JP3844297B2 - Hydrogen detection device - Google Patents

Hydrogen detection device Download PDF

Info

Publication number
JP3844297B2
JP3844297B2 JP2002184528A JP2002184528A JP3844297B2 JP 3844297 B2 JP3844297 B2 JP 3844297B2 JP 2002184528 A JP2002184528 A JP 2002184528A JP 2002184528 A JP2002184528 A JP 2002184528A JP 3844297 B2 JP3844297 B2 JP 3844297B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
amount detection
storage alloy
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002184528A
Other languages
Japanese (ja)
Other versions
JP2004028756A (en
Inventor
毅昭 島田
芳雄 縫谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002184528A priority Critical patent/JP3844297B2/en
Publication of JP2004028756A publication Critical patent/JP2004028756A/en
Application granted granted Critical
Publication of JP3844297B2 publication Critical patent/JP3844297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水素吸蔵合金を利用して水素量を検出する水素量検出装置に関するものである。
【0002】
【従来の技術】
水素吸蔵合金が水素を吸蔵することによる体積膨張を水素量の測定に用いる技術として、例えば、特開平10−73530号公報に開示された水素量検出センサが知られている。この水素量検出センサは、粒状の水素吸蔵合金の粒子を密な層状として板材の片面に固着し、板材の反対面にひずみケージを貼り付けたものである。水素量検出センサを水素雰囲気に配置し、水素吸蔵合金の粒子に水素を吸蔵させて膨張させると、板材が湾曲してひずみゲージが変形し、変形に応じたひずみ量が出力される。従って、あらかじめ計測しておいた水素吸蔵合金の水素貯蔵量−体積膨張量特性と、ひずみゲージで計測されたひずみ量とを対比すると水素雰囲気中の水素量を検出することができる。
【0003】
【発明が解決しようとする課題】
前記水素量検出センサを用いて繰り返し水素量を一定の精度で測定するためには、板状部材に固着された緻密な粒状MH集合体の水素貯蔵量−体積膨張量特性が不変であることが前提となる。
しかし、水素吸蔵合金の粒子は、硬質で靭性に乏しく微粉化しやすい材料であるため、前記したように、水素吸蔵合金の粒子を密な層状として板材に固定し、板材の湾曲に対応したひずみ量を水素雰囲気の水素量として検出する場合は、水素の吸蔵・放出の繰り返しによって発生する粒状の水素吸蔵合金の粒子同士の摺動により、水素吸蔵合金の粒子の摩耗、微粉化、脱落が発生し、水素量検出センサの測定値に変化が生じることがある。このため、従来の水素量検出センサを使用して繰り返し水素量を検出する場合は、粒状の水素吸蔵合金の集合体全体の体積膨張特性の減少、水素量の測定精度及び感度の減少が生じ、測定値が変化してしまうという不具合がある。
そこで本発明は水素の吸蔵・放出を繰り返しても水素量を精度よく検出できる水素量検出装置を提供することを課題とする。
【0004】
【課題を解決する手段】
本発明は前記課題を解決するために提案されたもので、請求項1記載の発明は水素量検出装置であって、粒状の水素吸蔵合金を、伸縮性を有する保持層の表面から一部露出するように分散させて配置し、前記水素吸蔵合金が水素を吸蔵した際の体積膨張による前記保持層の伸縮を検知するひずみセンサを備え、前記ひずみセンサを前記保持層に埋設して設置した水素量検出装置を提供するものである。保持層は伸縮性を有し水素吸蔵合金の粒子の水素吸蔵による膨張によって伸び、水素の放出によって縮むので、粒子間には相互の摺動は発生しない。水素放出時も同様となる。このため、水素の吸蔵・放出を繰り返しても水素吸蔵合金の粒子の摩耗、微粉化、脱落は発生せず、水素量検出装置の性能は一定に維持される。また、保持層の伸びは、水素吸蔵合金の粒子全体の膨張の合計であり、ひずみセンサがこの膨張を測定することになるので水素量検出装置としての感度が向上する。この場合、粒状の水素吸蔵合金を一層とし、粒状の水素吸蔵合金を分散させると、水素量検出装置の感度がさらに向上する。
なお、水素の吸蔵及び放出は、水素吸蔵合金の粒子の外部に露出している表面からなされる。
【0005】
また、請求項2記載の発明は、請求項1記載の発明の水素量検出装置において、前記保持層の少なくとも一面を前記保持層よりも剛性の高い材料で構成される板状の基台に固定し、前記水素吸蔵合金の水素の吸蔵および放出により、前記ひずみセンサの平面方向に前記保持層が伸縮する水素量検出装置を提供するものである。
このようにすると、粒状の水素吸蔵合金の膨張による保持層の伸縮方向は、保持層と基台の接合面に沿った方向に特定されるので、水素量検出装置の感度が向上する。
【0007】
【発明の実施の形態】
以下、添付図面を参照して本発明に係る水素量検出装置の実施形態を説明する。
(第1実施形態)
図1は本発明に係る水素量検出装置の第1実施形態の構造を示す斜視図、図2は図1の縦断面図である。水素量検出装置1は、水素を吸蔵して膨張し、水素を放出して収縮する水素吸蔵合金の粒子2aを平面的に並べた一層の水素検出層2と、水素吸蔵合金の粒子2aの膨張量を数量データに変換するデータ変換層3とで構成されており、データ変換層3は、基台3aに積層により固定された樹脂層3bと、この樹脂層3bの内側に埋設されて樹脂と一体化されたひずみゲージ3cで構成されている。前記水素吸蔵合金の粒子2aは、前記樹脂層3bによって各粒子2aの上部が樹脂層3bの上面から外部に露出するように且つ、隣接する粒子2a間が樹脂で隔てられるように樹脂層3bの上層部全体に一様に分散保持されている。なお、樹脂層3bは、接着材や焼き付けなどにより基台3aに固定される。また、樹脂層3bは、水素吸蔵合金の粒子2aの水素吸蔵時の発熱温度と水素放出のための加熱温度とに対応した樹脂、例えば、ふっ素樹脂で構成されており、水素吸蔵合金の粒子2aが水素を吸蔵したときの体積膨張によって伸び、逆に水素を放出したときには縮む伸縮性を有している。そして、前記基台3aは、水素吸蔵合金の粒子2aの体積膨張時に樹脂層3bの湾曲を抑制して樹脂層3bの伸び方向を水素検出層2の平面方向に沿った方向とするために、曲げ、引張りに対して樹脂層3bよりも強度の高い材料で構成されている。
【0008】
図3(a)は前記水素量検出装置1の水素量検出前の状態を示し、図3(b)は水素量検出装置1の水素量検出時の状態を示している。図3(a)に示すように、水素量の検出前は、水素吸蔵合金の粒子2aには水素が貯蔵されていないので、各粒子2aは体積が収縮し、樹脂層3bも体積が収縮した状態となる。
【0009】
この状態で水素量検出装置1のひずみゲージ3cにひずみ測定器(図示せず)を接続し、水素量検出装置1を水素雰囲気中に配置すると、図3(b)に示すように、水素量検出装置1の個々の水素吸蔵合金の粒子2aが水素を吸蔵して膨張し、樹脂層3bが、基台3aと樹脂層3bの接合面に沿った方向に伸長する。伸長の方向は、前記基台3aによって水素検出層2の平面方向、換言すると基台3aと樹脂層3bの接合面に沿った方向となる。保持層としての樹脂層3bに伸びが発生すると、樹脂に一体化されているひずみゲージ3cに樹脂層3bの伸びに応じたひずみが発生し、ひずみ量がひずみ測定器に出力される。従って、ひずみゲージ3cで測定されたひずみ量を、あらかじめ同じ圧力、温度の下で計測しておいたひずみゲージ3cのひずみ量−水素量との相関特性に対比すると、水素量を正確に推定できる。なお、前記水素量検出装置1を繰り返し水素量検出装置として使用する場合は、水素量検出装置1を加熱して水素吸蔵合金の各粒子2aから水素を放出させればよい。
【0010】
前記水素量検出装置1は、その構造上、水素吸蔵合金の水素検出層2が一層で、樹脂層3bの伸縮方向が水素吸蔵合金の粒子2aの配列方向、換言すると、基台3aと樹脂層3bとの接合面に沿った方向に特定される。このため、水素量検出のために水素吸蔵合金の粒子2aの膨張、収縮を繰り返しても水素吸蔵合金の粒子2a同士には摺動が発生しない。また、樹脂層3bの伸びは水素吸蔵合金の粒子2a全体の膨張の合計となるので、この膨張を測定するためのひずみゲージ3cの感度が実質的に向上する。
【0011】
なお、水素量検出装置1においては、基台3aの剛性によって樹脂層3bの伸び方向が基台3aと樹脂層3bの接合面に沿った方向に特定されるので、ひずみゲージ3cは、図2に示すように、樹脂層3bの水素検出層2側に配置するのが望ましい。また、この実施の形態において、前記ひずみセンサとしてひずみゲージ3cを例示したが、光ファイバを利用したひずみセンサを用いてひずみ量を測定してもよい。
また、この実施の形態では、基台3aにより、樹脂層3bの伸縮方向を規制したが、基台3aを廃止し、水素吸蔵合金の粒子2aの体積膨張に伴う樹脂層3bの湾曲ひずみをひずみゲージ3cなどのひずみセンサにより測定してもよい。このようにしても樹脂層3bに対して水素吸蔵合金の粒子2aが平面方向に沿って分散しており、各粒子2a間に樹脂が存在するため、粒子2a間の摺動に起因する粒子2aの摩耗、微粉化、脱落が防止されるので、水素量を繰り返し検出することができる。
また、水素量検出装置1の感度をさらに向上するために、水素検出層2及び樹脂層3bの両側に樹脂層3bの幅方向への伸びを規制する規制板(図示せず)を設けてもよい。
【0012】
(第2実施形態)
図4は本発明に係る水素量検出装置の第2実施形態を示し、図4(a)は水素量検出装置11の斜視図、図4(b)は図4(a)の縦断面図である。この実施形態において、基台13aは上端部が開放された筒状に形成されており、水素吸蔵合金の粒子2aは、基台13a内に挿入された樹脂層13bによって全体一様に分散保持されている。樹脂層13bは、内部の水素吸蔵合金の粒子2aを外部の水素雰囲気に晒して水素を吸蔵させるための多孔体となっており、水素吸蔵合金の粒子2aが水素を吸蔵したときの体積膨張によって伸び、逆に水素を放出したときには縮む伸縮性を有している。樹脂層13bの内部には、図5に示すように、内部の孔13cを保持するための基材13dが分散している。ひずみゲージ3cは、樹脂層13bの表面に貼り付けられる。
【0013】
なお、前記基材13dとしては、孔13cを保持できる耐食性の材料であれば特に材質には限定されないが、水素吸蔵合金の粒子2aを外部に晒せるようにするには、セラミックスの多孔材で構成するのが望ましい。また、前記樹脂層13bを熱硬化性樹脂で構成し、発泡後、加熱することにより孔13cの形態を維持できるようにする場合は前記基材13dの廃止も可能となる。
【0014】
図6(a)は前記水素量検出装置11の水素量検出前(水素放出)の状態を示し、図6(b)は水素吸蔵時(水素測定時)の状態を示している。
図6(a)に示すように、水素量検出前は、水素吸蔵合金の粒子2aは水素に晒されておらず水素を貯蔵していないので保持層としての樹脂層13bには伸びが発生せず、ひずみゲージ3cは、ひずみを感知していない。この状態で水素量検出装置11のひずみゲージ3cにひずみ測定器(図示せず)を接続し、水素量検出装置11を水素雰囲気中に配置すると、個々の水素吸蔵合金の粒子2aが図4に示した樹脂層13bの孔13cを通じて水素を吸蔵するので体積が膨張する。樹脂層13bは、筒状の基台13aによって下端面及び外周面が拘束されているので、逃げ場となる基台13aの開口方向に隆起することになる。このため樹脂層13bの上面に貼り付けられているひずみゲージ3cが隆起量に対応したひずみ量を感知し、感知したひずみ量がひずみ測定器に出力されることになる。従って、この実施形態においても、測定したひずみ量を、あらかじめ同じ圧力、温度の下で前記水素量検出装置11で計測したひずみ量−水素量との相関特性に対比すれば、水素量を正確に推定できる。
水素量の繰り返し測定において、前記水素量検出装置11の水素吸蔵合金の粒子2a間には樹脂が存在し、粒子2aが樹脂層13bを構成している樹脂と一体となって移動するので、水素吸蔵合金の粒子2aが水素量測定のために膨張、収縮を繰り返しても水素吸蔵合金の粒子2a同士の摺動も発生しない。このため、第1実施形態の水素量検出装置1と同様に繰り返し水素量を測定することができる。また、基台13aの底面及び内面により、樹脂層13bの伸縮方向が基台13aの軸芯方向に沿った方向に特定され、水素吸蔵合金の粒子2aの膨張による水素検出層2全体の膨張量が増加するので、水素量検出装置11の感度も大幅に向上する。
【0015】
なお、水素量検出装置11においては、樹脂層13bの伸び方向が特定されるので、ひずみゲージ3cを基台13aの軸芯線Xに沿わせて樹脂層13bの中央に配置してもよい。また、ひずみゲージ3cに代えて光ファイバを用いたひずみセンサを用いてもよい。
【0016】
図7乃至図9は前記水素量検出装置11を取り付けた水素ストレージ(水素タンク)を示し、図7は水素ストレージの斜視図、図8は水素ストレージの横断面図、図9は図8のA部詳細断面図である。
水素ストレージ20には内部に水素吸蔵合金の粒子MTが充填されるとともに、水素吸蔵、水素放出の切り換えのための伝熱管21が取り付けられる。
水素量検出装置は、第2実施形態で説明した水素量検出装置11であり、水素ストレージ20の内壁20aに初期段階の水素ストレージ20のひずみが作用しないように断熱性の接着剤などを介して取り付けられる。水素量検出装置11は、水素量検出装置11の内壁20aに取り付けられた箱型の隔壁22によって、水素ストレージ20内の水素吸蔵合金の粒子MTと隔てられており、箱型の隔壁22に形成されている連通部22aを介して水素ストレージ20内に連通している。
なお、この例では、水素量検出装置11の水素吸蔵合金の粒子2aは、水素ストレージ20内の水素吸蔵合金MHと同じ材質であり、隔壁22の容積は、樹脂層13bの膨張に対応させて定められる。因みに、この実施の形態では水素放出のために加熱されたとき、温度が60℃の熱的平衡温度となるような水素吸蔵合金、例えば、LaNi5を使用している。
また、この実施形態において水素量検出装置11の基台13aには、水素ストレージ20の水素吸蔵合金の粒子MTの温度と水素量検出装置11の水素吸蔵合金の粒子2aとの温度を迅速に同一とするための複数のフィン13eが外面に取り付けられ、各フィン13eが連通部22aを通じて水素ストレージ20内に延出されている。
【0017】
水素量検出装置11による水素ストレージ20の水素量の検出は、水素ストレージ20の水素充填時になされる。この場合、伝熱管21には低温の熱媒体が循環される。このとき水素ストレージ20内の圧力は水素ガス供給系の水素ガス供給圧力、すなわち、水素ストレージ20内の水素吸蔵合金の粒子MTの水素吸蔵の圧力に保持され、温度は、前記伝熱管21を流れる熱媒の温度、すなわち、水素ストレージ20内の水素吸蔵温度に冷却される。もちろん、前記隔壁22の連通部22aにより、隔壁22内も水素ストレージ20内と同温、同圧に保持される。水素ガス出入口20bから水素ストレージ20の内部に水素ガスが充填されると、水素ストレージ20内の水素吸蔵合金の粒子MTは、水素ガスを吸蔵して膨張し、水素量検出装置11の水素吸蔵合金の粒子2aも樹脂層13bの孔13(図5参照)を通じて水素ガスを吸蔵して膨張する。
水素量検出装置11に取り付けられているひずみゲージ3cは、水素ストレージ20内の水素量に対応したひずみ量をひずみ測定器(図示せず)に出力する。従って、あらかじめ水素ストレージ20の水素貯蔵量と水素ストレージ20内に設置する水素量検出装置11の水素吸蔵合金の粒子2aの膨張量、すなわち、ひずみゲージ3cのひずみ量との関係をデータ化しておいて、これに実際に測定されたひずみ量を対比すると、水素ストレージ20の水素貯蔵量を正確に推定することができる。なお、この例では水素量検出装置として、第2実施形態で説明した水素量検出装置11を取り付ける説明をしたが、水素ストレージ20の内壁20aに第1実施形態で説明した水素量検出装置1を初期段階の水素ストレージ20のひずみが作用しないように断熱性の接着材を介して貼り付けるようにしてもよい。
【0018】
【発明の効果】
以上、説明したことから明らかなように本発明によれば次の如き優れた効果を発揮する。
(1)水素吸蔵合金の摩耗、微粉化、脱落を防止することができるので、水素量の測定に繰り返し使用することができる。また、樹脂層の膨張量が粒状の水素吸蔵合金の膨張の合計となり、この膨張をひずみセンサが感知するようにしたので水素量を感度よく検出することができる(請求項1及び請求項3)。
(2)粒状の水素吸蔵合金の膨張による保持層の伸縮方向が、保持層と基台の接合面に沿った方向に特定されるので、水素量検出装置の感度が実質的に向上する(請求項2)。
【図面の簡単な説明】
【図1】本発明に係る水素量検出装置の第1実施形態の構造を示すために一部を破断して示した斜視図である。
【図2】本発明に係る水素量検出装置の第1実施形態の構造を示し、図1の縦断面図である。
【図3】第1実施形態の水素量検出装置の状態の変化を示し、図3(a)は水素量検出装置の水素量検出前の状態を示す断面図、図3(b)は水素量検出装置の水素量検出時の状態を示す断面図である。
【図4】第2実施形態の水素量検出装置を示し、図4(a)は水素量検出装置の斜視図、図4(b)は図4(a)の縦断面図である。
【図5】図4(b)の要部拡大断面図である。
【図6】第2実施形態の水素量検出装置の状態の変化を示し、図6(a)は水素量検出装置の水素量検出前の状態を示す断面図、図6(b)は水素吸蔵時の状態を示す断面図である。
【図7】水素量検出装置を取り付けた水素ストレージの斜視図である。
【図8】水素ストレージの横断面図である。
【図9】図8のA部詳細断面図である。
【符号の説明】
1 水素量検出装置
2 水素検出層
2a 水素吸蔵合金の粒子
3 データ変換層
3a 基台
3b 樹脂層(保持層)
3c ひずみゲージ(ひずみセンサ)
11 水素量検出装置
13a 基台
13b 樹脂層(保持層)
13c 孔
13d 基材
13e フィン
20 水素ストレージ
21 伝熱管
22 隔壁
22a 連通部
MT 水素吸蔵合金の粒子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen amount detection device that detects a hydrogen amount using a hydrogen storage alloy.
[0002]
[Prior art]
For example, a hydrogen amount detection sensor disclosed in Japanese Patent Application Laid-Open No. 10-73530 is known as a technique that uses volume expansion due to the storage of hydrogen by a hydrogen storage alloy to measure the amount of hydrogen. This hydrogen amount detection sensor is formed by adhering granular hydrogen storage alloy particles in a dense layer to one surface of a plate material and attaching a strain cage to the opposite surface of the plate material. When the hydrogen amount detection sensor is disposed in a hydrogen atmosphere and hydrogen is stored in the hydrogen storage alloy particles and expanded, the plate material is bent and the strain gauge is deformed, and a strain amount corresponding to the deformation is output. Therefore, the hydrogen amount in the hydrogen atmosphere can be detected by comparing the hydrogen storage amount-volume expansion characteristic of the hydrogen storage alloy measured in advance with the strain amount measured by the strain gauge.
[0003]
[Problems to be solved by the invention]
In order to repeatedly measure the hydrogen amount with a certain accuracy using the hydrogen amount detection sensor, the hydrogen storage amount-volume expansion characteristic of the dense granular MH aggregate fixed to the plate member may be unchanged. It is a premise.
However, since the hydrogen storage alloy particles are hard, poor toughness and easily pulverized, as described above, the hydrogen storage alloy particles are fixed to the plate as a dense layer, and the amount of strain corresponding to the curvature of the plate Is detected as the amount of hydrogen in the hydrogen atmosphere, the particles of the hydrogen storage alloy generated by repeated storage and release of hydrogen cause wear, pulverization, and dropping of the particles of the hydrogen storage alloy. The measurement value of the hydrogen amount detection sensor may change. For this reason, when the conventional hydrogen amount detection sensor is used to repeatedly detect the hydrogen amount, the volume expansion characteristics of the whole aggregate of the granular hydrogen storage alloy decreases, the measurement accuracy and sensitivity of the hydrogen amount decrease, There is a problem that the measured value changes.
Accordingly, an object of the present invention is to provide a hydrogen amount detection device that can accurately detect the amount of hydrogen even if hydrogen storage / release is repeated.
[0004]
[Means for solving the problems]
The present invention has been proposed in order to solve the above-mentioned problems, and the invention according to claim 1 is a hydrogen amount detection device, wherein the granular hydrogen storage alloy is partially exposed from the surface of the stretchable holding layer. And a strain sensor that detects expansion and contraction of the holding layer due to volume expansion when the hydrogen storage alloy occludes hydrogen, and the strain sensor is embedded and installed in the holding layer . A hydrogen amount detection device is provided. The holding layer has elasticity and expands due to expansion of the hydrogen storage alloy particles due to hydrogen storage, and contracts due to the release of hydrogen, so that no mutual sliding occurs between the particles. The same applies when hydrogen is released. For this reason, even if hydrogen occlusion / release is repeated, wear, pulverization, and dropout of the hydrogen storage alloy particles do not occur, and the performance of the hydrogen amount detection device is maintained constant. Further, the elongation of the holding layer is the sum of the expansion of all the hydrogen storage alloy particles, and the strain sensor measures this expansion, so that the sensitivity as a hydrogen amount detection device is improved. In this case, if the granular hydrogen storage alloy is formed in one layer and the granular hydrogen storage alloy is dispersed, the sensitivity of the hydrogen amount detection device is further improved.
In addition, occlusion and discharge | release of hydrogen are made | formed from the surface exposed to the exterior of the particle | grains of a hydrogen storage alloy.
[0005]
According to a second aspect of the present invention , in the hydrogen amount detection device according to the first aspect of the invention , at least one surface of the holding layer is fixed to a plate-like base made of a material having higher rigidity than the holding layer. Then, the present invention provides a hydrogen amount detection device in which the holding layer expands and contracts in the plane direction of the strain sensor by storing and releasing hydrogen of the hydrogen storage alloy .
In this way, the expansion / contraction direction of the holding layer due to the expansion of the granular hydrogen storage alloy is specified in the direction along the joint surface between the holding layer and the base, so that the sensitivity of the hydrogen amount detection device is improved.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a hydrogen amount detection apparatus according to the present invention will be described below with reference to the accompanying drawings.
(First embodiment)
FIG. 1 is a perspective view showing the structure of a first embodiment of a hydrogen amount detection apparatus according to the present invention, and FIG. 2 is a longitudinal sectional view of FIG. The hydrogen amount detection apparatus 1 includes a single hydrogen detection layer 2 in which hydrogen storage alloy particles 2a that expand and absorb hydrogen and contract by releasing hydrogen, and expansion of the hydrogen storage alloy particles 2a. The data conversion layer 3 is configured to convert the quantity into quantity data. The data conversion layer 3 includes a resin layer 3b fixed to the base 3a by lamination, and a resin embedded in the resin layer 3b. It is composed of an integrated strain gauge 3c. The hydrogen storage alloy particles 2a are formed on the resin layer 3b so that the resin layer 3b exposes the upper part of each particle 2a from the upper surface of the resin layer 3b and the adjacent particles 2a are separated by a resin. Uniformly distributed and held throughout the upper layer. The resin layer 3b is fixed to the base 3a by an adhesive or baking. The resin layer 3b is made of a resin, for example, a fluororesin, corresponding to the heat generation temperature of the hydrogen storage alloy particles 2a during the hydrogen storage and the heating temperature for releasing hydrogen, and the hydrogen storage alloy particles 2a. Has a stretch property that expands by volume expansion when hydrogen is occluded and contracts when hydrogen is released. The base 3a suppresses the bending of the resin layer 3b during the volume expansion of the hydrogen storage alloy particles 2a, so that the extending direction of the resin layer 3b is a direction along the plane direction of the hydrogen detection layer 2. It is made of a material having higher strength than the resin layer 3b with respect to bending and pulling.
[0008]
3A shows a state before the hydrogen amount detection of the hydrogen amount detection device 1, and FIG. 3B shows a state when the hydrogen amount detection device 1 detects the hydrogen amount. As shown in FIG. 3A, before the detection of the amount of hydrogen, hydrogen is not stored in the hydrogen storage alloy particles 2a, so that the volume of each particle 2a contracts and the volume of the resin layer 3b also contracts. It becomes a state.
[0009]
In this state, when a strain measuring device (not shown) is connected to the strain gauge 3c of the hydrogen amount detection device 1 and the hydrogen amount detection device 1 is placed in a hydrogen atmosphere, as shown in FIG. The individual hydrogen storage alloy particles 2a of the detection device 1 store hydrogen and expand, and the resin layer 3b extends in a direction along the joint surface between the base 3a and the resin layer 3b. The extending direction is the plane direction of the hydrogen detection layer 2 by the base 3a, in other words, the direction along the joint surface of the base 3a and the resin layer 3b. When elongation occurs in the resin layer 3b as the holding layer, strain corresponding to the elongation of the resin layer 3b is generated in the strain gauge 3c integrated with the resin, and the amount of strain is output to the strain measuring instrument. Therefore, the amount of hydrogen can be accurately estimated by comparing the amount of strain measured by the strain gauge 3c with the correlation property between the amount of strain and the amount of hydrogen of the strain gauge 3c measured in advance under the same pressure and temperature. . In addition, when the said hydrogen amount detection apparatus 1 is used repeatedly as a hydrogen amount detection apparatus, what is necessary is just to heat the hydrogen amount detection apparatus 1 and to discharge | release hydrogen from each particle | grain 2a of a hydrogen storage alloy.
[0010]
The hydrogen amount detection device 1 has a structure in which the hydrogen detection layer 2 of the hydrogen storage alloy is one layer, and the expansion and contraction direction of the resin layer 3b is the arrangement direction of the particles 2a of the hydrogen storage alloy, in other words, the base 3a and the resin layer. It is specified in the direction along the joint surface with 3b. For this reason, even if the hydrogen storage alloy particles 2a are repeatedly expanded and contracted to detect the amount of hydrogen, the hydrogen storage alloy particles 2a do not slide. Further, since the elongation of the resin layer 3b is the sum of the expansion of the entire hydrogen storage alloy particles 2a, the sensitivity of the strain gauge 3c for measuring this expansion is substantially improved.
[0011]
In the hydrogen amount detection device 1, the elongation direction of the resin layer 3b is specified by the rigidity of the base 3a in the direction along the joint surface between the base 3a and the resin layer 3b. As shown in FIG. 5, it is desirable to dispose the resin layer 3b on the hydrogen detection layer 2 side. Moreover, in this embodiment, although the strain gauge 3c was illustrated as said strain sensor, you may measure strain amount using the strain sensor using an optical fiber.
In this embodiment, the expansion and contraction direction of the resin layer 3b is regulated by the base 3a. However, the base 3a is abolished and the bending strain of the resin layer 3b due to the volume expansion of the hydrogen storage alloy particles 2a is distorted. You may measure with strain sensors, such as gauge 3c. Even in this case, the particles 2a of the hydrogen storage alloy are dispersed in the plane direction with respect to the resin layer 3b, and the resin exists between the particles 2a. Therefore, the particles 2a caused by sliding between the particles 2a. Wear, pulverization, and dropout are prevented, so that the amount of hydrogen can be detected repeatedly.
Further, in order to further improve the sensitivity of the hydrogen amount detection device 1, a restriction plate (not shown) for restricting the width of the resin layer 3b in the width direction may be provided on both sides of the hydrogen detection layer 2 and the resin layer 3b. Good.
[0012]
(Second Embodiment)
FIG. 4 shows a second embodiment of the hydrogen amount detection device according to the present invention, FIG. 4 (a) is a perspective view of the hydrogen amount detection device 11, and FIG. 4 (b) is a longitudinal sectional view of FIG. 4 (a). is there. In this embodiment, the base 13a is formed in a cylindrical shape with an open upper end, and the hydrogen storage alloy particles 2a are uniformly dispersed and held by the resin layer 13b inserted into the base 13a. ing. The resin layer 13b is a porous body for exposing the internal hydrogen storage alloy particles 2a to the external hydrogen atmosphere to store hydrogen, and by volume expansion when the hydrogen storage alloy particles 2a store hydrogen. It stretches and conversely contracts when hydrogen is released. As shown in FIG. 5, a base material 13d for holding the internal holes 13c is dispersed inside the resin layer 13b. The strain gauge 3c is affixed on the surface of the resin layer 13b.
[0013]
The base material 13d is not particularly limited as long as it is a corrosion-resistant material capable of holding the holes 13c. However, in order to expose the hydrogen storage alloy particles 2a to the outside, the base material 13d is composed of a ceramic porous material. It is desirable to do. Further, when the resin layer 13b is made of a thermosetting resin and is heated after foaming so that the shape of the holes 13c can be maintained, the substrate 13d can be eliminated.
[0014]
FIG. 6 (a) shows a state before the hydrogen amount detection (hydrogen release) of the hydrogen amount detection device 11, and FIG. 6 (b) shows a state during hydrogen occlusion (hydrogen measurement).
As shown in FIG. 6 (a), before the hydrogen amount is detected, the hydrogen storage alloy particles 2a are not exposed to hydrogen and do not store hydrogen, so that elongation occurs in the resin layer 13b as the holding layer. The strain gauge 3c does not sense strain. In this state, when a strain measuring device (not shown) is connected to the strain gauge 3c of the hydrogen amount detection device 11 and the hydrogen amount detection device 11 is placed in a hydrogen atmosphere, the individual hydrogen storage alloy particles 2a are shown in FIG. Since hydrogen is occluded through the holes 13c of the resin layer 13b shown, the volume expands. Since the lower end surface and the outer peripheral surface of the resin layer 13b are constrained by the cylindrical base 13a, the resin layer 13b protrudes in the opening direction of the base 13a serving as a refuge. For this reason, the strain gauge 3c affixed on the upper surface of the resin layer 13b senses the strain amount corresponding to the bulge amount, and the sensed strain amount is output to the strain measuring instrument. Therefore, also in this embodiment, if the measured strain amount is compared with the correlation characteristic between the strain amount-hydrogen amount measured in advance by the hydrogen amount detector 11 under the same pressure and temperature, the hydrogen amount can be accurately determined. Can be estimated.
In the repeated measurement of the hydrogen amount, resin exists between the hydrogen storage alloy particles 2a of the hydrogen amount detection device 11, and the particles 2a move together with the resin constituting the resin layer 13b. Even if the particles 2a of the storage alloy repeatedly expand and contract in order to measure the amount of hydrogen, sliding between the particles 2a of the storage alloy does not occur. For this reason, the amount of hydrogen can be measured repeatedly as in the case of the hydrogen amount detection apparatus 1 of the first embodiment. The expansion and contraction direction of the resin layer 13b is specified in the direction along the axial direction of the base 13a by the bottom surface and the inner surface of the base 13a, and the expansion amount of the entire hydrogen detection layer 2 due to the expansion of the hydrogen storage alloy particles 2a. Therefore, the sensitivity of the hydrogen amount detection device 11 is greatly improved.
[0015]
In the hydrogen amount detection device 11, since the extending direction of the resin layer 13b is specified, the strain gauge 3c may be arranged at the center of the resin layer 13b along the axis X of the base 13a. Further, a strain sensor using an optical fiber may be used instead of the strain gauge 3c.
[0016]
7 to 9 show a hydrogen storage (hydrogen tank) to which the hydrogen amount detection device 11 is attached, FIG. 7 is a perspective view of the hydrogen storage, FIG. 8 is a cross-sectional view of the hydrogen storage, and FIG. FIG.
The hydrogen storage 20 is filled with hydrogen storage alloy particles MT, and a heat transfer tube 21 for switching between hydrogen storage and hydrogen release is attached.
The hydrogen amount detection device is the hydrogen amount detection device 11 described in the second embodiment, and a heat insulating adhesive or the like is used so that the strain of the hydrogen storage 20 in the initial stage does not act on the inner wall 20a of the hydrogen storage 20. It is attached. The hydrogen amount detection device 11 is separated from the hydrogen storage alloy particles MT in the hydrogen storage 20 by a box-shaped partition wall 22 attached to the inner wall 20 a of the hydrogen amount detection device 11, and is formed in the box-shaped partition wall 22. The hydrogen storage 20 communicates with the communication portion 22a.
In this example, the hydrogen storage alloy particles 2a of the hydrogen amount detection device 11 are made of the same material as the hydrogen storage alloy MH in the hydrogen storage 20, and the volume of the partition wall 22 corresponds to the expansion of the resin layer 13b. Determined. Incidentally, in this embodiment, a hydrogen storage alloy such as LaNi 5 is used so that the temperature becomes a thermal equilibrium temperature of 60 ° C. when heated for hydrogen release.
Further, in this embodiment, the temperature of the hydrogen storage alloy particles MT of the hydrogen storage 20 and the temperature of the hydrogen storage alloy particles 2a of the hydrogen detection device 11 are quickly made the same on the base 13a of the hydrogen detection device 11. A plurality of fins 13e are attached to the outer surface, and each fin 13e extends into the hydrogen storage 20 through the communication portion 22a.
[0017]
The hydrogen amount of the hydrogen storage 20 is detected by the hydrogen amount detection device 11 when the hydrogen storage 20 is filled with hydrogen. In this case, a low-temperature heat medium is circulated through the heat transfer tube 21. At this time, the pressure in the hydrogen storage 20 is maintained at the hydrogen gas supply pressure of the hydrogen gas supply system, that is, the hydrogen storage pressure of the particles MT of the hydrogen storage alloy in the hydrogen storage 20, and the temperature flows through the heat transfer tube 21. It is cooled to the temperature of the heat medium, that is, the hydrogen storage temperature in the hydrogen storage 20. Of course, the communication part 22a of the partition wall 22 keeps the partition wall 22 at the same temperature and pressure as in the hydrogen storage 20. When hydrogen gas is filled into the hydrogen storage 20 from the hydrogen gas inlet / outlet 20b, the hydrogen storage alloy particles MT in the hydrogen storage 20 expand by absorbing the hydrogen gas, and the hydrogen storage alloy of the hydrogen amount detection device 11 is expanded. The particles 2a also swell by absorbing hydrogen gas through the holes 13 (see FIG. 5) of the resin layer 13b.
The strain gauge 3c attached to the hydrogen amount detection device 11 outputs a strain amount corresponding to the hydrogen amount in the hydrogen storage 20 to a strain measuring device (not shown). Therefore, the relationship between the hydrogen storage amount of the hydrogen storage 20 and the expansion amount of the hydrogen storage alloy particles 2a of the hydrogen amount detection device 11 installed in the hydrogen storage 20, that is, the strain amount of the strain gauge 3c, is converted into data. If the strain amount actually measured is compared with this, the hydrogen storage amount of the hydrogen storage 20 can be accurately estimated. In this example, the hydrogen amount detection device 11 described in the second embodiment is described as the hydrogen amount detection device. However, the hydrogen amount detection device 1 described in the first embodiment is attached to the inner wall 20a of the hydrogen storage 20. You may make it stick through a heat insulating adhesive so that the distortion | strain of the hydrogen storage 20 of an initial stage may not act.
[0018]
【The invention's effect】
As is apparent from the above description, the present invention exhibits the following excellent effects.
(1) Since the wear, pulverization, and dropout of the hydrogen storage alloy can be prevented, it can be used repeatedly for the measurement of the amount of hydrogen. In addition, the amount of expansion of the resin layer is the sum of the expansion of the granular hydrogen storage alloy, and since the expansion is detected by the strain sensor, the amount of hydrogen can be detected with high sensitivity (claims 1 and 3). .
(2) Since the expansion / contraction direction of the holding layer due to the expansion of the granular hydrogen storage alloy is specified in the direction along the bonding surface between the holding layer and the base, the sensitivity of the hydrogen amount detection device is substantially improved (claims) Item 2).
[Brief description of the drawings]
FIG. 1 is a perspective view with a part broken away to show the structure of a first embodiment of a hydrogen amount detection apparatus according to the present invention.
FIG. 2 is a longitudinal sectional view of FIG. 1, showing the structure of the first embodiment of the hydrogen amount detection apparatus according to the present invention.
3A and 3B show changes in the state of the hydrogen amount detection device according to the first embodiment, FIG. 3A is a cross-sectional view showing a state before the hydrogen amount detection of the hydrogen amount detection device, and FIG. It is sectional drawing which shows the state at the time of the hydrogen amount detection of a detection apparatus.
4A and 4B show a hydrogen amount detection device according to a second embodiment, in which FIG. 4A is a perspective view of the hydrogen amount detection device, and FIG. 4B is a longitudinal sectional view of FIG.
FIG. 5 is an enlarged cross-sectional view of a main part of FIG. 4 (b).
6A and 6B show changes in the state of the hydrogen amount detection device of the second embodiment, FIG. 6A is a cross-sectional view showing a state before the hydrogen amount detection of the hydrogen amount detection device, and FIG. It is sectional drawing which shows the state of time.
FIG. 7 is a perspective view of a hydrogen storage to which a hydrogen amount detection device is attached.
FIG. 8 is a cross-sectional view of hydrogen storage.
9 is a detailed cross-sectional view of a part A in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hydrogen amount detection apparatus 2 Hydrogen detection layer 2a Hydrogen storage alloy particle 3 Data conversion layer 3a Base 3b Resin layer (holding layer)
3c Strain gauge (strain sensor)
11 Hydrogen amount detection device 13a Base 13b Resin layer (holding layer)
13c hole 13d base material 13e fin 20 hydrogen storage 21 heat transfer tube 22 partition 22a communication part MT hydrogen storage alloy particles

Claims (2)

水素量検出装置であって、粒状の水素吸蔵合金を、伸縮性を有する保持層の表面から一部露出するように分散させて配置し、前記水素吸蔵合金が水素を吸蔵した際の体積膨張による前記保持層の伸縮を検知するひずみセンサを備え
前記ひずみセンサを前記保持層に埋設して設置したことを特徴とする水素量検出装置。
A hydrogen amount detection device, in which a granular hydrogen storage alloy is dispersed and arranged so as to be partially exposed from the surface of a stretchable holding layer, and is caused by volume expansion when the hydrogen storage alloy stores hydrogen. A strain sensor for detecting expansion and contraction of the holding layer ;
A hydrogen amount detection apparatus, wherein the strain sensor is embedded in the holding layer .
前記保持層の少なくとも一面を前記保持層よりも剛性の高い材料で構成される板状の基台に固定し、前記水素吸蔵合金の水素の吸蔵および放出により、前記ひずみセンサの平面方向に前記保持層が伸縮することを特徴とする請求項1に記載の水素量検出装置。At least one surface of the holding layer is fixed to a plate-like base made of a material having a rigidity higher than that of the holding layer, and the holding in the planar direction of the strain sensor is performed by storing and releasing hydrogen of the hydrogen storage alloy. The hydrogen amount detection device according to claim 1, wherein the layer expands and contracts .
JP2002184528A 2002-06-25 2002-06-25 Hydrogen detection device Expired - Fee Related JP3844297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184528A JP3844297B2 (en) 2002-06-25 2002-06-25 Hydrogen detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184528A JP3844297B2 (en) 2002-06-25 2002-06-25 Hydrogen detection device

Publications (2)

Publication Number Publication Date
JP2004028756A JP2004028756A (en) 2004-01-29
JP3844297B2 true JP3844297B2 (en) 2006-11-08

Family

ID=31180424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184528A Expired - Fee Related JP3844297B2 (en) 2002-06-25 2002-06-25 Hydrogen detection device

Country Status (1)

Country Link
JP (1) JP3844297B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015100584B3 (en) * 2015-01-15 2015-11-26 Technische Universität Dresden Measuring device and method for determining the amount of a gas stored in a memory on a porous storage material
JP6282301B2 (en) * 2016-03-24 2018-02-21 株式会社日本製鋼所 Hydrogen remaining amount sensor

Also Published As

Publication number Publication date
JP2004028756A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
CN1854701B (en) Pressure checking device
US8011223B2 (en) Remaining hydrogen sensor
US20070006995A1 (en) Device for testing heat conduction performance of heat pipe
CN105745518A (en) Internal temperature sensor
JP4831487B2 (en) Differential scanning calorimeter
US20070153872A1 (en) Device for measuring temperature of heat pipe
JP4732466B2 (en) Temperature compensated strain measurement
US11796399B2 (en) Multiple sample differential scanning calorimeter
US8468894B2 (en) Measuring cell and a method of use therefor
JP3844297B2 (en) Hydrogen detection device
JPH0545886B2 (en)
CN213180482U (en) Early warning formula bellows of two-way flexible inflation
DK2609801T3 (en) Borehole measurement tool
GB2167186A (en) Welded edge bourdon strip thermometer-manometer
JP5685142B2 (en) Dew point meter and hygrometer
CN111780914A (en) Early warning formula bellows of two-way flexible inflation
CN105954680B (en) Device and method for testing heat generation power of power battery
US20030192671A1 (en) Heat pipe with inner layer
Ušakovs et al. Advanced loop heat pipe application for cooling high power LED lights
US20210190708A1 (en) Heat flow rate determination for a single sample differential scanning calorimeter
HUE027300T2 (en) Measuring cell
US5589638A (en) Pressure sensor having a heat conducting element between the pressure transmitting element and the pressure sensor housing
WO2022013914A1 (en) Measurement device
JP7367878B2 (en) measuring device
JP3380025B2 (en) Contact type surface temperature sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees