JP3848262B2 - Oligofluorenylene compound and organic light-emitting device - Google Patents

Oligofluorenylene compound and organic light-emitting device Download PDF

Info

Publication number
JP3848262B2
JP3848262B2 JP2003006796A JP2003006796A JP3848262B2 JP 3848262 B2 JP3848262 B2 JP 3848262B2 JP 2003006796 A JP2003006796 A JP 2003006796A JP 2003006796 A JP2003006796 A JP 2003006796A JP 3848262 B2 JP3848262 B2 JP 3848262B2
Authority
JP
Japan
Prior art keywords
group
layer
compound
light emitting
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003006796A
Other languages
Japanese (ja)
Other versions
JP2004002298A5 (en
JP2004002298A (en
Inventor
章人 齊藤
直樹 山田
章弘 妹尾
幸一 鈴木
浩 田邊
美津穂 平岡
千花 根岸
麻紀 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003006796A priority Critical patent/JP3848262B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to AU2003221098A priority patent/AU2003221098A1/en
Priority to PCT/JP2003/003615 priority patent/WO2003080559A1/en
Priority to KR1020047014970A priority patent/KR100644913B1/en
Priority to EP03712917A priority patent/EP1487779A1/en
Priority to CNB038012987A priority patent/CN1291969C/en
Priority to US10/506,300 priority patent/US7229702B2/en
Publication of JP2004002298A publication Critical patent/JP2004002298A/en
Publication of JP2004002298A5 publication Critical patent/JP2004002298A5/en
Application granted granted Critical
Publication of JP3848262B2 publication Critical patent/JP3848262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/66Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/36Nitrogen atoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機発光素子に関し、詳しくは有機化合物からなる薄膜に電界を印加することにより光を放出する素子に関する。
【0002】
【従来の技術】
有機発光素子は、陽極と陰極間に蛍光性有機化合物を含む薄膜を挟持させて、各電極から電子およびホール(正孔)を注入することにより、蛍光性化合物の励起子を生成させ、この励起子が基底状態にもどる際に放射される光を利用する素子である。
【0003】
1987年コダック社の研究(非特許文献1)では、陽極にITO、陰極にマグネシウム銀の合金をそれぞれ用い、電子輸送材料および発光材料としてアルミニウムキノリノール錯体を用いホール輸送材料にトリフェニルアミン誘導体を用いた機能分離型2層構成の素子で、10V程度の印加電圧において1000cd/m2程度の発光が報告されている。関連の特許としては,特許文献1〜3等が挙げられる。
【0004】
また、蛍光性有機化合物の種類を変えることにより、紫外から赤外までの発光が可能であり、最近では様々な化合物の研究が活発に行われている。例えば、特許文献4〜11等に記載されている。
【0005】
さらに、上記のような低分子材料を用いた有機発光素子の他にも、共役系高分子を用いた有機発光素子が、ケンブリッジ大学のグループ(非特許文献2)により報告されている。この報告ではポリフェニレンビニレン(PPV)を塗工系で成膜することにより、単層で発光を確認している。共役系高分子を用いた有機発光素子の関連特許としては、特許文献12〜16等が挙げられる。
【0006】
このように有機発光素子における最近の進歩は著しく、その特徴は低印加電圧で高輝度、発光波長の多様性、高速応答性、薄型、軽量の発光デバイス化が可能であることから、広汎な用途への可能性を示唆している。
【0007】
しかしながら、長時間の使用による経時変化や酸素を含む雰囲気気体や湿気などによる劣化等の耐久性の面で未だ多くの問題がある。さらにフルカラーディスプレイ等への応用を考えた場合、現状では更なる高輝度の光出力あるいは高変換効率、高色純度の青、緑、赤色発光が必要である。例えば、特許文献17には高発光効率材料として、ジアミン化合物が開示されているが、高色純度(色度座標:x,y=0.14−0.15,0.09−0.12)の青色発光は得られていない。
【0008】
【特許文献1】
米国特許第4,539,507号明細書
【特許文献2】
米国特許第4,720,432号明細書
【特許文献3】
米国特許第4,885,211号明細書
【特許文献4】
米国特許第5,151,629号明細書
【特許文献5】
米国特許第5,409,783号明細書
【特許文献6】
米国特許第5,382,477号明細書
【特許文献7】
特開平2−247278号公報
【特許文献8】
特開平3−255190号公報
【特許文献9】
特開平5−202356号公報
【特許文献10】
特開平9−202878号公報
【特許文献11】
特開平9−227576号公報
【特許文献12】
米国特許第5,247,190号明細書
【特許文献13】
米国特許第5,514,878号明細書
【特許文献14】
米国特許第5,672,678号明細書
【特許文献15】
特開平4−145192号公報
【特許文献16】
特開平5−247460号公報
【特許文献17】
特開2001−52868号公報
【非特許文献1】
Appl.Phys.Lett.51,913(1987)
【非特許文献2】
Nature,347,539(1990)
【0009】
【発明が解決しようとする課題】
本発明は、このような従来技術の問題点を解決するためになされたものであり、極めて純度のよい発光色相を呈し、高効率で高輝度、高寿命の光出力を有する有機発光素子を得られるオリゴフルオレニレン化合物を提供することにある。さらには製造が容易でかつ比較的安価に作成可能な有機発光素子をを得られるオリゴフルオレニレン化合物を提供する事にある。
【0010】
【課題を解決するための手段】
本発明者等は、上述の課題を解決するために鋭意検討した結果、本発明を完成するに至った。すなわち本発明のオリゴフルオレニレン化合物は、下記式のいずれかで示されることを特徴とし、下記一般式[1]で示される化合物の一種である。
【0011】
【化2】

