very long time in the final shipping test, so the current flowing during the test is increased (for example, 200%, 40A for a 20A rating) for a certain time (for example, 15 ± 3 seconds). It is the result of the test to make it non-defective if the circuit breaker falls during the period. Note that the attribute data consisting of these results can be used only for readjustment to go through the process V.
[0117]
Other attribute data includes the volume resistivity and Young's modulus of the bimetal 10, the characteristic adjustment means No for performing characteristic adjustment, the ambient temperature, humidity, the No of the characteristic inspection means 7 for performing characteristic inspection in the process V, and the like. is there.
[0118]
Further, as a method of measuring the deformation amount of the bimetal 10 described above, a method such as an eddy current method or an electrostatic method may be adopted in addition to the sensor or method described above.
[0119]
【The invention's effect】
According to the first aspect of the present invention, the characteristic adjusting means adjusts various characteristics of the circuit breaker completed in the final assembly process by a plurality of assembly processes in which the component elements of the circuit breaker whose characteristics are measured are sequentially assembled. An adjustment process, and a characteristic inspection process in which a predetermined characteristic of the circuit breaker after the adjustment of the characteristic adjustment process is inspected by a characteristic inspection means,
The characteristic measurement result is registered in the database in association with the ID given to the component element used for the first assembly, and the ID is attached to the component element by a barcode by means of barcode provision,
Thereafter, when the assembly process of sequentially assembling each component element is performed, the barcode of the component element is read by the barcode reading means, and the characteristic measurement result of the component element to be assembled is associated with the ID indicated by the barcode. In the characteristic adjustment process, the barcode of the component element in the assembled circuit breaker is read, and each component element registered in association with the ID indicated by the barcode is registered in the database. A characteristic measurement result is read from the database, an adjustment target value of a predetermined operating characteristic of the circuit breaker is calculated by the adjustment target value calculation means based on the read characteristic measurement result, and based on the adjustment target value by the characteristic adjustment means Performing characteristic adjustment and registering the characteristic adjustment amount in the database as a characteristic adjustment result in association with the ID,
In the characteristic inspection process, the circuit breaker which reads the barcode of the component element of the circuit breaker after characteristic adjustment and registers the inspection result by the characteristic inspection means in the database in association with the ID indicated by the barcode. In the manufacturing method of
A function of a plurality of characteristic measurement result values of component elements related to the operation characteristics of the circuit breaker manufactured in advance as a sample for collecting characteristic measurement results, by calculating the adjustment target value of the operation characteristics of the circuit breaker. Because it uses a relational expression that expresses the adjustment target value in, the characteristics and characteristics of multiple circuit breakers can be managed and controlled individually, and the effects of the characteristics of the component elements can be accurately reflected in the adjustment target value. The circuit breaker quality of the circuit breaker can be stabilized.
[0120]
  The invention of claim 2A plurality of assembling processes for sequentially assembling each component element of the circuit breaker whose characteristics have been measured, a characteristic adjusting process for adjusting various characteristics of the circuit breaker completed in the final assembling process by the characteristic adjusting means, and the characteristic adjustment Consisting of a characteristic inspection process for inspecting a predetermined characteristic of the circuit breaker after adjustment of the process by a characteristic inspection means,
The characteristic measurement result is registered in the database in association with the ID given to the component element used for the first assembly, and the barcode is attached to the component element by the barcode providing means,
Thereafter, when the assembly process of sequentially assembling each component element is performed, the barcode of the component element is read by the barcode reading means, and the characteristic measurement result of the component element to be assembled is associated with the ID indicated by the barcode. In the characteristic adjustment process, the barcode of the component element in the assembled circuit breaker is read, and each component element registered in association with the ID indicated by the barcode is registered in the database. A characteristic measurement result is read from the database, an adjustment target value of a predetermined operating characteristic of the circuit breaker is calculated by the adjustment target value calculation means based on the read characteristic measurement result, and based on the adjustment target value by the characteristic adjustment means Performing characteristic adjustment and registering the characteristic adjustment amount in the database as a characteristic adjustment result in association with the ID,
In the characteristic inspection process, the circuit breaker which reads the barcode of the component element of the circuit breaker after characteristic adjustment and registers the inspection result by the characteristic inspection means in the database in association with the ID indicated by the barcode. In the manufacturing method of
The calculation of the operation target adjustment value of the circuit breaker is associated with the attribute target data of the component element related to the operation characteristic of the circuit breaker manufactured in advance as a sample for collecting characteristic measurement results and the adjustment target value. Because it is done using the tableCorrection during operation for calculating the target value becomes easy.
[0121]
According to a third aspect of the present invention, in the first aspect of the invention, one of the characteristic measurement results of the component elements is deformed when an overcurrent flows through the main contact circuit, and the temperature of the bimetal that operates the trip mechanism is changed. Since the amount of deformation of the bimetal at this time is used, the adjustment target value can be calculated using a characteristic measurement value composed of the amount of deformation of the bimetal.
[0122]
According to a fourth aspect of the present invention, in the invention of the third aspect, when the deformation amount of the bimetal is measured, either the measurement temperature before or after the change of the bimetal temperature is the same as the temperature at the time of characteristic adjustment. Therefore, it is possible to shorten the time lapse in a series of processes of target adjustment value calculation and characteristic adjustment from measurement of the deformation amount of the bimetal.
[0123]
The invention of claim 5 is the invention of claim 3 or 4, wherein the bimetal self-heats by energizing the bimetal, changes the temperature of the bimetal, and measures the amount of deformation of the bimetal. The amount of deformation of the bimetal can be measured in accordance with the actual use of the circuit breaker, so that the error factor can be reduced.
[0124]
The invention of claim 6 is the relational expression between the first deformation amount of the bimetal during energization and the second deformation amount of the bimetal during energization shorter than the time during energization in the invention of claim 4. Since the first deformation amount is calculated from the measurement result of the second deformation amount using the relational expression, the time for obtaining the bimetal deformation amount is shortened. Can do.
[0125]
The invention of claim 7 is the invention according to any one of claims 3 to 6, wherein the bimetal temperature measurement points are determined as a plurality of positions, and the temperature of the bimetal is determined using the measurement temperatures at the plurality of positions. The adjustment value can be calculated.
[0126]
In the invention of claim 8, in the invention of claim 4, in the process of measuring the deformation amount of the bimetal, the temperature change of the bimetal is promoted by the heating promoting means or the cooling promoting means, so that the manufacturing process can be shortened.
[0127]
The invention of claim 9 is the invention of claim 5, wherein when the bimetal is energized and deformed by self-heating of the bimetal, the deformation in the portion deviated from the energization current path of the bimetal is corrected. A target value can be calculated.
[0128]
The invention of claim 10 is the invention of claim 3, wherein the bimetal is mechanically deformed corresponding to the adjustment target value calculated based on the relational expression, and the measurement position of the bimetal deformation amount is the free end of the bimetal. Otherwise, the adjustment target value is corrected, so that the adjustment target value can be calculated with high accuracy.
[0129]
According to an eleventh aspect of the present invention, in the first aspect, one of the characteristic measurement results of the component elements is a bimetal resistance value that deforms when an overcurrent flows through the main contact circuit and operates a trip mechanism. Therefore, the adjustment target value can be calculated using the characteristic measurement value including the resistance value of the bimetal.
[0130]
According to a twelfth aspect of the present invention, in the invention of the eleventh aspect, after assembling the member to which the bimetal is connected and assembling the member to the case of the circuit breaker, between the power supply side terminal and the load side terminal of the circuit breaker Since the resistance value is measured and the resistance value is used as the resistance value of the bimetal, the resistance value of the bimetal can be measured in the state of the finished product, so that the manufacturing apparatus is not complicated.
[0131]
According to a thirteenth aspect of the present invention, in the first aspect of the invention, one of the characteristic measurement results of the component elements is a bimetal plate thickness that deforms when an overcurrent flows through the main contact circuit and operates the trip mechanism. Therefore, the adjustment target value can be calculated using the characteristic measurement value made of the thickness of the bimetal.
[0132]
According to a fourteenth aspect of the present invention, in the invention of the thirteenth aspect, as another one of the characteristic measurement results of the plurality of component elements, the trip mechanism is operated by being deformed when an overcurrent flows in the main contact circuit The bimetal deformation amount when the temperature of the bimetal to be changed is used, and the bimetal deformation amount and the plate thickness are measured by image processing using the bimetal captured image data. Measurement of the amount of deformation and plate thickness can be performed at the same time, and the simplified image of the measurement process will die.
[0133]
In the invention of claim 15, in the invention of claim 13, the thickness of each metal layer constituting the bimetal is measured and the adjustment target value is corrected, so that a highly accurate adjustment target value can be obtained. .
[0134]
According to a sixteenth aspect of the present invention, in the first aspect of the invention, when an inspection result based on the characteristic inspection characteristic is defective, a re-adjustment process is performed in which the characteristic adjustment is performed again in the characteristic adjustment process. One of multiple characteristic measurement results of component elements related to operating characteristics, multiple characteristic adjustment amounts in the characteristic adjustment process, and multiple inspection results in the characteristic inspection process obtained when the circuit breaker was manufactured as a sample Using the relational expression representing the adjustment target value with the function of, and calculating each adjustment target value based on each corresponding result of the circuit breaker to be readjusted, and a plurality of adjustment targets obtained by this calculation Since the final adjustment target value for readjustment is calculated from the value, the adjustment target value can be calculated using the inspection result in the characteristic inspection process at the time of readjustment.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of a manufacturing apparatus using a method of the present invention.
FIG. 2 is a schematic configuration diagram of a circuit breaker manufactured by a manufacturing apparatus using the method of the present invention.
FIG. 3 is an explanatory diagram of a method for measuring the thickness of a bimetal in Example 1 of the same.
FIG. 4 is a schematic explanatory diagram of characteristic adjusting means used in the first embodiment;
FIG. 5 is an explanatory diagram of a method for measuring a deformation amount of a bimetal in the second embodiment.
FIG. 6 is an explanatory diagram of measurement of the deformation amount due to self-heating of the bimetal in Example 3 described above.
FIG. 7 is an explanatory diagram of the relationship between the temperature change due to self-heating of the bimetal of Example 3 and the measured value of the deformation (displacement) amount of the bimetal.
FIG. 8 is an explanatory diagram of a method for predicting the deformation amount of a bimetal due to a temperature rise change in the fourth embodiment.
FIG. 9 is an explanatory diagram for correction of a target adjustment value in the fifth embodiment;
FIG. 10 is an explanatory diagram of an example of a bimetal characteristic adjustment method in Embodiment 2 of the present invention.
FIG. 11 is an explanatory diagram of a difference in deformation of the bimetal during characteristic adjustment and characteristic inspection.
FIG. 12 is an explanatory diagram of assembly accuracy used as attribute data.
[Explanation of symbols]
1a ... Characteristic measuring means
2a ... Data registration means
3 Barcode giving means
4a ... Bar code reading means
5 Arithmetic processing part
5a Verification function
5b Adjustment target calculation function
6 Characteristics adjustment means
7 Characteristic inspection means
I ... Process
a ... Parts
A, B Semi-finished product
C, D finished product
DB database

Claims (16)

特性測定された回路遮断器の各部品要素を順次組み付けて行く複数の組立過程と、最終の組立過程で完成した回路遮断器の諸特性を特性調整手段で調整する特性調整過程と、該特性調整過程の調整後の回路遮断器の所定の特性を特性検査手段で検査する特性検査過程とから成り、
最初の組み付けに用いる部品要素に与えるIDに対応付けて特性測定結果をデータベースに登録するとともに、当該部品要素にバーコード付与手段により前記IDをバーコードで付し、
以後順次各部品要素を組み付けて行く組立過程を経る際に、前記部品要素のバーコードをバーコード読取手段で読み取って、該バーコードで示されるIDに対応付けて組み付ける部品要素の特性測定結果を前記データベースに順次登録し、特性調整過程においては、組み立て完成された回路遮断器における前記部品要素のバーコードを読み取って、当該バーコードで示されるIDに対応付けて登録されている各部品要素の特性測定結果を前記データベースから読み出し、読み出した特性測定結果に基づいて回路遮断器の所定の動作特性の調整目標値を調整目標値演算手段で演算して、特性調整手段で調整目標値に基づいた特性調整を行うとともに前記IDに対応付けて特性調整量を特性調整結果として前記データベースに登録し、
特性検査過程では、特性調整後の回路遮断器の前記部品要素のバーコードを読み取って、該バーコードで示されるIDに対応付けて、特性検査手段による検査結果を前記データベースに登録する回路遮断器の製造方法において、
前記回路遮断器の動作特性の調整目標値の演算を、予め特性測定結果収集用のサンプルとして所定数製造された回路遮断器の動作特性に関連する部品要素の複数の特性測定結果の値の関数で調整目標値を表す関係式を用いて行うことを特徴とする回路遮断器の製造方法。
A plurality of assembling processes for sequentially assembling each component element of the circuit breaker whose characteristics have been measured, a characteristic adjusting process for adjusting various characteristics of the circuit breaker completed in the final assembling process by the characteristic adjusting means, and the characteristic adjustment Consisting of a characteristic inspection process for inspecting a predetermined characteristic of the circuit breaker after adjustment of the process by a characteristic inspection means,
The characteristic measurement result is registered in the database in association with the ID given to the component element used for the first assembly, and the barcode is attached to the component element by the barcode providing means,
Thereafter, when the assembly process of sequentially assembling each component element is performed, the barcode of the component element is read by the barcode reading means, and the characteristic measurement result of the component element to be assembled is associated with the ID indicated by the barcode. In the characteristic adjustment process, the barcode of the component element in the assembled circuit breaker is read, and each component element registered in association with the ID indicated by the barcode is registered in the database. A characteristic measurement result is read from the database, an adjustment target value of a predetermined operating characteristic of the circuit breaker is calculated by the adjustment target value calculation means based on the read characteristic measurement result, and based on the adjustment target value by the characteristic adjustment means Performing characteristic adjustment and registering the characteristic adjustment amount in the database as a characteristic adjustment result in association with the ID,
In the characteristic inspection process, the circuit breaker which reads the barcode of the component element of the circuit breaker after characteristic adjustment and registers the inspection result by the characteristic inspection means in the database in association with the ID indicated by the barcode. In the manufacturing method of
A function of a plurality of characteristic measurement result values of component elements related to the operation characteristics of the circuit breaker manufactured in advance as a sample for collecting characteristic measurement results, by calculating the adjustment target value of the operation characteristics of the circuit breaker. A method for manufacturing a circuit breaker, characterized in that it is performed using a relational expression representing an adjustment target value.
特性測定された回路遮断器の各部品要素を順次組み付けて行く複数の組立過程と、最終の組立過程で完成した回路遮断器の諸特性を特性調整手段で調整する特性調整過程と、該特性調整過程の調整後の回路遮断器の所定の特性を特性検査手段で検査する特性検査過程とから成り、
最初の組み付けに用いる部品要素に与えるIDに対応付けて特性測定結果をデータベースに登録するとともに、当該部品要素にバーコード付与手段により前記IDをバーコードで付し、
以後順次各部品要素を組み付けて行く組立過程を経る際に、前記部品要素のバーコードをバーコード読取手段で読み取って、該バーコードで示されるIDに対応付けて組み付ける部品要素の特性測定結果を前記データベースに順次登録し、特性調整過程においては、組み立て完成された回路遮断器における前記部品要素のバーコードを読み取って、当該バーコードで示されるIDに対応付けて登録されている各部品要素の特性測定結果を前記データベースから読み出し、読み出した特性測定結果に基づいて回路遮断器の所定の動作特性の調整目標値を調整目標値演算手段で演算して、特性調整手段で調整目標値に基づいた特性調整を行うとともに前記IDに対応付けて特性調整量を特性調整結果として前記データベースに登録し、
特性検査過程では、特性調整後の回路遮断器の前記部品要素のバーコードを読み取って、該バーコードで示されるIDに対応付けて、特性検査手段による検査結果を前記データベースに登録する回路遮断器の製造方法において、
前記回路遮断器の動作特性の調整目標値の演算を、予め特性測定結果収集用のサンプルとして所定数製造された回路遮断器の動作特性に関連する部品要素の属性データと調整目標値とを関連付けたテーブルを用いて行うことを特徴とする回路遮断器の製造方法。
A plurality of assembling processes for sequentially assembling each component element of the circuit breaker whose characteristics have been measured, a characteristic adjusting process for adjusting various characteristics of the circuit breaker completed in the final assembling process by the characteristic adjusting means, and the characteristic adjustment Consisting of a characteristic inspection process for inspecting a predetermined characteristic of the circuit breaker after adjustment of the process by a characteristic inspection means,
The characteristic measurement result is registered in the database in association with the ID given to the component element used for the first assembly, and the barcode is attached to the component element by the barcode providing means,
Thereafter, when the assembly process of sequentially assembling each component element is performed, the barcode of the component element is read by the barcode reading means, and the characteristic measurement result of the component element to be assembled is associated with the ID indicated by the barcode. In the characteristic adjustment process, the barcode of the component element in the assembled circuit breaker is read, and each component element registered in association with the ID indicated by the barcode is registered in the database. A characteristic measurement result is read from the database, an adjustment target value of a predetermined operating characteristic of the circuit breaker is calculated by the adjustment target value calculation means based on the read characteristic measurement result, and based on the adjustment target value by the characteristic adjustment means Performing characteristic adjustment and registering the characteristic adjustment amount in the database as a characteristic adjustment result in association with the ID,
In the characteristic inspection process, the circuit breaker which reads the barcode of the component element of the circuit breaker after characteristic adjustment and registers the inspection result by the characteristic inspection means in the database in association with the ID indicated by the barcode. In the manufacturing method of
The calculation of the operation target adjustment value of the circuit breaker is associated with the attribute target data of the component element related to the operation characteristic of the circuit breaker manufactured in advance as a sample for collecting characteristic measurement results and the adjustment target value. method of manufacturing a circuit breaker you and performing by using the table.
前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの温度を変化させたときのバイメタルの変形量とすることを特徴とする請求項1記載の回路遮断器の製造方法。One of the characteristic measurement results of the component element is a deformation amount of the bimetal when the temperature of the bimetal that is deformed when the overcurrent flows through the main contact circuit and the trip mechanism is operated is changed. The circuit breaker manufacturing method according to claim 1. 前記バイメタルの変形量を測定する場合に、バイメタルの温度の変化前若しくは変化後の測定温度のどちらか一方を、特性調整時の温度と同一としていることを特徴とする請求項3記載の回路遮断器の製造方法。4. The circuit breaker according to claim 3, wherein when measuring the amount of deformation of the bimetal, one of the measured temperatures before and after the change of the temperature of the bimetal is the same as the temperature at the time of characteristic adjustment. Manufacturing method. 前記バイメタルに通電することよって該バイメタルの自己発熱させて該バイメタルの温度に変化を与え、前記バイメタルの変形量の測定を行うことを特徴とする請求項3又は4記載の回路遮断器の製造方法。5. The method of manufacturing a circuit breaker according to claim 3, wherein the bimetal is caused to self-heat by energizing the bimetal to change the temperature of the bimetal, and the amount of deformation of the bimetal is measured. . 前記通電時の前記バイメタルの第1の変形量と、該通電時の時間より短くした通電時のバイメタルの第2の変形量との関係式を予め設けておき、該関係式を用いて前記第2の変形量の測定結果より、前記第1の変形量を算出することを特徴とする請求項4記載の回路遮断器の製造方法。A relational expression between the first deformation amount of the bimetal at the time of energization and the second deformation amount of the bimetal at the time of energization that is shorter than the time during energization is provided in advance, and the first The circuit breaker manufacturing method according to claim 4, wherein the first deformation amount is calculated from a measurement result of the deformation amount of 2. 前記バイメタルの温度測定点を複数箇所として、これら複数箇所の測定温度を用いてバイメタルの温度を決定することを特徴とする請求項3乃至6の何れか記載の回路遮断器の製造方法The method for manufacturing a circuit breaker according to any one of claims 3 to 6, wherein a plurality of temperature measurement points of the bimetal are used and the temperature of the bimetal is determined using the measurement temperatures of the plurality of locations. 前記バイメタルの変形量測定過程で、バイメタルの温度変化を加熱促進手段若しくは冷却促進手段により促進させることを特徴とする請求項4記載の回路遮断器の製造方法。5. The circuit breaker manufacturing method according to claim 4, wherein, in the process of measuring the deformation amount of the bimetal, the temperature change of the bimetal is promoted by a heating promotion means or a cooling promotion means. 前記バイメタルに通電してバイメタルの自己発熱によって変形させる場合に、バイメタルの通電電路から外れた部分における変形分を補正することを特徴とする請求項5記載の回路遮断器の製造方法。6. The method for manufacturing a circuit breaker according to claim 5, wherein when the bimetal is energized and deformed by self-heating of the bimetal, a deformation in a portion of the bimetal deviated from the energization circuit is corrected. 前記関係式に基づき算出される調整目標値に対応させてバイメタルを機械的に変形させ、且つバイメタルの変形量の測定位置がバイメタルの自由端でない場合に、前記調整目標値を補正することを特徴とする請求項3記載の回路遮断器の製造方法。The bimetal is mechanically deformed in correspondence with the adjustment target value calculated based on the relational expression, and the adjustment target value is corrected when the measurement position of the bimetal deformation amount is not the free end of the bimetal. A method for manufacturing a circuit breaker according to claim 3. 前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの抵抗値とすることを特徴とする請求項1記載の回路遮断器の製造方法。2. The circuit breaker according to claim 1, wherein one of the characteristic measurement results of the component element is a resistance value of a bimetal which is deformed when an overcurrent flows in the main contact circuit and operates a trip mechanism. Manufacturing method. 前記バイメタルが連結されている部材を組み立て、回路遮断器のケースに組み付けた後に、回路遮断器の電源側端子と負荷側端子との間の抵抗値を測定し、該抵抗値を前記バイメタルの抵抗値として用いることを特徴とする請求項11記載の回路遮断器の製造方法。After assembling the member to which the bimetal is connected and assembling the circuit breaker case, the resistance value between the power supply side terminal and the load side terminal of the circuit breaker is measured, and the resistance value is determined by the resistance of the bimetal. The circuit breaker manufacturing method according to claim 11, wherein the circuit breaker is used as a value. 前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの板厚とすることを特徴とする請求項1記載の回路遮断器の製造方法。2. The circuit breaker according to claim 1, wherein one of the characteristic measurement results of the component element is a bimetal plate thickness which is deformed when an overcurrent flows in the main contact circuit and operates a trip mechanism. Manufacturing method. 複数の前記部品要素の特性測定結果の内の別の一つとして、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの温度を変化させたときのバイメタルの変形量を用い、該バイメタルの変形量の測定及び前記板厚の測定を、バイメタルの撮像画像データを用いた画像処理により行うことを特徴とする請求項13記載の回路遮断器の製造方法。As another one of the characteristics measurement results of the plurality of component elements, the amount of deformation of the bimetal when the temperature of the bimetal that deforms when the overcurrent flows through the main contact circuit and operates the trip mechanism is changed. 14. The method for manufacturing a circuit breaker according to claim 13, wherein the measurement of the deformation amount of the bimetal and the measurement of the plate thickness are performed by image processing using captured image data of the bimetal. 前記バイメタルを構成するメタル層毎の板厚を計測して、前記調整目標値を補正することを特徴とする請求項13記載の回路遮断器の製造方法。14. The method for manufacturing a circuit breaker according to claim 13, wherein the adjustment target value is corrected by measuring a plate thickness of each metal layer constituting the bimetal. 前記特性検査特性による検査結果が不良の場合、前記特性調整過程で特性調整を再度行う再調整過程を有し、該再調整過程では、予めサンプルとして回路遮断器を製造した際に得た、動作特性に関連する部品要素の複数の特性測定結果、特性調整過程での複数の特性調整量、特性検査過程での複数の検査結果の何れかの関数で調整目標値を表す関係式を用いて行い、再調整対象の回路遮断器の対応する夫々の結果に基づいて夫々の調整目標値の演算し、この演算によって求められた複数の調整目標値から最終的な再調整の調整目標値を演算することを特徴とする請求項1記載の回路遮断器の製造方法。If the inspection result based on the characteristic inspection characteristic is defective, the characteristic adjustment process has a readjustment process for performing characteristic adjustment again. In the readjustment process, the operation obtained when the circuit breaker is manufactured as a sample in advance. Performed by using a relational expression that expresses the adjustment target value as a function of multiple characteristic measurement results of component elements related to characteristics, multiple characteristic adjustment amounts in the characteristic adjustment process, and multiple inspection results in the characteristic inspection process Then, each adjustment target value is calculated based on each corresponding result of the circuit breaker to be readjusted, and the final readjustment adjustment target value is calculated from a plurality of adjustment target values obtained by this calculation The method of manufacturing a circuit breaker according to claim 1.
JP2002184890A 2002-06-25 2002-06-25 Circuit breaker manufacturing method Expired - Fee Related JP3849591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184890A JP3849591B2 (en) 2002-06-25 2002-06-25 Circuit breaker manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184890A JP3849591B2 (en) 2002-06-25 2002-06-25 Circuit breaker manufacturing method

Publications (2)

Publication Number Publication Date
JP2004031086A JP2004031086A (en) 2004-01-29
JP3849591B2 true JP3849591B2 (en) 2006-11-22

Family

ID=31180694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184890A Expired - Fee Related JP3849591B2 (en) 2002-06-25 2002-06-25 Circuit breaker manufacturing method

Country Status (1)

Country Link
JP (1) JP3849591B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334179B2 (en) * 2009-04-01 2013-11-06 河村電器産業株式会社 Circuit breaker

Also Published As

Publication number Publication date
JP2004031086A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
CN108603913A (en) The method and apparatus that damaged condition or life expectancy to power semiconductor modular are estimated
JP4629735B2 (en) Method, apparatus and computer program for predicting life expectancy of products having multiple components
US7683649B2 (en) Testing system contactor
US20060045164A1 (en) System and method of compensation for device mounting and thermal transfer error
CN111758038A (en) Method and system for estimating degradation of wire bonded power semiconductor modules
WO2024103677A1 (en) Surface density device calibration apparatus and surface density device calibration method
JP3849591B2 (en) Circuit breaker manufacturing method
Pape et al. Generation and verification of boundary independent compact thermal models for active components according to the DELPHI/SEED methods
US20090020588A1 (en) Method for manufacturing product involving solder joining, solder joining apparatus, soldering condition verification method, reflow apparatus, and solder joining method
JP6005490B2 (en) Method for evaluating temperature of magnetic contactor and contactor for implementing the method
CN114459525A (en) Calibration method and device suitable for Hall sensor and storage medium
JP2016537641A (en) Method and apparatus for determining information relating to the mass of a semiconductor wafer
JP2010027729A (en) Prober and semiconductor wafer testing method using the same
US6881595B2 (en) Method of and apparatus for testing the quality of printed circuits
JP3849569B2 (en) Circuit breaker manufacturing method and manufacturing apparatus thereof
US20220128502A1 (en) Sensor Device and Method for Operating A Sensor Device
US5646540A (en) Apparatus and method for measuring electromagnetic ageing parameter of a circuit element and predicting its values
US7044635B2 (en) Temperature correction method for thermal analysis apparatus and thermal analysis apparatus
JP2009109314A (en) Semiconductor device and its inspecting method
JP2006047113A (en) Manufacturing method for rotation detector
Edler et al. Reference material for Seebeck coefficients
JP2004055437A (en) Current adjusting method of thermal overcurrent relay
JP2002324473A (en) Circuit breaker, its adjusting method and adjusting device
EP0395149A1 (en) Method and device for accelerated determining of ageing of one or more elements with an electromagnetic ageing parameter
JP4200268B2 (en) Electromagnetic relay manufacturing method, electromagnetic relay, and electromagnetic relay manufacturing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees