JP6282301B2 - Hydrogen remaining amount sensor - Google Patents

Hydrogen remaining amount sensor Download PDF

Info

Publication number
JP6282301B2
JP6282301B2 JP2016059952A JP2016059952A JP6282301B2 JP 6282301 B2 JP6282301 B2 JP 6282301B2 JP 2016059952 A JP2016059952 A JP 2016059952A JP 2016059952 A JP2016059952 A JP 2016059952A JP 6282301 B2 JP6282301 B2 JP 6282301B2
Authority
JP
Japan
Prior art keywords
hydrogen
remaining amount
storage alloy
measurement
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016059952A
Other languages
Japanese (ja)
Other versions
JP2017173149A (en
Inventor
和雄 野家
和雄 野家
大樹 時田
大樹 時田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2016059952A priority Critical patent/JP6282301B2/en
Publication of JP2017173149A publication Critical patent/JP2017173149A/en
Application granted granted Critical
Publication of JP6282301B2 publication Critical patent/JP6282301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

この発明は水素残量が変化する空間に配置されて該空間の水素の残量を検知する水素残量センサに関するものである。   The present invention relates to a remaining hydrogen sensor that is disposed in a space where the remaining amount of hydrogen changes and detects the remaining amount of hydrogen in the space.

水素貯蔵容器のひとつである水素吸蔵合金容器は、その体積貯蔵密度に優れることから普及し始めているが、容器内の水素残量を知る手がかりが得られにくい、という課題がある。通常の水素ガスタンクであれば、圧力計を取付けることで水素残量を容易に知ることができる。一方、水素吸蔵合金の場合は、PCT曲線で表されるプラトーといわれる平坦な領域があり、ここの圧力差(最少と最大の圧力差)が小さいことに加え、合金の温度が変わればこのプラトーの圧力も変わるため、圧力計だけで容器内の水素残量を正確に知ることは難しい。   A hydrogen storage alloy container, which is one of hydrogen storage containers, has begun to spread due to its excellent volume storage density, but has a problem that it is difficult to obtain a clue to know the remaining amount of hydrogen in the container. If it is a normal hydrogen gas tank, the remaining amount of hydrogen can be easily known by attaching a pressure gauge. On the other hand, in the case of a hydrogen storage alloy, there is a flat region called a plateau represented by a PCT curve, and in addition to a small pressure difference (minimum and maximum pressure difference), this plateau will change if the temperature of the alloy changes. Since the pressure of the gas also changes, it is difficult to accurately know the remaining amount of hydrogen in the container using only a pressure gauge.

大型の水素吸蔵合金容器の水素貯蔵システムでは間接的な測定方法であるが、高精度の質量流量計を用いてその積算値から水素残量を知ることができる。しかし、質量流量計の価格は高く、小型化も難しいため比較的小型の水素吸蔵合金容器には不向きといえる。
そこで、水素吸蔵合金容器に適し、直接的に水素残量を知ることのできる水素残量計あるいはセンサとして以下に示すものが提案されている。
Although it is an indirect measurement method in the hydrogen storage system of a large-sized hydrogen storage alloy container, the remaining amount of hydrogen can be known from the integrated value using a high-precision mass flow meter. However, since the mass flow meter is expensive and difficult to downsize, it can be said that it is not suitable for a relatively small hydrogen storage alloy container.
In view of this, a hydrogen remaining amount meter or sensor that is suitable for a hydrogen storage alloy container and can directly know the remaining amount of hydrogen has been proposed as follows.

(1)水素吸蔵合金の中に電極を入れ、その電気抵抗値または、水素量の関係から容器内の水素量を測定するセンサとして、例えば、特許文献1のように、合金の起電力と水素濃度から水素残量を知る方法が提案されている。
また、特許文献2〜4では、水素吸蔵合金の電気抵抗値を測定することによって、水素残量を知る方法が提案されている。
(1) As a sensor for putting an electrode in a hydrogen storage alloy and measuring the amount of hydrogen in the container from the relationship between the electrical resistance value or the amount of hydrogen, for example, as disclosed in Patent Document 1, the electromotive force and hydrogen of the alloy A method of knowing the remaining amount of hydrogen from the concentration has been proposed.
Patent Documents 2 to 4 propose a method of knowing the remaining amount of hydrogen by measuring the electrical resistance value of the hydrogen storage alloy.

(2)水素吸蔵合金の体積膨張を利用してその変位から容器内の水素量を測定するセンサとして、特許文献5のように、容器の壁にひずみゲージを貼り、予め計測されている水素吸蔵合金の水素吸収量とひずみとの比較データをもとに水素残量を測定する方法が提案されている。
また、特許文献6では、光ファイバーを利用して、体積膨張を測定する方法が提案されている。
(2) As a sensor for measuring the amount of hydrogen in the container from its displacement using the volume expansion of the hydrogen storage alloy, as shown in Patent Document 5, a strain gauge is attached to the wall of the container, and the hydrogen storage is measured in advance. There has been proposed a method for measuring the remaining amount of hydrogen based on comparison data between hydrogen absorption and strain of an alloy.
Patent Document 6 proposes a method of measuring volume expansion using an optical fiber.

(3)水素吸蔵合金の温度と圧力とを測定し、PCT曲線から水素量を測定するセンサとして、特許文献7のように、容器の温度と圧力を測定し、水素吸蔵合金のPCT曲線から水素量を測定する方法が提案されている。
また、特許文献8は、容器にプラトー圧の異なる合金を入れ、圧力の階段状変化を残量変化のきっかけとみなす残量計が提案されている。
(3) As a sensor for measuring the temperature and pressure of the hydrogen storage alloy and measuring the amount of hydrogen from the PCT curve, as in Patent Document 7, the temperature and pressure of the container are measured, and the hydrogen from the PCT curve of the hydrogen storage alloy is measured. Methods for measuring quantities have been proposed.
Further, Patent Document 8 proposes a fuel gauge in which alloys having different plateau pressures are put in a container, and a step-like change in pressure is regarded as a trigger for a remaining amount change.

さらに、特許文献9では、従来の課題を解決するために、センサ用水素吸蔵合金の水素吸放出に伴ってひずみが容易に生じる易歪み部を一部に有し、易歪み部の歪みを測定する歪みゲージを設けることによって、水素残量センサの小サイズ化と、構造の簡易化を可能としている。   Furthermore, in patent document 9, in order to solve the conventional subject, it has in part a easily-strained part in which a distortion | strain easily arises with hydrogen absorption / release of the hydrogen storage alloy for sensors, and measures the distortion of a easily-strained part. By providing a strain gauge, the size of the remaining hydrogen sensor can be reduced and the structure can be simplified.

特開2007−47125号公報JP 2007-47125 A 特許3624816号Japanese Patent No. 3624816 特開2000−206073号公報JP 2000-206073 A 特開2000−97931号公報JP 2000-97931 A 特許3203062号Patent 3203062 特開平6−249777号公報JP-A-6-249777 特開平2−140641号公報JP-A-2-140641 特開昭59−78902号公報JP 59-78902 A 特開2008−180682号公報JP 2008-180682 A

しかし、特許文献1で提案されたものでは、水素吸蔵合金容器本体にセンサホルダが取り付けられており、構造が複雑で、小型容器に適用することが難しいという問題がある。
また、特許文献2〜4で提案されたものでは、水素吸蔵合金の水素化に伴う微粉化の進行で、粒子間の接触面積または接触圧が変化していくため、水素残量の測定値の信頼性に問題がある。
However, the one proposed in Patent Document 1 has a problem that the sensor holder is attached to the hydrogen storage alloy container body, the structure is complicated, and it is difficult to apply to a small container.
Moreover, in what was proposed by patent documents 2-4, since the contact area or contact pressure between particle | grains changes by progress of pulverization accompanying hydrogenation of a hydrogen storage alloy, the measurement value of hydrogen residual amount is changed. There is a problem with reliability.

特許文献5で提案されているものでは、水素吸蔵合金の水素化に伴う微粉化の進行で、容器内の場所によっては合金密度に差が生じ、結果として、容器の壁に発生するひずみにもばらつきが生じるため、水素量の正確な測定のためには、複数個のひずみゲージを張って平均化等を行わなくてはならない。小型容器の外面に複数個のひずみゲージを貼ることは、ひずみゲージやリード線に損傷を与える可能性が高くなるという問題点がある。   In what is proposed in Patent Document 5, the progress of pulverization accompanying hydrogenation of the hydrogen storage alloy causes a difference in the alloy density depending on the location in the container, and as a result, the strain generated in the container wall also increases. Since variations occur, in order to accurately measure the amount of hydrogen, a plurality of strain gauges must be stretched and averaged. Affixing a plurality of strain gauges to the outer surface of the small container has a problem that the possibility of damaging the strain gauges and lead wires increases.

特許文献6で提案されたものでは、価格が高く、構造も複雑になり、小型容器に適用することが難しいという課題がある。   In the thing proposed by patent document 6, there exists a subject that a price is high, a structure becomes complicated, and it is difficult to apply to a small container.

特許文献7で提案されたものでは、水素貯蔵合金が水素を放出する過程においては、容器内の場所によって、合金温度に差が生じることが多いため、誤差が発生しやすい。また、圧力計と温度計とを備えなければならず、小型容器に適用することが難しいという課題がある。   In the method proposed in Patent Document 7, in the process in which the hydrogen storage alloy releases hydrogen, there are many differences in the alloy temperature depending on the location in the container. Moreover, a pressure gauge and a thermometer must be provided, and there exists a subject that it is difficult to apply to a small container.

特許文献8で提案されたものでは、容器内の場所によって合金温度に差が生じることが多いため、圧力の測定だけでは水素残量に誤差が発生しやすい。   In the one proposed in Patent Document 8, a difference in the alloy temperature often occurs depending on the location in the container. Therefore, an error is likely to occur in the remaining amount of hydrogen only by measuring the pressure.

特許文献9で提案されたものでは、易歪み部のひずみを大きくした方が、水素残量センサとしての精度が向上するため、易歪み部は剛性の低い材料でかつ塑性変形を起こさない範囲に調整する必要がある。また、センサ用水素吸蔵合金の膨張収縮を多方面に許容する構成であるので、歪みと、容器内の水素量との関係に直線性を得ることが困難である。   In what was proposed by patent document 9, since the precision as a hydrogen remaining amount sensor improves when the distortion of an easy strain part is enlarged, an easy strain part is a material with low rigidity, and does not raise | generate a plastic deformation. It needs to be adjusted. In addition, since the sensor hydrogen storage alloy allows expansion and contraction in many directions, it is difficult to obtain linearity in the relationship between strain and the amount of hydrogen in the container.

本発明は、上記事情を背景としてなされたものであり、簡易な構造で、水素残量を精度よく測定することが可能な水素残量センサを提供することを目的の一つとする。   The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a hydrogen remaining amount sensor capable of accurately measuring the remaining amount of hydrogen with a simple structure.

すなわち、本発明の水素残量センサのうち、第1の本発明は、水素残量が変化する空間に配置される水素残量センサであって、
測定用水素吸蔵合金を収容する測定用容器を有し、
前記測定用容器は、少なくとも一部が開口して水素の吸放出に伴う前記測定用水素吸蔵合金の変形が可能な開口部を有し、
前記空間に配置された状態の前記測定用容器に対し、一部が定位置にある状態で設置され、前記開口部を通した前記測定用水素吸蔵合金の変形が伝達されて弾性変形可能な変形部材と、
前記変形部材の弾性変形を検知する検知部と、を備えることを特徴とする。
That is, among the hydrogen remaining amount sensors of the present invention, the first present invention is a hydrogen remaining amount sensor arranged in a space where the remaining amount of hydrogen changes,
It has a measurement container that houses the hydrogen storage alloy for measurement,
The measurement container has an opening that is at least partially open and capable of deforming the hydrogen storage alloy for measurement accompanying hydrogen absorption / release,
Deformation that can be elastically deformed by transmitting the deformation of the hydrogen storage alloy for measurement through the opening to a part of the measurement container placed in the space in a fixed position. Members,
And a detector for detecting elastic deformation of the deformable member.

第2の本発明の水素残量センサは、前記第1の本発明において、前記測定用容器が筒形状を有し、筒形状の一端に前記開口部を有することを特徴とする。   In the hydrogen remaining amount sensor of the second aspect of the present invention, in the first aspect of the present invention, the measurement container has a cylindrical shape, and the opening is provided at one end of the cylindrical shape.

第3の本発明の水素残量センサは、前記第1または第2の本発明において、前記開口部に位置する前記測定用水素吸蔵合金の少なくとも一部を覆う蓋部を有し、前記蓋部の移動変形を前記変形部材に伝達する伝達部を有していることを特徴とする。   A hydrogen remaining amount sensor according to a third aspect of the present invention has a lid that covers at least a part of the hydrogen storage alloy for measurement located in the opening in the first or second aspect of the present invention, and the lid It has the transmission part which transmits the movement deformation | transformation of this to the said deformation member, It is characterized by the above-mentioned.

第4の本発明の水素残量センサは、前記第3の本発明において、前記変形部材が板バネであり、板バネの自由端側の板面に前記伝達部材が接触していることを特徴とする。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the deformation member is a leaf spring, and the transmission member is in contact with a plate surface on the free end side of the leaf spring. And

第5の本発明の水素残量センサは、前記第3または第4の本発明において、前記伝達部材がロッド形状を有することを特徴とする。   The hydrogen remaining amount sensor according to a fifth aspect of the present invention is characterized in that, in the third or fourth aspect of the present invention, the transmission member has a rod shape.

第6の本発明の水素残量センサは、前記第1〜第3の本発明のいずれかにおいて、前記変形部材が前記測定用容器に固定されていることを特徴とする。   A remaining hydrogen sensor according to a sixth aspect of the present invention is characterized in that, in any of the first to third aspects of the present invention, the deformable member is fixed to the measurement container.

第7の本発明の水素残量センサは、前記第1〜第4の本発明のいずれかにおいて、前記変形部材が前記測定用空間内の定位置に一部が固定されており、前記測定用容器が前記空間内の定位置に設置されて、前記測定用容器に対し前記変形部材の一部が定位置にある状態となることを特徴とする。   A hydrogen remaining amount sensor according to a seventh aspect of the present invention is the measurement device according to any one of the first to fourth aspects, wherein the deformation member is partially fixed at a fixed position in the measurement space. The container is installed at a fixed position in the space, and a part of the deformation member is in a fixed position with respect to the measurement container.

第8の本発明の水素残量センサは、前記第1〜第7の本発明のいずれかにおいて、前記検知部にひずみゲージを含み、前記ひずみゲージが前記変形部材の変形面に取り付けられていることを特徴とする。   A hydrogen remaining amount sensor according to an eighth aspect of the present invention includes the strain gauge in the detection unit according to any one of the first to seventh aspects of the invention, and the strain gauge is attached to the deformation surface of the deformation member. It is characterized by that.

第9の本発明の水素残量センサは、前記第1〜第8の本発明のいずれかにおいて、水素残量が変化する空間が、水素吸蔵合金を収容した容器内空間であることを特徴とする。   A remaining hydrogen sensor according to a ninth aspect of the present invention is characterized in that, in any one of the first to eighth aspects of the present invention, the space in which the remaining amount of hydrogen changes is a space in a container containing a hydrogen storage alloy. To do.

本発明によれば、測定用水素吸蔵合金の変形を弾性部材の曲げ変形として取り出すことができるため、応答性がよく精度の高い水素残量センサを得ることができ、また構造を簡素にでき、コストの低減化、小型化が容易である。   According to the present invention, since the deformation of the hydrogen storage alloy for measurement can be taken out as a bending deformation of the elastic member, a highly responsive and accurate hydrogen remaining amount sensor can be obtained, and the structure can be simplified. Cost reduction and miniaturization are easy.

本発明の一実施形態の水素残量センサを示す図であり、図1aは、水素残量センサの平面図、図1bは水素残量センサの側面図である。It is a figure which shows the hydrogen residual amount sensor of one Embodiment of this invention, FIG. 1a is a top view of a hydrogen residual amount sensor, FIG. 1b is a side view of a hydrogen residual amount sensor. 同じく、インジケータを設けた指示計の回路図を示す図である。Similarly, it is a figure which shows the circuit diagram of the indicator which provided the indicator. 同じく、水素残量センサの適用例を示す図である。Similarly, it is a figure which shows the example of application of a hydrogen remaining amount sensor. 実施例における水素吸蔵合金容器内に水素量に対するひずみの出力変化を示すグラフである。It is a graph which shows the output change of the distortion with respect to the amount of hydrogen in the hydrogen storage alloy container in an example. 実施例における水素吸蔵合金容器内の水素量に対するひずみの出力変化を示すグラフである。It is a graph which shows the output change of the distortion with respect to the amount of hydrogen in the hydrogen storage alloy container in an example.

以下に、本発明の一実施形態の水素残量センサ1を添付図面に基づいて説明する。
水素残量センサ1は、水素吸蔵合金4を測定用容器(以下、センサ本体2という)に収容し、板バネ3に発生するひずみに基づいて、水素残量が変化する空間内の水素残量を検知する。水素残量センサ1は、該水素残量センサを用いて、予め計測されている水素吸蔵合金の水素吸蔵量と板バネ3に発生するひずみとの比較データをもとに、水素残量が変化する空間内の水素残量を測定するものである。
Hereinafter, a hydrogen remaining amount sensor 1 according to an embodiment of the present invention will be described with reference to the accompanying drawings.
The remaining hydrogen sensor 1 accommodates the hydrogen storage alloy 4 in a measurement container (hereinafter referred to as sensor body 2), and the remaining hydrogen amount in the space where the remaining hydrogen amount changes based on the strain generated in the leaf spring 3. Is detected. The hydrogen remaining amount sensor 1 uses the hydrogen remaining amount sensor to change the remaining amount of hydrogen based on comparison data between the hydrogen storage amount of the hydrogen storage alloy measured in advance and the strain generated in the leaf spring 3. The remaining amount of hydrogen in the space to be measured is measured.

水素残量が変化する空間としては、水素吸蔵合金が収納され、水素の吸放出が行われる水素吸蔵合金容器内部が例として挙げられる。ただし、本発明としては、該空間が水素吸蔵合金容器内部に限定されるものではなく、水素残量が変化する空間であれば広く適用が可能である。   An example of the space in which the remaining amount of hydrogen changes is the inside of a hydrogen storage alloy container in which a hydrogen storage alloy is accommodated and hydrogen is absorbed and released. However, the present invention is not limited to the inside of the hydrogen storage alloy container, and can be widely applied as long as the remaining amount of hydrogen changes.

センサ本体2は、測定用水素吸蔵合金4を内部に収容する容器形状からなり、少なくとも一部が開口し、水素の吸放出に伴う測定用水素吸蔵合金4の変形を可能としている。この形態では、有底の円筒形状を有しており、その一端が開口して開口部2Aを有している。なお、水素吸蔵合金を収容する本発明の容器としては、円筒形状に限定されず、角筒などの各種形状の筒形状とすることができ、また、これに限らず、種々の形状とすることができる。また、開口部は一つに限らず、複数有していてもよく、容器に設けられる箇所が限定されるものではない。   The sensor main body 2 has a container shape that accommodates the hydrogen storage alloy 4 for measurement therein, and at least a part of the sensor main body 2 is opened, so that the measurement hydrogen storage alloy 4 can be deformed along with hydrogen absorption / release. In this form, it has a bottomed cylindrical shape, one end of which opens and has an opening 2A. In addition, the container of the present invention for storing the hydrogen storage alloy is not limited to a cylindrical shape, and may be a cylindrical shape of various shapes such as a square tube, and is not limited to this, and may have various shapes. Can do. Further, the number of openings is not limited to one, and a plurality of openings may be provided, and the location provided in the container is not limited.

また、センサ本体2の材質は、本発明としては特に限定されるものではないが、例えば、炭素鋼やSUS304に代表されるステンレス鋼が望ましい。センサ本体2は、収容している水素吸蔵合金の水素吸放出に伴う膨張・収縮によって容易に変形しない強度を有しているのが望ましく、炭素鋼やステンレス鋼は、この特性を比較的安価に提供することができる。   The material of the sensor body 2 is not particularly limited in the present invention, but for example, carbon steel or stainless steel represented by SUS304 is desirable. It is desirable that the sensor body 2 has a strength that does not easily deform due to expansion / contraction caused by hydrogen absorption / release of the stored hydrogen storage alloy. Carbon steel and stainless steel make this characteristic relatively inexpensive. Can be provided.

測定用水素吸蔵合金4は、本発明としては特にその種類が限定されるものではないが、例えばAB系合金やAB系合金などを用いることができる。また、水素残量センサ1を、水素吸蔵合金容器に配置する場合、水素吸蔵合金容器に充填されている合金と、測定用水素吸蔵合金を同一種類のものするのが望ましい。これにより、温度や圧力による水素の吸放出動作を水素吸蔵合金と測定用水素吸蔵合金4とで同一にすることができる。
測定用水素吸蔵合金4は、センサ本体2に充填されて使用される。充填の程度は、水素の吸放出が良好になされ、かつ水素の吸蔵・放出に伴う膨張、収縮が開口部2Aにおける移動に十分に反映される程度の充填率で行われる。なお、水素の吸放出が円滑になされるように、センサ本体2内に通気材を収納してもよい。
The type of the hydrogen storage alloy 4 for measurement is not particularly limited in the present invention. For example, an AB 2 alloy or an AB 5 alloy can be used. When the hydrogen remaining amount sensor 1 is arranged in a hydrogen storage alloy container, it is desirable that the alloy filled in the hydrogen storage alloy container and the hydrogen storage alloy for measurement are of the same type. Thereby, the hydrogen storage / release operation according to temperature and pressure can be made the same between the hydrogen storage alloy and the measurement hydrogen storage alloy 4.
The hydrogen storage alloy 4 for measurement is used by being filled in the sensor body 2. The degree of filling is such that the hydrogen is absorbed and released satisfactorily and the expansion and contraction associated with the storage and release of hydrogen are sufficiently reflected in the movement in the opening 2A. A ventilation material may be housed in the sensor body 2 so that hydrogen can be absorbed and released smoothly.

板バネ3は、センサ本体2の側壁に一端が固定され、開口部2Aからセンサ本体2の軸方向に離れた位置で曲がって、センサ本体2の径方向に沿って伸張しており、その先端側は変形自在な自由端になっている。板バネ3の材質は、センサ本体2と同じ材質である必要はなく、バネ性を考慮すればSUS304に代表されるステンレス鋼が望ましい。
この実施形態では、測定用水素吸蔵合金の膨張、収縮を薄い板バネの曲げ変形として取り出す方式のため、応答性がよく精度の高い水素残量センサが得られる。
One end of the leaf spring 3 is fixed to the side wall of the sensor body 2, is bent at a position away from the opening 2 </ b> A in the axial direction of the sensor body 2, and extends along the radial direction of the sensor body 2. The side is a freely deformable free end. The material of the leaf spring 3 does not need to be the same material as the sensor body 2, and stainless steel typified by SUS304 is desirable in consideration of the spring property.
In this embodiment, since the method of taking out the expansion and contraction of the hydrogen storage alloy for measurement as a bending deformation of a thin leaf spring, a highly responsive and accurate hydrogen remaining amount sensor can be obtained.

開口部2Aには、開口部2Aを覆う蓋板5が配置される。蓋板5は、開口部2Aの全部を覆う必要はないが、測定用水素吸蔵合金4の膨張、収縮にできるだけ追随できるようにできるだけ広い面積で開口部2Aを覆うのが望ましい。ただし、移動に際し、開口部2Aの周縁のセンサ本体2と接触しないように、開口部2Aの外周縁全体と、蓋板5の外周縁とが間隔を有しているのが望ましい。蓋板5は、本発明の蓋材に相当する。蓋材は、必ずしも板状である必要はなく、十分な厚みを有するものであってもよい。ただし、測定用水素吸蔵合金4の膨張・収縮に容易に追随できるように、できるだけ軽量にできる板形状が望ましい。蓋板5は、測定用水素吸蔵合金の変形に確実に追随するように、開口部2Aにおける測定用水素吸蔵合金4に接着してもよい。接着を行う材料としては、伸びが大きいシリコン系の接着剤を用いることができる。   A cover plate 5 that covers the opening 2A is disposed in the opening 2A. The cover plate 5 does not need to cover the entire opening 2A, but it is desirable to cover the opening 2A with as wide an area as possible so as to follow the expansion and contraction of the measurement hydrogen storage alloy 4 as much as possible. However, it is desirable that the entire outer peripheral edge of the opening 2A and the outer peripheral edge of the cover plate 5 have an interval so as not to contact the sensor body 2 at the peripheral edge of the opening 2A during the movement. The lid plate 5 corresponds to the lid member of the present invention. The lid member does not necessarily have a plate shape, and may have a sufficient thickness. However, a plate shape that can be made as light as possible is desirable so that the hydrogen storage alloy 4 for measurement can easily follow expansion and contraction. The lid plate 5 may be bonded to the measurement hydrogen storage alloy 4 in the opening 2A so as to reliably follow the deformation of the measurement hydrogen storage alloy. As a material for bonding, a silicon-based adhesive having a large elongation can be used.

蓋板5の表面側には、センサ本体2の軸方向外側に向けた細棒7が立設されている。細棒7は、板バネ3の自由端側で板バネ3の内面側に先端が位置しているのが望ましい。細棒7はロッド形状であり、本発明の伝達部材に相当する。細棒7は蓋板5に一体に形成されているものでもよく、蓋板5に溶接やリベットなどによって接続されているものであってもよい。
細棒7は、測定用水素吸蔵合金4が水素を吸蔵していない状態で板バネ3の板面に接触しているものでもよく、また、その状態で板バネ3をある程度弾性変形した状態にしてもよい。
On the front surface side of the cover plate 5, a thin bar 7 is erected on the outer side in the axial direction of the sensor body 2. It is desirable that the thin rod 7 has a tip located on the inner side of the leaf spring 3 on the free end side of the leaf spring 3. The thin rod 7 has a rod shape and corresponds to the transmission member of the present invention. The thin rod 7 may be formed integrally with the lid plate 5 or may be connected to the lid plate 5 by welding or rivets.
The thin rod 7 may be in contact with the plate surface of the leaf spring 3 in a state where the hydrogen storage alloy 4 for measurement does not occlude hydrogen, and the leaf spring 3 is elastically deformed to some extent in this state. May be.

細棒7と板バネ3との接触は、検知開始の時期を定めるので、検知開始時期を適宜時期に定めるように細棒7の長さを設定することができ、水素吸蔵合金4が水素を吸蔵していない状態またはある程度吸蔵している状態では細棒7は、板バネ3の板面に接触しないようにしてもよい。なお、板バネ3の形状などによっては細棒7を設けないものとしてもよい。   Since the contact between the thin rod 7 and the leaf spring 3 determines the detection start time, the length of the thin rod 7 can be set so that the detection start time is set at an appropriate time, and the hydrogen storage alloy 4 absorbs hydrogen. The thin rod 7 may not be in contact with the plate surface of the leaf spring 3 in a state in which it is not occluded or occluded to some extent. The thin bar 7 may not be provided depending on the shape of the leaf spring 3 or the like.

また、細棒7は、図1bに示すように、板バネ3の伸長方向に沿って移動可能としてもよい。これにより細棒7の移動に伴う板バネ3の弾性量を調整することができる。
水素残量センサ1は、センサ本体2に内蔵する測定用水素吸蔵合金4の充填率が同じであっても、細棒7の位置を変えることで、ひずみゲージ6が検出するひずみを変化させることが可能である。これは、細棒7の位置を変えることで、ひずみゲージ6と細棒7の位置の間隔が変わり、板バネ3に加わる曲げモーメントが変わるためである。
ひずみゲージ6と細棒7との間隔が狭まると曲げモーメントが大きくなり、発生する応力が大きくなるため、検出されるひずみも大きくなる。すなわち、ひずみを大きくしセンサの感度を高めたいときには、細棒7の位置を板バネ3のセンサ本体2に固定されている側にずらすことによりセンサ感度を高めることができる。ただし、ひずみは板バネ3が降伏しない弾性範囲内に留めなければならない。
Further, the thin bar 7 may be movable along the extending direction of the leaf spring 3 as shown in FIG. Thereby, the elastic amount of the leaf | plate spring 3 accompanying the movement of the thin rod 7 can be adjusted.
The remaining hydrogen sensor 1 changes the strain detected by the strain gauge 6 by changing the position of the thin rod 7 even when the filling rate of the hydrogen storage alloy 4 for measurement incorporated in the sensor body 2 is the same. Is possible. This is because changing the position of the thin rod 7 changes the distance between the strain gauge 6 and the thin rod 7 and changes the bending moment applied to the leaf spring 3.
When the distance between the strain gauge 6 and the thin bar 7 is narrowed, the bending moment increases and the generated stress increases, so that the detected strain also increases. That is, when it is desired to increase the strain and increase the sensitivity of the sensor, the sensor sensitivity can be increased by shifting the position of the thin rod 7 to the side of the leaf spring 3 fixed to the sensor body 2. However, the strain must be kept within an elastic range where the leaf spring 3 does not yield.

本実施形態の水素残量センサ1は、構造が簡素であることからコストを安くすることができ、センサ寸法が20mm角程度と非常に小さくできることから小型の水素吸蔵合金容器にも使用できる利点がある。   The remaining hydrogen sensor 1 of the present embodiment has a simple structure and can be reduced in cost, and the sensor size can be as small as about 20 mm square, so that it can be used for a small hydrogen storage alloy container. is there.

なお、この実施形態では、板バネ3をセンサ本体2に固定するものとしたが、板バネ3の一部が水素吸蔵合金容器などの水素残量が変化する空間の壁部に固定され、センサ本体2がこの壁部の定位置に固定されることで、前記空間に配置された状態の測定用容器に対し、板バネ3の一部が定位置にある状態にして設置することができる。   In this embodiment, the leaf spring 3 is fixed to the sensor main body 2. However, a part of the leaf spring 3 is fixed to a wall portion of a space where the remaining amount of hydrogen such as a hydrogen storage alloy container changes, and the sensor By fixing the main body 2 at a fixed position of the wall portion, the plate spring 3 can be installed in a state where a part of the leaf spring 3 is at a fixed position with respect to the measurement container disposed in the space.

板バネ3には、センサ本体2の径方向に伸張する片の基部側表面にひずみゲージ6が取り付けられる。板バネ3の基部側は、板バネ3が変形する際に、変形応力が集中して発生する。ひずみゲージ6は、本発明の検知部に相当する。
ひずみゲージ6は、板バネ3の弾性変形を検知できるものによって構成すればよく、板バネ3の弾性変形を光学的に検知するものであってもよい。また、連続的に板バネの変形を検知する他、段階的に検知をするものであってもよい。
A strain gauge 6 is attached to the leaf spring 3 on the base side surface of a piece extending in the radial direction of the sensor body 2. When the leaf spring 3 is deformed, deformation stress is concentrated on the base side of the leaf spring 3. The strain gauge 6 corresponds to the detection unit of the present invention.
The strain gauge 6 may be configured by one that can detect elastic deformation of the leaf spring 3, and may be one that optically detects elastic deformation of the leaf spring 3. In addition to continuously detecting the deformation of the leaf spring, it may be detected in stages.

また、ひずみゲージ6では、板バネ3とひずみゲージ6との温度影響を除外するために、板バネ3と、ひずみゲージ6とが同じ線膨張係数を有することが望ましい。
ひずみゲージ6にはリード線8を介して図2に示す指示計60に接続する。リード線8は、例えば3線式の仕様のものを採用することによって、温度影響を除外することができる。
Moreover, in the strain gauge 6, in order to exclude the temperature influence of the leaf | plate spring 3 and the strain gauge 6, it is desirable for the leaf | plate spring 3 and the strain gauge 6 to have the same linear expansion coefficient.
The strain gauge 6 is connected to an indicator 60 shown in FIG. For example, by adopting a lead wire 8 having a three-wire specification, it is possible to eliminate the temperature influence.

指示計60は、図2に示すように、ひずみゲージ6の電気抵抗値に応じたブリッジ回路61を用意し、ひずみに伴う抵抗変化を電圧変化として取り出す。電圧変化は、例えばA/Dコンバータ62を介してデジタル信号に変換し、LED等によるインジケータ63で多段階に水素残量を表示することもできる。   As shown in FIG. 2, the indicator 60 prepares a bridge circuit 61 corresponding to the electrical resistance value of the strain gauge 6 and takes out a resistance change accompanying the strain as a voltage change. The voltage change can be converted into a digital signal through, for example, the A / D converter 62, and the remaining amount of hydrogen can be displayed in multiple stages with an indicator 63 such as an LED.

なお、板バネ3は、本発明の変形部材に相当し、ひずみゲージ6は、本発明の検知部に相当する。変形部材は板バネに限定されるものではなく、コイルスプリングや弾性体など適宜の構成を用いることができる。また、検知部はひずみゲージに限定されるものではなく、変形部材の変形量を検知できるものであれば適宜の構成を採用することができる。例えば、変形部材の変形を光学的に読み取るセンサなどを用いてもよい。   The leaf spring 3 corresponds to the deformable member of the present invention, and the strain gauge 6 corresponds to the detection unit of the present invention. The deformable member is not limited to a leaf spring, and an appropriate configuration such as a coil spring or an elastic body can be used. In addition, the detection unit is not limited to the strain gauge, and an appropriate configuration can be adopted as long as it can detect the deformation amount of the deformation member. For example, a sensor that optically reads the deformation of the deformable member may be used.

センサ本体の外部に、ひずみゲージの電気抵抗値に応じたブリッジ回路を用意することで、ひずみに伴う抵抗変化を電圧変化として取り出し、水素量をデジタル値として表示することもできるため、これらの機器とパッケージ化した水素吸蔵合金容器も可能である。   By preparing a bridge circuit according to the electrical resistance value of the strain gauge outside the sensor body, it is possible to extract the resistance change accompanying the strain as a voltage change and display the hydrogen amount as a digital value. A packaged hydrogen storage alloy container is also possible.

図3は、本実施形態の水素残量センサ1を水素吸蔵合金容器20内に配置した適用例を示す。水素残量センサ1は、水素吸蔵合金容器20内へ充てんされている水素吸蔵合金21の上部に埋め込むように配置している。これは水素吸蔵合金容器20内の水素吸蔵合金21と水素残量センサ1の測定用水素吸蔵合金4の温度に差がつきにくくするためである。水素吸蔵合金容器20内の水素吸蔵合金21上部の空間にはセラミックファイバー23を充填して埋めている。水素吸蔵合金容器20の開口には、水素の放出を制御するバルブ22が設けられており、バルブ22を通した水素の移動が可能になっている。
水素残量センサ1のリード線8は、水素吸蔵合金容器20の外部に取り出され、前記した指示計60に接続されている。
FIG. 3 shows an application example in which the hydrogen remaining amount sensor 1 of the present embodiment is arranged in the hydrogen storage alloy container 20. The remaining hydrogen sensor 1 is disposed so as to be embedded in the upper part of the hydrogen storage alloy 21 filled in the hydrogen storage alloy container 20. This is to make it difficult to make a difference between the temperature of the hydrogen storage alloy 21 in the hydrogen storage alloy container 20 and the temperature of the hydrogen storage alloy 4 for measurement of the remaining hydrogen sensor 1. A space above the hydrogen storage alloy 21 in the hydrogen storage alloy container 20 is filled with a ceramic fiber 23. A valve 22 for controlling the release of hydrogen is provided at the opening of the hydrogen storage alloy container 20 so that hydrogen can be moved through the valve 22.
The lead wire 8 of the remaining hydrogen sensor 1 is taken out of the hydrogen storage alloy container 20 and connected to the indicator 60 described above.

なお、この実施形態では、検知部であるひずみゲージ6の検知結果をデジタル表示するものとしているが、例えば、測定用水素吸蔵合金の水素吸収量と、検知部の出力とを関連づけておき、検知部の測定結果に基づいて水素吸収量を直接的または間接的に示すようにしてもよい。また、検知部の検知結果は、ネットワークなどを通して収集して水素吸収量の解析等するものであってもよい。   In this embodiment, the detection result of the strain gauge 6 serving as the detection unit is digitally displayed. For example, the hydrogen absorption amount of the hydrogen storage alloy for measurement and the output of the detection unit are associated with each other to detect the detection result. The hydrogen absorption amount may be indicated directly or indirectly based on the measurement result of the part. Further, the detection result of the detection unit may be collected through a network or the like and analyzed for hydrogen absorption.

次に、水素残量センサ1の作用について説明する。
水素吸蔵合金容器20内の水素吸蔵合金21で水素の吸収、放出が生じると、水素残量センサ1における測定用水素吸蔵合金4でも同様に水素の吸収、放出が生じ、測定用水素吸蔵合金4の膨張または収縮が生じる。測定用水素吸蔵合金4の膨張または収縮は、蓋板5および細棒7のセンサ本体2の軸方向移動という形で出現する。
測定用水素吸蔵合金4が水素を吸収すれば、測定用水素吸蔵合金4が膨張し、細棒7が板バネ3を押して曲げ変形を増大させ、ひずみゲージ6における検知結果に変化が生じる。また、測定用水素吸蔵合金4が水素を放出すれば、測定用水素吸蔵合金4が収縮し、細棒7が、曲げ変形していた板バネ3の曲げ変形量が減少し、ひずみゲージ6による検知結果に変化が生じる。
Next, the operation of the remaining hydrogen sensor 1 will be described.
When absorption and release of hydrogen occur in the hydrogen storage alloy 21 in the hydrogen storage alloy container 20, hydrogen absorption and release also occur in the hydrogen storage alloy 4 for measurement in the hydrogen remaining amount sensor 1. Expansion or contraction occurs. The expansion or contraction of the hydrogen storage alloy 4 for measurement appears in the form of an axial movement of the sensor body 2 of the cover plate 5 and the thin rod 7.
When the hydrogen storage alloy 4 for measurement absorbs hydrogen, the hydrogen storage alloy 4 for measurement expands, and the thin rod 7 pushes the leaf spring 3 to increase the bending deformation, and the detection result in the strain gauge 6 changes. Further, when the hydrogen storage alloy 4 for measurement releases hydrogen, the hydrogen storage alloy 4 for measurement contracts, and the thin rod 7 decreases the bending deformation amount of the leaf spring 3 that has been bent and deformed. A change occurs in the detection result.

なお、図示している例では板バネ3の圧縮ひずみを発生する側にひずみゲージ6を取り付けているため、ひずみゲージ6は圧縮ひずみを検出する。測定用水素吸蔵合金4が水素を放出し収縮するときは板バネ3の変形は元に戻るため、ひずみゲージ6の圧縮ひずみも減少しゼロ点に戻る。
例えば、薄い板状の弾性部材に引張力を加えても、大きな力を加えなければその変形は極めて小さいが、曲げの場合は小さな力で容易に曲げ変形を得ることができる。また、変形部材は、引張ひずみを利用するようにしてもよい。
In the illustrated example, since the strain gauge 6 is attached to the side of the leaf spring 3 that generates the compressive strain, the strain gauge 6 detects the compressive strain. When the hydrogen storage alloy 4 for measurement releases hydrogen and contracts, the deformation of the leaf spring 3 returns to its original state, so that the compressive strain of the strain gauge 6 also decreases and returns to the zero point.
For example, even if a tensile force is applied to a thin plate-like elastic member, the deformation is extremely small unless a large force is applied, but in the case of bending, a bending deformation can be easily obtained with a small force. The deformable member may use tensile strain.

ひずみゲージ6により発生するひずみは、指示計60のブリッジ回路61によって抵抗変化を電圧変化として取り出し、A/Dコンバータ62によってデジタル信号に変換し、インジケータ63で検知結果に基づいた表示がなされる。   The strain generated by the strain gauge 6 is extracted as a voltage change by the bridge circuit 61 of the indicator 60, converted into a digital signal by the A / D converter 62, and displayed on the indicator 63 based on the detection result.

以下に本発明の一実施例を説明する。
小型の鋼製容器に水素吸蔵合金を充填し、この中へ本実施形態の水素残量センサ1を取付け、水素を放出させた時の板バネ3のひずみと容器内の水素量の関係を示す。
使用した水素吸蔵合金は、AB合金で鋼製容器に100g充てんした。水素残量センサ1に使用した合金も同じくAB合金とした。水素残量センサ1は、図2に示すように水素吸蔵合金に埋めるように配置した。
An embodiment of the present invention will be described below.
A small steel container is filled with a hydrogen storage alloy, and the hydrogen remaining amount sensor 1 of this embodiment is attached to the small steel container, and the relationship between the strain of the leaf spring 3 and the amount of hydrogen in the container when hydrogen is released is shown. .
The hydrogen storage alloy used was AB 5 alloy, and 100 g was filled in a steel container. The alloy used for the remaining hydrogen sensor 1 was also an AB 5 alloy. The remaining hydrogen sensor 1 was disposed so as to be buried in a hydrogen storage alloy as shown in FIG.

水素吸蔵合金への水素吸収は、容器を20℃の水槽に浸漬させた状態で圧力1.0MPaまで吸収させた。図4は、水温20℃のまま水素を放出、図5は水温を40℃へ上げてから水素を放出した試験データである。
水素の放出は試験装置付属のマスフローコントローラを用いて0.5NL/minに制御し、水素残量がゼロになるまで放出した。板バネ3のひずみは、ひずみゲージと動ひずみ計にて測定しデータロガーに記録した。
Hydrogen absorption into the hydrogen storage alloy was absorbed up to a pressure of 1.0 MPa while the container was immersed in a 20 ° C. water bath. FIG. 4 shows test data in which hydrogen was released while the water temperature was 20 ° C., and FIG. 5 was test data in which hydrogen was released after the water temperature was raised to 40 ° C.
The release of hydrogen was controlled to 0.5 NL / min using a mass flow controller attached to the test apparatus, and was released until the remaining amount of hydrogen became zero. The strain of the leaf spring 3 was measured with a strain gauge and a dynamic strain meter and recorded in a data logger.

図4および図5には、最小二乗法による回帰直線と近似式を示した。図中のRは、決定定数といわれ、データが直線によく合うかどうかを示す指標であり、1.0に近い方が直線性がよいといえる。この二つの試験データのR値は水温20℃のときで0.9839、水温40℃のときで0.9918であることから、水素残量センサ1の試験データは直線性がよいことがわかった。 4 and 5 show a regression line and an approximate expression by the least square method. R 2 in the figure is called a decision constant, and is an index indicating whether or not the data fits a straight line. It can be said that the closer to 1.0, the better the linearity. Since the R 2 values of these two test data are 0.9839 when the water temperature is 20 ° C. and 0.9918 when the water temperature is 40 ° C., it is understood that the test data of the remaining hydrogen sensor 1 has good linearity. It was.

すなわち、水素残量センサ1は、センサとして測定精度が高いことが示された。なお、水温が20℃と40℃とではひずみの最大値(水素満充てん)が違っているが、水温を20℃から40℃へ上げた時点で圧力が1.0MPaを超えるため、水素を少し放出させて1.0MPaに保持しているためである。したがって、水素残量センサ1に使用している水素吸蔵合金の水素吸収量は20℃よりも40℃の方が少なく、結果として水素吸蔵合金の膨張量が小さくひずみも小さくなっている、ということを表している。   That is, it was shown that the remaining hydrogen sensor 1 has high measurement accuracy as a sensor. The maximum strain value (full of hydrogen) is different between 20 ° C and 40 ° C, but when the water temperature is raised from 20 ° C to 40 ° C, the pressure exceeds 1.0 MPa. This is because it is released and held at 1.0 MPa. Therefore, the hydrogen absorption amount of the hydrogen storage alloy used in the hydrogen remaining amount sensor 1 is less at 40 ° C. than 20 ° C., and as a result, the expansion amount of the hydrogen storage alloy is small and the strain is also small. Represents.

以上、本発明について前記実施形態に基づいて説明を行ったが、本発明は前記実施形態の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは実施形態に対する適宜の変更が可能である。   The present invention has been described based on the above embodiment, but the present invention is not limited to the content of the embodiment, and appropriate modifications to the embodiment are possible without departing from the scope of the present invention. It is.

1 水素残量センサ
2 センサ本体
3 板バネ
4 測定用水素吸蔵合金
5 蓋板
6 検知部
7 細棒
8 リード線
20 水素吸蔵合金容器
21 水素吸蔵合金
DESCRIPTION OF SYMBOLS 1 Hydrogen remaining amount sensor 2 Sensor main body 3 Leaf spring 4 Hydrogen storage alloy for measurement 5 Lid plate 6 Detection part 7 Thin rod 8 Lead wire 20 Hydrogen storage alloy container
21 Hydrogen storage alloy

Claims (9)

水素残量が変化する空間に配置される水素残量センサであって、
測定用水素吸蔵合金を収容する測定用容器を有し、
前記測定用容器は、少なくとも一部が開口して水素の吸放出に伴う前記測定用水素吸蔵合金の変形が可能な開口部を有し、
前記空間に配置された状態の前記測定用容器に対し、一部が定位置にある状態で設置され、前記開口部を通した前記測定用水素吸蔵合金の変形が伝達されて弾性変形可能な変形部材と、
前記変形部材の弾性変形を検知する検知部と、を備えることを特徴とする水素残量センサ。
A hydrogen remaining amount sensor disposed in a space where the remaining amount of hydrogen changes,
It has a measurement container that houses the hydrogen storage alloy for measurement,
The measurement container has an opening that is at least partially open and capable of deforming the hydrogen storage alloy for measurement accompanying hydrogen absorption / release,
Deformation that can be elastically deformed by transmitting the deformation of the hydrogen storage alloy for measurement through the opening to a part of the measurement container placed in the space in a fixed position. Members,
A hydrogen remaining amount sensor comprising: a detection unit that detects elastic deformation of the deformable member.
前記測定用容器が筒形状を有し、筒形状の一端に前記開口部を有することを特徴とする請求項1記載の水素残量センサ。   The residual hydrogen sensor according to claim 1, wherein the measurement container has a cylindrical shape, and has the opening at one end of the cylindrical shape. 前記開口部に位置する前記測定用水素吸蔵合金の少なくとも一部を覆う蓋部を有し、前記蓋部の移動変形を前記変形部材に伝達する伝達部を有していることを特徴とする請求項1または2に記載の水素残量センサ。   It has a cover part which covers at least one part of the said hydrogen storage alloy for a measurement located in the said opening part, It has a transmission part which transmits the movement deformation of the said cover part to the said deformation member. Item 3. A hydrogen remaining amount sensor according to Item 1 or 2. 前記変形部材が板バネであり、板バネの自由端側の板面に前記伝達部材が接触していることを特徴とする請求項3記載の水素残量センサ。   4. The hydrogen remaining amount sensor according to claim 3, wherein the deformable member is a plate spring, and the transmission member is in contact with a plate surface on a free end side of the plate spring. 前記伝達部材がロッド形状を有することを特徴とする請求項3または4に記載の水素残量センサ。   The residual hydrogen sensor according to claim 3 or 4, wherein the transmission member has a rod shape. 前記変形部材が前記測定用容器に固定されていることを特徴とする請求項1〜3のいずれか1項に記載の水素残量センサ。   The hydrogen remaining amount sensor according to claim 1, wherein the deformable member is fixed to the measurement container. 前記変形部材が前記測定用空間内の定位置に一部が固定されており、前記測定用容器が前記空間内の定位置に設置されて、前記測定用容器に対し前記変形部材の一部が定位置にある状態となることを特徴とする請求項1〜4のいずれか1項に記載の水素残量センサ。   A part of the deformable member is fixed at a fixed position in the measurement space, the measurement container is installed at a fixed position in the space, and a part of the deformable member is located with respect to the measurement container. The hydrogen remaining amount sensor according to claim 1, wherein the hydrogen remaining amount sensor is in a fixed position. 前記検知部にひずみゲージを含み、前記ひずみゲージが前記変形部材の変形面に取り付けられていることを特徴とする請求項1〜7のいずれか1項に記載の水素残量センサ。   The residual hydrogen sensor according to claim 1, wherein the detection unit includes a strain gauge, and the strain gauge is attached to a deformation surface of the deformation member. 水素残量が変化する空間が、水素吸蔵合金を収容した容器内空間であることを特徴とする請求項1〜8のいずれか1項に記載の水素残量センサ。   The hydrogen remaining amount sensor according to any one of claims 1 to 8, wherein the space in which the remaining amount of hydrogen changes is an in-container space containing a hydrogen storage alloy.
JP2016059952A 2016-03-24 2016-03-24 Hydrogen remaining amount sensor Active JP6282301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016059952A JP6282301B2 (en) 2016-03-24 2016-03-24 Hydrogen remaining amount sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016059952A JP6282301B2 (en) 2016-03-24 2016-03-24 Hydrogen remaining amount sensor

Publications (2)

Publication Number Publication Date
JP2017173149A JP2017173149A (en) 2017-09-28
JP6282301B2 true JP6282301B2 (en) 2018-02-21

Family

ID=59971863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016059952A Active JP6282301B2 (en) 2016-03-24 2016-03-24 Hydrogen remaining amount sensor

Country Status (1)

Country Link
JP (1) JP6282301B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6749274B2 (en) * 2017-03-29 2020-09-02 株式会社日本製鋼所 Hydrogen amount detector and hydrogen storage alloy container
WO2023145470A1 (en) * 2022-01-31 2023-08-03 ヌヴォトンテクノロジージャパン株式会社 Gas detection system and gas detection method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69107018T2 (en) * 1990-11-09 1995-08-24 Philips Electronics Nv Device with strain gauges.
JPH1073530A (en) * 1996-08-29 1998-03-17 Japan Steel Works Ltd:The Hydrogen occulusion sensor for hydrogen occulusion alloy and method for detecting and controlling hydrogen occulusion
JP3844297B2 (en) * 2002-06-25 2006-11-08 本田技研工業株式会社 Hydrogen detection device
JP2006308414A (en) * 2005-04-28 2006-11-09 Japan Fine Ceramics Center Maximum displacement memory device
JP4061556B2 (en) * 2005-08-12 2008-03-19 株式会社新潟Tlo Hydrogen amount sensor and hydrogen storage device
JP2010266425A (en) * 2009-04-15 2010-11-25 Toyota Motor Corp Hydrogen pressure sensor

Also Published As

Publication number Publication date
JP2017173149A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
CN105466626B (en) Diaphragm pressure sensor and its manufacturing method
CN102135458A (en) Strain beam type soil pressure sensor
US7278317B2 (en) Pressure measurement
RU2010152701A (en) CALIBRATION SYSTEM FOR PRESSURE SENSITIVE CATHETERS
EP2735855A1 (en) A measuring device for measuring a physical quantity
CN106197792B (en) Plate spring type pressure gauge with monitoring function
CN107192498B (en) Fluid-filled elongate pressure sensor
JP6282301B2 (en) Hydrogen remaining amount sensor
CN101393147A (en) Metal linear expansion coefficient measuring apparatus
KR101078171B1 (en) Pressure measuring apparatus
GHOSH AN INTRODUCTION TO LINEAR ALGEBRA
KR20100127989A (en) Road cell for displacement type level transmitter
CN103575450B (en) Liquid pressure measurement diaphragm closure means, mechanical indicating pointer tensimeter and pressure unit
EP3314211B1 (en) Process variable measurement and local display with multiple ranges
WO2018111135A1 (en) Deformation sensor
JP5872444B2 (en) Pressure detector
US1125236A (en) Strain-indicator.
JP2019168323A (en) Pressure measurement device
KR200422392Y1 (en) apparatus for testing hand power
CN111122023A (en) Soil pressure sensor
DK2098845T3 (en) Ceramic pressure sensor
JPH0635933U (en) Measuring instruments for temperature and pressure
RU2603948C1 (en) Device and method for determining liquid density
JPH06215956A (en) Oil tank
JPH0355873Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180123

R150 Certificate of patent or registration of utility model

Ref document number: 6282301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250