Figure 0003848262
【0012】
(X1〜X4は、置換あるいは未置換のアルキル基、アラルキル基、アリール基及び複素環基、置換あるいは未置換のアリーレン基あるいは二価の複素環基からなる連結基を有する置換あるいは未置換のアルケニル基、アルキニル基、アミノ基、アルコキシ基及びスルフィド基、置換あるいは未置換のアリーレン基あるいは二価の複素環基からなる連結基を有する置換のシリル基及びカルボニル基からなる群より選ばれた基であり、同じであっても異なっていてもよい。また、X1とX2、X3とX4は互いに結合し環を形成していてもよい。
【0013】
1〜R2は、水素原子、置換あるいは未置換のアルキル基、アラルキル基及びアリール基からなる群より選ばれた基であり、R1とR2は同じであっても異なっていてもよく、また異なるフルオレニレン環上のR1同士、R2同士も同じであっても異なっていてもよい。
【0014】
nは1〜20の整数である。)
【0015】
【発明の実施の形態】
以下、本発明に関して詳細に説明する。尚、以下、一般式[1]で示されるオリゴフルオレニレン化合物について説明するが、例示化合物40a,71bが本発明のオリゴフルオレニレン化合物である。
【0016】
まず、本発明のオリゴフルオレニレン化合物について説明する。
【0017】
本発明のオリゴフルオレニレン化合物は、上記一般式[1]で示される。
【0018】
ここで、本発明のオリゴフルオレニレン化合物は、上記一般式[1]におけるnが1〜4の整数であること、即ち、トリフルオレニレン化合物、テトラフルオレニレン化合物、ペンタフルオレニレン化合物、またはヘキサフルオレニレン化合物であることが好ましい。
【0019】
また、各窒素上の置換基のいずれか一方が、下記一般式[2]で示される少なくともパラあるいはオルト位に置換基を有するフェニル基であることが好ましい。
【0020】
【化3】
Figure 0003848262
【0021】
(R5〜R9は、水素、ハロゲン基、シアノ基、ニトロ基、置換あるいは未置換のアルキル基、アラルキル基、アリール基、複素環基、アルケニル基、アルキニル基、アミノ基、アルコキシ基及びスルフィド基、置換のシリル基及びカルボニル基からなる群より選ばれた基であり、同じであっても異なっていてもよい。)
【0022】
また、各窒素上の置換基のいずれか一方が、芳香族多環縮環基あるいは複素環基であることが好ましい。
【0023】
更には、各窒素上の置換基のいずれか一方が、上記一般式[2]で示される少なくともパラあるいはオルト位に置換基を有するフェニル基であり、他の一方が芳香族多環縮環基あるいは複素環基であることが好ましい。
【0024】
上記一般式[1][2]における置換基の具体例を以下に示す。
【0025】
置換あるいは未置換のアルキル基としては、鎖状、環状のいずれでも良く、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ヘキシル基、n−デシル基、iso−プロピル基、iso−ブチル基、tert−ブチル基、tert−オクチル基、トリフルオロメチル基、シクロヘキシル基、シクロヘキシルメチル基等が挙げられるが、もちろんこれらに限定されるものではない。
【0026】
置換あるいは未置換のアラルキル基としては、ベンジル基、フェネチル基等が挙げられるが、もちろんこれらに限定されるものではない。
【0027】
置換あるいは未置換のアリール基としては、フェニル基、4−メチルフェニル基、4−メトキシフェニル基、4−エチルフェニル基、4−フルオロフェニル基、3,5−ジメチルフェニル基、ジトリルアミノフェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントラセニル基、フェナンスレリル基、ピレニル基、テトラセニル基、ペンタセニル基、フルオレニル基、トリフェニレニル基、ペリレニル基等が挙げられるが、もちろんこれらに限定されるものではない。
【0028】
置換あるいは未置換の複素環基としては、ピロリル基、ピリジル基、ビピリジル基、メチルピリジル基、ターピロリル基、チエニル基、ターチエニル基、プロピルチエニル基、フリル基、キノリル基、カルバゾリル基、オキサゾリル基、オキサジアゾリル基、チアゾリル基、チアジアゾリル基等が挙げられるが、もちろんこれらに限定されるものではない。
【0029】
置換あるいは未置換のアリーレン基としては、フェニレン基、ビフェニレン基、2,3,5,6−テトラフルオロフェニレン基、2,5−ジメチルフェニレン基、ナフチレン基、アントラセニレン基、フェナンスレニレン基、テトラセニレン基、ペンタセニレン基、ペリレニレン基等が挙げられるが、もちろんこれらに限定されるものではない。
【0030】
置換あるいは未置換の二価の複素環基としては、フラニレン基、ピロリレン基、ピリジニレン基、ターピリジニレン基、チオフェニレン基、ターチオフェニレン基、オキサゾリレン基、チアゾリレン基、カルバゾリレン等が挙げられるが、もちろんこれらに限定されるものではない。
【0031】
置換あるいは無置換のアルケニル基としては、ビニル基、アリル基(2−プロペニル基)、1−プロペニル基、iso−プロペニル基、2−ブテニル基等が挙げられるが、もちろんこれらに限定されるものではない。
【0032】
置換あるいは無置換のアルキニル基としては、アセチレニル基、フェニルアセチレニル基、1−プロピニル基等が挙げられるが、もちろんこれらに限定されるものではない。
【0033】
置換または未置換のアミノ基としては、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、メチルエチルアミノ基、ベンジルアミノ基、メチルベンジルアミノ基、ジベンジルアミノ基、アニリノ基、ジフェニルアミノ基、フェニルトリルアミノ基、ジトリルアミノ基、ジアニソリルアミノ基等が挙げられるが、もちろんこれらに限定されるものではない。
【0034】
置換あるいは未置換のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、2−エチル−オクチルオキシ基、フェノキシ基、4−ブチルフェノキシ基、ベンジルオキシ基等が挙げられるが、もちろんこれらに限定されるものではない。
【0035】
置換あるいは未置換のスルフィド基としては、メチルスルフィド基、エチルスルフィド基、フェニルスルフィド基、4−メチルフェニルスルフィド基等が挙げられるが、もちろんこれらに限定されるものではない。
【0036】
置換のカルボニル基としては、アセチル基、プロピオニル基、イソブチリル基、メタクリロイル基、ベンゾイル基、ナフトイル基、アントライル基、トルオイル基等が挙げられるが、もちろんこれらに限定されるものではない。
【0037】
上記置換基が有しても良い置換基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、ter−ブチル基、オクチル基、ベンジル基、フェネチル基等のアルキル基、アラルキル基、メトキシ基、エトキシ基、プロポキシ基、2−エチル−オクチルオキシ基、フェノキシ基、4−ブチルフェノキシ基、ベンジルオキシ基等のアルコキシ基、フェニル基、4−メチルフェニル基、4−エチルフェニル基、3−クロロフェニル基、3,5−ジメチルフェニル基、トリフェニルアミノ基、ビフェニル基、ターフェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基等のアリール基、ピリジル基、ビピリジル基、メチルピリジル基、チエニル基、ターチエニル基、プロピルチエニル基、フリル基、キノリル基、カルバゾリル基、N−エチルカルバゾリル基等の複素環基、ハロゲン基、シアノ基、ニトロ基が挙げられるが、もちろんこれらに限定されるものではない。
【0038】
次に一般式[1]で示されるフルオレニレン化合物についてその代表例を挙げる。ただし、これらの化合物に限定されるものではない。
【0039】
【化4】
Figure 0003848262
【0040】
【化5】
Figure 0003848262
【0041】
【化6】
Figure 0003848262
【0042】
【化7】
Figure 0003848262
【0043】
【化8】
Figure 0003848262
【0044】
【化9】
Figure 0003848262
【0045】
【化10】
Figure 0003848262
【0046】
【化11】
Figure 0003848262
【0047】
【化12】
Figure 0003848262
【0048】
本発明の一般式[1]で示される化合物は、有機発光素子の有機化合物を含む層、特に、発光層、電子輸送層あるいはホール輸送層として有用であり、また真空蒸着法や溶液塗布法などによって形成した層は結晶化などが起こりにくく経時安定性に優れている。
【0049】
一般式[1]で示される化合物は、剛直な構造を有するフルオレニレンを分子主鎖に導入することにより、より半値幅の狭い発光スペクトル、すなわちより色純度に優れた発光が得られる。さらにストークスシフトが抑えられることで、フルオレニレン鎖の長さを調節することにより、発光波長の移動を抑えながら吸収を長波長側にシフトさせることも可能で、ドーパント材料として用いる場合、相対的に長波長側に発光スペクトルを有するホスト材料の使用も可能となる。また、アミノ基上の置換基X1〜X4を調節することにより、発光色の調節も可能となる。
【0050】
AM1/CNDOS計算により振動子強度の予測をした結果、フルオレニレン鎖の長さを2から本発明における3以上とすることにより、振動子強度の増加が示唆された(−N(Tol)2基および9,9’−ジメチルフルオレニレン鎖からなるフルオレニレン化合物について計算:n=2,oscillator strngth:2.126527/n=3,oscillator strength:2.974588/n=5,oscillator strngth:4.118244)。計算は、分子の基底状態をGaussian98ソフトを用い半経験的なAM1手法により計算し、分子構造を保持した状態で励起状態エネルギーレベルを、CNDOS法により配置間相互作用を計算することにより算出することにより実行した。振動子強度が増加し、吸収強度(Abs)が増加することにより長波長側に発光スペクトルを有するホスト材料とのエネルギー移動もよりスムーズなものとなる。
【0051】
一般式[1]で示される化合物は、発光層においてドーパント材料、ホスト材料双方の目的で使用でき、高色純度、高発光効率、高寿命素子を得ることができ、特にドーパント材料として使用し、それとエネルギー移動を起こしやすい適切なホスト材料とのコンビネーションにより、高色純度な発光を保持しかつより効率の高い素子を得ることができる。
【0052】
一般式[1]で示される化合物を発光層においてドーパント材料として用いる場合、ホスト材料に対するドーパント濃度は、好ましくは0.01%〜50%、より好ましくは1〜10%である。また、好ましいホスト材料としては、例えば下記に示される化合物が挙げられるが、もちろんこれらに限定されるものではない。
【0053】
【化13】
Figure 0003848262
【0054】
【化14】
Figure 0003848262
【0055】
【化15】
Figure 0003848262
【0056】
次に、本発明の有機発光素子について詳細に説明する。
【0057】
本発明の有機発光素子は、陽極及び陰極からなる一対の電極と、該一対の電極間に狭持された一または複数の有機化合物を含む層を少なくとも有する有機発光素子において、前記有機化合物を含む層の少なくとも一層、好ましくは発光層が、一般式[1]で示されるフルオレニレン化合物の少なくとも一種を含有する。
【0058】
図1〜図6に本発明の有機発光素子の好ましい例を示す。
【0059】
図1は、本発明の有機発光素子の一例を示す断面図である。図1は、基板1上に、陽極2、発光層3及び陰極4を順次設けた構成のものである。ここで使用する発光素子は、それ自体でホール輸送能、エレクトロン輸送能及び発光性の性能を単一で有している場合や、それぞれの特性を有する化合物を混ぜて使う場合に有用である。
【0060】
図2は、本発明の有機発光素子における他の例を示す断面図である。図2は、基板1上に、陽極2、ホール輸送層5、電子輸送層6及び陰極4を順次設けた構成のものである。この場合は、発光物質はホール輸送性かあるいは電子輸送性のいずれか、あるいは両方の機能を有している材料をそれぞれの層に用い、発光性の無い単なるホール輸送物質あるいは電子輸送物質と組み合わせて用いる場合に有用である。また、この場合、発光層3は、ホール輸送層5あるいは電子輸送層6のいずれかから成る。
【0061】
図3は、本発明の有機発光素子における他の例を示す断面図である。図3は、基板1上に、陽極2、ホール輸送層5、発光層3,電子輸送層6及び陰極4を順次設けた構成のものである。これは、キャリヤ輸送と発光の機能を分離したものであり、ホール輸送性、電子輸送性、発光性の各特性を有した化合物と適時組み合わせて用いられ、極めて材料選択の自由度が増すとともに、発光波長を異にする種々の化合物が使用できるため、発光色相の多様化が可能になる。さらに、中央の発光層3に各キャリヤあるいは励起子を有効に閉じこめて、発光効率の向上を図ることも可能になる。
【0062】
図4は、本発明の有機発光素子における他の例を示す断面図である。図4は、図3に対して、ホール注入層7を陽極2側に挿入した構成であり、陽極2とホール輸送層5の密着性改善あるいはホールの注入性改善に効果があり、低電圧化に効果的である。
【0063】
図5および図6は、本発明の有機発光素子における他の例を示す断面図である。図5および図6は、図3および図4に対してホールあるいは励起子(エキシトン)を陰極4側に抜けることを阻害する層(ホールブロッキング層8)を、発光層3、電子輸送層6間に挿入した構成である。イオン化ポテンシャルの非常に高い化合物をホールブロッキング層8として用いる事により、発光効率の向上に効果的な構成である。
【0064】
ただし、図1〜図6はあくまで、ごく基本的な素子構成であり、本発明の化合物を用いた有機発光素子の構成はこれらに限定されるものではない。例えば、電極と有機層界面に絶縁性層を設ける、接着層あるいは干渉層を設ける、ホール輸送層がイオン化ポテンシャルの異なる2層から構成される、など多様な層構成をとることができる。
【0065】
本発明に用いられる一般式[1]で示される化合物は、図1〜図6のいずれの形態でも使用することができる。
【0066】
本発明は、特に発光層の構成成分として、一般式[1]で示される化合物を用い、更には必要に応じて例えば前述の例示化合物114〜140等のホスト材料を用いるものであるが、これまで知られているホール輸送性化合物、発光性化合物あるいは電子輸送性化合物などを必要に応じて一緒に使用することもできる。
【0067】
以下にこれらの化合物例を挙げる。
【0068】
【化16】
Figure 0003848262
【0069】
【化17】
Figure 0003848262
【0070】
【化18】
Figure 0003848262
【0071】
【化19】
Figure 0003848262
【0072】
【化20】
Figure 0003848262
【0073】
【化21】
Figure 0003848262
【0074】
本発明の有機発光素子において、一般式[1]で示される化合物を含有する層および他の有機化合物を含有する層は、一般には真空蒸着法あるいは、適当な溶媒に溶解させて塗布法により薄膜を形成する。特に塗布法で成膜する場合は、適当な結着樹脂と組み合わせて膜を形成することもできる。
【0075】
上記結着樹脂としては、広範囲な結着性樹脂より選択でき、たとえばポリビニルカルバゾール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ブチラール樹脂、ポリビニルアセタール樹脂、ジアリルフタレート樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ポリスルホン樹脂、尿素樹脂等が挙げられるが、これらに限定されるものではない。また、これらは単独または共重合体ポリマーとして1種または2種以上混合してもよい。
【0076】
陽極材料としては、仕事関数がなるべく大きなものがよく、例えば、金、白金、ニッケル、パラジウム、コバルト、セレン、バナジウム等の金属単体あるいはこれらの合金、酸化錫、酸化亜鉛、酸化錫インジウム(ITO),酸化亜鉛インジウム等の金属酸化物が使用できる。また、ポリアニリン、ポリピロール、ポリチオフェン、ポリフェニレンスルフィド等の導電性ポリマーも使用できる。これらの電極物質は単独で用いてもよく、複数併用することもできる。
【0077】
一方、陰極材料としては、仕事関数の小さなものがよく、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウム、アルミニウム、インジウム、銀、鉛、錫、クロム等の金属単体あるいは複数の合金として用いることができる。酸化錫インジウム(ITO)等の金属酸化物の利用も可能である。また、陰極は一層構成でもよく、多層構成をとることもできる。
【0078】
本発明で用いる基板としては、特に限定するものではないが、金属製基板、セラミックス製基板等の不透明性基板、ガラス、石英、プラスチックシート等の透明性基板が用いられる。また、基板にカラーフィルター膜、蛍光色変換フィルター膜、誘電体反射膜などを用いて発色光をコントロールする事も可能である。
【0079】
なお、作成した素子に対して、酸素や水分等との接触を防止する目的で保護層あるいは封止層を設けることもできる。保護層としては、ダイヤモンド薄膜、金属酸化物、金属窒化物等の無機材料膜、フッ素樹脂、ポリパラキシレン、ポリエチレン、シリコーン樹脂、ポリスチレン樹脂等の高分子膜、さらには、光硬化性樹脂等が挙げられる。また、ガラス、気体不透過性フィルム、金属などをカバーし、適当な封止樹脂により素子自体をパッケージングすることもできる。
【0080】
【実施例】
以下、実施例により本発明をさらに具体的に説明していくが、本発明はこれらに限定されるものではない。尚、本発明のオリゴフルオレニレン化合物に関する実施例は、実施例1,2,5,7,16,17である。
【0081】
<実施例1>[例示化合物No.40aの製造方法]
【0082】
【化22】
Figure 0003848262
【0083】
窒素気流下、2,7−ジヨード−9,9−ジメチルフルオレン5g(11.2mmol)、9,9−ジメチルフルオレン−2−ボロニックアシド9g(24.7mmol)を、脱気したトルエン200ml、エタノール100mlの混合溶媒中に溶解、攪拌し、そこに無水炭酸ナトリウム51gを水250mlに溶解させ調整した炭酸ナトリウム水溶液245mlを滴下した。30分攪拌した後、テトラキス(トリフェニルホスフィン)パラジウム142g(1.23mmol)を加えた。80℃に加熱したオイルバス上で約3時間、加熱攪拌した。反応溶液を室温に戻した後、水100ml、酢酸エチル100mlを加え、水層と有機層を分離し、さらに水層をトルエン及び酢酸エチルで抽出し、前の有機層とあわせ硫酸ナトリウムで乾燥した。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=1:2)で精製して、トリス(9,9−ジメチルフルオニレン)4.9gを得た。
【0084】
窒素雰囲気下、トリス(9,9−ジメチルフルオニレン)4.5g(7.79mmol)をニトロベンゼン150mlに加熱溶解させ、60℃に加熱したオイルバス上で臭素2.5g(15.6mmol)をゆっくり滴下し、さらに約2時間攪拌した。アイスバスに移し反応溶液を冷却し、しばらく攪拌した後、沈殿物をろ過した。沈殿物をトルエンから再結晶し、ろ過、乾燥後、トリス(9,9−ジメチルフルオニレン)のジブロモ体3.4gを得た。
【0085】
窒素雰囲気下、パラジウムビス(ベンジリデンアセトン)156mg(0.272mmol)、トリ−tert−ブチルホスフィン330mg(1.63mmol)をキシレン20mlに溶解させ、15分室温で攪拌した。そこに、キシレン50mlに溶解させたトリス(9,9−ジメチルフルオニレン)のジブロモ体1g(1.36mmol)を滴下し、50℃に加熱したオイルバス上で30分攪拌した。さらに、N−(4−メチルフェニル)−N−(9−フェナンスリル)アミン1.15g(4.08mmol)を20mlのキシレンに溶解させ滴下し、続いてtert−ブトキサイドナトリウム588mg(6.12mmol)を加えた。130℃に加熱したオイルバス上で約5時間、加熱攪拌した。反応溶液を室温に戻した後、水50mlを加え、水層と有機層を分離し、さらに水層をトルエン及び酢酸エチルで抽出し、前の有機層とあわせ硫酸マグネシウムで乾燥した。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=1:2)で精製して、例示化合物No.40aを1.2g得た。
【0086】
<実施例2>[例示化合物No.71bの製造方法]
【0087】
【化23】
Figure 0003848262
【0088】
窒素気流下、ビス(2−ヨード−9,9−ジメチルフルオレン)5g(7.84mmol)、9,9−ジメチルフルオレン−2−ボロニックアシド6.26g(17.2mmol)を、脱気したトルエン200ml、エタノール100mlの混合溶媒中に溶解、攪拌し、そこに無水炭酸ナトリウム36gを水180mlに溶解させ調整した炭酸ナトリウム水溶液170mlを滴下した。30分攪拌した後、テトラキス(トリフェニルホスフィン)パラジウム142g(0.86mmol)を加えた。80℃に加熱したオイルバス上で約3時間、加熱攪拌した。反応溶液を室温に戻した後、水100ml、酢酸エチル100mlを加え、水層と有機層を分離し、さらに水層をトルエン及び酢酸エチルで抽出し、前の有機層とあわせ硫酸ナトリウムで乾燥した。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=1:2)で精製して、テトラキス(9,9−ジメチルフルオニレン)3.92gを得た。
【0089】
窒素雰囲気下、テトラキス(9,9−ジメチルフルオニレン)3g(3.90mmol)をニトロベンゼン150mlに加熱溶解させ、60℃に加熱したオイルバス上で臭素1.4g(7.80mmol)をゆっくり滴下し、さらに約2時間攪拌した。アイスバスに移し反応溶液を冷却し、しばらく攪拌した後、沈殿物をろ過した。沈殿物をキシレンから再結晶し、ろ過、乾燥後、テトラキス(9,9−ジメチルフルオニレン)のジブロモ体2gを得た。
【0090】
窒素雰囲気下、パラジウムビス(ベンジリデンアセトン)124mg(0.216mmol)、トリ−tert−ブチルホスフィン130mg(0.648mmol)をキシレン20mlに溶解させ、15分室温で攪拌した。そこに、キシレン50mlに溶解させたテトラキス(9,9−ジメチルフルオニレン)のジブロモ体1g(1.08mmol)を滴下し、50℃に加熱したオイルバス上で30分攪拌した。さらに、N−(1−アントラセニル)−N−(フェニル)アミン694mg(2.59mmol)を20mlのキシレンに溶解させ滴下し、続いてtert−ブトキサイドナトリウム374mg(3.89mmol)を加えた。130℃に加熱したオイルバス上で約7時間、加熱攪拌した。反応溶液を室温に戻した後、水50mlを加え、水層と有機層を分離し、さらに水層をトルエン及び酢酸エチルで抽出し、前の有機層とあわせ硫酸マグネシウムで乾燥した。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=1:2)で精製して、例示化合物No.71bを900mg得た。
【0091】
<実施例3>
図3に示す構造の有機発光素子を以下に示す方法で作成した。
【0092】
基板1としてのガラス基板上に、陽極2としての酸化錫インジウム(ITO)をスパッタ法にて120nmの膜厚で成膜したものを透明導電性支持基板として用いた。これをアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。さらに、UV/オゾン洗浄したものを透明導電性支持基板として使用した。
【0093】
正孔輸送材料として下記構造式で示される化合物を用いて、濃度が0.5wt%となるようにクロロホルム溶液を調整した。
【0094】
【化24】
Figure 0003848262
【0095】
この溶液を上記の陽極2上に滴下し、最初に500RPMの回転で10秒、次に1000RPMの回転で1分間スピンコートを行い膜形成した。この後10分間、80℃の真空オーブンで乾燥し、薄膜中の溶剤を完全に除去した。形成されたホール輸送層の厚みは50nmであった。
【0096】
次に、ホール輸送層5の上に発光層3として前記例示化合物No.2aを蒸着して20nmの発光層3を設けた。蒸着時の真空度は1.0×10-4Pa、成膜速度は0.2〜0.3nm/secの条件で成膜した。
【0097】
更に、電子輸送層6としてアルミニウムキノリノール(Alq3)を真空蒸着法にて40nmの膜厚に形成した。蒸着時の真空度は1.0×10-4Pa、成膜速度は0.2〜0.3nm/secの条件であった。
【0098】
次に、アルミニウム−リチウム合金(リチウム濃度1原子%)からなる蒸着材料を用いて、先ほどの有機層の上に、真空蒸着法により厚さ10nmの金属層膜を形成し、更に真空蒸着法により厚さ150nmのアルミニウム膜を設け、アルミニウム−リチウム合金膜を電子注入電極(陰極4)とする有機発光素子を作成した。蒸着時の真空度は1.0×10-4Pa、成膜速度は1.0〜1.2nm/secの条件で成膜した。
【0099】
得られた有機EL素子は、水分の吸着によって素子劣化が起こらないように、乾燥空気雰囲気中で保護用ガラス板をかぶせ、アクリル樹脂系接着材で封止した。
【0100】
この様にして得られた素子に、ITO電極(陽極2)を正極、Al−Li電極(陰極4)を負極にして、6Vの印加電圧で、発光輝度1600cd/m2、最高輝度9100cd/m2、発光効率1.25lm/Wの発光が観測された。
【0101】
<実施例4〜9>
例示化合物No.2aに代えて、表1に示す化合物を用いた他は実施例3と同様に素子を作成し、同様な評価を行った。その結果を表1に示す。
【0102】
【表1】
Figure 0003848262
【0103】
<実施例10>
図3に示す構造の有機発光素子を以下に示す方法で作成した。
【0104】
実施例3と同様に、透明導電性支持基板上にホール輸送層5を形成した。
【0105】
次に、ホール輸送層5の上に発光層3として前記例示化合物No.6bを蒸着して20nmの発光層3を設けた。蒸着時の真空度は1.0×10-4Pa、成膜速度は0.2〜0.3nm/secの条件で成膜した。
【0106】
更に、バソフェナントロリン(BPhen)を真空蒸着法により40nmの膜厚で成膜し電子輸送層6を形成した。蒸着時の真空度は1.0×10-4Pa、成膜速度は0.2〜0.3nm/secの条件で成膜した。
【0107】
次に、実施例1と同様にして陰極4を形成した後に封止した。
【0108】
この様にして得られた素子に、ITO電極(陽極2)を正極、Al−Li電極(陰極4)を負極にして、6Vの印加電圧で、発光輝度2250cd/m2、最高輝度11750cd/m2、発光効率1.39lm/Wの発光が観測された。
【0109】
<実施例11〜14>
例示化合物No.6bに代えて、表2に示す化合物を用いた他は実施例10と同様に素子を作成し、同様な評価を行った。その結果を表2に示す。
【0110】
【表2】
Figure 0003848262
【0111】
<実施例15>
発光層3として前記例示化合物No.23および前記例示化合物No.120(重量比4:100)を共蒸着し20nmの発光層3を設けた以外は、実施例3と同様にして素子を作成した。
【0112】
この様にして得られた素子に、ITO電極2を正極、Al−Li電極4を負極にして、4Vの印加電圧で、発光輝度1100cd/m2、最高輝度27700cd/m2、発光効率2.25lm/Wの発光が観測された。
【0113】
<実施例16〜18>
例示化合物No.23に代えて、表3に示す化合物を用いた他は実施例15と同様に素子を作成し、同様な評価を行った。その結果を表3に示す。
【0114】
【表3】
Figure 0003848262
【0115】
<実施例19〜21>
例示化合物No.120に代えて、表4に示す化合物を用いた他は実施例15と同様に素子を作成し、同様な評価を行った。その結果を表4に示す。
【0116】
【表4】
Figure 0003848262
【0117】
<実施例22>
発光層3として前記例示化合物No.23および前記例示化合物No.120(重量比4:100)を共蒸着し20nmの発光層3を設けた以外は、実施例10と同様にして素子を作成した。
【0118】
この様にして得られた素子に、ITO電極2を正極、Al−Li電極4を負極にして、4Vの印加電圧で、発光輝度1890cd/m2、最高輝度29200cd/m2、発光効率2.50lm/Wの発光が観測された。
【0119】
<実施例23〜25>
例示化合物No.23に代えて、表5に示す化合物を用いた他は実施例15と同様に素子を作成し、同様な評価を行った。その結果を表5に示す。
【0120】
【表5】
Figure 0003848262
【0121】
<実施例26〜28>
例示化合物No.120に代えて、表6に示す化合物を用いた他は実施例15と同様に素子を作成し、同様な評価を行った。その結果を表6に示す。
【0122】
【表6】
Figure 0003848262
【0123】
<実施例29>
実施例26で作成した素子に、窒素雰囲気下で電流密度を7.0mA/cm2に保ち100時間電圧を印加したところ、初期輝度400cd/m2から100時間後、380cd/m2と輝度劣化は小さかった。
【0124】
<実施例30〜34>
実施例4,5,11,19,22で作成した素子の発光スペクトルをMCPD−7000で観測し、CIE色度座標を測定した。その結果を表7に示す。
【0125】
【表7】
Figure 0003848262
【0126】
<比較例1>
発光層3として下記比較化合物を用いた以外は、実施例10と同様にして素子を作成した。
【0127】
【化25】
Figure 0003848262
【0128】
この様にして得られた素子に、ITO電極2を正極、Al−Li電極4を負極にして、6Vの印加電圧で、発光輝度940cd/m2、最高輝度5050cd/m2、発光効率0.63lm/Wの発光が観測された。
【0129】
また、この素子の発光スペクトルをMCPD−7000で観測し、CIE色度座標を測定したところ、(x,y)=(0.16,0.29)であった。
【0130】
<比較例2>
発光層3として上記比較化合物と前記例示化合物129(重量比4:100)を共蒸着し20nmの発光層3を設けた以外は、実施例10と同様にして素子を作成した。
【0131】
この様にして得られた素子に、ITO電極2を正極、Al−Li電極4を負極にして、6Vの印加電圧で、発光輝度1060cd/m2、最高輝度9270cd/m2、発光効率0.82lm/Wの発光が観測された。
【0132】
また、この素子の発光スペクトルをMCPD−7000で観測し、CIE色度座標を測定したところ、(x,y)=(0.16,0.27)であった。
【0133】
【発明の効果】
以上説明のように、一般式[1]で示される化合物を用いた有機発光素子は、極めて純度のよい発光色相を呈し、高効率で高輝度、高寿命の光出力を有する。特に一般式[1]で示される化合物を含有する有機層は、発光層として優れている。
【0134】
さらに、素子の作成も真空蒸着あるいはキャステイング法等を用いて作成可能であり、比較的安価で大面積の素子を容易に作成できる。
【図面の簡単な説明】
【図1】本発明における有機発光素子の一例を示す断面図である。
【図2】本発明における有機発光素子の他の例を示す断面図である。
【図3】本発明における有機発光素子の他の例を示す断面図である。
【図4】本発明における有機発光素子の他の例を示す断面図である。
【図5】本発明における有機発光素子の他の例を示す断面図である。
【符号の説明】
1 基板
2 陽極
3 発光層
4 陰極
5 ホール輸送層
6 電子輸送層
7 ホール注入層
8 ホール/エキシトンブロッキング層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic light-emitting device, and more particularly to a device that emits light by applying an electric field to a thin film made of an organic compound.
[0002]
[Prior art]
An organic light-emitting element generates an exciton of a fluorescent compound by sandwiching a thin film containing a fluorescent organic compound between an anode and a cathode and injecting electrons and holes from each electrode. It is an element that utilizes light emitted when the child returns to the ground state.
[0003]
In 1987, Kodak Research (Non-patent Document 1) used ITO for the anode and magnesium silver alloy for the cathode, an aluminum quinolinol complex for the electron transport material and the light emitting material, and a triphenylamine derivative for the hole transport material. It has been reported that light emission of about 1000 cd / m 2 at an applied voltage of about 10 V has been reported. Examples of related patents include Patent Documents 1 to 3 and the like.
[0004]
In addition, by changing the type of the fluorescent organic compound, light emission from ultraviolet to infrared is possible, and recently, various compounds have been actively researched. For example, it describes in patent documents 4-11.
[0005]
Furthermore, in addition to the organic light emitting device using the low molecular material as described above, an organic light emitting device using a conjugated polymer has been reported by a group of Cambridge University (Non-Patent Document 2). In this report, light emission was confirmed in a single layer by forming a film of polyphenylene vinylene (PPV) in a coating system. Patents 12 to 16 and the like can be cited as related patents of organic light emitting devices using conjugated polymers.
[0006]
As described above, recent advances in organic light-emitting devices are remarkable, and their features are high brightness, variety of emission wavelengths, high-speed response, low profile, and light-emitting devices with low applied voltage. Suggests the possibility to.
[0007]
However, there are still many problems in terms of durability, such as changes over time due to long-term use and deterioration due to atmospheric gas containing oxygen or moisture. Further, when considering application to a full-color display or the like, at present, light output with higher luminance or higher conversion efficiency and higher color purity of blue, green, and red light emission is required. For example, Patent Document 17 discloses a diamine compound as a high luminous efficiency material, but high color purity (chromaticity coordinates: x, y = 0.14-0.15, 0.09-0.12). The blue emission of is not obtained.
[0008]
[Patent Document 1]
US Pat. No. 4,539,507 [Patent Document 2]
US Pat. No. 4,720,432 [Patent Document 3]
US Pat. No. 4,885,211 [Patent Document 4]
US Pat. No. 5,151,629 [Patent Document 5]
US Pat. No. 5,409,783 [Patent Document 6]
US Pat. No. 5,382,477 [Patent Document 7]
JP-A-2-247278 [Patent Document 8]
JP-A-3-255190 [Patent Document 9]
JP-A-5-202356 [Patent Document 10]
Japanese Patent Laid-Open No. 9-202878 [Patent Document 11]
JP-A-9-227576 [Patent Document 12]
US Pat. No. 5,247,190 [Patent Document 13]
US Pat. No. 5,514,878 [Patent Document 14]
US Pat. No. 5,672,678 [Patent Document 15]
JP-A-4-145192 [Patent Document 16]
JP-A-5-247460 [Patent Document 17]
JP 2001-52868 A Non-Patent Document 1
Appl. Phys. Lett. 51,913 (1987)
[Non-Patent Document 2]
Nature, 347, 539 (1990)
[0009]
[Problems to be solved by the invention]
The present invention has been made to solve such problems of the prior art, and provides an organic light emitting device that exhibits a light emission hue with extremely high purity, high efficiency, high brightness, and long life light output. It is to provide an oligofluorenylene compound. It is another object of the present invention to provide an oligofluorenylene compound that can be produced easily and can be produced at a relatively low cost.
[0010]
[Means for Solving the Problems]
As a result of intensive investigations to solve the above-mentioned problems, the present inventors have completed the present invention. That is, the oligofluorenylene compound of the present invention is represented by any one of the following formulas and is a kind of a compound represented by the following general formula [1].
[0011]
[Chemical 2]
Figure 0003848262
[0012]
(X 1 to X 4 are a substituted or unsubstituted alkyl group, aralkyl group, aryl group and heterocyclic group, a substituted or unsubstituted group having a linking group consisting of a substituted or unsubstituted arylene group or a divalent heterocyclic group. Selected from the group consisting of a substituted silyl group and a carbonyl group having a linking group consisting of a substituted or unsubstituted arylene group or a divalent heterocyclic group, an alkenyl group, an alkynyl group, an amino group, an alkoxy group and a sulfide group. The groups may be the same or different, and X 1 and X 2 , X 3 and X 4 may be bonded to each other to form a ring.
[0013]
R 1 and R 2 are groups selected from the group consisting of a hydrogen atom, a substituted or unsubstituted alkyl group, an aralkyl group and an aryl group, and R 1 and R 2 may be the same or different. In addition, R 1 and R 2 on different fluorenylene rings may be the same or different.
[0014]
n is an integer of 1-20. )
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. Hereinafter, the oligofluorenylene compound represented by the general formula [1] will be described, but the exemplified compounds 40a and 71b are the oligofluorenylene compounds of the present invention.
[0016]
First, the oligofluorenylene compound of the present invention will be described.
[0017]
The oligofluorenylene compound of the present invention is represented by the above general formula [1].
[0018]
Here, in the oligofluorenylene compound of the present invention, n in the general formula [1] is an integer of 1 to 4, that is, a trifluorenylene compound, a tetrafluorenylene compound, a pentafluorenylene compound, Or it is preferable that it is a hexafluorenylene compound.
[0019]
Moreover, it is preferable that any one of the substituents on each nitrogen is a phenyl group having a substituent at least in the para or ortho position represented by the following general formula [2].
[0020]
[Chemical 3]
Figure 0003848262
[0021]
(R 5 to R 9 are hydrogen, halogen group, cyano group, nitro group, substituted or unsubstituted alkyl group, aralkyl group, aryl group, heterocyclic group, alkenyl group, alkynyl group, amino group, alkoxy group and sulfide. A group selected from the group consisting of a group, a substituted silyl group and a carbonyl group, which may be the same or different.)
[0022]
Moreover, it is preferable that any one of the substituents on each nitrogen is an aromatic polycyclic fused ring group or a heterocyclic group.
[0023]
Furthermore, one of the substituents on each nitrogen is a phenyl group having a substituent at least in the para or ortho position represented by the general formula [2], and the other is an aromatic polycyclic fused ring group. Or it is preferable that it is a heterocyclic group.
[0024]
Specific examples of the substituents in the general formulas [1] and [2] are shown below.
[0025]
The substituted or unsubstituted alkyl group may be a chain or a ring, and may be a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-decyl group, an iso-propyl group, An iso-butyl group, a tert-butyl group, a tert-octyl group, a trifluoromethyl group, a cyclohexyl group, a cyclohexylmethyl group and the like can be mentioned, but of course not limited thereto.
[0026]
Examples of the substituted or unsubstituted aralkyl group include, but are not limited to, a benzyl group and a phenethyl group.
[0027]
Examples of the substituted or unsubstituted aryl group include phenyl group, 4-methylphenyl group, 4-methoxyphenyl group, 4-ethylphenyl group, 4-fluorophenyl group, 3,5-dimethylphenyl group, and ditolylaminophenyl group. , Biphenyl group, terphenyl group, naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, tetracenyl group, pentacenyl group, fluorenyl group, triphenylenyl group, perylenyl group, and the like, but are not limited thereto.
[0028]
Substituted or unsubstituted heterocyclic groups include pyrrolyl, pyridyl, bipyridyl, methylpyridyl, terpyrrolyl, thienyl, tertienyl, propylthienyl, furyl, quinolyl, carbazolyl, oxazolyl, oxadiazolyl Group, thiazolyl group, thiadiazolyl group and the like, but of course, it is not limited thereto.
[0029]
Substituted or unsubstituted arylene groups include phenylene, biphenylene, 2,3,5,6-tetrafluorophenylene, 2,5-dimethylphenylene, naphthylene, anthracenylene, phenanthrenylene, tetracenylene Group, pentacenylene group, peryleneylene group and the like, but of course not limited thereto.
[0030]
Examples of the substituted or unsubstituted divalent heterocyclic group include a furanylene group, a pyrrolylene group, a pyridinylene group, a terpyridinylene group, a thiophenylene group, a terthiophenylene group, an oxazolylene group, a thiazolylene group, and a carbazolylene. It is not limited to.
[0031]
Examples of the substituted or unsubstituted alkenyl group include a vinyl group, an allyl group (2-propenyl group), a 1-propenyl group, an iso-propenyl group, a 2-butenyl group, and the like. Absent.
[0032]
Examples of the substituted or unsubstituted alkynyl group include, but are not limited to, an acetylenyl group, a phenylacetylenyl group, and a 1-propynyl group.
[0033]
Examples of the substituted or unsubstituted amino group include amino group, methylamino group, ethylamino group, dimethylamino group, diethylamino group, methylethylamino group, benzylamino group, methylbenzylamino group, dibenzylamino group, anilino group, A diphenylamino group, a phenyltolylamino group, a ditolylamino group, a dianisolylamino group, etc. are mentioned, but of course, it is not limited to these.
[0034]
Examples of the substituted or unsubstituted alkoxy group include methoxy group, ethoxy group, propoxy group, 2-ethyl-octyloxy group, phenoxy group, 4-butylphenoxy group, benzyloxy group and the like. It is not something.
[0035]
Examples of the substituted or unsubstituted sulfide group include, but are not limited to, a methyl sulfide group, an ethyl sulfide group, a phenyl sulfide group, a 4-methylphenyl sulfide group, and the like.
[0036]
Examples of the substituted carbonyl group include, but are not limited to, an acetyl group, a propionyl group, an isobutyryl group, a methacryloyl group, a benzoyl group, a naphthoyl group, an anthryl group, and a toluoyl group.
[0037]
Examples of the substituent that the substituent may have include an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, a ter-butyl group, an octyl group, a benzyl group, and a phenethyl group, and an aralkyl group. , Alkoxy group such as methoxy group, ethoxy group, propoxy group, 2-ethyl-octyloxy group, phenoxy group, 4-butylphenoxy group, benzyloxy group, phenyl group, 4-methylphenyl group, 4-ethylphenyl group, Aryl group such as 3-chlorophenyl group, 3,5-dimethylphenyl group, triphenylamino group, biphenyl group, terphenyl group, naphthyl group, anthryl group, phenanthryl group, pyrenyl group, pyridyl group, bipyridyl group, methylpyridyl group , Thienyl group, tertienyl group, propylthienyl group, furyl group, quinolyl group, cal Zoriru group, a heterocyclic group such as N- ethyl-carbazolyl group, a halogen group, a cyano group, there may be mentioned a nitro group, but the present invention is of course not limited thereto.
[0038]
Next, typical examples of the fluorenylene compound represented by the general formula [1] will be given. However, it is not limited to these compounds.
[0039]
[Formula 4]
Figure 0003848262
[0040]
[Chemical formula 5]
Figure 0003848262
[0041]
[Chemical 6]
Figure 0003848262
[0042]
[Chemical 7]
Figure 0003848262
[0043]
[Chemical 8]
Figure 0003848262
[0044]
[Chemical 9]
Figure 0003848262
[0045]
[Chemical Formula 10]
Figure 0003848262
[0046]
Embedded image
Figure 0003848262
[0047]
Embedded image
Figure 0003848262
[0048]
The compound represented by the general formula [1] of the present invention is useful as a layer containing an organic compound of an organic light-emitting device, in particular, as a light-emitting layer, an electron transport layer or a hole transport layer. The layer formed by the method is less susceptible to crystallization and has excellent temporal stability.
[0049]
In the compound represented by the general formula [1], by introducing fluorenylene having a rigid structure into the molecular main chain, an emission spectrum with a narrower half-value width, that is, emission with better color purity can be obtained. Furthermore, by suppressing the Stokes shift, it is possible to shift the absorption to the longer wavelength side while suppressing the shift of the emission wavelength by adjusting the length of the fluorenylene chain. A host material having an emission spectrum on the wavelength side can also be used. In addition, the emission color can be adjusted by adjusting the substituents X 1 to X 4 on the amino group.
[0050]
As a result of the prediction of the oscillator strength by the AM1 / CNDOS calculation, an increase in the oscillator strength was suggested by changing the length of the fluorenylene chain from 2 to 3 or more in the present invention (-N (Tol) 2 group and Calculation for a fluorenylene compound comprising a 9,9′-dimethylfluorenylene chain: n = 2, oscillator strength: 2.126527 / n = 3, oscillator strength: 2.974588 / n = 5, oscillator strength: 4.118244) . The calculation is to calculate the ground state of the molecule by the semi-empirical AM1 method using Gaussian 98 software, and calculate the excited state energy level while maintaining the molecular structure by calculating the configuration interaction by the CNDOS method. Executed by. As the oscillator strength increases and the absorption strength (Abs) increases, energy transfer with the host material having an emission spectrum on the longer wavelength side becomes smoother.
[0051]
The compound represented by the general formula [1] can be used for the purpose of both a dopant material and a host material in the light emitting layer, and can obtain a high color purity, a high light emission efficiency, and a long lifetime device, and particularly used as a dopant material. By combining it with an appropriate host material that easily causes energy transfer, it is possible to obtain a highly efficient device that retains light emission with high color purity.
[0052]
When the compound represented by the general formula [1] is used as a dopant material in the light emitting layer, the dopant concentration with respect to the host material is preferably 0.01% to 50%, more preferably 1 to 10%. Preferred host materials include, for example, compounds shown below, but are not limited to these.
[0053]
Embedded image
Figure 0003848262
[0054]
Embedded image
Figure 0003848262
[0055]
Embedded image
Figure 0003848262
[0056]
Next, the organic light emitting device of the present invention will be described in detail.
[0057]
The organic light-emitting device of the present invention includes the organic compound in an organic light-emitting device having at least a layer including a pair of electrodes composed of an anode and a cathode and one or more organic compounds sandwiched between the pair of electrodes. At least one of the layers, preferably the light emitting layer, contains at least one fluorenylene compound represented by the general formula [1].
[0058]
1 to 6 show preferred examples of the organic light emitting device of the present invention.
[0059]
FIG. 1 is a cross-sectional view showing an example of the organic light emitting device of the present invention. FIG. 1 shows a structure in which an anode 2, a light emitting layer 3 and a cathode 4 are sequentially provided on a substrate 1. The light-emitting element used here is useful when the device itself has a hole transport ability, an electron transport ability, and a light-emitting performance, or when a compound having each characteristic is used in combination.
[0060]
FIG. 2 is a cross-sectional view showing another example of the organic light emitting device of the present invention. FIG. 2 shows a configuration in which an anode 2, a hole transport layer 5, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. In this case, the light emitting material is either a hole transporting property or an electron transporting property, or a material having both functions is used for each layer, and it is combined with a simple hole transporting material or an electron transporting material having no light emitting property. This is useful when used. In this case, the light emitting layer 3 is composed of either the hole transport layer 5 or the electron transport layer 6.
[0061]
FIG. 3 is a cross-sectional view showing another example of the organic light emitting device of the present invention. FIG. 3 shows a structure in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. This is a function that separates the functions of carrier transport and light emission, and is used in combination with compounds having hole transport properties, electron transport properties, and light emission properties in a timely manner, and the degree of freedom of material selection is greatly increased. Since various compounds having different emission wavelengths can be used, the emission hue can be diversified. Further, it is possible to effectively confine each carrier or exciton in the central light emitting layer 3 to improve the light emission efficiency.
[0062]
FIG. 4 is a cross-sectional view showing another example of the organic light emitting device of the present invention. FIG. 4 shows a configuration in which a hole injection layer 7 is inserted on the anode 2 side with respect to FIG. 3, and is effective in improving the adhesion between the anode 2 and the hole transport layer 5 or improving the hole injection property. It is effective.
[0063]
5 and 6 are cross-sectional views showing other examples of the organic light-emitting device of the present invention. 5 and 6 show a layer (hole blocking layer 8) that prevents holes or excitons (excitons) from passing to the cathode 4 side as compared with FIGS. 3 and 4 between the light emitting layer 3 and the electron transport layer 6. It is the structure inserted in. By using a compound having a very high ionization potential as the hole blocking layer 8, the structure is effective in improving the light emission efficiency.
[0064]
However, FIG. 1 to FIG. 6 are very basic device configurations, and the configuration of the organic light emitting device using the compound of the present invention is not limited thereto. For example, various layer configurations such as providing an insulating layer at the interface between the electrode and the organic layer, providing an adhesive layer or an interference layer, and the hole transport layer including two layers having different ionization potentials can be employed.
[0065]
The compound represented by the general formula [1] used in the present invention can be used in any form of FIGS.
[0066]
In the present invention, in particular, the compound represented by the general formula [1] is used as a constituent of the light emitting layer, and further, for example, a host material such as the above-described exemplary compounds 114 to 140 is used as necessary. A hole transporting compound, a light emitting compound, an electron transporting compound, etc. known to date can be used together if necessary.
[0067]
Examples of these compounds are given below.
[0068]
Embedded image
Figure 0003848262
[0069]
Embedded image
Figure 0003848262
[0070]
Embedded image
Figure 0003848262
[0071]
Embedded image
Figure 0003848262
[0072]
Embedded image
Figure 0003848262
[0073]
Embedded image
Figure 0003848262
[0074]
In the organic light-emitting device of the present invention, the layer containing the compound represented by the general formula [1] and the layer containing another organic compound are generally formed into a thin film by a vacuum deposition method or a coating method by dissolving in an appropriate solvent. Form. In particular, when a film is formed by a coating method, the film can be formed in combination with an appropriate binder resin.
[0075]
The binder resin can be selected from a wide range of binder resins such as polyvinyl carbazole resin, polycarbonate resin, polyester resin, polyarylate resin, polystyrene resin, acrylic resin, methacrylic resin, butyral resin, polyvinyl acetal resin, diallyl phthalate. Resins, phenol resins, epoxy resins, silicone resins, polysulfone resins, urea resins and the like can be mentioned, but are not limited thereto. Moreover, you may mix these 1 type, or 2 or more types as a single or copolymer polymer.
[0076]
As the anode material, one having a work function as large as possible is preferable. For example, simple metals such as gold, platinum, nickel, palladium, cobalt, selenium, vanadium or alloys thereof, tin oxide, zinc oxide, indium tin oxide (ITO) Metal oxides such as zinc indium oxide can be used. In addition, conductive polymers such as polyaniline, polypyrrole, polythiophene, and polyphenylene sulfide can also be used. These electrode materials may be used alone or in combination.
[0077]
On the other hand, the cathode material preferably has a small work function, and can be used as a single metal or a plurality of alloys such as lithium, sodium, potassium, cesium, calcium, magnesium, aluminum, indium, silver, lead, tin, and chromium. it can. A metal oxide such as indium tin oxide (ITO) can also be used. Further, the cathode may have a single layer structure or a multilayer structure.
[0078]
Although it does not specifically limit as a board | substrate used by this invention, Transparent substrates, such as opaque board | substrates, such as a metal board | substrate and a ceramic board | substrate, glass, quartz, a plastic sheet, are used. It is also possible to control the color light by using a color filter film, a fluorescent color conversion filter film, a dielectric reflection film, or the like on the substrate.
[0079]
Note that a protective layer or a sealing layer can be provided on the prepared element for the purpose of preventing contact with oxygen or moisture. Examples of protective layers include diamond thin films, inorganic material films such as metal oxides and metal nitrides, polymer films such as fluororesins, polyparaxylene, polyethylene, silicone resins, and polystyrene resins, and photocurable resins. Can be mentioned. Further, it is possible to cover glass, a gas impermeable film, a metal, etc., and to package the element itself with an appropriate sealing resin.
[0080]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. Examples relating to the oligofluorenylene compound of the present invention are Examples 1, 2, 5, 7, 16, and 17.
[0081]
<Example 1> [Exemplary Compound No. 1] Method for producing 40a]
[0082]
Embedded image
Figure 0003848262
[0083]
Under a nitrogen stream, 2,7-diiodo-9,9-dimethylfluorene 5 g (11.2 mmol) and 9,9-dimethylfluorene-2-boronic acid 9 g (24.7 mmol) were degassed in 200 ml of toluene and ethanol. It melt | dissolved and stirred in 100 ml of mixed solvents, and 245 ml of sodium carbonate aqueous solution which dissolved 51 g of anhydrous sodium carbonate in 250 ml of water was dripped there. After stirring for 30 minutes, 142 g (1.23 mmol) of tetrakis (triphenylphosphine) palladium was added. The mixture was heated and stirred for about 3 hours on an oil bath heated to 80 ° C. After returning the reaction solution to room temperature, 100 ml of water and 100 ml of ethyl acetate were added, the aqueous layer and the organic layer were separated, and the aqueous layer was further extracted with toluene and ethyl acetate, and combined with the previous organic layer and dried over sodium sulfate. . The solvent was distilled off, and the residue was purified by silica gel column chromatography (toluene: hexane = 1: 2) to obtain 4.9 g of tris (9,9-dimethylfluorylene).
[0084]
Under a nitrogen atmosphere, 4.5 g (7.79 mmol) of tris (9,9-dimethylfluorene) was dissolved in 150 ml of nitrobenzene by heating, and 2.5 g (15.6 mmol) of bromine was slowly added on an oil bath heated to 60 ° C. The solution was added dropwise and further stirred for about 2 hours. The reaction solution was transferred to an ice bath, cooled, stirred for a while, and then the precipitate was filtered. The precipitate was recrystallized from toluene, filtered and dried to obtain 3.4 g of tribromo (9,9-dimethylfluorylene) dibromo.
[0085]
Under a nitrogen atmosphere, 156 mg (0.272 mmol) of palladium bis (benzylideneacetone) and 330 mg (1.63 mmol) of tri-tert-butylphosphine were dissolved in 20 ml of xylene and stirred at room temperature for 15 minutes. Thereto was added dropwise 1 g (1.36 mmol) of a dibromo tris (9,9-dimethylfluorene) dissolved in 50 ml of xylene, and the mixture was stirred for 30 minutes on an oil bath heated to 50 ° C. Further, 1.15 g (4.08 mmol) of N- (4-methylphenyl) -N- (9-phenanthryl) amine was dissolved in 20 ml of xylene and added dropwise, followed by 588 mg (6.12 mmol) of sodium tert-butoxide. ) Was added. The mixture was heated and stirred for about 5 hours on an oil bath heated to 130 ° C. After returning the reaction solution to room temperature, 50 ml of water was added, the aqueous layer and the organic layer were separated, and the aqueous layer was extracted with toluene and ethyl acetate, combined with the previous organic layer, and dried over magnesium sulfate. The solvent was distilled off, and the residue was purified by silica gel column chromatography (toluene: hexane = 1: 2). 1.2g of 40a was obtained.
[0086]
<Example 2> [Exemplary Compound No. Manufacturing method of 71b]
[0087]
Embedded image
Figure 0003848262
[0088]
Under nitrogen stream, bis (2-iodo-9,9-dimethylfluorene) 5 g (7.84 mmol) and 9,9-dimethylfluorene-2-boronic acid 6.26 g (17.2 mmol) were degassed toluene. Dissolved and stirred in a mixed solvent of 200 ml and 100 ml of ethanol, 170 ml of an aqueous sodium carbonate solution prepared by dissolving 36 g of anhydrous sodium carbonate in 180 ml of water was added dropwise thereto. After stirring for 30 minutes, 142 g (0.86 mmol) of tetrakis (triphenylphosphine) palladium was added. The mixture was heated and stirred for about 3 hours on an oil bath heated to 80 ° C. After returning the reaction solution to room temperature, 100 ml of water and 100 ml of ethyl acetate were added, the aqueous layer and the organic layer were separated, and the aqueous layer was further extracted with toluene and ethyl acetate, and combined with the previous organic layer and dried over sodium sulfate. . The solvent was distilled off, and the residue was purified by silica gel column chromatography (toluene: hexane = 1: 2) to obtain 3.92 g of tetrakis (9,9-dimethylfluorene).
[0089]
Under a nitrogen atmosphere, 3 g (3.90 mmol) of tetrakis (9,9-dimethylfluorene) was dissolved in 150 ml of nitrobenzene by heating, and 1.4 g (7.80 mmol) of bromine was slowly added dropwise on an oil bath heated to 60 ° C. The mixture was further stirred for about 2 hours. The reaction solution was transferred to an ice bath, cooled, stirred for a while, and then the precipitate was filtered. The precipitate was recrystallized from xylene, filtered and dried to obtain 2 g of a tetrabromo (9,9-dimethylfluorene) dibromo product.
[0090]
Under a nitrogen atmosphere, 124 mg (0.216 mmol) of palladium bis (benzylideneacetone) and 130 mg (0.648 mmol) of tri-tert-butylphosphine were dissolved in 20 ml of xylene and stirred at room temperature for 15 minutes. Thereto was added 1 g (1.08 mmol) of a tetrabromo (9,9-dimethylfluorene) dibromo dissolved in 50 ml of xylene, and the mixture was stirred for 30 minutes on an oil bath heated to 50 ° C. Further, 694 mg (2.59 mmol) of N- (1-anthracenyl) -N- (phenyl) amine was dissolved in 20 ml of xylene and added dropwise, followed by 374 mg (3.89 mmol) of sodium tert-butoxide. The mixture was heated and stirred for about 7 hours on an oil bath heated to 130 ° C. After returning the reaction solution to room temperature, 50 ml of water was added, the aqueous layer and the organic layer were separated, and the aqueous layer was extracted with toluene and ethyl acetate, combined with the previous organic layer, and dried over magnesium sulfate. The solvent was distilled off, and the residue was purified by silica gel column chromatography (toluene: hexane = 1: 2). 900 mg of 71b was obtained.
[0091]
<Example 3>
An organic light emitting device having the structure shown in FIG. 3 was prepared by the following method.
[0092]
What formed indium tin oxide (ITO) as an anode 2 with a film thickness of 120 nm on a glass substrate as a substrate 1 by a sputtering method was used as a transparent conductive support substrate. This was ultrasonically washed successively with acetone and isopropyl alcohol (IPA), then boiled and washed with IPA and then dried. Furthermore, what was UV / ozone cleaned was used as a transparent conductive support substrate.
[0093]
Using a compound represented by the following structural formula as a hole transport material, a chloroform solution was prepared so that the concentration was 0.5 wt%.
[0094]
Embedded image
Figure 0003848262
[0095]
This solution was dropped on the anode 2, and a film was formed by spin coating first at a rotation of 500 RPM for 10 seconds and then at a rotation of 1000 RPM for 1 minute. Thereafter, the film was dried in a vacuum oven at 80 ° C. for 10 minutes to completely remove the solvent in the thin film. The thickness of the formed hole transport layer was 50 nm.
[0096]
Next, as the light emitting layer 3 on the hole transport layer 5, the exemplified compound Nos. 2a was vapor-deposited and the 20 nm light emitting layer 3 was provided. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.2 to 0.3 nm / sec.
[0097]
Furthermore, aluminum quinolinol (Alq3) was formed as the electron transport layer 6 to a film thickness of 40 nm by vacuum deposition. The degree of vacuum at the time of deposition was 1.0 × 10 −4 Pa and the film formation rate was 0.2 to 0.3 nm / sec.
[0098]
Next, using a vapor deposition material made of an aluminum-lithium alloy (lithium concentration 1 atom%), a metal layer film having a thickness of 10 nm is formed on the organic layer by a vacuum vapor deposition method. An organic light-emitting device having an aluminum film having a thickness of 150 nm and an aluminum-lithium alloy film as an electron injection electrode (cathode 4) was prepared. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 1.0 to 1.2 nm / sec.
[0099]
The obtained organic EL device was covered with a protective glass plate in a dry air atmosphere and sealed with an acrylic resin adhesive so that the device did not deteriorate due to moisture adsorption.
[0100]
In the device thus obtained, with an ITO electrode (anode 2) as a positive electrode and an Al-Li electrode (cathode 4) as a negative electrode, an emission luminance of 1600 cd / m 2 and a maximum luminance of 9100 cd / m at an applied voltage of 6V. 2. Luminescence with a luminous efficiency of 1.25 lm / W was observed.
[0101]
<Examples 4 to 9>
Exemplified Compound No. A device was prepared in the same manner as in Example 3 except that the compounds shown in Table 1 were used in place of 2a, and the same evaluation was performed. The results are shown in Table 1.
[0102]
[Table 1]
Figure 0003848262
[0103]
<Example 10>
An organic light emitting device having the structure shown in FIG. 3 was prepared by the following method.
[0104]
In the same manner as in Example 3, a hole transport layer 5 was formed on a transparent conductive support substrate.
[0105]
Next, as the light emitting layer 3 on the hole transport layer 5, the exemplified compound Nos. 6b was vapor-deposited and the 20 nm light emitting layer 3 was provided. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.2 to 0.3 nm / sec.
[0106]
Furthermore, bathophenanthroline (BPhen) was formed into a film with a thickness of 40 nm by a vacuum evaporation method, and the electron transport layer 6 was formed. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.2 to 0.3 nm / sec.
[0107]
Next, the cathode 4 was formed in the same manner as in Example 1 and then sealed.
[0108]
The device thus obtained has a light emission luminance of 2250 cd / m 2 and a maximum luminance of 11750 cd / m at an applied voltage of 6 V, with the ITO electrode (anode 2) as the positive electrode and the Al—Li electrode (cathode 4) as the negative electrode. 2. Luminescence with a luminous efficiency of 1.39 lm / W was observed.
[0109]
<Examples 11 to 14>
Exemplified Compound No. A device was prepared in the same manner as in Example 10 except that the compounds shown in Table 2 were used in place of 6b, and the same evaluation was performed. The results are shown in Table 2.
[0110]
[Table 2]
Figure 0003848262
[0111]
<Example 15>
As the light emitting layer 3, the exemplified compound No. 1 is used. 23 and the exemplified compound Nos. A device was prepared in the same manner as in Example 3 except that 120 (weight ratio 4: 100) was co-evaporated and the 20 nm light-emitting layer 3 was provided.
[0112]
The device thus obtained has a light emission luminance of 1100 cd / m 2 , a maximum luminance of 27700 cd / m 2 and a light emission efficiency of 2 at an applied voltage of 4 V, with the ITO electrode 2 as the positive electrode and the Al—Li electrode 4 as the negative electrode. An emission of 25 lm / W was observed.
[0113]
<Examples 16 to 18>
Exemplified Compound No. A device was prepared in the same manner as in Example 15 except that the compounds shown in Table 3 were used in place of 23, and the same evaluation was performed. The results are shown in Table 3.
[0114]
[Table 3]
Figure 0003848262
[0115]
<Examples 19 to 21>
Exemplified Compound No. A device was prepared in the same manner as in Example 15 except that the compounds shown in Table 4 were used in place of 120, and the same evaluation was performed. The results are shown in Table 4.
[0116]
[Table 4]
Figure 0003848262
[0117]
<Example 22>
As the light emitting layer 3, the exemplified compound No. 1 is used. 23 and the exemplified compound Nos. A device was prepared in the same manner as in Example 10 except that 120 (weight ratio 4: 100) was co-evaporated and the 20 nm light-emitting layer 3 was provided.
[0118]
The device thus obtained was subjected to a light emission luminance of 1890 cd / m2, a maximum luminance of 29200 cd / m2, a light emission efficiency of 2.50 lm / m2 with an applied voltage of 4 V using the ITO electrode 2 as the positive electrode and the Al-Li electrode 4 as the negative electrode. W emission was observed.
[0119]
<Examples 23 to 25>
Exemplified Compound No. A device was prepared in the same manner as in Example 15 except that the compounds shown in Table 5 were used in place of 23, and the same evaluation was performed. The results are shown in Table 5.
[0120]
[Table 5]
Figure 0003848262
[0121]
<Examples 26 to 28>
Exemplified Compound No. A device was prepared in the same manner as in Example 15 except that the compounds shown in Table 6 were used in place of 120, and the same evaluation was performed. The results are shown in Table 6.
[0122]
[Table 6]
Figure 0003848262
[0123]
<Example 29>
The device produced in Example 26, where a voltage was applied for 100 hours with the current density kept to 7.0 mA / cm 2 in a nitrogen atmosphere, 100 hours after the initial luminance 400cd / m 2, 380cd / m 2 and the luminance degradation Was small.
[0124]
<Examples 30 to 34>
The emission spectra of the devices prepared in Examples 4, 5, 11, 19, and 22 were observed with MCPD-7000, and CIE chromaticity coordinates were measured. The results are shown in Table 7.
[0125]
[Table 7]
Figure 0003848262
[0126]
<Comparative Example 1>
A device was prepared in the same manner as in Example 10 except that the following comparative compound was used as the light emitting layer 3.
[0127]
Embedded image
Figure 0003848262
[0128]
The device thus obtained, the ITO electrode 2 positive electrode and the Al-Li electrode 4 in the anode, at an applied voltage of 6V, light emission luminance 940 cd / m 2, the maximum brightness 5050cd / m 2, luminous efficiency 0. A light emission of 63 lm / W was observed.
[0129]
Further, the emission spectrum of this device was observed with MCPD-7000 and the CIE chromaticity coordinates were measured, and it was (x, y) = (0.16, 0.29).
[0130]
<Comparative example 2>
A device was fabricated in the same manner as in Example 10 except that the comparative compound and the exemplified compound 129 (weight ratio 4: 100) were co-evaporated as the light emitting layer 3 to provide the 20 nm light emitting layer 3.
[0131]
The device thus obtained has an emission luminance of 1060 cd / m 2 , a maximum luminance of 9270 cd / m 2 , a luminous efficiency of 0. A light emission of 82 lm / W was observed.
[0132]
Moreover, when the emission spectrum of this element was observed with MCPD-7000 and the CIE chromaticity coordinates were measured, it was (x, y) = (0.16, 0.27).
[0133]
【The invention's effect】
As described above, the organic light-emitting device using the compound represented by the general formula [1] exhibits a light emission hue with extremely high purity, and has a light output with high efficiency, high luminance, and long life. In particular, an organic layer containing a compound represented by the general formula [1] is excellent as a light emitting layer.
[0134]
Furthermore, the element can also be formed by using vacuum deposition or a casting method, and an element having a relatively low cost and a large area can be easily formed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an organic light emitting device in the present invention.
FIG. 2 is a cross-sectional view showing another example of the organic light emitting device according to the present invention.
FIG. 3 is a cross-sectional view showing another example of the organic light emitting device according to the present invention.
FIG. 4 is a cross-sectional view showing another example of the organic light emitting device in the present invention.
FIG. 5 is a cross-sectional view showing another example of the organic light emitting device in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Light emitting layer 4 Cathode 5 Hole transport layer 6 Electron transport layer 7 Hole injection layer 8 Hole / exciton blocking layer

Claims (3)

下記式のいずれかで示されることを特徴とするオリゴフルオレニレン化合物。
Figure 0003848262
An oligofluorenylene compound represented by any of the following formulas:
Figure 0003848262
陽極及び陰極からなる一対の電極と、該一対の電極間に狭持された一または複数の有機化合物を含む層を少なくとも有する有機発光素子において、前記有機化合物を含む層のうち発光層が請求項1に記載のオリゴフルオレニレン化合物の少なくとも一種を含有することを特徴とする有機発光素子。An organic light emitting device having at least a pair of electrodes composed of an anode and a cathode and a layer containing one or a plurality of organic compounds sandwiched between the pair of electrodes, wherein the light emitting layer is a part of the layers containing the organic compounds. An organic light emitting device comprising at least one oligofluorenylene compound according to 1. 前記発光層はホスト材料とドーパント材料とから構成されており、前記ドーパント材料がオリゴフルオレニレン化合物であることを特徴とする請求項2に記載の有機発光素子。The organic light-emitting device according to claim 2, wherein the light-emitting layer includes a host material and a dopant material, and the dopant material is an oligofluorenylene compound.
JP2003006796A 2002-03-27 2003-01-15 Oligofluorenylene compound and organic light-emitting device Expired - Fee Related JP3848262B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003006796A JP3848262B2 (en) 2002-03-27 2003-01-15 Oligofluorenylene compound and organic light-emitting device
PCT/JP2003/003615 WO2003080559A1 (en) 2002-03-27 2003-03-25 Oligofluorenylene compounds
KR1020047014970A KR100644913B1 (en) 2002-03-27 2003-03-25 Oligofluorenylene compounds
EP03712917A EP1487779A1 (en) 2002-03-27 2003-03-25 Oligofluorenylene compounds
AU2003221098A AU2003221098A1 (en) 2002-03-27 2003-03-25 Oligofluorenylene compounds
CNB038012987A CN1291969C (en) 2002-03-27 2003-03-25 Oligofluorenylene compounds
US10/506,300 US7229702B2 (en) 2002-03-27 2003-03-25 Oligofluorenlylene compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002088918 2002-03-27
JP2003006796A JP3848262B2 (en) 2002-03-27 2003-01-15 Oligofluorenylene compound and organic light-emitting device

Publications (3)

Publication Number Publication Date
JP2004002298A JP2004002298A (en) 2004-01-08
JP2004002298A5 JP2004002298A5 (en) 2005-05-26
JP3848262B2 true JP3848262B2 (en) 2006-11-22

Family

ID=28456289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006796A Expired - Fee Related JP3848262B2 (en) 2002-03-27 2003-01-15 Oligofluorenylene compound and organic light-emitting device

Country Status (7)

Country Link
US (1) US7229702B2 (en)
EP (1) EP1487779A1 (en)
JP (1) JP3848262B2 (en)
KR (1) KR100644913B1 (en)
CN (1) CN1291969C (en)
AU (1) AU2003221098A1 (en)
WO (1) WO2003080559A1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3902993B2 (en) * 2002-08-27 2007-04-11 キヤノン株式会社 Fluorene compound and organic light emitting device using the same
JP3848224B2 (en) 2002-08-27 2006-11-22 キヤノン株式会社 Spiro compound and organic light emitting device using the same
JP4311707B2 (en) * 2002-08-28 2009-08-12 キヤノン株式会社 Organic light emitting device
JP4164317B2 (en) * 2002-08-28 2008-10-15 キヤノン株式会社 Organic light emitting device
JP4125076B2 (en) * 2002-08-30 2008-07-23 キヤノン株式会社 Monoaminofluorene compound and organic light-emitting device using the same
JP3840235B2 (en) 2003-06-27 2006-11-01 キヤノン株式会社 Organic light emitting device
JP5015459B2 (en) 2003-12-01 2012-08-29 出光興産株式会社 Asymmetric monoanthracene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
JP4065547B2 (en) * 2004-04-12 2008-03-26 キヤノン株式会社 Fluorene compound and organic light emitting device using the same
WO2005123634A1 (en) 2004-06-16 2005-12-29 Idemitsu Kosan Co., Ltd. Fluorene derivative and organic electroluminescent device using same
JP4086817B2 (en) 2004-07-20 2008-05-14 キヤノン株式会社 Organic EL device
JP2006140235A (en) * 2004-11-10 2006-06-01 Idemitsu Kosan Co Ltd Organic electroluminescence element
JP4599142B2 (en) * 2004-11-26 2010-12-15 キヤノン株式会社 Organic light emitting device
JP4429149B2 (en) * 2004-11-26 2010-03-10 キヤノン株式会社 Fluorene compound and organic light emitting device
WO2006060437A2 (en) * 2004-12-03 2006-06-08 Sumitomo Chemical Company, Limited Salicylate substituted conjugated polymers and devices
WO2006060435A2 (en) * 2004-12-03 2006-06-08 Sumitomo Chemical Company, Limited Triarylamine containing polymers and electronic devices
JPWO2006062078A1 (en) * 2004-12-08 2008-06-12 出光興産株式会社 Organic electroluminescence device
JPWO2006070711A1 (en) * 2004-12-28 2008-06-12 出光興産株式会社 Organic EL coating film forming ink and method for producing the same
WO2006100896A1 (en) * 2005-03-18 2006-09-28 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device utilizing the same
JP4950460B2 (en) * 2005-08-26 2012-06-13 キヤノン株式会社 Organic light emitting device
JP4659695B2 (en) * 2005-11-01 2011-03-30 キヤノン株式会社 Fluorene compound and organic light emitting device
JP4653061B2 (en) * 2005-12-20 2011-03-16 キヤノン株式会社 Amine compound, organic light emitting device and blue organic light emitting device
JP5031238B2 (en) * 2006-02-02 2012-09-19 キヤノン株式会社 Fluorene compound and organic light emitting device using the same
JP4847151B2 (en) * 2006-02-22 2011-12-28 キヤノン株式会社 Organic light emitting device
JP4871613B2 (en) * 2006-03-02 2012-02-08 キヤノン株式会社 Organic light emitting device
JP5164389B2 (en) * 2006-03-28 2013-03-21 キヤノン株式会社 Amino compound for organic light emitting device and organic light emitting device having the same
JP4795268B2 (en) * 2006-04-20 2011-10-19 キヤノン株式会社 Organic light emitting device
GB2440934B (en) 2006-04-28 2009-12-16 Cdt Oxford Ltd Opto-electrical polymers and devices
JP4865411B2 (en) * 2006-06-15 2012-02-01 キヤノン株式会社 Organic light emitting device, display device and display device
CN100439470C (en) * 2006-11-07 2008-12-03 南京大学 Polymer material displaying blue light and preparation method thereof
JP4994802B2 (en) * 2006-11-17 2012-08-08 キヤノン株式会社 Pyrene compounds and organic light emitting devices
JP5110901B2 (en) * 2007-02-20 2012-12-26 キヤノン株式会社 Material for organic light emitting device and organic light emitting device using the same
JP4827771B2 (en) * 2007-03-08 2011-11-30 キヤノン株式会社 Organic light emitting device and display device using oligofluorene compound
JP5127300B2 (en) * 2007-05-28 2013-01-23 キヤノン株式会社 Fluorene compound, organic light emitting device using the same, and display device
JP5196928B2 (en) * 2007-09-18 2013-05-15 キヤノン株式会社 Organic light emitting device and display device
JP5202017B2 (en) * 2008-02-14 2013-06-05 ケミプロ化成株式会社 Bis (tetrafluorenyl) amine compound, method for producing the same, light emitting material using the same, hole transport material, and organic EL device
JP5732463B2 (en) * 2009-10-05 2015-06-10 トルン ライティング リミテッドThorn Lighting Limited Multi-layer organic element
JP5691192B2 (en) * 2010-02-24 2015-04-01 東洋インキScホールディングス株式会社 Material for organic electroluminescence device and use thereof
JP6444046B2 (en) 2013-04-03 2018-12-26 キヤノン株式会社 Organic compound and organic light emitting device
TWI838352B (en) * 2017-11-24 2024-04-11 德商麥克專利有限公司 Materials for organic electroluminescent devices
CN109929095A (en) * 2018-12-31 2019-06-25 华南理工大学 A kind of blue light conjugated polymer luminescent material and the preparation method and application thereof based on double sulphur oxindoles carbazole units
CN109929094A (en) * 2018-12-31 2019-06-25 华南理工大学 A kind of blue light frequency-doubling luminescent material and the preparation method and application thereof based on anthra sulphur dibenzofuran unit

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119407B2 (en) 1989-03-20 1995-12-20 出光興産株式会社 Electroluminescent device
US5130603A (en) 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP2815472B2 (en) 1990-01-22 1998-10-27 パイオニア株式会社 EL device
DE69110922T2 (en) 1990-02-23 1995-12-07 Sumitomo Chemical Co Organic electroluminescent device.
JP2998187B2 (en) 1990-10-04 2000-01-11 住友化学工業株式会社 Organic electroluminescence device
US5151629A (en) 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
JPH05202356A (en) 1991-09-11 1993-08-10 Pioneer Electron Corp Organic electroluminescence element
JP3328731B2 (en) 1991-12-05 2002-09-30 住友化学工業株式会社 Organic electroluminescence device
DE69608446T3 (en) * 1995-07-28 2010-03-11 Sumitomo Chemical Company, Ltd. 2.7 ARYL 9 SUBSTITUTED FLUORESE AND 9 SUBSTITUTED FLUORESOLIGOMERS AND POLYMERS
JPH09202878A (en) 1996-01-25 1997-08-05 Nippon Telegr & Teleph Corp <Ntt> Near ultraviolet or ultraviolet region light-emission element
JPH09227576A (en) 1996-02-23 1997-09-02 Sony Corp Metallic multinuclear complex, its production and optical element
JP3503403B2 (en) * 1997-03-17 2004-03-08 東洋インキ製造株式会社 Light emitting material for organic electroluminescent device and organic electroluminescent device using the same
EP0879868B1 (en) 1997-05-19 2002-04-03 Canon Kabushiki Kaisha Organic compound and electroluminescent device using the same
US6387544B1 (en) * 1998-04-10 2002-05-14 The Trustees Of Princeton University OLEDS containing thermally stable glassy organic hole transporting materials
JP2001052868A (en) 1999-08-05 2001-02-23 Idemitsu Kosan Co Ltd Organic electroluminescent element
KR20050084516A (en) 1998-12-28 2005-08-26 이데미쓰 고산 가부시키가이샤 Organic electroluminescent element
US6100405A (en) * 1999-06-15 2000-08-08 The United States Of America As Represented By The Secretary Of The Air Force Benzothiazole-containing two-photon chromophores exhibiting strong frequency upconversion
JP4220624B2 (en) 1999-07-30 2009-02-04 三井化学株式会社 Amine compounds
EP1149827B1 (en) * 2000-04-26 2003-12-10 Sony International (Europe) GmbH End-capped polyfluorenes, films and devices based thereon
US20010051487A1 (en) 2000-04-26 2001-12-13 Yuichi Hashimoto Method for making organic luminescent device
WO2003020847A1 (en) * 2001-09-03 2003-03-13 Canon Kabushiki Kaisha Organic luminescence device

Also Published As

Publication number Publication date
CN1291969C (en) 2006-12-27
US7229702B2 (en) 2007-06-12
KR100644913B1 (en) 2006-11-14
AU2003221098A1 (en) 2003-10-08
CN1568303A (en) 2005-01-19
KR20040095308A (en) 2004-11-12
EP1487779A1 (en) 2004-12-22
JP2004002298A (en) 2004-01-08
US20050106414A1 (en) 2005-05-19
WO2003080559A1 (en) 2003-10-02

Similar Documents

Publication Publication Date Title
JP3848262B2 (en) Oligofluorenylene compound and organic light-emitting device
JP4164317B2 (en) Organic light emitting device
JP4035482B2 (en) Substituted anthryl derivative and organic light emitting device using the same
JP3848307B2 (en) Aminoanthryl derivative-substituted compound and organic light-emitting device using the same
JP4125076B2 (en) Monoaminofluorene compound and organic light-emitting device using the same
JP3848306B2 (en) Anthryl derivative-substituted compound and organic light emitting device using the same
JP3870102B2 (en) Organic light emitting device
JP4311707B2 (en) Organic light emitting device
JP4955971B2 (en) Aminoanthryl derivative-substituted pyrene compound and organic light-emitting device
JP4336483B2 (en) Diazafluorene compound and organic light-emitting device using the same
JP4240841B2 (en) Organic light emitting device
JP4677221B2 (en) Organic light emitting device
JP4599142B2 (en) Organic light emitting device
JP2007186449A (en) Compound substituted with aminobisanthryl-derived group and organic light-emitting element by using the same
JP2006219392A (en) Bisanthryl derived group-substituted compound and organic light emitting device
JP2003105332A (en) Organic light-emitting element
JP2007169182A (en) Fluorenylene compound and organic light-emitting element using it
JP4280617B2 (en) Organic light emitting device
JP4280618B2 (en) Organic light emitting device
JP2003109760A (en) Organic light emitting element
JP4566962B2 (en) Organic light emitting device
JP2003123974A (en) Organic light emitting element
JP2009149690A (en) Diazafluorene compound and organic light emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees