JP2004031086A - Manufacturing method of circuit breaker - Google Patents

Manufacturing method of circuit breaker Download PDF

Info

Publication number
JP2004031086A
JP2004031086A JP2002184890A JP2002184890A JP2004031086A JP 2004031086 A JP2004031086 A JP 2004031086A JP 2002184890 A JP2002184890 A JP 2002184890A JP 2002184890 A JP2002184890 A JP 2002184890A JP 2004031086 A JP2004031086 A JP 2004031086A
Authority
JP
Japan
Prior art keywords
bimetal
characteristic
circuit breaker
adjustment
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002184890A
Other languages
Japanese (ja)
Other versions
JP3849591B2 (en
Inventor
Masahiro Kirigatani
桐ヶ谷 昌広
Kazuji Kawamura
川村 和司
Shigeru Makino
牧野 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002184890A priority Critical patent/JP3849591B2/en
Publication of JP2004031086A publication Critical patent/JP2004031086A/en
Application granted granted Critical
Publication of JP3849591B2 publication Critical patent/JP3849591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Breakers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a circuit breaker capable of stabilizing quality of the circuit breaker. <P>SOLUTION: A bar code printed on a part 'a' is read by a bar-code reading means 4c and a plurality of measured values of parts characteristics are read out from the group of data registered to a data base DB corresponding to the ID indicated by the bar code at a process IV, after finishing assembling processes I to III. A target value of control is calculated at an arithmetic control part 5 depending on a relational formula using those plurality of measured values of parts characteristics as an attribute data. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
回路遮断器の製造方法に関するものである。
【0002】
【従来の技術】
従来、製品を検査する検査装置による検査工程と、検査結果に基づいて特性調整を調整装置で行う調整工程とを工程に組み込んである組立工程とする方法がある(特開平7−13609号公報参照)。また製品系列の番号をバーコード化して、バーコード番号をキーとして、生産・品質の実績データを収集する製品の検査工程の管理にかかる方法もある(特開昭63−285999号公報参照)。
【0003】
【発明が解決しようとする課題】
前記の前者の従来例では、検査装置(後工程)より、特性調整工程(前工程)へフィードバックを行うため、無駄な時間が発生するという課題があった。つまり目標値の修正の結果ができるときには、既に多くのワークが後工程へ流れていると問題があった。
【0004】
また後者の従来例では、品質の管理はできるが、品質の制御は不可能という問題があった。
【0005】
本発明は、上述の点に鑑みて為されたもので、その目的とするところは、回路遮断器の回路遮断器の品質安定が図れる回路遮断器の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上述の目的を達成するために請求項1の発明では、特性測定された回路遮断器の各部品要素を順次組み付けて行く複数の組立過程と、最終の組立過程で完成した回路遮断器の諸特性を特性調整手段で調整する特性調整過程と、該特性調整過程の調整後の回路遮断器の所定の特性を特性検査手段で検査する特性検査過程とから成り、
最初の組み付けに用いる部品要素に与えるIDに対応付けて特性測定結果をデータベース登録するとともに、当該部品要素にバーコード付与手段により前記IDをバーコードで付し、
以後順次各部品要素を組み付けて行く組立過程を経る際に、前記部品要素のバーコードをバーコード読取手段で読み取って、該バーコードで示されるIDに対応付けて組み付ける部品要素の特性測定結果を前記データベースに順次登録し、特性調整過程においては、組み立て完成された回路遮断器における前記部品要素のバーコードを読み取って、当該バーコードで示されるIDに対応付けて登録されている各部品要素の特性測定結果を前記データベースから読み出し、読み出した特性測定結果に基づいて回路遮断器の所定の動作特性の調整目標値を調整目標値演算手段で演算して、特性調整手段で調整目標値に基づいた特性調整を行うとともに前記IDに対応付けて特性調整量を特性調整結果として前記データベースに登録し、
特性検査過程では、特性調整後の回路遮断器の前記部品要素のバーコードを読み取って、該バーコードで示されるIDに対応付けて、特性検査手段による検査結果を前記データベースに登録する回路遮断器の製造方法において、
前記回路遮断器の動作特性の調整目標値の演算を、予め特性測定結果収集用のサンプルとして所定数製造された回路遮断器の動作特性に関連する部品要素の複数の特性測定結果の値の関数で調整目標値を表す関係式を用いて行うことを特徴とする。
【0007】
請求項2の発明では、請求項1の発明において、前記関係式を、テーブル形式で表していることを特徴とする 。
【0008】
請求項3の発明では、請求項1の発明において、前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの温度を変化させたときのバイメタルの変形量とすることを特徴とする。
【0009】
請求項4の発明では、請求項3の発明において、前記バイメタルの変形量を測定する場合に、バイメタルの温度の変化前若しくは変化後の測定温度のどちらか一方を、特性調整時の温度と同一としていることを特徴とする。
【0010】
請求項5の発明では、請求項3又は4の発明において、前記バイメタルに通電することよって該バイメタルの自己発熱させて該バイメタルの温度に変化を与え、前記バイメタルの変形量の測定を行うことを特徴とする。
【0011】
請求項6の発明では、請求項4の発明において、前記通電時の前記バイメタルの第1の変形量と、該通電時の時間より短くした通電時のバイメタルの第2の変形量との関係式を予め設けておき、該関係式を用いて前記第2の変形量の測定結果より、前記第1の変形量を算出することを特徴とする。
【0012】
請求項7の発明では、請求項3乃至6の何れかの発明において、前記バイメタルの温度測定点を複数箇所として、これら複数箇所の測定温度を用いてバイメタルの温度を決定することを特徴とする。
【0013】
請求項8の発明では、請求項4の発明において、前記バイメタルの変形量測定過程で、バイメタルの温度変化を加熱促進手段若しくは冷却促進手段により促進させることを特徴とする。
【0014】
請求項9の発明では、請求項5の発明において、前記バイメタルに通電してバイメタルの自己発熱によって変形させる場合に、バイメタルの通電電路から外れた部分における変形分を補正することを特徴とする。
【0015】
請求項10の発明では、請求項3の発明において、前記関係式に基づき算出される調整目標値に対応してバイメタルを機械的に変形させ、且つバイメタルの変形量の測定位置がバイメタルの自由端でない場合に、前記調整目標値を補正することを特徴とする。
【0016】
請求項11の発明では、請求項1の発明において、前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの抵抗値とすることを特徴とする。
【0017】
請求項12の発明では、請求項11の発明において、前記バイメタルが連結されている部材を組み立て、回路遮断器のケースに組み付けた後に、回路遮断器の電源側端子と負荷側端子との間の抵抗値を測定し、該抵抗値を前記バイメタルの抵抗値として用いることを特徴とする。
【0018】
請求項13の発明では、請求項1の発明において、前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの板厚とすることを特徴とする。
【0019】
請求項14の発明では、請求項13の発明において、複数の前記部品要素の特性測定結果の内の別の一つとして、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの温度を変化させたときのバイメタルの変形量を用い、該バイメタルの変形量の測定及び前記板厚の測定を、バイメタルの撮像画像データを用いた画像処理により行うことを特徴とする。
【0020】
請求項15の発明では、請求項13の発明において、前記バイメタルを構成するメタル層毎の板厚を計測して、前記調整目標値を補正することを特徴とする。
【0021】
請求項16の発明では、請求項1の発明において、前記特性検査特性による検査結果が不良の場合、前記特性調整過程で特性調整を再度行う再調整過程を有し、該再調整過程では、予めサンプルとして回路遮断器を製造した際に得た、動作特性に関連する部品要素の複数の特性測定結果、特性調整過程での複数の特性調整量、特性検査過程での複数の検査結果の何れかの関数で調整目標値を表す関係式を用いて行い、再調整対象の回路遮断器の対応する夫々の結果に基づいて夫々の調整目標値の演算し、この演算によって求められた複数の調整目標値から最終的な再調整の調整目標値を演算することを特徴とする。
【0022】
【発明の実施の形態】
以下本発明を実施形態により説明する。
【0023】
(実施形態1)
図1は製造装置全体の概要図を示しており、図の最も下段のI〜Vは部品から最終完成品(完成された回路遮断器)までの工程を示しており、工程(過程)Iは、回路遮断器を組み立てる際の最の組み付けに用いる部品要素(以下部品と称する)aが供される工程を示し、工程(過程)IIは他の部品bを部品aに組み付けて半完成品Aを得る工程を示し、工程(過程)IIIは半完成品Aに別の部品cを組み付けて半完成品Bを得る工程を示す。ここで説明を簡単にするために半完成品を得る工程をII,IIIの2つの工程で示すが、本来的には製造しようとする回路遮断器の組み付ける部品点数に対応した工程が存在するものである。最終的に得られた半完成品Bは回路遮断器を構成するための全ての部品の組み付けを終了したものに対応する。さてこの最終的な半完成品Bを得た後の、工程(過程)IVは半完成品Bの特性調整を行って暫定的な完成品Cを得る工程を示し、工程(過程)Vは完成品Cの特性を検査して、最終完成品Dを得る工程を示す。
【0024】
次に各工程I〜Vにおける処理を図1に基づいて説明する。
【0025】
まず工程Iでは最初に組み付けられる部品aの特性を測定する特性測定手段1aが設けられ、この特性測定手段1aにより部品a固有の特性を測定する。例えば回路遮断器のベースであればベースの大きさ等である。
【0026】
この測定結果に対応付けて以後の工程II〜Vにおける工程管理のための属性IDを生成するとともに、データベースDBに当該IDに対応付けて部品aの特性データを登録するデータ登録手段2aと、データ登録手段2aにより生成されたIDをバーコードとして部品(例えば後述するハウジング)aに印刷、レーザー等による焼き付けなど適宜手段からなるバーコード付与手段3により印す。この印す位置は以後の工程II〜Vに設けられるバーコード読取手段4a〜4dが読み取り可能な位置に設定しているのは勿論である。この工程Iで特定測定結果のデータベースDBへの登録とIDを示すバーコードが印された後、部品aは次の工程IIへ送られることになる。
【0027】
工程IIへ部品aが送られてくると、バーコード読取手段4aにより部品aに印されたバーコードを読み取って付与されているIDデータをデータ登録手段2bに渡す。一方この工程IIで部品aに組み付ける部品bの特性を測定した特性測定手段1bはその特性測定結果をデータ登録手段2bに送る。これによりデータ登録手段2bは、部品bの特性測定結果を読み取ったIDに対応付けてデータベースDBに登録する。さてこの工程IIにおいて、部品bを部品aに組み付けることで半完成品Aが組み立てられ、この半完成品Aは次の工程IIIへ送られることになる。
【0028】
工程IIIへ半完成品Aが送られてくると、バーコード読取手段4bにより部品aに印されたバーコードを読み取って付与されているIDデータをデータ登録手段2cに渡す。一方この工程IIIで半完成品Aに組み付ける部品cの特性を測定した特性測定手段1cはその特性測定結果をデータ登録手段2cに送る。これによりデータ登録手段2cは、部品cの特性測定結果を読み取ったIDに対応付けてデータベースDBに登録する。さてこの工程IIIで部品cを半完成品Aに組み付けることで組み立て完成された回路遮断器が得られることになるが、この回路遮断器は、特性調整や検査が終了していないため半完成品Bと見なされ、この半完成品Bは次の工程IVへ送られることになる。
【0029】
工程IVは特性調整工程(過程)を構成し、組み立て完成された回路遮断器における前記部品aに印されたバーコードを読み取って付与されているIDデータを演算処理部5へ渡す。演算処理部5は照合機能5aにおり当該IDに対応してデータベースDBに登録している構成部品a〜cの特性測定結果をデータベースDBから読み出す(照合する)。そしてこの読み出して特性測定結果と、予め登録されている各構成部品a〜cに対応して設定される規格としての特性値とに基づいて特性調整目標値(特性調整量)を調整目標値演算機能5bによって演算し、その演算結果に基づいて特性調整手段7を制御して送られてきた半完成品Bの所定の所定の部品の特性を調整し、完成品Cを得る。
【0030】
そして前記IDに対応付けて特性調整量をデータ登録手段2dによりデータベースDBに登録する。
【0031】
そして調整済みの完成品Cは次の工程V、つまり特性検査工程(過程)へ送られる。この工程Vでは、まず部品aに印されたバーコードを読み取って付与されているIDデータを読み取り、データ登録手段2eに渡す。そして特性検査手段7により回路遮断器として規格として設定されている特性値が得られるか否かを特性検査手段7により特性検査を行い、この検査において規格を満たす場合には良品として判断され、完成品Dとなる。一方規格を満たさない場合には、前の工程IVに戻されて、再度調整を行うために、工程IVに戻される処理が為される。
【0032】
またデータ登録手段2eにより前記IDに対応付けて検査結果(検査の判断結果及び特性検査結果値)をデータベースDBに登録される。
【0033】
このようにして最初に供される部品aに付したIDに基づいて組み付ける部品b…の特性、特性調整を行った際の特性調整量、そして検査結果がデータベースDBに登録されることで、このIDに基づいて製造された回路遮断器の部品の特性測定結果、完成品の検査結果、また特性調整時の特性調整量を読み出すことができて製品の製造管理が行えることになる。
【0034】
ところで、前記の特性調整の工程IVにおいて調整する特性は、具体的には回路遮断器としての特性検査に一番影響のあるものが調整される。例えば図2に示すよう過電流検出と引き外しにバイメタル10を用いる回路遮断器の場合にはバイメタル10が調整対象となる。
【0035】
この場合工程IVでの特性調整に当たって、演算処理部5はそのバイメタル10の特性測定結果の値(板厚、幅、体積抵抗率等の属性データ)を複数データベースDBから読み出し、この特性測定結果値に基づいてバイメタル10の自由端10aを変形させる量、つまり調整目標値を演算する。そして特性調整手段6により演算された調整目標値に対応する特性調整量でバイメタル10の自由端10aの変形させて動作特性を調整するのである。
【0036】
尚本実施形態における製造対象の回路遮断器は閉極時には、トリップ機構Tにより回動自在に枢支されている可動接点板21の一端がラッチ板20の係止部20aに係止された状態で保持され、他端の可動接点22を固定接点板24の固定接点23に接触された状態となっている。そして通電路に過大な電流が流れてバイメタル10が自己発熱などより熱変形してその自由端10aの位置が変位することで、ラッチ板20を作動すると、ラッチ板20の係止部20aが移動して可動接点板21の一端との係止状態が外れ、これによりトリップ機構Tがトリップ動作し、これに伴い図において反時計方向に可動接点板21が回動し、その先端の可動接点22が固定接点板24の固定接点23から開離し、強制開極状態となるのである。
【0037】
尚25は操作ハンドル、26は通電用導電板、27はハウジング、28は操作ハンドル25と可動接点板21とを連結する連結ばね、29は通電路を形成する編素線、30は分電盤内に配設される導電バーを結合する受け金具からなる電源側端子、31は速結端子からなる負荷側端子である。そしてハウジング27の外側面の一端側下隅に上述のバーコード32を印している。
【0038】
さて本実施形態において、上述のバイメタル10の自由端10aの変形量の調整目標値の演算を行う場合についての実施例を次に説明する。
【0039】
実施例1
まず特性測定結果値である属性データと調整目標値との間に、
Y=f(X,X、X…)
(但しX…属性データ1、X…属性データ2、X…属性データ3、Y…調整目標値)
という関係式を導入し、
例えば、関係式を
Y=0.5X+0.04X+0.3X+0.37   …▲1▼
として、
(バイメタルの板厚)=0.5mm
(バイメタルメタルの抵抗値)=5.0mΩ
(所定温度から一定温度(例えば+50℃)上昇させた場合のバイメタル10の自由端10aにおける変形量)=0.6mm
の場合、▲1▼式に値を代入すると、調整目標値はY=1mmと求めることができる。
【0040】
勿論、属性データの数は3つでなくても良い。
【0041】
2つの場合、Y=f(X、X
4つの場合、Y=f(X、X、X、X
またそれ以上の場合も考えられる。
【0042】
ところでバイメタル10の変形測定は、リニアスケール等による接触式或いは、非接触式(レーザー変位計等)、或いは画像処理により行えるが、本実施毛形態では、後述する動作調整時に用いるリニアスケール13を利用し、バイメタル10が移動する方向から測定する。
【0043】
また板厚の測定は次のような画像処理を用いて行う。
【0044】
つまり回路遮断器のハウジング27内のバイメタル10の自由端10aを斜め側方から撮像するための窓孔Hを図2で示すように開口しておき、この窓孔Hを介して外部から撮像カメラで撮像することを可能としておく。この窓孔Hの形状は四角以外の形状でも良く、また窓孔Hの代わりに窓孔Hに対応するハウジング27の部分を少なくとも透明に形成していても良い。
【0045】
まず図3のようにバイメタル10を撮像し、撮像画像の左上座標を(0,0)とし、右下座標を(512,512)とする。つまり、撮像画像は512画素×512画素からなるものとする。
【0046】
次にバイメタル10の板厚が何画素になるかを適宜な画像処理装置を用いて測定する。すなわち図3において実線で示すバイメタル10の画像のB点とC点の画面上の(X)座標の差をとって、300−240=60画素とする。
【0047】
次に撮像カメラ若しくは回路遮断器を(X)方向に一定量(ここでは1mmとする)動かし、バイメタル10を撮像する。図3ではこのバイメタル10の画像を破線で示す。そして動かした一定量(1mm)とA点と、先に撮像したバイメタル10の画像のB点の画素の差(240−140=100画素)より、1画素が何mmに相当するか算出する。ここでは、1/100=0.01mm/画素であるから先に測定した画素数60から、60×0.01mm=0.6mmと求まることになる。
【0048】
このようにして板厚を測定し、その板厚を属性データとして用いることができるのである。
【0049】
この板厚による属性データとを、上述した温度変化によるバイメタル10の変形量を属性データとを組み合わせて調整目標量を演算する場合に、バイメタル10の変位測定と板厚測定とを画像処理により同時に行えことで、一つの過程で測定が行え、測定過程を一つ減らすことができる。
【0050】
而して上述のように調整目標値Yが求まると、この調整目標値Yに基づいて、次のように動作特性の調整を行う。つまりバイメタル10を支持している接続板(金属板)11を図4に示すようにモータMの先端に設けた冶具12に係合させ、モータMを回転させることで接続板11をひねって変形させ、バイメタル10の先端位置を変化させることで調整する。この場合リニアスケール13を用いてバイメタル10の変位を検出しながらモータMの回転を制御するようになっている。つまりリニアスケール13は変位量を電気量に変換し、その電気量信号はアンプ14で増幅された後、比較手段15に取り込まれ、比較手段15はこの電気量信号で示される変形量と演算処理部6から与えられる調整目標値Yとを比較して調整目標値Yと変形量が一致するとモータ駆動手段16に停止信号を出力してモータMによる接続板11に対するひねり動作を停止させる。ここでリニアスケール13,アンプ14、比較手段15,駆動手段16、モータM、冶具12により特性調整手段7が構成される。
【0051】
尚上述では調整目標値を演算するために用いる属性データの一つとしてバイメタル10の抵抗値を挙げたが、この場合バイメタル10単体で抵抗値を測定するのが、調整目標値を精度良く求めるのには理想である。
【0052】
しかし、バイメタル10単体で抵抗値を測定するのは経済的に不利である。
【0053】
つまり、バイメタル10単体で抵抗値を測定し、バーコード付与手段により、バイメタル10にバーコードを付与し、バイメタル10を電路に組み立て、回路遮断器のハウジング27に組み込んだ後に新たにバーコードをハウジング27に付与する場合(バイメタル10に付与されたバーコードはケース組み付け後は読み取ることができない)は、バーコード付与手段が複数必要なため、製造装置の費用が高額になってしまう。
【0054】
またバイメタル10を電路に組み立て、ハウジング27に組み込んだ後にバーコードを付与し、バイメタル10単体の抵抗値を測定する場合、ハウジング27に測定端子を挿入する穴を必要とし、また測定後にはその穴を塞ぐ蓋が必要なため、部品コストが上がる。
【0055】
このような理由でバイメタル10単体で抵抗値を測定するのには課題がある。
【0056】
そこで、本実施例では、電路の負荷側端子30と電源側端子31間の抵抗値を測定し、測定結果をバイメタル10の抵抗値として代用することで、バイメタル10の抵抗測定を複雑な構成の製造装置を用いることなく行える。つまり図1の製造装置に適合できるのである。また完成品の状態で抵抗値を測定できるので、抵抗値と特性検査時のデータをハウジング27の外側面に付与されたバーコード32でデータを管理することができることになる。
【0057】
尚複数のサンプル(回路遮断器)を予め製造して、この製造過程において、属性データとして用いる特性測定結果や検査結果等を収集し、これら収集した結果より、上述の関係式の各属性データに対応する定数等を予め求めて関係式を作るのである。
【0058】
実施例2
実施例1のような関係式では属性データと調整目標値との関係が複雑な場合、表されにくい場合ある。そこで、本実施例は、例えば、表1のようなテーブルを用いて容易に調整目標値を求めるようにしたのものである。
【0059】
【表1】

Figure 2004031086
【0060】
ここでバイメタル10の板厚が表1のテーブル内にない場合、例えばX=0.64mm、X=0.43mm場合このテーブルを用いて以下の様に求めることができる。
【0061】
1)0.64mmは0.6mmと0.7mmの間にあるので、どちらか一方を用いる。0.43mmは0.4mmと0.5mmの間にあるので、どちらか一方を用いる。
【0062】
表2は、値の下一桁を四捨五入して、調整目標値を0.9mmと求めた例であるが、下一桁を、切り上げ若しくは切り下げしても良い。
【0063】
【表2】
Figure 2004031086
【0064】
また2)0.64mmは0.6mmと0.7mmの間にあるので、両方を用いる。0.43mmは0.4mmと0.5mmの間にあるので、両方を用いる。つまり重み付けをする。
【0065】
以下にその手順を示す。
【0066】
まず板厚Xが0.64mmの場合の調整目標値を求める場合、表3のように+50℃における変形量[mm]のA,Bについて重み付けをして求める。
【0067】
A=(0.04×1.0+0.06×0.9)/0.1=0.94 …▲2▼
B=(0.04×1.2+0.06×1.0)/0.1=1.08 …▲3▼
尚式▲2▼、▲3▼中0.04は板厚0.6に対する板厚0.64の差分、0.06は板厚0.64に対する板厚0.7の差分、0.1は調整目標量の差分を示す。
【0068】
【表3】
Figure 2004031086
【0069】
そして板厚0.64mmのときの調整目標値を表4の様に抜き出す。
【0070】
【表4】
Figure 2004031086
【0071】
表4で示すテーブルより、Xが0.043mmのときの調整目標値を求める。
【0072】
調整目標値=(0.03×1.08+0.07×0.94)/0.1=0、982
この結果調整目標値は0.982mmと求められ、上述の1)の場合よりも正確に調整目標値を求めることができる。
【0073】
尚属性データが3つの場合でも、3つ目のパラメータ毎にテーブルを複数設けることで対応することができる。
【0074】
よって、このテーブルを用いることで運用時の補正が容易になる。勿論補正には、テーブルの値を変えることで対応する。
【0075】
ところで、本実施例では属性データとしてバイメタル10の板厚と50℃増加させたときのバイメタル10の自由端の変形量とを用いているが、このように属性データの一つとしてバイメタル10の温度Δtを変化させたときのバイメタル10の変形量ΔLを用いる場合において、調整目標値を決定する方法について説明する。
【0076】
まず関係式を求めるための特性測定結果収集用に複数のサンプル(回路遮断器)を製造し、この製造過程において、以下の手順で異なる温度でのバイメタル位置を測定し、一定温度差(△t)のバイメタルの変形量(△L)を計測し、調整目標値より関係式を算出する。
【0077】
つまり図5(a)に示すように組立過程における温度t0=20乃至25℃のの雰囲気を図5(b)に示すバイメタル10の自由端10aの位置の測定過程で、温度t1(例えば10℃)までバイメタル10を冷却装置で冷却してそのときのバイメタル10の変形量L1を測定し、次に図5(c)に示す測定過程で、温度t2(例えば60℃)までバイメタル10を加熱装置で加熱してそのときの変形量L2を測定し、この測定結果から一定温度差(60℃−10℃)Δtのバイメタル10変形量(L2−L1)ΔLを求め。また同時にバイメタル10に一定の大きさの微小電流を流してバイメタル10の両端間の電圧を測定してバイメタル10の抵抗値を求める。つまり一定温度差Δtにおけるバイメタル10の変形量ΔL及び抵抗値を属性データとしても用いる。
【0078】
さて図5(a)〜(c)は図1の工程IIIにおける組立と、特性測定との過程に相当し、これらその測定過程後、次の工程IVにおいて、演算処理部5によってデータベースDBから半完成品Bである当該回路遮断器の部品要素(バイメタル10)の特性測定値を読み出し、この特性測定値に基づいて△t(50℃変化させたとき)のバイメタル10の自由端10aの変形量△Lを算出して調整目標値を決定する。
【0079】
表5は調整目標値を求めるための関係式を算出する基礎としたサンプル1,2,3の測定結果を示す。
【0080】
【表5】
Figure 2004031086
【0081】
調整目標値決定後、この調整目標値より関係式を算出する。
【0082】
調整目標値=a×(ΔL/Δt)+b×(E/I)+α…▲1▼
次に各サンプル1〜3の測定値を
a=7.5 b=5.0 α=−35
となり、その関係式は
調整目標値=7.5×(ΔL/Δt)+5.0×(E/I)−35
と表せる。
【0083】
以後製造される回路遮断器の調整目標値演算は前記関係式を用いることになる。
【0084】
勿論、3つの属性データを用いる場合には求めるべき未知数が4つあるので、測定サンプル数を4つ、属性データが4つ有る場合は求めるべき未知数が5つあるので、測定サンプル数を5つにして連立法的式を解くことになる。
【0085】
而して前記サンプル1〜3の測定値及び調整目標値から算出された関係式を用いて行い、工程IIIを経て半完成品Bとして工程IVに送られてきた回路遮断器について、工程IIIで測定されたバイメタル10の自由端10aの上述の特性測定値(属性データ)に基づいて前記関係式から演算処理部5は目標調整値を演算し、この演算された目標調整値から特性調整手段6によりバイメタル10の自由端10aの変形量の調整を行うのであるが、この場合図5(d)に示すように雰囲気温度t3を通常の温度20〜25℃に冷却して行う
尚図5(a)〜(d)の過程では、加熱が1回、冷却が2回必要であるが、t2=t3=60℃にする(図5(c)のバイメタル位置測過程と図5(d)の特性調整過程を同じ温度内で行う)と、2回目の冷却が不要になりバイメタル10の自由端10aの位置測定後すぐに特性調整を行うことができるので過程(工程)の削減が可能になる。
【0086】
またt0=t1=10℃にする(図5(a)の組立過程と図5(b)のバイメタル10の自由端10aの位置測定の過程を同じ温度内で行う)と、組立後すぐにバイメタル位置測定を行うことができるので、時間短縮が可能になる。
【0087】
温度パラメータ(誤差要因)が3つある図5の場合に対して、上述したように温度パラメータを2つにすることで、誤差を減少させることができる。
【0088】
実施例3
実施例2では前記バイメタル10の温度を変化させる方法として、雰囲気温度を変化させる方法を採用しているが、本実施例ではバイメタル10に通電することで自己発熱させて、その温度を変化させる方法がある。つまり図2に示すように閉極状態の回路遮断器に電源側端子31と負荷側端子30間に大きな電流を流して自己発熱させる。
【0089】
この場合次の手順で一定温度差Δtのバイメタル10の自由端10aの変形量の特性測定を行う。
【0090】
まず図6(a)に示す組立過程の終了後、図6(b)のバイメタル10の自由端10aの位置測定過程において、バイメタル10の通電前のバイメタル10の温度(t1)と位置(L1)を測定し、次にバイメタル10の通電中(温度飽和状態)のバイメタル10の温度(t2)と位置(L2)を測定し、その測定値から△t=t2−t1、△L=L2−L1を求める。尚この属性データとして組み合わせる属性データとしては上述の場合と同様に通電時の電流値Iとバイメタル10の電圧値Eとで求めるバイメタル10の抵抗値とすれば良い。またバイメタル10の温度測定は直接温度センサをバイメタル10に接触させて測定するか輻射温度センサにより非接触で検出すれば良い。そして目標調整値の計算は演算処理部5で上述と同様な方法で算出する。
【0091】
この算出結果に基づいて図6(c)の特性調整過程で特性調整手段6によりバイメタル10の自由端10aの調整を行う。
【0092】
図7は前記のバイメタル10の通電前のバイメタル10の温度(t1)と位置(L1)からバイメタル10の通電開始をしてバイメタル10の温度が飽和状態するまでのバイメタル10の温度と位置の変化を示す。
【0093】
尚この通電によってバイメタル10の温度を変化させる方法は、回路遮断器の実使用時に即した方法であり、その方法によるバイメタル10の変形を用いて△Lの測定ができるため、誤差要因を減らすことができる。特に発熱、放熱等の周囲環境の影響も考慮したバイメタルの変形を測定できるため、測定精度が良い。
【0094】
実施例4
前記実施例3ではバイメタル5の通電はバイメタル5の温度が飽和するまでの時間が1200秒と長時間かかるため、本実施例では、通電時間を極めて短くするために通電時間を短くした場合のバイメタルの変形量Δsと、前記バイメタルの変形量ΔLとの関係式を予め求めておき、この関係式を用いてできるようにしたものである。
【0095】
つまり、予めサンプルを用いて通電開始から例えば5秒後のバイメタル10の自由端10aの変形量△sを測定し、温度上昇が飽和した温度との温度差ΔTでのバイメタルの変形量ΔLを測定し、これらの測定結果から、バイメタルの変形量の演算のための関係式を予め算出する。
【0096】
ここで本実施例では、ΔL=2Δs+0.2と言うバイメタルの変形量の演算式を採用していいる。
【0097】
而して、調整対象の回路遮断器の通電開始から例えば5秒後のバイメタル10の自由端10aの変形量を測定し、その測定値Δsから前記演算式により、通電開始時の温度t1から温度上昇が飽和した温度t2の温度差ΔTにおける変形量ΔLを求める。
【0098】
図8(b)は3台の調整対象の回路遮断器の通電開始から5秒後におけるバイメタル10の自由端10aの変形量の測定値Δs1(=017mm)、Δs2(=0.16mm),Δs3(=0.15mm)を夫々示しており、これら測定値Δs1,Δs2,Δs3に基づいて前記演算式から夫々の変形量ΔL1、ΔL2、ΔL3を求めると、ΔL1=0.54mm,ΔL2=0.52mm,ΔL3=0.50mmとなる。図8(a)はこのΔL1〜ΔL3をバイメタル10の温度が飽和した時点に対応して当てはめて、通電開始から温度が飽和するまでのバイメタル10の自由端10aの変形量の変化を示している。
【0099】
このようにして本実施例の方法では、通電開始から例えば5秒経過した時点で変形量ΔLを予測して、この予測した変形量ΔLから上述した調整目標値と属性データとの関係式により当該回路遮断器の目標調整量を求めることができるため、バイメタル10に通電してバイメタル10の温度を変化させる方法において、目標調整量を演算するまでの時間を、バイメタル10の温度が飽和してからΔLを測定する方法に比して大幅に短縮することができる。
【0100】
尚前記実施例2乃至実施例4のようにバイメタル10の温度を変化させて、その変化に伴うバイメタル10の自由端10aの変形量ΔLを測定し、この測定値を属性データとして用いる場合に、バイメタル10に対する温度測定箇所を複数箇所とし、その複数箇所の平均値をバイメタル10の温度とすることで、測定箇所による測定温度のばらつきを緩和できる。
【0101】
実施例5
ところで、実施形態1の実施例3,4のようにバイメタル10に通電して自己発熱させ、その発熱によって生じるバイメタル10の自由端10aの変形量を測定する方法を採用する場合、バイメタル10の通電電路から外れた部分の変形の仕方が通電電路となる部分の変形の仕方と異なる。そこで本実施例では、この通電電路から外れた部分の変形分を補正することでより精度の高い測定を行うようしたものである。
【0102】
つまり図2に示す回路遮断器の通電電路では、図9に示すようにバイメタル10の一端が固定端で他端が自由端10aであり、自由端10aがラッチ板20を作動させる作用点になっている。また、バイメタル10の固定端と作用点(自由端10a)の間に、通電電路を構成するために編素線28が溶接またはかしめにてバイメタル10に接合されている(A点)。
【0103】
変形測定時のバイメタルの変形は、固定端から自由端まで2次曲線になる。特性検査時には、実際に通電電路(矢印i)に電気を流して試験を行うため、固定端からA点までは2次曲線、A点から自由端10aまでは直線に変形する。矢印xは変形方向を示す。
【0104】
この両者のバイメタル10の変形の仕方の違いが、変形測定時と工程Vにおける特性検査時の誤差になるため、本実施例では演算処理部5で特性検査時の直線部分の変形を補正して調整目標値を算出する。
【0105】
ここで前記の誤差は以下の様に計算することができる。すなわち、kを2次曲線の変形度合いを表す定数、a’を通電時のA点でのバイメタル10の傾きとし、また固定端から自由端10aまでの長さをL。、固定端からA点までの長さをLとすると、
kL−[kL +a’(L−L)]=(l−L)[k(L+L)+a’]
と誤差を表すことができる。
【0106】
そして通電時において、前記L、L、a’を測定し、その値を前記式前記の値を叙述した方法によって演算して求めた補正前の調整目標値に加えて新たに調整目標値とすることで高精度に調整することができる。
(実施形態2)
実施例5ではバイメタル10の温度を変化させて変形させ、その変形量に基づいて調整目標値を演算する際に、特性検査時のバイメタル10の変形との違いを補正するものであったが、本実施形態は、特性調整手段6によりバイメタル10を調整目標値に基づいて変形させる際に、変形測定点の位置によって調整時の変形量測定と、特性検査時のバイメタル10の変形量測定との間に誤差が生じる点に対応させる方法である。
【0107】
つまり図10(a)に示すように回路遮断器のバイメタル10を調整ネジ40を螺進させ、その先端部でバイメタル10の固定端を押圧変位させて自由端10aの位置を調整する方法、図10(b)に示すように固定端部位を塑性変形させて自由端10aの位置を調整する方法のように機械的変形で動作特性を調整する場合、バイメタル10は直線的に変形する。一方特性検査時のように通電を行って動作を検査する場合、バイメタル10は上述したように2次曲線で変形する。図10は特性調整時の変形(イ)と、特性検査時のバイメタル10の変形(ロ)の違いを示しており、自由端10a(作用点)を変形測定点とする場合には誤差は生じないが、スペースの関係で変形測定点を自由端10aより固定端側の位置とした場合、作用点でのバイメタル10の変形は同じでも、変形測定点でのバイメタル10の変形に誤差が生じる(図11のA点とB点)。
【0108】
この誤差は以下の様に計算することができる。すなわち、kを特性検査時の2次曲線の変形度合いを表す定数、a”を調整時の傾きとし、固定端から変形測定点(A点,B点)までの高さの距離をL0,固定端から自由端10aまでの高さの距離をLとした場合、作用点(自由端10a)でのバイメタル10の変形は同じであるので、
kL=a”L a”=kL
よって測定位置での誤差は
a”L−kL =kLL−kL =kL(L−L
と表すことができる。
【0109】
従って演算処理部5はこの値を補正前に演算した調整目標値に減じて新たに調整目標値とし、この補正した調整目標値を特性調整手段6に与えることで高精度に調整することができることになる。
【0110】
ところで前記の各実施形態では、調整目標値を演算する際に用いる属性データとしてはバイメタル10の抵抗値とバイメタル10を温度変化させたときの変形量の組み合わせを用いた、それ以外にもバイメタル10の板厚等を用いることもできる。次にこれらの他の属性データについて説明する。
【0111】
尚補正の方法としては、バイメタル10のメタル層毎の板厚を上述と同様な画像処理を用いて測定し、そのデータを用いて調整目標値を補正するようにしても良い。つまりメタル層の板厚比が変わると湾曲係数、ヤング率、体積抵抗率、比熱、比重等が変わるため、この板厚比によって調整目標値を補正すれば、高い精度で特性調整が可能となる。
【0112】
また属性データとしては上記以外の属性データを用いても良い。例えば組立精度を属性データの一つとして用いることもできる。
【0113】
つまり回路遮断器において一番重要な要素である組立精度は、図12に示すようにラッチ板20の係止部20aにおける可動接点板21の掛かり代γです。掛かり代γが大きいと、電流を流してバイメタル10を変形させてもラッチが外れにくいため、この板厚の場合と同様に掛かり代γをハウジング27に設けた窓孔Hを介して外側から撮像カメラで撮像し、画像処理にて掛かり代γを測定する方法は板厚の場合と同様に行う。
【0114】
更に、最終出荷検査結果や加速試験結果を属性データとして用いることができる。
【0115】
ここで最終出荷検査結果とは、工程Vにおいて、実際に回路遮断器が使用される条件で試験を行ない、良品・不良品を判定する試験の結果である。つまり、定格の電流を流して回路遮断器がトリップ動作しないことと、定格よりも大きい電流値(例えば125%、20A定格の場合は25A)の電流を流し、1時間以内に落ちるとき良品とする試験の結果である。
【0116】
また加速試験結果とは、最終出荷試験では試験に非常に長い時間がかかるため、試験時に流す電流を大きくして(例えば200%、20A定格の場合は40A)ある時間(例えば15±3秒)の間に回路遮断器が落ちたら良品とする試験の結果である。尚これらの結果からなる属性データは工程Vを経るための、再調整のみに用いることができる。
【0117】
また他の属性データとしてはバイメタル10の体積抵抗率、ヤング率があり、また特性調整を行う特性調整手段のNo、周囲温度、湿度、工程Vにおいて特性検査を行う特性検査手段7のNo等もある。
【0118】
また上述のバイメタル10の変形量を測定する方法としては、上述のセンサや方法以外に渦電流式、静電式等の方法を採用しても勿論良い。
【0119】
【発明の効果】
請求項1の発明は、特性測定された回路遮断器の各部品要素を順次組み付けて行く複数の組立過程と、最終の組立過程で完成した回路遮断器の諸特性を特性調整手段で調整する特性調整過程と、該特性調整過程の調整後の回路遮断器の所定の特性を特性検査手段で検査する特性検査過程とから成り、
最初の組み付けに用いる部品要素に与えるIDに対応付けて特性測定結果をデータベース登録するとともに、当該部品要素にバーコード付与手段により前記IDをバーコードで付し、
以後順次各部品要素を組み付けて行く組立過程を経る際に、前記部品要素のバーコードをバーコード読取手段で読み取って、該バーコードで示されるIDに対応付けて組み付ける部品要素の特性測定結果を前記データベースに順次登録し、特性調整過程においては、組み立て完成された回路遮断器における前記部品要素のバーコードを読み取って、当該バーコードで示されるIDに対応付けて登録されている各部品要素の特性測定結果を前記データベースから読み出し、読み出した特性測定結果に基づいて回路遮断器の所定の動作特性の調整目標値を調整目標値演算手段で演算して、特性調整手段で調整目標値に基づいた特性調整を行うとともに前記IDに対応付けて特性調整量を特性調整結果として前記データベースに登録し、
特性検査過程では、特性調整後の回路遮断器の前記部品要素のバーコードを読み取って、該バーコードで示されるIDに対応付けて、特性検査手段による検査結果を前記データベースに登録する回路遮断器の製造方法において、
前記回路遮断器の動作特性の調整目標値の演算を、予め特性測定結果収集用のサンプルとして所定数製造された回路遮断器の動作特性に関連する部品要素の複数の特性測定結果の値の関数で調整目標値を表す関係式を用いて行うので、複数の回路遮断器の特性の管理・制御を個々に行え、また部品要素の特性の影響を精度良く、調整目標値に反映でき、結果回路遮断器の回路遮断器の品質安定が図れる。
【0120】
請求項2の発明は、請求項1の発明において、前記関係式を、テーブル形式で表しているので、目標調整値を演算する運用時における補正が容易となる。
【0121】
請求項3の発明は、請求項1の発明において、前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの温度を変化させたときのバイメタルの変形量とするので、バイメタルの変形量からなる特性測定値を用いて調整目標値を算出することができる。
【0122】
請求項4の発明は、請求項3の発明において、前記バイメタルの変形量を測定する場合に、バイメタルの温度の変化前若しくは変化後の測定温度のどちらか一方を、特性調整時の温度と同一としているので、バイメタルの変形量の測定から目標調整値の演算、特性調整の一連の過程における時間経過を短縮することができる。
【0123】
請求項5の発明は、請求項3又は4の発明において、前記バイメタルに通電することよって該バイメタルの自己発熱させて該バイメタルの温度に変化を与え、前記バイメタルの変形量の測定を行うので、回路遮断器の実使用に即したバイメタルの変形量の測定ができ、そのため誤差要因を減らすことができる。
【0124】
請求項6の発明は、請求項4の発明において、前記通電時の前記バイメタルの第1の変形量と、該通電時の時間より短くした通電時のバイメタルの第2の変形量との関係式を予め設けておき、該関係式を用いて前記第2の変形量の測定結果より、前記第1の変形量を算出するので、バイメタルの変形量を求めるのようにようする時間を短縮することができる。
【0125】
請求項7の発明は、請求項3乃至6の何れかの発明において、前記バイメタルの温度測定点を複数箇所として、これら複数箇所の測定温度を用いてバイメタルの温度を決定するので、精度良い目標調整値を演算することが可能となる。
【0126】
請求項8の発明は、請求項4の発明において、前記バイメタルの変形量測定過程で、バイメタルの温度変化を加熱促進手段若しくは冷却促進手段により促進させるので、製造工程の短縮化が図れる。
【0127】
請求項9の発明は、請求項5の発明において、前記バイメタルに通電してバイメタルの自己発熱によって変形させる場合に、バイメタルの通電電路から外れた部分における変形分を補正するので、高精度に調整目標値を算出することができる。
【0128】
請求項10の発明は、請求項3の発明において、前記関係式に基づき算出される調整目標値に対応してバイメタルを機械的に変形させ、且つバイメタルの変形量の測定位置がバイメタルの自由端でない場合に、前記調整目標値を補正するので、高精度に調整目標値を算出することができる。
【0129】
請求項11の発明は、請求項1の発明において、前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの抵抗値とするので、バイメタルの抵抗値からなる特性測定値を用いて調整目標値を算出することができる。
【0130】
請求項12の発明は、請求項11の発明において、前記バイメタルが連結されている部材を組み立て、回路遮断器のケースに組み付けた後に、回路遮断器の電源側端子と負荷側端子との間の抵抗値を測定し、該抵抗値を前記バイメタルの抵抗値として用いるので、完成品の状態でバイメタルの抵抗値を測定することができので、製造装置を複雑化することもない。
【0131】
請求項13の発明は、請求項1の発明において、前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの板厚とするので、バイメタルの板厚からなる特性測定値を用いて調整目標値を算出することができる。
【0132】
請求項14の発明は、請求項13の発明において、複数の前記部品要素の特性測定結果の内の別の一つとして、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの温度を変化させたときのバイメタルの変形量を用い、該バイメタルの変形量の測定及び板厚の測定を、バイメタルの撮像画像データを用いた画像処理により行うので、属性データとして用いるバイメタルの変形量の測定と板厚を同時に行え、測定過程の簡略化画は枯れる。
【0133】
請求項15の発明は、請求項13の発明において、前記バイメタルを構成するメタル層毎の板厚を計測して、前記調整目標値を補正するので、高精度の調整目標値を得ることができる。
【0134】
請求項16の発明は、請求項1の発明において、前記特性検査特性による検査結果が不良の場合、前記特性調整過程で特性調整を再度行う再調整過程を有し、該再調整過程では、予めサンプルとして回路遮断器を製造した際に得た、動作特性に関連する部品要素の複数の特性測定結果、特性調整過程での複数の特性調整量、特性検査過程での複数の検査結果の何れかの関数で調整目標値を表す関係式を用いて行い、再調整対象の回路遮断器の対応する夫々の結果に基づいて夫々の調整目標値の演算し、この演算によって求められた複数の調整目標値から最終的な再調整の調整目標値を演算するので、再調整時おいて、特性検査過程での検査結果を用いて調整目標値を算出することができる。
【図面の簡単な説明】
【図1】本発明方法を用いる製造装置の概要説明図である。
【図2】本発明方法を用いる製造装置で製造される回路遮断器の概要構成図である。
【図3】同上の実施例1におけるバイメタルの板厚の測定方法の説明図である。
【図4】同上の実施例1に用いる特性調整手段の概要説明図である。
【図5】同上の実施例2におけるバイメタルの変形量の測定方法の説明図である。
【図6】同上の実施例3におけるバイメタルの自己発熱による変形量の測定の説明図である。
【図7】同上の実施例3のバイメタルの自己発熱による温度変化とバイメタルの変形(変位)量の測定値の関係説明図である。
【図8】同上の実施例4における温度上昇変化のバイメタルの変形量の予測方法の説明図である。
【図9】同上の実施例5における目標調整値の補正についての説明図である。
【図10】本発明の実施形態2におけるバイメタルの特性調整方法例の説明図である。
【図11】同上の特性調整時と特性検査時のバイメタルの変形の相違の説明図である。
【図12】属性データとして用いる組立精度の説明図である。
【符号の説明】
1a… 特性測定手段
2a… データ登録手段
3 バーコード付与手段
4a… バーコード読取手段
5 演算処理部
5a 照合機能
5b 調整目標演算機能
6 特性調整手段
7 特性検査手段
I… 工程
a… 部品
A,B 半完成品
C,D 完成品
DB データベース[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a circuit breaker.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is a method of assembling a process in which an inspection process by an inspection device for inspecting a product and an adjustment process of adjusting characteristics by an adjustment device based on the inspection result are incorporated in the process (see Japanese Patent Application Laid-Open No. Hei 7-13609). ). There is also a method in which the number of a product series is converted into a bar code and the bar code number is used as a key to manage a product inspection process of collecting actual production and quality data (see Japanese Patent Application Laid-Open No. 63-285999).
[0003]
[Problems to be solved by the invention]
In the former conventional example described above, the feedback is performed from the inspection apparatus (post-process) to the characteristic adjustment process (pre-process), so that there is a problem that a useless time is generated. That is, when the result of the correction of the target value is obtained, there is a problem that a large number of workpieces have already flowed to the subsequent process.
[0004]
In the latter conventional example, there is a problem that quality can be managed but quality cannot be controlled.
[0005]
The present invention has been made in view of the above points, and an object of the present invention is to provide a method of manufacturing a circuit breaker capable of stabilizing the quality of the circuit breaker.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a plurality of assembling steps of sequentially assembling each component element of the circuit breaker whose characteristics are measured, and various characteristics of the circuit breaker completed in the final assembling step. A characteristic adjustment step of adjusting the characteristic by the characteristic adjustment means, and a characteristic inspection step of inspecting the predetermined characteristic of the circuit breaker after the adjustment in the characteristic adjustment step by the characteristic inspection means,
In addition to registering the characteristic measurement result in the database in association with the ID given to the component element used for the first assembling, and attaching the ID to the component element with a barcode by a barcode assigning means,
Thereafter, during an assembling process of sequentially assembling the respective component elements, the barcode of the component element is read by barcode reading means, and the characteristic measurement result of the component element to be assembled in association with the ID indicated by the barcode is obtained. In the characteristic adjustment process, the barcodes of the component elements in the assembled circuit breaker are read, and each component element registered in association with the ID indicated by the barcode is registered. The characteristic measurement result is read from the database, and the adjustment target value of the predetermined operation characteristic of the circuit breaker is calculated by the adjustment target value calculation means based on the read characteristic measurement result, and the characteristic adjustment means is based on the adjustment target value. Register the characteristic adjustment amount in the database as a characteristic adjustment result while performing characteristic adjustment and correlating with the ID.
In the characteristic inspection step, the circuit breaker reads a bar code of the component element of the circuit breaker after the characteristic adjustment and registers an inspection result by the characteristic inspection means in the database in association with the ID indicated by the bar code. In the manufacturing method of
The calculation of the adjustment target value of the operation characteristic of the circuit breaker is a function of the values of a plurality of characteristic measurement results of the component elements related to the operation characteristic of the circuit breaker manufactured in a predetermined number as a sample for collecting characteristic measurement results in advance. Is performed using a relational expression representing an adjustment target value.
[0007]
According to a second aspect of the present invention, in the first aspect of the present invention, the relational expression is represented in a table format.
[0008]
According to a third aspect of the present invention, in the first aspect of the invention, one of the characteristic measurement results of the component element is changed when an overcurrent flows through the main contact circuit to change the temperature of the bimetal that operates the trip mechanism. It is characterized by the amount of deformation of the bimetal when being made.
[0009]
According to a fourth aspect of the present invention, in the third aspect, when measuring the amount of deformation of the bimetal, one of the measured temperatures before and after the temperature of the bimetal is the same as the temperature at the time of the characteristic adjustment. It is characterized by the following.
[0010]
According to a fifth aspect of the present invention, in the third or fourth aspect of the present invention, the bimetal is self-heated by energizing the bimetal to change the temperature of the bimetal and measure the amount of deformation of the bimetal. Features.
[0011]
In the invention according to claim 6, in the invention according to claim 4, a relational expression between the first deformation amount of the bimetal during the energization and the second deformation amount of the bimetal during the energization shorter than the time during the energization. Is provided in advance, and the first deformation amount is calculated from the measurement result of the second deformation amount using the relational expression.
[0012]
According to a seventh aspect of the present invention, in any one of the third to sixth aspects, the temperature of the bimetal is determined as a plurality of points, and the temperature of the bimetal is determined using the measured temperatures of the plurality of points. .
[0013]
According to an eighth aspect of the present invention, in the fourth aspect of the present invention, in the step of measuring the amount of deformation of the bimetal, the temperature change of the bimetal is promoted by a heating promoting means or a cooling promoting means.
[0014]
According to a ninth aspect of the present invention, in the fifth aspect of the present invention, when the bimetal is energized and deformed by self-heating of the bimetal, the deformation in a portion of the bimetal deviated from the energized electric circuit is corrected.
[0015]
According to a tenth aspect of the present invention, in the third aspect of the invention, the bimetal is mechanically deformed in accordance with the adjustment target value calculated based on the relational expression, and the measurement position of the bimetal deformation amount is the free end of the bimetal. If not, the adjustment target value is corrected.
[0016]
According to an eleventh aspect of the present invention, in the first aspect of the invention, one of the characteristic measurement results of the component element is defined as a resistance value of a bimetal that deforms and activates a trip mechanism when an overcurrent flows through the main contact circuit. It is characterized by doing.
[0017]
According to a twelfth aspect of the present invention, in the eleventh aspect of the present invention, after assembling the member to which the bimetal is connected and assembling the member into the case of the circuit breaker, the power supply terminal and the load side terminal of the circuit breaker are connected. A resistance value is measured, and the resistance value is used as a resistance value of the bimetal.
[0018]
According to a thirteenth aspect of the present invention, in the first aspect of the present invention, one of the characteristic measurement results of the component element is determined based on a thickness of a bimetal that deforms and activates a trip mechanism when an overcurrent flows through the main contact circuit. It is characterized by doing.
[0019]
According to a fourteenth aspect, in the thirteenth aspect, as another one of the characteristic measurement results of the plurality of component elements, when an overcurrent flows through the main contact circuit, the main contact circuit is deformed to operate the trip mechanism. The amount of deformation of the bimetal when the temperature of the bimetal is changed is measured, and the measurement of the amount of deformation of the bimetal and the measurement of the plate thickness are performed by image processing using captured image data of the bimetal.
[0020]
According to a fifteenth aspect, in the thirteenth aspect, the adjustment target value is corrected by measuring a thickness of each metal layer forming the bimetal.
[0021]
According to a sixteenth aspect of the present invention, in the first aspect of the present invention, when the inspection result by the characteristic inspection characteristic is defective, the characteristic adjustment step includes a re-adjustment step of performing characteristic adjustment again. Any of a plurality of characteristic measurement results of component elements related to operating characteristics obtained when a circuit breaker was manufactured as a sample, a plurality of characteristic adjustment amounts in a characteristic adjustment process, and a plurality of inspection results in a characteristic inspection process Is performed using a relational expression representing the adjustment target value with the function of, and the respective adjustment target values are calculated based on the respective results of the circuit breaker to be readjusted. A final adjustment target value for readjustment is calculated from the value.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to embodiments.
[0023]
(Embodiment 1)
FIG. 1 is a schematic diagram of the entire manufacturing apparatus, and the lowermost steps IV in the figure indicate steps from parts to a final product (completed circuit breaker). Shows a process in which a component element (hereinafter referred to as a component) a used for the final assembly when assembling the circuit breaker is provided, and a process (process) II is to assemble a semi-finished product A by assembling another component b with the component a. The step (process) III is a step of assembling another part c to the semi-finished product A to obtain a semi-finished product B. Here, for the sake of simplicity, the process of obtaining a semi-finished product is shown in two processes, II and III, but there is a process corresponding to the number of parts to be assembled of the circuit breaker to be manufactured. It is. The finally obtained semi-finished product B corresponds to a product in which all parts for constituting the circuit breaker have been assembled. Now, after obtaining the final semi-finished product B, a process (process) IV indicates a process of adjusting the characteristics of the semi-finished product B to obtain a temporary completed product C, and a process (process) V is completed. The process of inspecting the characteristics of the product C to obtain the final finished product D will be described.
[0024]
Next, the processing in each of the steps I to V will be described based on FIG.
[0025]
First, in step I, a characteristic measuring unit 1a for measuring the characteristic of the component a to be assembled first is provided, and the characteristic characteristic of the component a is measured by the characteristic measuring unit 1a. For example, in the case of a circuit breaker base, the size of the base is the same.
[0026]
A data registration unit 2a for generating an attribute ID for process management in subsequent processes II to V in association with the measurement result, and registering characteristic data of the component a in the database DB in association with the ID; The ID generated by the registration unit 2a is marked as a barcode on a component (for example, a housing, which will be described later) a by a barcode providing unit 3, which is an appropriate unit such as printing or printing with a laser. Of course, this marking position is set to a position where the bar code reading means 4a to 4d provided in the subsequent steps II to V can read. After the specific measurement result is registered in the database DB and a barcode indicating the ID is marked in this step I, the part a is sent to the next step II.
[0027]
When the component a is sent to the process II, the bar code reading unit 4a reads the bar code marked on the component a and passes the assigned ID data to the data registration unit 2b. On the other hand, the characteristic measuring means 1b which has measured the characteristics of the component b to be assembled with the component a in the step II sends the characteristic measurement result to the data registration means 2b. Thereby, the data registration unit 2b registers the characteristic measurement result of the component b in the database DB in association with the read ID. In this step II, the semi-finished product A is assembled by assembling the part b to the part a, and the semi-finished product A is sent to the next step III.
[0028]
When the semi-finished product A is sent to the process III, the bar code reading means 4b reads the bar code marked on the component a and passes the assigned ID data to the data registration means 2c. On the other hand, the characteristic measuring means 1c which has measured the characteristics of the component c to be assembled to the semi-finished product A in the step III sends the result of the characteristic measurement to the data registering means 2c. Thereby, the data registration unit 2c registers the characteristic measurement result of the component c in the database DB in association with the read ID. Now, by assembling the component c to the semi-finished product A in the process III, a fully assembled circuit breaker is obtained. However, since the characteristic adjustment and the inspection are not completed, the semi-finished product is not used. B and this semi-finished product B will be sent to the next step IV.
[0029]
The step IV constitutes a characteristic adjustment step (step), in which the bar code marked on the part a in the assembled circuit breaker is read and the ID data assigned is passed to the arithmetic processing unit 5. The arithmetic processing unit 5 has a matching function 5a, and reads out (collates) the characteristic measurement results of the components a to c registered in the database DB corresponding to the ID from the database DB. A characteristic adjustment target value (characteristic adjustment amount) is calculated based on the readout characteristic measurement result and a characteristic value as a standard set corresponding to each of the components a to c registered in advance. A function 5b is used for calculation, and based on the calculation result, the characteristics of predetermined parts of the semi-finished product B are controlled by controlling the characteristic adjustment means 7 to obtain a finished product C.
[0030]
Then, the characteristic adjustment amount is registered in the database DB by the data registration unit 2d in association with the ID.
[0031]
The adjusted finished product C is sent to the next step V, that is, a characteristic inspection step (process). In this step V, first, the bar code marked on the component a is read to read the assigned ID data and passed to the data registration means 2e. The characteristic inspection unit 7 performs a characteristic inspection on whether or not a characteristic value set as a standard as a circuit breaker is obtained by the characteristic inspection unit 7. If the inspection satisfies the standard, it is determined as a non-defective product. Product D. On the other hand, if the standard is not satisfied, the process returns to the previous process IV, and the process of returning to the process IV is performed to perform the adjustment again.
[0032]
The data registration unit 2e registers the inspection result (the inspection determination result and the characteristic inspection result value) in association with the ID in the database DB.
[0033]
The characteristics of the parts b to be assembled based on the ID given to the parts a to be provided first, the characteristic adjustment amounts when the characteristic adjustment is performed, and the inspection results are registered in the database DB. The characteristic measurement result of the circuit breaker component manufactured based on the ID, the inspection result of the finished product, and the characteristic adjustment amount at the time of characteristic adjustment can be read, and the production management of the product can be performed.
[0034]
By the way, as the characteristics to be adjusted in the above-mentioned characteristic adjustment step IV, those that have the most influence on the characteristic inspection as the circuit breaker are adjusted. For example, as shown in FIG. 2, in the case of a circuit breaker using the bimetal 10 for overcurrent detection and tripping, the bimetal 10 is to be adjusted.
[0035]
In this case, in the characteristic adjustment in the process IV, the arithmetic processing unit 5 reads the values of the characteristic measurement results (attribute data such as plate thickness, width, volume resistivity) of the bimetal 10 from the plurality of database DBs, , The amount by which the free end 10a of the bimetal 10 is deformed, that is, the adjustment target value is calculated. Then, the operating characteristic is adjusted by deforming the free end 10a of the bimetal 10 with the characteristic adjustment amount corresponding to the adjustment target value calculated by the characteristic adjusting means 6.
[0036]
When the circuit breaker to be manufactured in this embodiment is closed, one end of a movable contact plate 21 rotatably supported by a trip mechanism T is locked to a locking portion 20a of a latch plate 20 when the circuit breaker is closed. And the movable contact 22 at the other end is in contact with the fixed contact 23 of the fixed contact plate 24. When an excessive current flows through the conduction path and the bimetal 10 is thermally deformed due to self-heating or the like and the position of the free end 10a is displaced, when the latch plate 20 is operated, the locking portion 20a of the latch plate 20 moves. As a result, the locked state with one end of the movable contact plate 21 is released, whereby the trip mechanism T performs a trip operation. As a result, the movable contact plate 21 rotates counterclockwise in FIG. Are separated from the fixed contacts 23 of the fixed contact plate 24, and a forced opening state is established.
[0037]
25 is an operation handle, 26 is a conductive plate for energizing, 27 is a housing, 28 is a connecting spring for connecting the operating handle 25 and the movable contact plate 21, 29 is a knitted wire forming an energizing path, and 30 is a distribution board A power-supply-side terminal made of a metal fitting for coupling the conductive bar disposed therein, and a load-side terminal 31 made of a quick-connecting terminal. The bar code 32 is marked on a lower corner of one end of the outer surface of the housing 27.
[0038]
Now, in this embodiment, an example in which the above-described calculation of the adjustment target value of the deformation amount of the free end 10a of the bimetal 10 will be described.
[0039]
Example 1
First, between the attribute data, which is the characteristic measurement result value, and the adjustment target value,
Y = f (X1, X2, X3…)
(However, X1... Attribute data 1, X2... Attribute data 2, X3... Attribute data 3, Y ... Adjustment target value)
Introducing the relational expression
For example, the relational expression
Y = 0.5X1+ 0.04X2+ 0.3X3+0.37… ▲ 1 ▼
As
X1(Bimetal plate thickness) = 0.5mm
X2(Resistance value of bimetal) = 5.0 mΩ
X3(The amount of deformation at the free end 10a of the bimetal 10 when the temperature is raised from a predetermined temperature to a certain temperature (for example, + 50 ° C.)) = 0.6 mm
In the case of (1), when a value is substituted into the equation (1), the adjustment target value can be obtained as Y = 1 mm.
[0040]
Of course, the number of attribute data need not be three.
[0041]
In two cases, Y = f (X1, X2)
In the case of four, Y = f (Xl, X2, X3, X4)
Further, more cases are also conceivable.
[0042]
By the way, the deformation measurement of the bimetal 10 can be performed by a contact type using a linear scale or the like, a non-contact type (such as a laser displacement meter), or image processing. In the present embodiment, the linear scale 13 used at the time of operation adjustment described later is used. Then, the measurement is performed from the direction in which the bimetal 10 moves.
[0043]
The measurement of the plate thickness is performed using the following image processing.
[0044]
In other words, a window H for opening the free end 10a of the bimetal 10 in the housing 27 of the circuit breaker from an oblique side is opened as shown in FIG. It is possible to take an image with. The shape of the window hole H may be a shape other than a square, and the portion of the housing 27 corresponding to the window hole H may be formed at least transparently instead of the window hole H.
[0045]
First, as shown in FIG. 3, the bimetal 10 is imaged, the upper left coordinate of the captured image is set to (0, 0), and the lower right coordinate is set to (512, 512). That is, the captured image is assumed to be composed of 512 pixels × 512 pixels.
[0046]
Next, the number of pixels of the plate of the bimetal 10 is measured using an appropriate image processing device. That is, the difference between the (X) coordinates on the screen of the point B and the point C of the image of the bimetal 10 indicated by the solid line in FIG.
[0047]
Next, the imaging camera or the circuit breaker is moved in the (X) direction by a fixed amount (1 mm in this case) to image the bimetal 10. In FIG. 3, the image of the bimetal 10 is indicated by a broken line. Then, from the difference between the fixed amount (1 mm) moved and the point A and the pixel at the point B of the previously captured image of the bimetal 10 (240-140 = 100 pixels), it is calculated how many mm corresponds to one pixel. Here, since 1/100 = 0.01 mm / pixel, 60 × 0.01 mm = 0.6 mm is obtained from the number of pixels 60 previously measured.
[0048]
In this way, the thickness can be measured and the thickness can be used as attribute data.
[0049]
When calculating the adjustment target amount by combining the attribute data based on the sheet thickness with the attribute data on the deformation amount of the bimetal 10 due to the temperature change, the displacement measurement of the bimetal 10 and the sheet thickness measurement are simultaneously performed by image processing. By doing so, measurement can be performed in one process, and the number of measurement processes can be reduced by one.
[0050]
When the adjustment target value Y is obtained as described above, the operation characteristics are adjusted as follows based on the adjustment target value Y. That is, the connection plate (metal plate) 11 supporting the bimetal 10 is engaged with a jig 12 provided at the tip of the motor M as shown in FIG. It is adjusted by changing the position of the tip of the bimetal 10. In this case, the rotation of the motor M is controlled while detecting the displacement of the bimetal 10 using the linear scale 13. That is, the linear scale 13 converts the amount of displacement into an electric quantity, and the electric quantity signal is amplified by the amplifier 14 and then taken in by the comparison means 15. The adjustment target value Y provided from the section 6 is compared, and when the adjustment target value Y and the deformation amount match, a stop signal is output to the motor driving means 16 to stop the twisting operation of the motor M on the connection plate 11. Here, the linear scale 13, the amplifier 14, the comparing means 15, the driving means 16, the motor M, and the jig 12 constitute the characteristic adjusting means 7.
[0051]
In the above description, the resistance value of the bimetal 10 is given as one of the attribute data used for calculating the adjustment target value. In this case, the resistance value is measured with the bimetal 10 alone. Is ideal.
[0052]
However, it is economically disadvantageous to measure the resistance value of the bimetal 10 alone.
[0053]
That is, the resistance value of the bimetal 10 alone is measured, the barcode is applied to the bimetal 10 by the barcode application means, the bimetal 10 is assembled into an electric circuit, and the barcode is newly added to the housing 27 of the circuit breaker. 27 (the bar code assigned to the bimetal 10 cannot be read after assembling the case), a plurality of bar code assigning means are required, so that the cost of the manufacturing apparatus becomes high.
[0054]
Also, when assembling the bimetal 10 into an electric circuit and assembling it into the housing 27 and then applying a bar code to measure the resistance value of the bimetal 10 alone, a hole for inserting a measurement terminal into the housing 27 is required. The cost of parts increases because a lid is required to close the door.
[0055]
For these reasons, there is a problem in measuring the resistance value of the bimetal 10 alone.
[0056]
Therefore, in the present embodiment, the resistance between the load-side terminal 30 and the power-supply-side terminal 31 of the electric circuit is measured, and the measurement result is substituted for the resistance of the bimetal 10, so that the resistance measurement of the bimetal 10 has a complicated configuration. This can be performed without using a manufacturing apparatus. That is, it can be adapted to the manufacturing apparatus of FIG. Further, since the resistance value can be measured in the state of the completed product, the data of the resistance value and the data at the time of the characteristic inspection can be managed by the bar code 32 provided on the outer surface of the housing 27.
[0057]
A plurality of samples (circuit breakers) are manufactured in advance, and in this manufacturing process, characteristic measurement results and inspection results used as attribute data are collected, and based on the collected results, each attribute data of the above-described relational expression is obtained. The corresponding constants and the like are obtained in advance to form a relational expression.
[0058]
Example 2
In the relational expression as in the first embodiment, when the relation between the attribute data and the adjustment target value is complicated, it may be difficult to express the relation. Therefore, in the present embodiment, for example, an adjustment target value is easily obtained using a table such as Table 1.
[0059]
[Table 1]
Figure 2004031086
[0060]
Here, when the thickness of the bimetal 10 is not in the table of Table 1, for example, X1= 0.64mm, X2= 0.43 mm Using this table, it can be obtained as follows.
[0061]
1) Since 0.64 mm is between 0.6 mm and 0.7 mm, either one is used. Since 0.43 mm is between 0.4 mm and 0.5 mm, either one is used.
[0062]
Table 2 is an example in which the lower one digit of the value is rounded off to obtain the adjustment target value of 0.9 mm, but the lower one digit may be rounded up or down.
[0063]
[Table 2]
Figure 2004031086
[0064]
2) Since 0.64 mm is between 0.6 mm and 0.7 mm, both are used. Since 0.43 mm is between 0.4 mm and 0.5 mm, both are used. That is, weighting is performed.
[0065]
The procedure is described below.
[0066]
First, the thickness X1When the adjustment target value is determined to be 0.64 mm, weights are obtained for A and B of the deformation amount [mm] at + 50 ° C. as shown in Table 3.
[0067]
A = (0.04 × 1.0 + 0.06 × 0.9) /0.1=0.94 2
B = (0.04 × 1.2 + 0.06 × 1.0) /0.1=1.08 3
In the formulas (2) and (3), 0.04 is the difference between the plate thickness 0.64 and the plate thickness 0.64, 0.06 is the difference between the plate thickness 0.64 and the plate thickness 0.7, and 0.1 is the difference. The difference between the adjustment target amounts is shown.
[0068]
[Table 3]
Figure 2004031086
[0069]
Then, an adjustment target value at a plate thickness of 0.64 mm is extracted as shown in Table 4.
[0070]
[Table 4]
Figure 2004031086
[0071]
From the table shown in Table 4, X2Is 0.043 mm.
[0072]
Adjustment target value = (0.03 × 1.08 + 0.07 × 0.94) /0.1=0,982
As a result, the adjustment target value is determined to be 0.982 mm, and the adjustment target value can be determined more accurately than in the case of the above 1).
[0073]
It should be noted that a case where there are three pieces of attribute data can be handled by providing a plurality of tables for each third parameter.
[0074]
Therefore, the use of this table facilitates correction during operation. Of course, correction is dealt with by changing the values in the table.
[0075]
In the present embodiment, the thickness of the bimetal 10 and the amount of deformation of the free end of the bimetal 10 when the temperature is increased by 50 ° C. are used as the attribute data. A method for determining the adjustment target value when using the deformation amount ΔL of the bimetal 10 when changing Δt will be described.
[0076]
First, a plurality of samples (circuit breakers) are manufactured for collecting characteristic measurement results for obtaining a relational expression. In this manufacturing process, the positions of the bimetals at different temperatures are measured by the following procedure, and a constant temperature difference (Δt ) Is measured, and a relational expression is calculated from the adjustment target value.
[0077]
That is, as shown in FIG. 5A, the atmosphere at a temperature t0 = 20 to 25 ° C. in the assembling process is subjected to the temperature t1 (for example, 10 ° C.) in the process of measuring the position of the free end 10a of the bimetal 10 shown in FIG. 5), the bimetal 10 is cooled by a cooling device, and the deformation L1 of the bimetal 10 at that time is measured. Then, in the measurement process shown in FIG. 5C, the bimetal 10 is heated to a temperature t2 (for example, 60 ° C.). Then, the deformation amount L2 at that time was measured, and the bimetal 10 deformation amount (L2-L1) ΔL with a constant temperature difference (60 ° C.-10 ° C.) Δt was determined from the measurement result. At the same time, a small current of a certain magnitude is applied to the bimetal 10 to measure a voltage between both ends of the bimetal 10 to obtain a resistance value of the bimetal 10. That is, the deformation amount ΔL and the resistance value of the bimetal 10 at the constant temperature difference Δt are also used as attribute data.
[0078]
FIGS. 5 (a) to 5 (c) correspond to the steps of assembling and characteristic measurement in step III of FIG. 1. After these measurement steps, in the next step IV, the arithmetic processing unit 5 converts the data from the database DB into half. The characteristic measurement value of the component element (bimetal 10) of the circuit breaker, which is the finished product B, is read, and the deformation amount of the free end 10a of the bimetal 10 at Δt (when changed by 50 ° C.) based on the characteristic measurement value ΔL is calculated to determine the adjustment target value.
[0079]
Table 5 shows the measurement results of Samples 1, 2, and 3 on which the relational expression for obtaining the adjustment target value is calculated.
[0080]
[Table 5]
Figure 2004031086
[0081]
After the adjustment target value is determined, a relational expression is calculated from the adjustment target value.
[0082]
Adjustment target value = a × (ΔL / Δt) + b × (E / I) + α (1)
Next, the measured values of each sample 1-3
a = 7.5 b = 5.0 α = −35
And the relational expression is
Adjustment target value = 7.5 × (ΔL / Δt) + 5.0 × (E / I) −35
Can be expressed as
[0083]
The calculation of the adjustment target value of the circuit breaker manufactured thereafter uses the above relational expression.
[0084]
Of course, when three attribute data are used, there are four unknowns to be obtained, so there are four measurement samples. When there are four attribute data, there are five unknowns to be obtained. And solve the simultaneous legal formula.
[0085]
Thus, the circuit breaker, which is performed using the relational expression calculated from the measured values of the samples 1 to 3 and the adjustment target value and sent to the process IV as the semi-finished product B through the process III, Based on the measured characteristic value (attribute data) of the free end 10a of the bimetal 10 measured, the arithmetic processing unit 5 calculates a target adjustment value from the relational expression and calculates the characteristic adjustment means 6 from the calculated target adjustment value. In this case, the amount of deformation of the free end 10a of the bimetal 10 is adjusted. In this case, as shown in FIG. 5D, the ambient temperature t3 is cooled to a normal temperature of 20 to 25 ° C.
In the processes of FIGS. 5A to 5D, one heating and two cooling operations are required. However, t2 = t3 = 60 ° C. (see FIG. (D) the characteristic adjustment process is performed at the same temperature), and the second cooling is unnecessary, and the characteristic adjustment can be performed immediately after the position measurement of the free end 10a of the bimetal 10, so that the number of processes (processes) can be reduced. Becomes possible.
[0086]
When t0 = t1 = 10 ° C. (the assembling process in FIG. 5A and the process of measuring the position of the free end 10a of the bimetal 10 in FIG. 5B are performed at the same temperature), the bimetal is immediately Since position measurement can be performed, time can be reduced.
[0087]
In the case of FIG. 5 in which there are three temperature parameters (error factors), the error can be reduced by using two temperature parameters as described above.
[0088]
Example 3
In the second embodiment, as a method of changing the temperature of the bimetal 10, a method of changing the ambient temperature is adopted. In the present embodiment, a method of changing the temperature by applying heat to the bimetal 10 to cause self-heating. There is. That is, as shown in FIG. 2, a large current flows between the power supply side terminal 31 and the load side terminal 30 through the closed circuit breaker to cause self-heating.
[0089]
In this case, the characteristic measurement of the deformation amount of the free end 10a of the bimetal 10 with the constant temperature difference Δt is performed in the following procedure.
[0090]
First, after the completion of the assembling process shown in FIG. 6A, in the process of measuring the position of the free end 10a of the bimetal 10 in FIG. 6B, the temperature (t1) and the position (L1) of the bimetal 10 before the bimetal 10 is energized. Is measured, and then the temperature (t2) and position (L2) of the bimetal 10 during energization of the bimetal 10 (temperature saturated state) are measured, and Δt = t2-t1 and ΔL = L2-L1 from the measured values. Ask for. The attribute data to be combined with the attribute data may be the resistance value of the bimetal 10 obtained from the current value I during energization and the voltage value E of the bimetal 10 as in the above-described case. Further, the temperature of the bimetal 10 may be measured by directly bringing the temperature sensor into contact with the bimetal 10, or may be detected in a non-contact manner by the radiation temperature sensor. The calculation of the target adjustment value is performed by the arithmetic processing unit 5 in the same manner as described above.
[0091]
The free end 10a of the bimetal 10 is adjusted by the characteristic adjusting means 6 in the characteristic adjustment process shown in FIG.
[0092]
FIG. 7 shows a change in the temperature and the position of the bimetal 10 from the start of the energization of the bimetal 10 from the temperature (t1) and the position (L1) of the bimetal 10 before the energization of the bimetal 10 until the temperature of the bimetal 10 is saturated. Is shown.
[0093]
The method of changing the temperature of the bimetal 10 by this energization is a method suited to the actual use of the circuit breaker. Since ΔL can be measured by using the deformation of the bimetal 10 by the method, it is necessary to reduce the error factor. Can be. In particular, since the deformation of the bimetal can be measured in consideration of the influence of the surrounding environment such as heat generation and heat radiation, the measurement accuracy is high.
[0094]
Example 4
In the third embodiment, the energization of the bimetal 5 takes a long time until the temperature of the bimetal 5 is saturated, which is 1200 seconds, which is a long time. A relational expression between the deformation amount Δs and the deformation amount ΔL of the bimetal is obtained in advance, and the relational expression can be obtained using this relational expression.
[0095]
That is, the deformation amount Δs of the free end 10a of the bimetal 10 is measured, for example, 5 seconds after the start of energization using a sample in advance, and the deformation amount ΔL of the bimetal at a temperature difference ΔT from the temperature at which the temperature rise is saturated is measured. Then, from these measurement results, a relational expression for calculating the amount of deformation of the bimetal is calculated in advance.
[0096]
Here, in the present embodiment, an arithmetic expression of the amount of deformation of the bimetal, ΔL = 2Δs + 0.2, is adopted.
[0097]
Thus, for example, the amount of deformation of the free end 10a of the bimetal 10 after 5 seconds from the start of energization of the circuit breaker to be adjusted is measured, and the measured value Δs is used to calculate the temperature from the temperature t1 at the start of energization according to the above-mentioned equation. The deformation amount ΔL at the temperature difference ΔT of the temperature t2 at which the rise is saturated is obtained.
[0098]
FIG. 8B shows measured values Δs1 (= 017 mm), Δs2 (= 0.16 mm), and Δs3 of the deformation amount of the free end 10a of the bimetal 10 after 5 seconds from the start of energization of the three circuit breakers to be adjusted. (= 0.15 mm), and when the deformation amounts ΔL1, ΔL2, and ΔL3 are obtained from the above-described arithmetic expressions based on these measured values Δs1, Δs2, and Δs3, ΔL1 = 0.54 mm and ΔL2 = 0. 52 mm and ΔL3 = 0.50 mm. FIG. 8A shows the change in the amount of deformation of the free end 10a of the bimetal 10 from the start of energization until the temperature is saturated by applying ΔL1 to ΔL3 corresponding to the time when the temperature of the bimetal 10 is saturated. .
[0099]
As described above, in the method of the present embodiment, the deformation amount ΔL is predicted at the point of time when, for example, 5 seconds have elapsed from the start of energization, and the predicted deformation amount ΔL is calculated by the above-described relational expression between the adjustment target value and the attribute data. Since the target adjustment amount of the circuit breaker can be obtained, in the method of energizing the bimetal 10 to change the temperature of the bimetal 10, the time until the target adjustment amount is calculated is calculated after the temperature of the bimetal 10 is saturated. This can be greatly reduced as compared with the method of measuring ΔL.
[0100]
When the temperature of the bimetal 10 is changed as in the second to fourth embodiments, the deformation amount ΔL of the free end 10a of the bimetal 10 is measured, and the measured value is used as attribute data. By setting the temperature of the bimetal 10 to a plurality of locations and setting the average value of the plurality of locations to the temperature of the bimetal 10, the variation in the measured temperature between the measurement locations can be reduced.
[0101]
Example 5
By the way, when a method of measuring the amount of deformation of the free end 10a of the bimetal 10 caused by heat generation by applying power to the bimetal 10 and measuring the amount of deformation of the free end 10a caused by the heat as in Examples 3 and 4 of the first embodiment is adopted, The way of deformation of the part deviating from the electric path is different from the way of deformation of the part which becomes the energized electric path. Therefore, in the present embodiment, more accurate measurement is performed by correcting the deformation of the portion deviating from the current path.
[0102]
That is, in the current path of the circuit breaker shown in FIG. 2, one end of the bimetal 10 is a fixed end and the other end is a free end 10a as shown in FIG. 9, and the free end 10a is an operation point for operating the latch plate 20. ing. Between the fixed end of the bimetal 10 and the point of action (free end 10a), a knitted element wire 28 is joined to the bimetal 10 by welding or caulking in order to form a current path (point A).
[0103]
The deformation of the bimetal during the deformation measurement is a quadratic curve from the fixed end to the free end. At the time of the characteristic test, since the test is performed by actually passing electricity through the current carrying path (arrow i), the curve is deformed to a quadratic curve from the fixed end to the point A, and to a straight line from the point A to the free end 10a. Arrow x indicates the direction of deformation.
[0104]
Since the difference between the two deformation methods of the bimetal 10 is an error between the deformation measurement and the characteristic inspection in the process V, in the present embodiment, the arithmetic processing unit 5 corrects the deformation of the linear portion during the characteristic inspection. Calculate the adjustment target value.
[0105]
Here, the error can be calculated as follows. That is, k is a constant representing the degree of deformation of the quadratic curve, a 'is the inclination of the bimetal 10 at the point A during energization, and L is the length from the fixed end to the free end 10a. , The length from the fixed end to point A is L0Then
kL2− [KL0 2+ A '(L-L0)] = (L−L0) [K (L + L0) + A ']
And the error can be expressed.
[0106]
At the time of energization, L, L0, A ′ is measured, and the value can be adjusted with high accuracy by adding a new adjustment target value in addition to the adjustment target value before correction calculated by the method described in the above equation. it can.
(Embodiment 2)
In the fifth embodiment, when the temperature of the bimetal 10 is changed and deformed, and the adjustment target value is calculated based on the amount of the deformation, the difference from the deformation of the bimetal 10 at the time of the characteristic inspection is corrected. In the present embodiment, when the bimetal 10 is deformed by the characteristic adjusting means 6 based on the adjustment target value, the measurement of the amount of deformation at the time of adjustment and the measurement of the amount of deformation of the bimetal 10 at the time of characteristic inspection are performed based on the position of the deformation measurement point. This is a method of coping with a point where an error occurs between them.
[0107]
That is, as shown in FIG. 10A, a method of adjusting the position of the free end 10a by screwing the adjusting screw 40 into the bimetal 10 of the circuit breaker and pressing and displacing the fixed end of the bimetal 10 at the tip thereof. As shown in FIG. 10 (b), when the operating characteristics are adjusted by mechanical deformation such as a method of adjusting the position of the free end 10a by plastically deforming the fixed end portion, the bimetal 10 is linearly deformed. On the other hand, when the operation is inspected by energization as in the characteristic inspection, the bimetal 10 is deformed by the quadratic curve as described above. FIG. 10 shows the difference between the deformation (a) at the time of characteristic adjustment and the deformation (b) of the bimetal 10 at the time of characteristic inspection. When the free end 10a (action point) is used as a deformation measurement point, an error occurs. However, if the deformation measurement point is located on the fixed end side from the free end 10a due to space, an error occurs in the deformation of the bimetal 10 at the deformation measurement point even if the deformation of the bimetal 10 at the action point is the same ( (Points A and B in FIG. 11).
[0108]
This error can be calculated as follows. That is, k is a constant representing the degree of deformation of the quadratic curve at the time of characteristic inspection, a ″ is the slope at the time of adjustment, and the distance from the fixed end to the deformation measurement point (point A, point B) is L0, If the height distance from the end to the free end 10a is L, the deformation of the bimetal 10 at the point of action (free end 10a) is the same.
kL2= A "L @ a" = kL
So the error at the measurement position is
a "L0-KL0 2= KLL0-KL0 2= KL0(L-L0)
It can be expressed as.
[0109]
Therefore, the arithmetic processing unit 5 can reduce the value to the adjustment target value calculated before the correction and set a new adjustment target value, and provide the corrected adjustment target value to the characteristic adjustment unit 6 to perform the adjustment with high accuracy. become.
[0110]
By the way, in each of the above-described embodiments, as the attribute data used for calculating the adjustment target value, a combination of the resistance value of the bimetal 10 and the deformation amount when the temperature of the bimetal 10 is changed is used. Can be used. Next, these other attribute data will be described.
[0111]
As a correction method, the plate thickness of each metal layer of the bimetal 10 may be measured using the same image processing as described above, and the adjustment target value may be corrected using the data. In other words, if the thickness ratio of the metal layer changes, the bending coefficient, Young's modulus, volume resistivity, specific heat, specific gravity, etc. change, so if the adjustment target value is corrected with this thickness ratio, the characteristics can be adjusted with high accuracy. .
[0112]
As attribute data, attribute data other than the above may be used. For example, the assembly precision can be used as one of the attribute data.
[0113]
That is, the assembling accuracy, which is the most important factor in the circuit breaker, is the allowance γ of the movable contact plate 21 at the locking portion 20a of the latch plate 20, as shown in FIG. If the allowance γ is large, the latch is unlikely to be detached even when a current is applied to deform the bimetal 10, so that the allowance γ is imaged from the outside through the window H provided in the housing 27 as in the case of this plate thickness. The method of taking an image with a camera and measuring the hanging margin γ by image processing is performed in the same manner as in the case of the plate thickness.
[0114]
Furthermore, the final shipping inspection result and the accelerated test result can be used as attribute data.
[0115]
Here, the final shipment inspection result is a result of a test performed in the process V under a condition where the circuit breaker is actually used to determine a non-defective / defective product. That is, the rated current is passed, the circuit breaker does not trip, and a current having a current value larger than the rated value (for example, 125%, 25A in the case of a 20A rating) is passed, and if it falls within one hour, it is determined as a good product. It is the result of the test.
[0116]
In addition, the accelerated test result means that a very long time is required for the test in the final shipment test, so that the current flowing during the test is increased (for example, 200%, 40A in the case of 20A rating) for a certain time (for example, 15 ± 3 seconds). If the circuit breaker falls during the test, it is a result of a test to determine a good product. It should be noted that the attribute data based on these results can be used only for readjustment for passing through the process V.
[0117]
Other attribute data include the volume resistivity and the Young's modulus of the bimetal 10, and the No. of the characteristic adjustment unit for performing the characteristic adjustment, the ambient temperature, the humidity, the No. of the characteristic inspection unit 7 for performing the characteristic inspection in the process V, and the like. is there.
[0118]
As a method of measuring the amount of deformation of the bimetal 10 described above, an eddy current method, an electrostatic method, or the like may be employed in addition to the above-described sensors and methods.
[0119]
【The invention's effect】
According to the first aspect of the present invention, a plurality of assembling steps for sequentially assembling each component element of the circuit breaker whose characteristics have been measured, and a characteristic for adjusting various characteristics of the circuit breaker completed in the final assembling step by the characteristic adjusting means. An adjustment step, and a characteristic inspection step of inspecting a predetermined characteristic of the circuit breaker after the adjustment in the characteristic adjustment step with the characteristic inspection means,
In addition to registering the characteristic measurement result in the database in association with the ID given to the component element used for the first assembling, and attaching the ID to the component element with a barcode by a barcode assigning means,
Thereafter, during an assembling process of sequentially assembling the respective component elements, the barcode of the component element is read by barcode reading means, and the characteristic measurement result of the component element to be assembled in association with the ID indicated by the barcode is obtained. In the characteristic adjustment process, the barcodes of the component elements in the assembled circuit breaker are read, and each component element registered in association with the ID indicated by the barcode is registered. The characteristic measurement result is read from the database, and the adjustment target value of the predetermined operation characteristic of the circuit breaker is calculated by the adjustment target value calculation means based on the read characteristic measurement result, and the characteristic adjustment means is based on the adjustment target value. Register the characteristic adjustment amount in the database as a characteristic adjustment result while performing characteristic adjustment and correlating with the ID.
In the characteristic inspection step, the circuit breaker reads a bar code of the component element of the circuit breaker after the characteristic adjustment and registers an inspection result by the characteristic inspection means in the database in association with the ID indicated by the bar code. In the manufacturing method of
The calculation of the adjustment target value of the operation characteristic of the circuit breaker is a function of the values of a plurality of characteristic measurement results of the component elements related to the operation characteristic of the circuit breaker manufactured in a predetermined number as a sample for collecting characteristic measurement results in advance. Since the adjustment is performed using the relational expression that represents the adjustment target value, the characteristics of multiple circuit breakers can be managed and controlled individually, and the effects of the characteristics of the component elements can be accurately reflected in the adjustment target value. The quality of the circuit breaker of the circuit breaker can be stabilized.
[0120]
According to a second aspect of the present invention, in the first aspect of the present invention, since the relational expression is represented in a table format, it is easy to make corrections during operation for calculating a target adjustment value.
[0121]
According to a third aspect of the present invention, in the first aspect of the present invention, one of the characteristic measurement results of the component element is changed when an overcurrent flows through the main contact circuit to change the temperature of the bimetal that operates the trip mechanism. Since the amount of deformation of the bimetal at the time of the adjustment is used, it is possible to calculate the adjustment target value using the characteristic measurement value including the amount of deformation of the bimetal.
[0122]
According to a fourth aspect of the present invention, in the third aspect of the present invention, when measuring the amount of deformation of the bimetal, one of the measured temperatures before and after the change of the bimetal temperature is the same as the temperature at the time of the characteristic adjustment. Therefore, it is possible to reduce the time lapse in a series of processes from the measurement of the amount of deformation of the bimetal to the calculation of the target adjustment value and the characteristic adjustment.
[0123]
According to a fifth aspect of the present invention, in the third or fourth aspect of the present invention, the bimetal is self-generated by energizing the bimetal to change the temperature of the bimetal, and the amount of deformation of the bimetal is measured. The amount of deformation of the bimetal can be measured in accordance with the actual use of the circuit breaker, and therefore, the error factor can be reduced.
[0124]
According to a sixth aspect of the present invention, in the invention of the fourth aspect, a relational expression between the first deformation amount of the bimetal during the energization and the second deformation amount of the bimetal during the energization shorter than the time during the energization. Is provided in advance, and the first deformation amount is calculated from the measurement result of the second deformation amount using the relational expression. Therefore, the time required to obtain the deformation amount of the bimetal is reduced. Can be.
[0125]
According to a seventh aspect of the present invention, in the invention according to any one of the third to sixth aspects, the temperature of the bimetal is determined as a plurality of points and the temperature of the bimetal is determined using the measured temperatures of the plurality of points. The adjustment value can be calculated.
[0126]
According to an eighth aspect of the present invention, in the invention of the fourth aspect, the temperature change of the bimetal is promoted by the heating promoting means or the cooling promoting means in the step of measuring the amount of deformation of the bimetal, so that the manufacturing process can be shortened.
[0127]
According to a ninth aspect of the present invention, in the fifth aspect of the present invention, when the bimetal is energized and deformed due to self-heating of the bimetal, the amount of deformation in a portion of the bimetal deviating from the energized electric circuit is corrected, so that the adjustment is performed with high accuracy. A target value can be calculated.
[0128]
According to a tenth aspect of the present invention, in the third aspect, the bimetal is mechanically deformed in accordance with the adjustment target value calculated based on the relational expression, and the measurement position of the bimetal deformation amount is the free end of the bimetal. If not, the adjustment target value is corrected, so that the adjustment target value can be calculated with high accuracy.
[0129]
According to an eleventh aspect of the present invention, in the first aspect of the present invention, one of the characteristic measurement results of the component element is defined as a resistance value of a bimetal which deforms when an overcurrent flows through the main contact circuit to operate a trip mechanism. Therefore, it is possible to calculate the adjustment target value using the characteristic measured value including the resistance value of the bimetal.
[0130]
According to a twelfth aspect of the present invention, in the eleventh aspect of the present invention, after assembling the member to which the bimetal is connected and assembling the case with the circuit breaker, the member between the power supply side terminal and the load side terminal of the circuit breaker is connected. Since the resistance value is measured and the resistance value is used as the resistance value of the bimetal, the resistance value of the bimetal can be measured in a state of a completed product, so that the manufacturing apparatus is not complicated.
[0131]
According to a thirteenth aspect of the present invention, in the first aspect of the present invention, one of the characteristic measurement results of the component element is determined by changing a plate thickness of a bimetal that deforms and activates a trip mechanism when an overcurrent flows through the main contact circuit. Therefore, it is possible to calculate the adjustment target value using the characteristic measurement value including the thickness of the bimetal.
[0132]
According to a fourteenth aspect of the present invention, in the thirteenth aspect, as another one of the characteristic measurement results of the plurality of component elements, when the overcurrent flows through the main contact circuit, the main contact circuit is deformed to operate the trip mechanism. The amount of deformation of the bimetal when the temperature of the bimetal is changed is used, and the measurement of the amount of deformation of the bimetal and the measurement of the plate thickness are performed by image processing using the captured image data of the bimetal. The measurement of the deformation amount and the plate thickness can be performed at the same time, and the simplified image of the measurement process is withered.
[0133]
According to a fifteenth aspect of the present invention, in the thirteenth aspect, the adjustment target value is corrected by measuring the thickness of each metal layer constituting the bimetal, so that a highly accurate adjustment target value can be obtained. .
[0134]
According to a sixteenth aspect of the present invention, in the first aspect of the present invention, when the inspection result by the characteristic inspection characteristic is defective, the characteristic adjustment step includes a re-adjustment step of performing characteristic adjustment again. Any of a plurality of characteristic measurement results of component elements related to operating characteristics obtained when a circuit breaker was manufactured as a sample, a plurality of characteristic adjustment amounts in a characteristic adjustment process, and a plurality of inspection results in a characteristic inspection process Is performed using a relational expression representing the adjustment target value with the function of, and the respective adjustment target values are calculated based on the respective results of the circuit breaker to be readjusted. Since the final adjustment target value of readjustment is calculated from the value, the adjustment target value can be calculated using the inspection result in the characteristic inspection process at the time of readjustment.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of a manufacturing apparatus using a method of the present invention.
FIG. 2 is a schematic configuration diagram of a circuit breaker manufactured by a manufacturing apparatus using the method of the present invention.
FIG. 3 is an explanatory diagram of a method of measuring a plate thickness of a bimetal according to the first embodiment.
FIG. 4 is a schematic explanatory diagram of a characteristic adjusting unit used in the first embodiment.
FIG. 5 is an explanatory diagram of a method for measuring the amount of deformation of a bimetal according to the second embodiment.
FIG. 6 is an explanatory diagram of a measurement of a deformation amount due to self-heating of the bimetal according to the third embodiment.
FIG. 7 is an explanatory diagram showing a relationship between a temperature change due to self-heating of the bimetal and a measured value of a deformation (displacement) amount of the bimetal according to the third embodiment.
FIG. 8 is an explanatory diagram of a method of estimating a bimetal deformation amount due to a change in temperature rise in Embodiment 4 of the invention.
FIG. 9 is a diagram illustrating correction of a target adjustment value according to the fifth embodiment.
FIG. 10 is an explanatory diagram of an example of a bimetal characteristic adjustment method according to the second embodiment of the present invention.
FIG. 11 is an explanatory diagram of a difference in deformation of a bimetal at the time of characteristic adjustment and at the time of characteristic inspection.
FIG. 12 is an explanatory diagram of assembly accuracy used as attribute data.
[Explanation of symbols]
1a ... Characteristic measuring means
2a ... Data registration means
3 Barcode assigning means
4a ... Bar code reading means
5 arithmetic processing unit
5a Matching function
5b Adjustment target calculation function
6 Characteristics adjustment means
7) Characteristics inspection means
I… Process
a… Parts
A, B semi-finished product
C, D finished product
DB Database

Claims (16)

特性測定された回路遮断器の各部品要素を順次組み付けて行く複数の組立過程と、最終の組立過程で完成した回路遮断器の諸特性を特性調整手段で調整する特性調整過程と、該特性調整過程の調整後の回路遮断器の所定の特性を特性検査手段で検査する特性検査過程とから成り、
最初の組み付けに用いる部品要素に与えるIDに対応付けて特性測定結果をデータベースに登録するとともに、当該部品要素にバーコード付与手段により前記IDをバーコードで付し、
以後順次各部品要素を組み付けて行く組立過程を経る際に、前記部品要素のバーコードをバーコード読取手段で読み取って、該バーコードで示されるIDに対応付けて組み付ける部品要素の特性測定結果を前記データベースに順次登録し、特性調整過程においては、組み立て完成された回路遮断器における前記部品要素のバーコードを読み取って、当該バーコードで示されるIDに対応付けて登録されている各部品要素の特性測定結果を前記データベースから読み出し、読み出した特性測定結果に基づいて回路遮断器の所定の動作特性の調整目標値を調整目標値演算手段で演算して、特性調整手段で調整目標値に基づいた特性調整を行うとともに前記IDに対応付けて特性調整量を特性調整結果として前記データベースに登録し、
特性検査過程では、特性調整後の回路遮断器の前記部品要素のバーコードを読み取って、該バーコードで示されるIDに対応付けて、特性検査手段による検査結果を前記データベースに登録する回路遮断器の製造方法において、
前記回路遮断器の動作特性の調整目標値の演算を、予め特性測定結果収集用のサンプルとして所定数製造された回路遮断器の動作特性に関連する部品要素の複数の特性測定結果の値の関数で調整目標値を表す関係式を用いて行うことを特徴とする回路遮断器の製造方法。
A plurality of assembling steps for sequentially assembling each component element of the circuit breaker whose characteristics have been measured; a characteristic adjusting step of adjusting various characteristics of the circuit breaker completed in the final assembling process by characteristic adjusting means; A characteristic inspection step of inspecting predetermined characteristics of the circuit breaker after the adjustment of the process by the characteristic inspection means,
In addition to registering the characteristic measurement result in the database in association with the ID given to the component element used for the first assembling, the ID is attached to the component element by a barcode by a barcode,
Thereafter, during an assembling process of sequentially assembling the respective component elements, the barcode of the component element is read by barcode reading means, and the characteristic measurement result of the component element to be assembled in association with the ID indicated by the barcode is obtained. In the characteristic adjustment process, the barcodes of the component elements in the assembled circuit breaker are read, and each component element registered in association with the ID indicated by the barcode is registered. The characteristic measurement result is read from the database, and the adjustment target value of the predetermined operation characteristic of the circuit breaker is calculated by the adjustment target value calculation means based on the read characteristic measurement result, and the characteristic adjustment means is based on the adjustment target value. Register the characteristic adjustment amount in the database as a characteristic adjustment result while performing characteristic adjustment and correlating with the ID.
In the characteristic inspection step, the circuit breaker reads the bar code of the component element of the circuit breaker after the characteristic adjustment and registers the inspection result by the characteristic inspection means in the database in association with the ID indicated by the bar code. In the manufacturing method of
The calculation of the adjustment target value of the operating characteristics of the circuit breaker is a function of the values of a plurality of characteristic measurement results of the component elements related to the operating characteristics of the circuit breaker manufactured in advance as a sample for collecting characteristic measurement results. A method of manufacturing a circuit breaker, wherein the method is performed using a relational expression representing an adjustment target value.
前記関係式を、テーブル形式で表していることを特徴とする請求項1記載の回路遮断器の製造方法 。The method according to claim 1, wherein the relational expression is represented in a table format. 前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの温度を変化させたときのバイメタルの変形量とすることを特徴とする請求項1記載の回路遮断器の製造方法。One of the characteristic measurement results of the component elements is characterized in that the amount of deformation of the bimetal when changing the temperature of the bimetal that deforms when an overcurrent flows in the main contact circuit and operates the trip mechanism is characterized in that: The method for manufacturing a circuit breaker according to claim 1. 前記バイメタルの変形量を測定する場合に、バイメタルの温度の変化前若しくは変化後の測定温度のどちらか一方を、特性調整時の温度と同一としていることを特徴とする請求項3記載の回路遮断器の製造方法。4. The circuit interruption according to claim 3, wherein when measuring the amount of deformation of the bimetal, one of the measured temperatures before and after the temperature of the bimetal is the same as the temperature at the time of characteristic adjustment. Method of manufacturing the vessel. 前記バイメタルに通電することよって該バイメタルの自己発熱させて該バイメタルの温度に変化を与え、前記バイメタルの変形量の測定を行うことを特徴とする請求項3又は4記載の回路遮断器の製造方法。5. The method for manufacturing a circuit breaker according to claim 3, wherein a current is applied to the bimetal to cause self-heating of the bimetal to change the temperature of the bimetal and measure a deformation amount of the bimetal. . 前記通電時の前記バイメタルの第1の変形量と、該通電時の時間より短くした通電時のバイメタルの第2の変形量との関係式を予め設けておき、該関係式を用いて前記第2の変形量の測定結果より、前記第1の変形量を算出することを特徴とする請求項4記載の回路遮断器の製造方法。A relational expression between a first deformation amount of the bimetal during the energization and a second deformation amount of the bimetal during the energization shorter than the time of the energization is provided in advance, and the relational expression is obtained using the relational expression. 5. The method according to claim 4, wherein the first amount of deformation is calculated from the measurement result of the amount of deformation of (2). 前記バイメタルの温度測定点を複数箇所として、これら複数箇所の測定温度を用いてバイメタルの温度を決定することを特徴とする請求項3乃至6の何れか記載の回路遮断器の製造方法The method for manufacturing a circuit breaker according to any one of claims 3 to 6, wherein the temperature of the bimetal is determined at a plurality of points, and the temperature of the bimetal is determined using the measured temperatures at the plurality of points. 前記バイメタルの変形量測定過程で、バイメタルの温度変化を加熱促進手段若しくは冷却促進手段により促進させることを特徴とする請求項4記載の回路遮断器の製造方法。5. The method for manufacturing a circuit breaker according to claim 4, wherein in the step of measuring the amount of deformation of the bimetal, the temperature change of the bimetal is promoted by a heating promoting means or a cooling promoting means. 前記バイメタルに通電してバイメタルの自己発熱によって変形させる場合に、バイメタルの通電電路から外れた部分における変形分を補正することを特徴とする請求項5記載の回路遮断器の製造方法。6. The method for manufacturing a circuit breaker according to claim 5, wherein when the bimetal is energized to be deformed by self-heating of the bimetal, a deformation in a portion of the bimetal deviated from an energized electric circuit is corrected. 前記関係式に基づき算出される調整目標値に対応させてバイメタルを機械的に変形させ、且つバイメタルの変形量の測定位置がバイメタルの自由端でない場合に、前記調整目標値を補正することを特徴とする請求項3記載の回路遮断器の製造方法。The bimetal is mechanically deformed in accordance with the adjustment target value calculated based on the relational expression, and the adjustment target value is corrected when the measurement position of the bimetal deformation amount is not the free end of the bimetal. The method for manufacturing a circuit breaker according to claim 3. 前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの抵抗値とすることを特徴とする請求項1記載の回路遮断器の製造方法。2. The circuit breaker according to claim 1, wherein one of the characteristic measurement results of the component element is a bimetal resistance value that is deformed when an overcurrent flows through the main contact circuit to activate a trip mechanism. Manufacturing method. 前記バイメタルが連結されている部材を組み立て、回路遮断器のケースに組み付けた後に、回路遮断器の電源側端子と負荷側端子との間の抵抗値を測定し、該抵抗値を前記バイメタルの抵抗値として用いることを特徴とする請求項11記載の回路遮断器の製造方法。After assembling the member to which the bimetal is connected and assembling the circuit breaker case, a resistance value between a power supply side terminal and a load side terminal of the circuit breaker is measured, and the resistance value is determined as the resistance of the bimetal. The method for manufacturing a circuit breaker according to claim 11, wherein the method is used as a value. 前記部品要素の特性測定結果の一つを、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの板厚とすることを特徴とする請求項1記載の回路遮断器の製造方法。2. The circuit breaker according to claim 1, wherein one of the characteristic measurement results of the component element is a bimetal plate thickness that is deformed when an overcurrent flows through the main contact circuit to activate a trip mechanism. Manufacturing method. 複数の前記部品要素の特性測定結果の内の別の一つとして、主接点回路に過電流が流れたときに変形してトリップ機構を作動させるバイメタルの温度を変化させたときのバイメタルの変形量を用い、該バイメタルの変形量の測定及び前記板厚の測定を、バイメタルの撮像画像データを用いた画像処理により行うことを特徴とする請求項13記載の回路遮断器の製造方法。As another one of the characteristic measurement results of the plurality of component elements, the amount of deformation of the bimetal when the temperature of the bimetal that changes when an overcurrent flows through the main contact circuit and operates the trip mechanism is changed. The method for manufacturing a circuit breaker according to claim 13, wherein the measurement of the amount of deformation of the bimetal and the measurement of the plate thickness are performed by image processing using captured image data of the bimetal. 前記バイメタルを構成するメタル層毎の板厚を計測して、前記調整目標値を補正することを特徴とする請求項13記載の回路遮断器の製造方法。14. The method according to claim 13, wherein the adjustment target value is corrected by measuring a thickness of each metal layer constituting the bimetal. 前記特性検査特性による検査結果が不良の場合、前記特性調整過程で特性調整を再度行う再調整過程を有し、該再調整過程では、予めサンプルとして回路遮断器を製造した際に得た、動作特性に関連する部品要素の複数の特性測定結果、特性調整過程での複数の特性調整量、特性検査過程での複数の検査結果の何れかの関数で調整目標値を表す関係式を用いて行い、再調整対象の回路遮断器の対応する夫々の結果に基づいて夫々の調整目標値の演算し、この演算によって求められた複数の調整目標値から最終的な再調整の調整目標値を演算することを特徴とする請求項1記載の回路遮断器の製造方法。When the inspection result by the characteristic inspection characteristic is defective, the characteristic adjustment step includes a re-adjustment step of re-adjusting the characteristic in the characteristic adjustment step. In the re-adjustment step, an operation obtained when a circuit breaker is manufactured in advance as a sample Performed using a relational expression that represents the adjustment target value as a function of any one of a plurality of characteristic measurement results of component elements related to characteristics, a plurality of characteristic adjustment amounts in the characteristic adjustment process, and a plurality of inspection results in the characteristic inspection process. Calculating the respective adjustment target values based on the respective results of the circuit breakers to be readjusted, and calculating the final adjustment target value for readjustment from the plurality of adjustment target values obtained by the calculation. The method for manufacturing a circuit breaker according to claim 1, wherein:
JP2002184890A 2002-06-25 2002-06-25 Circuit breaker manufacturing method Expired - Fee Related JP3849591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184890A JP3849591B2 (en) 2002-06-25 2002-06-25 Circuit breaker manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184890A JP3849591B2 (en) 2002-06-25 2002-06-25 Circuit breaker manufacturing method

Publications (2)

Publication Number Publication Date
JP2004031086A true JP2004031086A (en) 2004-01-29
JP3849591B2 JP3849591B2 (en) 2006-11-22

Family

ID=31180694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184890A Expired - Fee Related JP3849591B2 (en) 2002-06-25 2002-06-25 Circuit breaker manufacturing method

Country Status (1)

Country Link
JP (1) JP3849591B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010244701A (en) * 2009-04-01 2010-10-28 Kawamura Electric Inc Circuit breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010244701A (en) * 2009-04-01 2010-10-28 Kawamura Electric Inc Circuit breaker

Also Published As

Publication number Publication date
JP3849591B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
US7470057B2 (en) Differential scanning calorimeter sensor and method
CN101371414B (en) Circuit breaker and method for sensing current indirectly from bimetal voltage and determining bimetal temperature and corrected temperature dependent bimetal resistance
US9606074B2 (en) Fluid property sensor with heat loss compensation and operating method thereof
US7361867B2 (en) Electronic scale and method for weight measurement including correction means for correcting a weight dependent signal
US11757388B2 (en) Method of characterising a synchronous motor
CN106153670A (en) A kind of linear expansion coefficient measuring instrument based on Hall effect
US20190170566A1 (en) Load cell having compensation of temperature differences
Missal et al. Miniaturized ceramic differential scanning calorimeter with integrated oven and crucible in LTCC technology
JP3849591B2 (en) Circuit breaker manufacturing method
JP2004503746A (en) Apparatus and method for determining humidity in gas
EP1863057B1 (en) Circuit breaker and thermal trip
JP3418407B2 (en) Temperature measurement type external connection mechanism for printed wiring boards
CN102077059B (en) Method for thermally compensating gaging device and thermally compensated gaging station
US20220128502A1 (en) Sensor Device and Method for Operating A Sensor Device
JP4085728B2 (en) Control method of thermal overcurrent relay
JP3849569B2 (en) Circuit breaker manufacturing method and manufacturing apparatus thereof
JP2009109314A (en) Semiconductor device and its inspecting method
KR100765673B1 (en) Thermal type tripping device and circuit breaker using the same
US6390674B1 (en) Thermal analysis apparatus and method capable of accurately measuring a temperature of a large diameter sample
Edler et al. Reference material for Seebeck coefficients
JP2002324473A (en) Circuit breaker, its adjusting method and adjusting device
JP4436999B2 (en) Current sensor
US7498913B2 (en) Thermal trip device and circuit breaker using the same
JP3210222B2 (en) Temperature measuring device
JPH0479404B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees