JP3845709B2 - 可変屈折制御型眼鏡 - Google Patents

可変屈折制御型眼鏡 Download PDF

Info

Publication number
JP3845709B2
JP3845709B2 JP2001163418A JP2001163418A JP3845709B2 JP 3845709 B2 JP3845709 B2 JP 3845709B2 JP 2001163418 A JP2001163418 A JP 2001163418A JP 2001163418 A JP2001163418 A JP 2001163418A JP 3845709 B2 JP3845709 B2 JP 3845709B2
Authority
JP
Japan
Prior art keywords
lens
glasses
optical material
birefringent
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001163418A
Other languages
English (en)
Other versions
JP2002323680A (ja
Inventor
規夫 軽部
Original Assignee
規夫 軽部
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 規夫 軽部 filed Critical 規夫 軽部
Priority to JP2001163418A priority Critical patent/JP3845709B2/ja
Publication of JP2002323680A publication Critical patent/JP2002323680A/ja
Application granted granted Critical
Publication of JP3845709B2 publication Critical patent/JP3845709B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Eyeglasses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、老眼、遠視眼、近視眼、乱視眼などの眼球内における結像能力低下に対する補助手段として用いられる視力矯正用眼鏡として好適な可変屈折制御型眼鏡に関する。
【0002】
【従来の技術】
従来から、老眼、遠視眼においては凸レンズを、近視眼においては凹レンズを、乱視眼においては円筒レンズなどの非球面レンズを用いて、眼球内の結像能力の不足を補い、視力を矯正する眼鏡が使用されてきた。こうした視力矯正を必要とする男女の割合は高く、老眼鏡を掛けている割合は該当年齢者の80%に、近視眼鏡が必要な視力0.3未満の高校生は40%にそれぞれ達している。
【0003】
使用者の眼球の結像特性を測定し、それに適合した矯正能力を有する眼鏡を使用することによって、健康な眼球と同程度の視力を回復することができる。これは、人類がすでに長年にわたって享受してきた、技術成果である。
【0004】
ところが従来技術においては、眼鏡の屈折特性は固定されたものであるという限界があった。このため、眼球の結像特性が経年的に変化すると、使用する眼鏡は取り替える必要があった。これよりも不便なことは、遠見、近見など観察物までの距離が変わる場合に、屈折特性が固定されている眼鏡では、その双方の場合に理想的な矯正機能を実現することができないことである。
【0005】
これを解決する方法として、眼鏡レンズの異なった位置に異なった屈折特性を持たせた多焦点レンズ眼鏡がある。もっとも簡単なものは、境目のある老眼鏡である。これは上下部分にそれぞれ異なった屈折特性を持たせた、いわゆる遠近両用眼鏡である。ところがこの種の眼鏡は、それぞれの場合に用いるべき視野が上下部分に限定されているので、境目において像の飛躍が生じるという欠点がある。
【0006】
これでは、使用者に慣れが必要であり、使用に十分な訓練が必要である。心理的な不快感もある。また、人間が歩行する場合には、足元に注意する必要があることは論を俟たないが、眼鏡の下の部分が近見用に設計されているので、足元の観察が困難になり危険である。これは、特に階段の上り下りの際に経験することである。このように、従来の遠近両用眼鏡には利便性に制約があった。
【0007】
その後、境目のない眼鏡が開発されるようになった。これには、二重焦点レンズによるもの、三重焦点レンズによるもの、累進屈折力レンズによるものなどがある。これらは、眼鏡レンズの異なった位置に、異なった焦点距離の多焦点レンズを配したもので、境目の存在に起因する欠点をなくし実用化されている。
【0008】
一方、こうした問題の解決方法として、特公昭58−50339号公報、特開昭61−61128号公報、特開昭61−61129号公報、特開昭61−61133号公報、特開昭61−61134号公報、特開昭61−156225号公報、特開昭61−177429号公報、特開昭62−119520号公報、特開昭62−129816号公報、特開昭62−161118号公報、特開昭63−135916号公報、特公平04−8768号公報などに見られるように、液晶レンズを用いた屈折制御型眼鏡の特許出願がこれまでに我国において見られた。
【0009】
【発明が解決しようとする課題】
しかし、境目のない眼鏡は、境目の存在に起因する欠点はなくなってきたが、これとても遠見、近見の切り替えは異なった視野の選択で行うので、各視野は狭く、下方視野ほど像の拡大歪曲があるという問題がある。特に、近場を見る部分の周辺部でゆがみが多く、遠場ではぼやけを生じやすい。このように改善されているとは言え、使用には慣れが必要であって、心理的な不快感は避けられない。
【0010】
また、上記特許出願に見られる液晶レンズを用いた屈折制御型眼鏡は、原理的には正しく、所期の動作が期待できるものではあるが、現在商品として普及している多焦点レンズ方式に比較すると種々の欠点や制約があり、商品化には至っていない。すなわち、高い印加電圧、眼鏡としては過多のレンズ枚数ならびに境界面数、弱い屈折力と、これらに起因して安全性、美観、重量などが従来型眼鏡に比較して劣ることが問題であった。
【0011】
本発明はこのような従来技術の持つ種々の欠点を解決するもので、第1の目的は、眼鏡の屈折特性が時間的に固定されず、使用条件に応じて自在に変更可能とし、老眼鏡、遠視眼鏡、近視眼鏡、乱視眼鏡の全てにおいて、遠見、近見の区別なく、常に最適な視力矯正を実現することである。
【0012】
眼鏡の屈折特性が時間的に固定されたものではなく、遠見、近見など使用条件が変化するたびに、屈折特性を適応制御して、常に全視野にわたって最適な矯正動作を行うものがあれば理想的である。このためには、眼鏡の屈折特性を時間的に制御できればよい。遠見、近見などの条件下で、水晶体レンズの特に前面が変化して、常に網膜上に結像する機能のある人間の眼球は理想的なものである。これと同等な、屈折特性の制御機能を有する眼鏡が出現すれば、前記した全ての問題は消滅するであろう。
【0013】
また、本発明の第2の目的は、上記した既出願の液晶レンズ眼鏡に共通の欠点であった、低電圧、低消費電力、十分な薄さ、軽量、美観、操作性などの諸点において、従来型の眼鏡に比較して優位な商品価値を実現することである。
【0014】
【課題を解決するための手段】
上記課題を解決するために、本発明は、遠見、近見などの使用条件の変化に対して、眼鏡の屈折特性を制御することによって、一組の眼鏡にて常に最適の視力矯正が可能であるようにする。屈折特性の制御は、複屈折光学材料の常光線と異常光線間の偏光制御による切り替えによって行う。この偏光制御はAC数ボルトの低電圧印加の有無で行う。屈折系構造としては、屈折率の変化に対して最大限の屈折力変化が実現される構成を用いる。
【0015】
遠見、近見の切り替えは、タッチセンサーなどの簡単なマニュアル操作によるものであってもよく、観察対象までの距離を測定する装置を用いた自動切り替えであってもよい。
【0016】
【発明の実施の形態】
以下本発明の実施の形態について、図面とともに詳細に説明する。
【0017】
(実施の形態1)
複屈折光学材料は、異なった偏光状態に対して異なった屈折率を有している。遠見、近見に対応して眼鏡の屈折特性を制御するために、この現象を利用することができる。本発明の適用は、老眼、近視眼、遠視眼、乱視眼などの一般的な場合に可能である。眼鏡は通常は二個のレンズ一対で使用されるが、説明を簡単にするために、以後の説明は一個のレンズのみについて行うことにする。
【0018】
図1に、本発明の第1の実施例である眼鏡屈折系1の構成を示す。同図(a)は側面図、(b)は正面図である。左方から眼鏡に、自然光の光線3が入ってくる。その偏光状態は殆どランダムであると考えられる。眼鏡の屈折系1は、第一層が偏光フィルム4、第二層が透明電極51、第三層が厚さ数マイクロメートルの液晶層6、第四層が透明電極52、第五層が複屈折光学材料レンズ7、第六層が同種レンズ8から構成されている。これらは、本発明を実現する上での光学的機能のために必要な最小限の要素であって、実用上必要であれば、さらにコーティング層などのこれら以外の層があってもよい。
【0019】
入射光線3は、この屈折系を通過した後に光線9となり、眼球2に入る。偏光フィルム4は、同図(b)に示す方向の直線偏光成分41のみを透過する。液晶層6に接する左方の透明電極51の表面が上下方向に、右方の透明電極52の表面が紙面に垂直方向にラビングされている。前者は図(b)で方向10で、後者は方向11によって示されている。ここでは、配向膜は液晶技術では公知であるので省略している。これらの透明電極51、液晶層6、透明電極52はツイステッド・ネマチックモード液晶セル(液晶セル)を構成している。
【0020】
よく知られた同セルの性質により、レンズ7およびレンズ8に入る光線は、液晶層6にAC電圧が印加されない時には電極52のラビング方向、すなわち図1(b)で方向11に示す方向に偏光している。液晶層6に約数ボルトのAC電圧が印加される時には電極51のラビング方向、すなわち図1(b)で方向10に示す方向に偏光している。したがって、液晶層6におけるわずか数ボルトのAC電圧印加の有無によって、レンズ7およびレンズ8内部における偏光方向を図1(b)において方向10および方向11で示す方向間で切り替えることが出来る。
【0021】
レンズ7は、一軸複屈折光学材料からなる凸レンズであり、その光軸は図1(b)に方向12で示すように上下方向になるように選んである。同材料としては複屈折性透明ポリマー、光重合で硬化させた液晶、あるいは複屈折結晶などを用いることが出来る。光軸方向の選択は公知の技術で行うことが出来る。レンズ8はこれと同様の材料で構成される凹レンズであるが、その光軸はレンズ7とは直交する、図(b)で方向13で示す方向に選んである。すなわち、レンズ7とレンズ8は屈折方向が正負逆であり、かつ複屈折光軸方向が直交する関係にある。
【0022】
液晶セルにAC電圧印加がなく、したがってレンズ7に図1(b)の方向11の偏光が入ってくると、この方向は前記レンズ材料の複屈折光軸12と直交するので、この偏光に対して同レンズ7の屈折率は常光線の値nとなる。一方、レンズ8の複屈折光軸は図1(b)における方向13であるので、前記偏光に平行になり、レンズ8の屈折率は異常光線の値nになる。液晶セルにAC電圧印加がある場合にはこの逆の関係が成立する。これらの関係を図2に示す。
【0023】
図2において、(a)は屈折系構成、(b)は液晶セルにAC電圧印加がない場合の屈折率の構成、(c)はAC電圧印加がある場合の屈折率の構成である。
【0024】
説明を簡単にするために、nがnよりも大きい正の異方性の場合を考えよう。さらにレンズ7およびレンズ8の曲率を同一の値とする。液晶セルにAC電圧印加がない場合、図2(b)に示すように、レンズ7およびレンズ8はそれぞれ屈折率nおよびnを持つ凸レンズおよび凹レンズになる。合成レンズとしての機能は、屈折率が大きいほうの凹レンズのものが残る。一方、液晶セルにAC電圧印加がある場合には、図2(c)に示すようにこれらの関係は逆になり、合成レンズは凸レンズとして機能する。
【0025】
このように液晶セルにおけるAC電圧印加の有無によって、合成レンズは凸、凹レンズになる。したがって電圧の切替えに応じて、屈折機能が凸凹間で切り替えられ、使用状況に応じて、遠見用と近見用を自在に切り替えることが出来る。
【0026】
本発明では、常に凸レンズと凹レンズが共存して、相互に屈折機能を相殺する関係にある。遠見、近見の異なった条件下で、そのいずれか一方のレンズの機能が望まれている機能であり、他方レンズの相殺機能は望まれているものではない。条件が変わると、両者の関係は逆転する。本発明では、常に機能が望まれているレンズの屈折率を最大値であるnにし、望まれていない方の屈折率を最小値であるnにしている。眼鏡レンズ設計で要求される出来るだけ肉薄の設計を満足させねばならないからである。本発明では、レンズ7ならびにレンズ8の複屈折光軸を直交させることによってこれを実現している。従来の技術提案にはこうした考えは見られない。
【0027】
以上は特別なケースであるが、正負いずれの異方性複屈折材料に対しても、曲率16,17,18ならびに両レンズの厚さを適当に選択することによって、次の全てのケースが実現できる。それには公知のレンズ設計技術が使用出来る。その場合にも上記した本発明の長所は生きている。
(1)凸レンズと凹レンズ間の切り替え
(2)強凸レンズと弱凸レンズ間の切り替え
(3)凸レンズとフラット板間の切り替え
(4)強凹レンズと弱凹レンズ間の切り替え
(5)凹レンズとフラット板間の切り替え
【0028】
屈折機能にこうした5種類の切り替えが実現できる時、老眼、遠視眼、近視眼など全ての場合における遠見、近見に対応することが出来る。たとえば、老眼の場合その強弱に応じて(2)および(3)のケースが適用できる。弱の場合、本発明における眼鏡は、遠見では屈折機能のないフラット板として機能し、近見では凸レンズとして機能する。簡単のために、図2における面16、17、18の曲率半径をそれぞれR、∽、Rとし、近見の場合の合成レンズの焦点距離をfとする。周知の光学理論を用いて、遠見の場合に屈折力が0になる条件から、次式が得られる。
=f{(n−1)−(n−1)}/(n−1) 数1
=R(n−1)/(n−1) 数2
スチレン系複屈折ポリマーの代表的な屈折率としてn=1.8、n=1.5を採用することが出来る。fの値は次のように選択する。老眼鏡の機能は、近業位置(最小値としては25cm)の虚像を使用者の近点以遠に結ばせることである。fを40cmとすると、上記虚像の位置は67cmになるので、通常の老眼者を満足させることになる。これらの値を(数1)、(数2)に代入すると、R=19.5cm、R=31.2cmとなる。レンズの長径を5cmとすると、レンズの最小厚さはそれぞれ1.6mmと1.0mmになり、十分実用になる薄さである。
【0029】
本実施の形態1には以下に述べるメリットがある。通常の老眼鏡用レンズの選択においては、近業が可能な範囲において、屈折度が最弱のものを選択する。これは、近業位置の虚像を使用者の近点に求めることに相当する。そうでないと遠方の観察が困難になるからである。そのために、長時間の使用で疲労したり、老眼が進行し近点が遠ざかると、眼鏡を交換する必要があるなどの欠点があった。本発明では、近業時以外には眼鏡の屈折力をなくしてしまうので、近業位置の虚像位置を無限遠に持っていくことができ、これらの欠点が消滅する。
【0030】
同様に遠視眼の場合、その強弱に応じて(2)および(3)のケースが適用できる。近視眼の場合は、その強弱に応じて(4)および(5)のケースが適用できる。近視眼と老眼の共存の場合には、(1)のケースが有効である。
【0031】
屈折機能にこうした5種類の切り替えが実現できる時、老眼、遠視眼、近視眼など全ての場合における遠見、近見に対応することが出来る。たとえば、老眼の場合(3)のケースが適用できる。この場合、本発明における眼鏡は、遠見では屈折機能のないフラット板として機能し、近見では凸レンズとして機能する。同様に遠視眼の場合、その強弱に応じて(2)および(3)のケースが適用できる。近視眼の場合は、その強弱に応じて(4)および(5)のケースが適用できる。近視眼と老眼の共存の場合には、(1)のケースが有効である。
【0032】
(実施の形態2)
図3に、本発明の第2の実施の形態の屈折系の構成を示す。レンズ7およびレンズ8がフレネルレンズ71ならびにフレネルレンズ81で構成されていることを除けば、図1の構成と同一である。これら2枚のフレネルレンズ71、81は、レンズの厚さが薄くなっていること以外は、レンズ7およびレンズ8と同一の光学特性を持つように設計する。したがって、その機能も同一である。
【0033】
現在市販されている眼鏡においては、外観、重量の双方から、出来るだけレンズを薄くするように設計がなされている。本発明では、レンズ枚数は2枚必要であり、しかもそれらは屈折機能を相殺するので、どうしても肉厚になることは避けられない。しかし、2枚のレンズをフレネル構造にすることによって、この欠点を除去することができて、眼鏡厚さおよび重量において、現在市販されている非屈折制御型眼鏡に劣らないものを供給できる。
【0034】
本発明と既出願の屈折制御型眼鏡の優劣性比較は次に説明する通りで、本発明が優れている。
【0035】
既出願の大半は、液晶レンズ内部において光軸である液晶のダイレクター方向を、レンズ面と平行方向からこれと直交方向に切り替えている。この場合も、同レンズ内で屈折率をn、n間で切り替えることが出来る。その場合、同レンズの厚さ数ミリメートルに対して、約100ボルト弱のAC電圧印加が必要である。この電圧は眼鏡で使用するには高すぎて、安全性に問題がある。
【0036】
これに対して、本発明では、AC電圧印加は厚さが数マイクロメートルの液晶セルで行うので、所要電圧は数ボルトと2桁低下し、安全性に問題がない。
【0037】
また、既出願の液晶レンズの場合、屈折率は印加電圧を連続変化させることによって、n、n間で連続的に変化させている。一方本発明では、屈折率はn、nの二値間の切り替えである。これは一見短所に見えるかも知れない。しかしながら、遠見、近見の切り替えでは、屈折率の二値間の切替えで十分な効果が得られ、この制約は何ら問題ではない。
【0038】
第二の相違点はレンズ7とレンズ8の構成にある。まず、本発明においても既出願においても、(1)、(3)および(4)のケースにおける屈折力制御を実現するには、凸、凹最低2枚のレンズの使用が必要である。両レンズは屈折機能を相殺するので、合成レンズに所要の屈折力を与えるためには、単レンズの場合に比べてどうしてもレンズ厚さが増大してしまう。これでは現在市販されている多焦点眼鏡に比較した場合、眼鏡厚さならびに重量において商品価値が劣り、新種の眼鏡が市場に登場できない制約を作って来た。
【0039】
この制約を回避するために、既出願の全てが液晶レンズを用いているのに対して、本発明では複屈折ポリマー、複屈折結晶、硬化した液晶などの固体材料を用いている。液晶の場合はレンズ体は液体であるので、ただでさえ厚さにおいて不利であるのにさらに容器層が必要である。容器層の存在は、全体の厚さを増大させるだけではなく、液晶レンズとその容器が共存する場合には、その境界面で屈折率の差によって生じるフレネル損失が発生する。通常、このフレネル損失は反射防止膜を設けて回避するが、液晶レンズでは屈折率そのものが変化してしまうので、反射防止膜を利用することが出来ない。したがって、フレネル損失をはじめから無くしてしまう他はない。本発明では液体レンズを使用しないので、こうした問題が存在しない。
【0040】
さらにレンズ厚さを最小化するために、本発明ではレンズ7ならびにレンズ8間で、屈折率の相互関係が最大、最小値になるようにしてある。これは、両者の光軸を互いに直交させることによって実現した。その場合、一方が常光線であれば他方は異常光線になり、屈折率は最小値、最大値を取ることになる。前記したように、望まれる屈折機能のレンズには最大値の屈折率が対応し、望まれない相殺機能のレンズには最小値の屈折率が対応するのである。これで、レンズ8に屈折率固定の光学等方体を使用している既出願特許に比較して、レンズ厚さを減少させることが出来る。
【0041】
なお、レンズ7およびレンズ8の片方あるいは双方に円筒レンズなどの非球面要素を重畳することによって、乱視眼鏡を実現する設計技術も周知であるので、本発明の効果を乱視眼に拡張することが出来る。
【0042】
本構成では、屈折系全体の表裏面と、屈折率の異なった材料間の境界面にフレネル反射損があるが、反射防止膜を仲介させることによってその損失を減少させて、系の明るさを増大させることが出来る。この場合、複屈折光学材料の屈折率は変化するので、前記したように複屈折光学材料の境界面では完全な反射防止は不可能であるが、常光線と異常光線の平均の屈折率を用いた反射防止膜を設けるか、あるいは遠見、近見の何れか一方の明るさが必要であるケースだけを満足する反射防止膜を設けてもよい。
【0043】
本発明の目的は、老眼鏡、遠視眼鏡、近視眼鏡、乱視眼鏡の全てにおいて、遠見、近見の区別なく、常に最適な視力矯正を実現することであった。このため、眼鏡の屈折特性を可変制御できるようにした。これを数ボルトの低AC電圧印加によって行うのである。
【0044】
これを制御するための信号としてもっとも簡単なものは、タッチセンサーの接触によって遠見、近見の切り替えをマニュアル操作で行うことである。切り替えの判断は使用者の意志による。タッチセンサーは、図4に示す眼鏡のテンプル20にしておくと便利である。タッチセンサーの接触から屈折制御に至るまでの信号処理は、本発明に含まれる各種の実施方法に依存して異なるが、これらは公知の電気回路技術で実現できるのでここでは説明を省略する。
【0045】
遠見、近見の切り替えは、リモートコントロールスイッチを用いても実現できる。この場合の信号処理も、公知の電気回路技術で実現できるので、ここでの説明は省略する。
【0046】
本発明は、さらに、観察対象までの距離を測定して、遠見、近見の切り替えを自動的に行うことも出来る。図4に、距離測定センサー21を両レンズの中間のブリッジ上に設定した場合の、眼鏡の外観図を示す。この種の距離測定センサーには、ある程度の指向性が要求される。図4の構成においては、電気回路を小型にして距離測定センサーと一体構造にしてある。こうしたデザインの場合、機能もさることながら美観が重要な因子になる。
【0047】
この距離測定センサー21としてレーダ原理を用いることが出来る。ただし、この場合は観察対象が人物である場合が多いので、安全性に考慮を払う必要がある。信号媒体は微弱な赤外線や超音波などにして、ある閾値(たとえば25−33cmの読書距離など)以上の帰還信号がなければ、遠見と判定すればよい。この場合も所要の技術は公知であるので、ここでの説明は省略する。
【0049】
【発明の効果】
本発明によれば、遠見、近見などの異なった条件下での観察において、自動的あるいは使用者の判断による簡単な操作によって、常に適切な屈折特性が選択されて、眼鏡の全視野にわたって理想的な視力矯正を実現することが出来る。
【0050】
また、屈折特性をレンズの異なった位置ごとに変化させるような設計は不要であるので、レンズ設計と製作が単純化される。
【0051】
また、老眼鏡の近業位置の虚像を十分遠方に結ばせるなど、眼を弛緩状態にしておけるので、長時間の近業においても疲労が少ない。また眼球屈折力の経時変化に対しても、眼鏡交換の回数が少なくてすむなどの長所がある。
【0052】
さらに、可視光偏光フィルターを使用しているので、紫外線カットがなされている。水面からの反射光は直線偏光成分に富んでいるので、偏光フィルムの偏光方向を直交させることによって、同反射光が吸収され水中がよく見えるという長所もある。また、自動車のヘッドライトも直線偏光にしてあるので、同様の方法で対向車のヘッドライトによる眩惑を防止することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係わる可変屈折制御型眼鏡の要部である屈折系構成を説明する図で、(a)は側面図、(b)は正面図
【図2】本発明の第1の実施の形態における屈折系の動作を説明する概念図で、(a)は構成、(b)は電圧印加がない場合、(c)は電圧印加がある場合の図
【図3】本発明の第2の実施の形態に係わる可変屈折制御型眼鏡の要部である屈折系構成を示す側面図
【図4】本発明の可変屈折制御型眼鏡の外観図
【符号の説明】
1 眼鏡
2 眼球
3 入射光線
4 偏光フィルム
6 液晶層
7 複屈折光学材料レンズ
8 複屈折光学材料レンズ
9 眼鏡の射出偏光光線
10、11 透明電極の液晶接触面上のラビング方向
12、13 レンズの光軸方向
14 AC電源
15 スイッチ
16 レンズの入射面
17 レンズの境界面
18 レンズの射出面
19 屈折系
20 テンプル
21 距離測定センサー
41 偏光フィルムの偏光方向
51、52 透明電極
71、81 複屈折光学材料フレネルレンズ

Claims (4)

  1. 複屈折光軸がそれぞれレンズ面内にあって相互に直交する凸および凹の複屈折光学材料レンズの複合レンズからなり、前記複合レンズは少なくとも偏光フィルム、第1の透明電極、液晶層、第2の透明電極、第1の複屈折光学材料レンズ、および前記第1の複屈折光学材料レンズと光学軸が直交する第2の複屈折光学材料レンズからなる6層構成を含み、前記凸および凹の複屈折光学材料レンズへの入射光線がそれぞれ常光線、異常光線間を切り替えるように直線偏光制御を行った可変屈折制御型眼鏡。
  2. 複屈折光学材料レンズがフレネルレンズ構造を有する請求項1に記載の可変屈折制御型眼鏡。
  3. 複屈折光学材料レンズを複屈折ポリマー、複屈折結晶、光重合で硬化させた液晶のいずれかで構成した請求項1または2に記載の可変屈折制御型眼鏡。
  4. 直線偏光制御をツイステッド・ネマチックモード液晶セルの電圧印加の有無によって行う請求項1に記載の可変屈折制御型眼鏡。
JP2001163418A 2001-04-24 2001-04-24 可変屈折制御型眼鏡 Expired - Fee Related JP3845709B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163418A JP3845709B2 (ja) 2001-04-24 2001-04-24 可変屈折制御型眼鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163418A JP3845709B2 (ja) 2001-04-24 2001-04-24 可変屈折制御型眼鏡

Publications (2)

Publication Number Publication Date
JP2002323680A JP2002323680A (ja) 2002-11-08
JP3845709B2 true JP3845709B2 (ja) 2006-11-15

Family

ID=19006393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163418A Expired - Fee Related JP3845709B2 (ja) 2001-04-24 2001-04-24 可変屈折制御型眼鏡

Country Status (1)

Country Link
JP (1) JP3845709B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8672478B2 (en) 2009-12-10 2014-03-18 Essilor International (Compagnie Generale D'optique) Ophthalmic lens arrangement and an apparatus for demonstrating a plurality of optical functions and a method for demonstrating a plurality of optical functions
EP2795394A1 (en) * 2011-12-23 2014-10-29 Johnson & Johnson Vision Care Inc. Variable optic ophthalmic device including liquid crystal elements
WO2019117335A1 (ko) 2017-12-12 2019-06-20 주식회사 에덴룩스 굴절률 조절이 가능한 렌즈를 갖는 시력훈련장치
KR102299172B1 (ko) * 2020-02-11 2021-09-06 이민호 가변 초점을 제공하기 위한 하이브리드형 렌즈 및 안경

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981342A (en) * 1987-09-24 1991-01-01 Allergan Inc. Multifocal birefringent lens system
JPH0342615A (ja) * 1989-07-10 1991-02-22 Canon Inc 多焦点眼用レンズ
WO1994023334A1 (en) * 1993-04-07 1994-10-13 The Technology Partnership Plc Switchable lens

Also Published As

Publication number Publication date
JP2002323680A (ja) 2002-11-08

Similar Documents

Publication Publication Date Title
US20160070117A1 (en) Electro-active ophthalmic lenses comprising low viscosity liquid crystalline mixtures
US7604349B2 (en) Static progressive surface region in optical communication with a dynamic optic
CA2655349C (en) Static progressive surface region in optical communication with a dynamic optic
US8287124B2 (en) Opthalmic lenses having reduced base out prism
KR20070100902A (ko) 프리즘 베이스를 가지는 다초점 안과용 렌즈
US8641191B2 (en) Static progressive surface region in optical communication with a dynamic optic
JPS61156227A (ja) フレネル液晶眼鏡
CA2680870C (en) Multifocal lens having a progressive optical power region and a discontinuity
US20110285959A1 (en) Reduction of image jump
JP3845709B2 (ja) 可変屈折制御型眼鏡
JPH0250123A (ja) 電子サングラス
CN105589216A (zh) 用于矫正视力的眼镜
US6322215B1 (en) Non-progressive trifocal ophthalmic lens
KR101785993B1 (ko) 다기능 다초점 멀티 포컬 안경
TWI490595B (zh) 以液晶轉向調整透鏡焦距之光學系統
JP2003057607A (ja) 焦点可変眼鏡
JPH01243016A (ja) 眼鏡用レンズおよびこれを使用する眼鏡
CN220367483U (zh) 智能眼镜的镜片组件和智能眼镜
CN212781533U (zh) 一种带有防强光功能的智能眼镜
CN220752444U (zh) 一种渐进多焦点镜片
JPWO2018096612A1 (ja) 非矯正眼鏡用プラスチックレンズ
JPH04291315A (ja) 眼鏡レンズ
JP2007212622A (ja) ピンホール眼鏡
TW201436786A (zh) 動態式視力矯正眼鏡
JPH0342615A (ja) 多焦点眼用レンズ

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees