JP2004028756A - Hydrogen amount detector - Google Patents

Hydrogen amount detector Download PDF

Info

Publication number
JP2004028756A
JP2004028756A JP2002184528A JP2002184528A JP2004028756A JP 2004028756 A JP2004028756 A JP 2004028756A JP 2002184528 A JP2002184528 A JP 2002184528A JP 2002184528 A JP2002184528 A JP 2002184528A JP 2004028756 A JP2004028756 A JP 2004028756A
Authority
JP
Japan
Prior art keywords
hydrogen
storage alloy
hydrogen storage
amount
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002184528A
Other languages
Japanese (ja)
Other versions
JP3844297B2 (en
Inventor
Takeaki Shimada
島田 毅昭
Yoshio Nuitani
縫谷 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002184528A priority Critical patent/JP3844297B2/en
Publication of JP2004028756A publication Critical patent/JP2004028756A/en
Application granted granted Critical
Publication of JP3844297B2 publication Critical patent/JP3844297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen amount detector capable of accurately detecting a hydrogen amount even when the storage/release of hydrogen is repeated. <P>SOLUTION: A resin layer 3b as a layer retaining a particle 2 of a hydrogen storage alloy is provided. The particle 2 causes a part of a surface of the resin layer 3b to be exposed so as to store hydrogen or emit hydrogen to the outside. A distortion sensor (distortion gauge) is provided on the resin layer 3b so as to detect a volume expansion when the particle 2a of the hydrogen storage alloy stores hydrogen. Since the layer retaining the particle 2a of the hydrogen storage alloy is a single layer, and the resin layer 3b stretches as the expansion is caused when the particle 2a of the hydrogen storage alloy stores hydrogen, sliding between the particles 2a is prevented. The same applies to the particle 2a when the hydrogen is emitted. Therefore, even after repeating the storage/release, the particle 2a of the hydrogen storage alloy is prevented from abrasion, pulverization and omission, thereby keeping capacity of the hydrogen amount detector uniform. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は水素吸蔵合金を利用して水素量を検出する水素量検出装置に関するものである。
【0002】
【従来の技術】
水素吸蔵合金が水素を吸蔵することによる体積膨張を水素量の測定に用いる技術として、例えば、特開平10−73530号公報に開示された水素量検出センサが知られている。この水素量検出センサは、粒状の水素吸蔵合金の粒子を密な層状として板材の片面に固着し、板材の反対面にひずみケージを貼り付けたものである。水素量検出センサを水素雰囲気に配置し、水素吸蔵合金の粒子に水素を吸蔵させて膨張させると、板材が湾曲してひずみゲージが変形し、変形に応じたひずみ量が出力される。従って、あらかじめ計測しておいた水素吸蔵合金の水素貯蔵量−体積膨張量特性と、ひずみゲージで計測されたひずみ量とを対比すると水素雰囲気中の水素量を検出することができる。
【0003】
【発明が解決しようとする課題】
前記水素量検出センサを用いて繰り返し水素量を一定の精度で測定するためには、板状部材に固着された緻密な粒状MH集合体の水素貯蔵量−体積膨張量特性が不変であることが前提となる。
しかし、水素吸蔵合金の粒子は、硬質で靭性に乏しく微粉化しやすい材料であるため、前記したように、水素吸蔵合金の粒子を密な層状として板材に固定し、板材の湾曲に対応したひずみ量を水素雰囲気の水素量として検出する場合は、水素の吸蔵・放出の繰り返しによって発生する粒状の水素吸蔵合金の粒子同士の摺動により、水素吸蔵合金の粒子の摩耗、微粉化、脱落が発生し、水素量検出センサの測定値に変化が生じることがある。このため、従来の水素量検出センサを使用して繰り返し水素量を検出する場合は、粒状の水素吸蔵合金の集合体全体の体積膨張特性の減少、水素量の測定精度及び感度の減少が生じ、測定値が変化してしまうという不具合がある。
そこで本発明は水素の吸蔵・放出を繰り返しても水素量を精度よく検出できる水素量検出装置を提供することを課題とする。
【0004】
【課題を解決するための手段】
本発明は前記課題を解決するために提案されたもので、請求項1記載の発明は水素量検出装置であって、粒状の水素吸蔵合金を、伸縮性を有する保持層の表面から一部露出するように分散させて配置し、前記水素吸蔵合金が水素を吸蔵した際の体積膨張による前記保持層の伸縮を検知するひずみセンサを備えた水素量検出装置を提供するものである。
保持層は伸縮性を有し水素吸蔵合金の粒子の水素吸蔵による膨張によって伸び、水素の放出によって縮むので、粒子間には相互の摺動は発生しない。水素放出時も同様となる。このため、水素の吸蔵・放出を繰り返しても水素吸蔵合金の粒子の摩耗、微粉化、脱落は発生せず、水素量検出装置の性能は一定に維持される。また、保持層の伸びは、水素吸蔵合金の粒子全体の膨張の合計であり、ひずみセンサがこの膨張を測定することになるので水素量検出装置としての感度が向上する。この場合、粒状の水素吸蔵合金を一層とし、粒状の水素吸蔵合金を分散させると、水素量検出装置の感度がさらに向上する。
なお、水素の吸蔵及び放出は、水素吸蔵合金の粒子の外部に露出している表面からなされる。
【0005】
また、請求項2記載の発明は、請求項1記載の発明において、水素量検出装置前記保持層の少なくとも一面を板状の基台に固定し、前記ひずみセンサを前記保持層の内側に配置した水素量検出装置を提供するものである。
このようにすると、粒状の水素吸蔵合金の膨張による保持層の伸縮方向は、保持層と基台の接合面に沿った方向に特定されるので、水素量検出装置の感度が向上する。
【0006】
請求項3記載の発明は、水素量検出装置であって、一方の端面を開放した筒状の基台と、該基台の内側に収容され、粒状の水素吸蔵合金を分散させて配置した伸縮性を有する保持層と、前記保持層に設けられ、粒状の水素吸蔵合金を外部に晒すための孔とを備え、前記水素吸蔵合金が水素を吸蔵した際の体積膨張による前記保持層の伸縮を検知するひずみセンサを前記保持層の表面で、且つ前記基台の開放した端面側に設けた水素量検出装置を提供するものである。
このようにすると、基台によって保持層の伸び方向が規制されるので、水素吸蔵合金の粒子の水素吸蔵時(水素量の測定時)、水素放出時の保持層の伸び方向が基台の軸芯線方向に矯正される。この結果、水素量の検出時には、保持層が基台の開口部方向に隆起し、この隆起をひずみセンサが検出することになる。粒状の水素吸蔵合金は、保持層に分散され、粒子間相互に摺動が発生することはないので、摺動に起因した粒子の摩耗、微粉化、脱落が防止される。水素放出時も同様である。従って、水素量の検出のために吸蔵・放出を繰り返しても水素量検出装置の水素量検出性能は一定に維持される。
また、水素量の検出の際に、保持層に発生する伸びは水素吸蔵合金の粒子の膨張の合計となるので、水素量測定に対する水素量検出装置の感度も実質的に向上する。
【0007】
【発明の実施の形態】
以下、添付図面を参照して本発明に係る水素量検出装置の実施形態を説明する。
(第1実施形態)
図1は本発明に係る水素量検出装置の第1実施形態の構造を示す斜視図、図2は図1の縦断面図である。水素量検出装置1は、水素を吸蔵して膨張し、水素を放出して収縮する水素吸蔵合金の粒子2aを平面的に並べた一層の水素検出層2と、水素吸蔵合金の粒子2aの膨張量を数量データに変換するデータ変換層3とで構成されており、データ変換層3は、基台3aに積層により固定された樹脂層3bと、この樹脂層3bの内側に埋設されて樹脂と一体化されたひずみゲージ3cで構成されている。前記水素吸蔵合金の粒子2aは、前記樹脂層3bによって各粒子2aの上部が樹脂層3bの上面から外部に露出するように且つ、隣接する粒子2a間が樹脂で隔てられるように樹脂層3bの上層部全体に一様に分散保持されている。なお、樹脂層3bは、接着材や焼き付けなどにより基台3aに固定される。また、樹脂層3bは、水素吸蔵合金の粒子2aの水素吸蔵時の発熱温度と水素放出のための加熱温度とに対応した樹脂、例えば、ふっ素樹脂で構成されており、水素吸蔵合金の粒子2aが水素を吸蔵したときの体積膨張によって伸び、逆に水素を放出したときには縮む伸縮性を有している。そして、前記基台3aは、水素吸蔵合金の粒子2aの体積膨張時に樹脂層3bの湾曲を抑制して樹脂層3bの伸び方向を水素検出層2の平面方向に沿った方向とするために、曲げ、引張りに対して樹脂層3bよりも強度の高い材料で構成されている。
【0008】
図3(a)は前記水素量検出装置1の水素量検出前の状態を示し、図3(b)は水素量検出装置1の水素量検出時の状態を示している。図3(a)に示すように、水素量の検出前は、水素吸蔵合金の粒子2aには水素が貯蔵されていないので、各粒子2aは体積が収縮し、樹脂層3bも体積が収縮した状態となる。
【0009】
この状態で水素量検出装置1のひずみゲージ3cにひずみ測定器(図示せず)を接続し、水素量検出装置1を水素雰囲気中に配置すると、図3(b)に示すように、水素量検出装置1の個々の水素吸蔵合金の粒子2aが水素を吸蔵して膨張し、樹脂層3bが、基台3aと樹脂層3bの接合面に沿った方向に伸長する。伸長の方向は、前記基台3aによって水素検出層2の平面方向、換言すると基台3aと樹脂層3bの接合面に沿った方向となる。保持層としての樹脂層3bに伸びが発生すると、樹脂に一体化されているひずみゲージ3cに樹脂層3bの伸びに応じたひずみが発生し、ひずみ量がひずみ測定器に出力される。従って、ひずみゲージ3cで測定されたひずみ量を、あらかじめ同じ圧力、温度の下で計測しておいたひずみゲージ3cのひずみ量−水素量との相関特性に対比すると、水素量を正確に推定できる。なお、前記水素量検出装置1を繰り返し水素量検出装置として使用する場合は、水素量検出装置1を加熱して水素吸蔵合金の各粒子2aから水素を放出させればよい。
【0010】
前記水素量検出装置1は、その構造上、水素吸蔵合金の水素検出層2が一層で、樹脂層3bの伸縮方向が水素吸蔵合金の粒子2aの配列方向、換言すると、基台3aと樹脂層3bとの接合面に沿った方向に特定される。このため、水素量検出のために水素吸蔵合金の粒子2aの膨張、収縮を繰り返しても水素吸蔵合金の粒子2a同士には摺動が発生しない。また、樹脂層3bの伸びは水素吸蔵合金の粒子2a全体の膨張の合計となるので、この膨張を測定するためのひずみゲージ3cの感度が実質的に向上する。
【0011】
なお、水素量検出装置1においては、基台3aの剛性によって樹脂層3bの伸び方向が基台3aと樹脂層3bの接合面に沿った方向に特定されるので、ひずみゲージ3cは、図2に示すように、樹脂層3bの水素検出層2側に配置するのが望ましい。また、この実施の形態において、前記ひずみセンサとしてひずみゲージ3cを例示したが、光ファイバを利用したひずみセンサを用いてひずみ量を測定してもよい。
また、この実施の形態では、基台3aにより、樹脂層3bの伸縮方向を規制したが、基台3aを廃止し、水素吸蔵合金の粒子2aの体積膨張に伴う樹脂層3bの湾曲ひずみをひずみゲージ3cなどのひずみセンサにより測定してもよい。このようにしても樹脂層3bに対して水素吸蔵合金の粒子2aが平面方向に沿って分散しており、各粒子2a間に樹脂が存在するため、粒子2a間の摺動に起因する粒子2aの摩耗、微粉化、脱落が防止されるので、水素量を繰り返し検出することができる。
また、水素量検出装置1の感度をさらに向上するために、水素検出層2及び樹脂層3bの両側に樹脂層3bの幅方向への伸びを規制する規制板(図示せず)を設けてもよい。
【0012】
(第2実施形態)
図4は本発明に係る水素量検出装置の第2実施形態を示し、図4(a)は水素量検出装置11の斜視図、図4(b)は図4(a)の縦断面図である。この実施形態において、基台13aは上端部が開放された筒状に形成されており、水素吸蔵合金の粒子2aは、基台13a内に挿入された樹脂層13bによって全体一様に分散保持されている。樹脂層13bは、内部の水素吸蔵合金の粒子2aを外部の水素雰囲気に晒して水素を吸蔵させるための多孔体となっており、水素吸蔵合金の粒子2aが水素を吸蔵したときの体積膨張によって伸び、逆に水素を放出したときには縮む伸縮性を有している。樹脂層13bの内部には、図5に示すように、内部の孔13cを保持するための基材13dが分散している。ひずみゲージ3cは、樹脂層13bの表面に貼り付けられる。
【0013】
なお、前記基材13dとしては、孔13cを保持できる耐食性の材料であれば特に材質には限定されないが、水素吸蔵合金の粒子2aを外部に晒せるようにするには、セラミックスの多孔材で構成するのが望ましい。また、前記樹脂層13bを熱硬化性樹脂で構成し、発泡後、加熱することにより孔13cの形態を維持できるようにする場合は前記基材13dの廃止も可能となる。
【0014】
図6(a)は前記水素量検出装置11の水素量検出前(水素放出)の状態を示し、図6(b)は水素吸蔵時(水素測定時)の状態を示している。
図6(a)に示すように、水素量検出前は、水素吸蔵合金の粒子2aは水素に晒されておらず水素を貯蔵していないので保持層としての樹脂層13bには伸びが発生せず、ひずみゲージ3cは、ひずみを感知していない。この状態で水素量検出装置11のひずみゲージ3cにひずみ測定器(図示せず)を接続し、水素量検出装置11を水素雰囲気中に配置すると、個々の水素吸蔵合金の粒子2aが図4に示した樹脂層13bの孔13cを通じて水素を吸蔵するので体積が膨張する。樹脂層13bは、筒状の基台13aによって下端面及び外周面が拘束されているので、逃げ場となる基台13aの開口方向に隆起することになる。このため樹脂層13bの上面に貼り付けられているひずみゲージ3cが隆起量に対応したひずみ量を感知し、感知したひずみ量がひずみ測定器に出力されることになる。従って、この実施形態においても、測定したひずみ量を、あらかじめ同じ圧力、温度の下で前記水素量検出装置11で計測したひずみ量−水素量との相関特性に対比すれば、水素量を正確に推定できる。
水素量の繰り返し測定において、前記水素量検出装置11の水素吸蔵合金の粒子2a間には樹脂が存在し、粒子2aが樹脂層13bを構成している樹脂と一体となって移動するので、水素吸蔵合金の粒子2aが水素量測定のために膨張、収縮を繰り返しても水素吸蔵合金の粒子2a同士の摺動も発生しない。このため、第1実施形態の水素量検出装置1と同様に繰り返し水素量を測定することができる。また、基台13aの底面及び内面により、樹脂層13bの伸縮方向が基台13aの軸芯方向に沿った方向に特定され、水素吸蔵合金の粒子2aの膨張による水素検出層2全体の膨張量が増加するので、水素量検出装置11の感度も大幅に向上する。
【0015】
なお、水素量検出装置11においては、樹脂層13bの伸び方向が特定されるので、ひずみゲージ3cを基台13aの軸芯線Xに沿わせて樹脂層13bの中央に配置してもよい。また、ひずみゲージ3cに代えて光ファイバを用いたひずみセンサを用いてもよい。
【0016】
図7乃至図9は前記水素量検出装置11を取り付けた水素ストレージ(水素タンク)を示し、図7は水素ストレージの斜視図、図8は水素ストレージの横断面図、図9は図8のA部詳細断面図である。
水素ストレージ20には内部に水素吸蔵合金の粒子MTが充填されるとともに、水素吸蔵、水素放出の切り換えのための伝熱管21が取り付けられる。
水素量検出装置は、第2実施形態で説明した水素量検出装置11であり、水素ストレージ20の内壁20aに初期段階の水素ストレージ20のひずみが作用しないように断熱性の接着剤などを介して取り付けられる。水素量検出装置11は、水素量検出装置11の内壁20aに取り付けられた箱型の隔壁22によって、水素ストレージ20内の水素吸蔵合金の粒子MTと隔てられており、箱型の隔壁22に形成されている連通部22aを介して水素ストレージ20内に連通している。
なお、この例では、水素量検出装置11の水素吸蔵合金の粒子2aは、水素ストレージ20内の水素吸蔵合金MHと同じ材質であり、隔壁22の容積は、樹脂層13bの膨張に対応させて定められる。因みに、この実施の形態では水素放出のために加熱されたとき、温度が60℃の熱的平衡温度となるような水素吸蔵合金、例えば、LaNiを使用している。
また、この実施形態において水素量検出装置11の基台13aには、水素ストレージ20の水素吸蔵合金の粒子MTの温度と水素量検出装置11の水素吸蔵合金の粒子2aとの温度を迅速に同一とするための複数のフィン13eが外面に取り付けられ、各フィン13eが連通部22aを通じて水素ストレージ20内に延出されている。
【0017】
水素量検出装置11による水素ストレージ20の水素量の検出は、水素ストレージ20の水素充填時になされる。この場合、伝熱管21には低温の熱媒体が循環される。このとき水素ストレージ20内の圧力は水素ガス供給系の水素ガス供給圧力、すなわち、水素ストレージ20内の水素吸蔵合金の粒子MTの水素吸蔵の圧力に保持され、温度は、前記伝熱管21を流れる熱媒の温度、すなわち、水素ストレージ20内の水素吸蔵温度に冷却される。もちろん、前記隔壁22の連通部22aにより、隔壁22内も水素ストレージ20内と同温、同圧に保持される。水素ガス出入口20bから水素ストレージ20の内部に水素ガスが充填されると、水素ストレージ20内の水素吸蔵合金の粒子MTは、水素ガスを吸蔵して膨張し、水素量検出装置11の水素吸蔵合金の粒子2aも樹脂層13bの孔13(図5参照)を通じて水素ガスを吸蔵して膨張する。
水素量検出装置11に取り付けられているひずみゲージ3cは、水素ストレージ20内の水素量に対応したひずみ量をひずみ測定器(図示せず)に出力する。従って、あらかじめ水素ストレージ20の水素貯蔵量と水素ストレージ20内に設置する水素量検出装置11の水素吸蔵合金の粒子2aの膨張量、すなわち、ひずみゲージ3cのひずみ量との関係をデータ化しておいて、これに実際に測定されたひずみ量を対比すると、水素ストレージ20の水素貯蔵量を正確に推定することができる。なお、この例では水素量検出装置として、第2実施形態で説明した水素量検出装置11を取り付ける説明をしたが、水素ストレージ20の内壁20aに第1実施形態で説明した水素量検出装置1を初期段階の水素ストレージ20のひずみが作用しないように断熱性の接着材を介して貼り付けるようにしてもよい。
【0018】
【発明の効果】
以上、説明したことから明らかなように本発明によれば次の如き優れた効果を発揮する。
(1)水素吸蔵合金の摩耗、微粉化、脱落を防止することができるので、水素量の測定に繰り返し使用することができる。また、樹脂層の膨張量が粒状の水素吸蔵合金の膨張の合計となり、この膨張をひずみセンサが感知するようにしたので水素量を感度よく検出することができる(請求項1及び請求項3)。
(2)粒状の水素吸蔵合金の膨張による保持層の伸縮方向が、保持層と基台の接合面に沿った方向に特定されるので、水素量検出装置の感度が実質的に向上する(請求項2)。
【図面の簡単な説明】
【図1】本発明に係る水素量検出装置の第1実施形態の構造を示すために一部を破断して示した斜視図である。
【図2】本発明に係る水素量検出装置の第1実施形態の構造を示し、図1の縦断面図である。
【図3】第1実施形態の水素量検出装置の状態の変化を示し、図3(a)は水素量検出装置の水素量検出前の状態を示す断面図、図3(b)は水素量検出装置の水素量検出時の状態を示す断面図である。
【図4】第2実施形態の水素量検出装置を示し、図4(a)は水素量検出装置の斜視図、図4(b)は図4(a)の縦断面図である。
【図5】図4(b)の要部拡大断面図である。
【図6】第2実施形態の水素量検出装置の状態の変化を示し、図6(a)は水素量検出装置の水素量検出前の状態を示す断面図、図6(b)は水素吸蔵時の状態を示す断面図である。
【図7】水素量検出装置を取り付けた水素ストレージの斜視図である。
【図8】水素ストレージの横断面図である。
【図9】図8のA部詳細断面図である。
【符号の説明】
1 水素量検出装置
2 水素検出層
2a 水素吸蔵合金の粒子
3 データ変換層
3a 基台
3b 樹脂層(保持層)
3c ひずみゲージ(ひずみセンサ)
11 水素量検出装置
13a 基台
13b 樹脂層(保持層)
13c 孔
13d 基材
13e フィン
20 水素ストレージ
21 伝熱管
22 隔壁
22a 連通部
MT 水素吸蔵合金の粒子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen amount detecting device that detects a hydrogen amount using a hydrogen storage alloy.
[0002]
[Prior art]
As a technique for measuring the amount of hydrogen by using the volume expansion caused by the hydrogen storage alloy storing hydrogen, for example, a hydrogen amount detection sensor disclosed in Japanese Patent Application Laid-Open No. 10-73530 is known. In this hydrogen amount detection sensor, granular hydrogen storage alloy particles are fixed as a dense layer to one surface of a plate, and a strain cage is attached to the opposite surface of the plate. When the hydrogen amount detection sensor is placed in a hydrogen atmosphere and hydrogen is absorbed into the particles of the hydrogen storage alloy and expanded, the plate material is bent and the strain gauge is deformed, and a strain amount corresponding to the deformation is output. Therefore, the amount of hydrogen in the hydrogen atmosphere can be detected by comparing the previously measured hydrogen storage amount-volume expansion characteristic of the hydrogen storage alloy with the strain amount measured by the strain gauge.
[0003]
[Problems to be solved by the invention]
In order to repeatedly measure the amount of hydrogen with the hydrogen amount detection sensor using the hydrogen amount detection sensor, the hydrogen storage amount-volume expansion characteristic of the dense granular MH aggregate fixed to the plate member may be invariable. It is a premise.
However, since the particles of the hydrogen storage alloy are hard, poor in toughness, and easily pulverized, as described above, the particles of the hydrogen storage alloy are fixed to the plate as a dense layer, and the amount of strain corresponding to the curvature of the plate is determined. Is detected as the amount of hydrogen in the hydrogen atmosphere, the particles of the hydrogen storage alloy slide due to the repeated storage and release of hydrogen, causing wear, pulverization, and falling off of the particles of the hydrogen storage alloy. In some cases, a change occurs in the measurement value of the hydrogen amount detection sensor. For this reason, when repeatedly detecting the amount of hydrogen using a conventional hydrogen amount detection sensor, a decrease in the volume expansion characteristic of the entire aggregate of the granular hydrogen storage alloy, a decrease in the measurement accuracy and sensitivity of the hydrogen amount occur, There is a problem that the measured value changes.
Therefore, an object of the present invention is to provide a hydrogen amount detection device that can accurately detect the amount of hydrogen even if the storage and release of hydrogen are repeated.
[0004]
[Means for Solving the Problems]
The present invention has been proposed in order to solve the above-mentioned problem, and the invention according to claim 1 is a hydrogen amount detecting device, in which a granular hydrogen storage alloy is partially exposed from the surface of an elastic holding layer. The present invention provides a hydrogen amount detection device provided with a strain sensor that detects the expansion and contraction of the holding layer due to volume expansion when the hydrogen storage alloy absorbs hydrogen.
Since the holding layer has elasticity and expands due to the expansion of the hydrogen storage alloy particles due to hydrogen storage and contracts due to the release of hydrogen, mutual sliding does not occur between the particles. The same applies when hydrogen is released. For this reason, even if the storage and release of hydrogen are repeated, the particles of the hydrogen storage alloy do not wear, pulverize, or fall off, and the performance of the hydrogen amount detection device is kept constant. In addition, the elongation of the holding layer is the sum of the expansion of the entire particles of the hydrogen storage alloy, and the strain sensor measures the expansion, so that the sensitivity as a hydrogen amount detecting device is improved. In this case, if the granular hydrogen storage alloy is used as one layer and the granular hydrogen storage alloy is dispersed, the sensitivity of the hydrogen amount detection device is further improved.
The storage and release of hydrogen are performed from the surface exposed to the outside of the particles of the hydrogen storage alloy.
[0005]
According to a second aspect of the present invention, in the first aspect of the invention, at least one surface of the hydrogen amount detecting device is fixed to a plate-like base, and the strain sensor is disposed inside the holding layer. It is intended to provide a hydrogen amount detecting device.
With this configuration, since the direction of expansion and contraction of the holding layer due to expansion of the granular hydrogen storage alloy is specified in a direction along the joint surface between the holding layer and the base, the sensitivity of the hydrogen amount detection device is improved.
[0006]
According to a third aspect of the present invention, there is provided a hydrogen amount detecting device, wherein a cylindrical base having one open end face, and a telescopic structure in which a granular hydrogen storage alloy is dispersed and arranged inside the base. And a hole provided in the holding layer, for exposing the granular hydrogen storage alloy to the outside, the expansion and contraction of the storage layer due to volume expansion when the hydrogen storage alloy absorbs hydrogen. It is an object of the present invention to provide a hydrogen amount detecting device in which a strain sensor for detecting is provided on a surface of the holding layer and on an open end surface side of the base.
In this case, the direction of elongation of the holding layer is regulated by the base, so that the direction of elongation of the holding layer at the time of hydrogen occlusion of the particles of the hydrogen storage alloy (at the time of measuring the amount of hydrogen) and the time of hydrogen release are the axis of the base. It is corrected in the center line direction. As a result, at the time of detecting the amount of hydrogen, the retaining layer rises in the direction of the opening of the base, and this strain is detected by the strain sensor. Since the granular hydrogen storage alloy is dispersed in the retaining layer and sliding between the particles does not occur, abrasion, pulverization, and falling off of the particles due to the sliding are prevented. The same applies when hydrogen is released. Therefore, the performance of detecting the amount of hydrogen of the hydrogen amount detecting apparatus is kept constant even if the occlusion / release is repeated for detecting the amount of hydrogen.
In addition, when the amount of hydrogen is detected, the elongation generated in the holding layer is the sum of the expansion of the particles of the hydrogen storage alloy, so that the sensitivity of the hydrogen amount detecting device to the measurement of the amount of hydrogen is substantially improved.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a hydrogen amount detecting device according to the present invention will be described with reference to the accompanying drawings.
(1st Embodiment)
FIG. 1 is a perspective view showing a structure of a first embodiment of a hydrogen amount detection device according to the present invention, and FIG. 2 is a longitudinal sectional view of FIG. The hydrogen amount detection device 1 includes a hydrogen detection layer 2 in which particles 2a of a hydrogen storage alloy that expands by absorbing hydrogen and releases and contracts hydrogen are arranged in a plane, and expansion of the hydrogen storage alloy particles 2a. The data conversion layer 3 includes a resin layer 3b fixed to the base 3a by lamination, and a resin layer embedded inside the resin layer 3b. It is composed of an integrated strain gauge 3c. The particles 2a of the hydrogen storage alloy are formed so that the upper portion of each particle 2a is exposed to the outside from the upper surface of the resin layer 3b by the resin layer 3b, and the adjacent particles 2a are separated by the resin. It is uniformly dispersed and maintained throughout the upper layer. The resin layer 3b is fixed to the base 3a by an adhesive or baking. In addition, the resin layer 3b is made of a resin, for example, a fluororesin corresponding to a heating temperature for absorbing hydrogen and a heating temperature for releasing hydrogen of the hydrogen storage alloy particles 2a. Has elasticity that expands due to volume expansion when hydrogen is absorbed and contracts when hydrogen is released. Then, the base 3a suppresses the curvature of the resin layer 3b when the hydrogen storage alloy particles 2a expand in volume, so that the extension direction of the resin layer 3b is a direction along the plane direction of the hydrogen detection layer 2. It is made of a material having higher strength than the resin layer 3b against bending and tension.
[0008]
FIG. 3A shows a state before the hydrogen amount detection device 1 detects the hydrogen amount, and FIG. 3B shows a state when the hydrogen amount detection device 1 detects the hydrogen amount. As shown in FIG. 3A, before the detection of the amount of hydrogen, since hydrogen is not stored in the particles 2a of the hydrogen storage alloy, the volume of each particle 2a shrinks, and the volume of the resin layer 3b also shrinks. State.
[0009]
In this state, when a strain gauge (not shown) is connected to the strain gauge 3c of the hydrogen amount detecting device 1 and the hydrogen amount detecting device 1 is arranged in a hydrogen atmosphere, the hydrogen amount is increased as shown in FIG. Each hydrogen storage alloy particle 2a of the detection device 1 absorbs hydrogen and expands by absorbing hydrogen, and the resin layer 3b extends in a direction along the joint surface between the base 3a and the resin layer 3b. The direction of extension is the plane direction of the hydrogen detection layer 2 by the base 3a, in other words, the direction along the joint surface between the base 3a and the resin layer 3b. When elongation occurs in the resin layer 3b as the holding layer, a strain corresponding to the elongation of the resin layer 3b is generated in the strain gauge 3c integrated with the resin, and the amount of strain is output to the strain measuring device. Therefore, when the amount of strain measured by the strain gauge 3c is compared with the correlation characteristic between the amount of strain and the amount of hydrogen of the strain gauge 3c measured under the same pressure and temperature in advance, the amount of hydrogen can be accurately estimated. . When the hydrogen amount detecting device 1 is used repeatedly as a hydrogen amount detecting device, the hydrogen amount detecting device 1 may be heated to release hydrogen from each particle 2a of the hydrogen storage alloy.
[0010]
Due to its structure, the hydrogen amount detection device 1 has a single hydrogen storage layer 2 of hydrogen storage alloy, and the direction of expansion and contraction of the resin layer 3b is the arrangement direction of the particles 2a of the hydrogen storage alloy, in other words, the base 3a and the resin layer 3b. 3b is specified in the direction along the joint surface. For this reason, even if the particles 2a of the hydrogen storage alloy are repeatedly expanded and contracted for detecting the amount of hydrogen, sliding does not occur between the particles 2a of the hydrogen storage alloy. Further, since the elongation of the resin layer 3b is the sum of the expansion of the whole hydrogen storage alloy particles 2a, the sensitivity of the strain gauge 3c for measuring the expansion is substantially improved.
[0011]
In the hydrogen amount detection device 1, the extension direction of the resin layer 3b is specified in the direction along the joint surface between the base 3a and the resin layer 3b by the rigidity of the base 3a. As shown in (1), it is desirable to dispose it on the hydrogen detection layer 2 side of the resin layer 3b. Further, in this embodiment, the strain gauge 3c is exemplified as the strain sensor, but the strain amount may be measured by using a strain sensor using an optical fiber.
In this embodiment, the direction of expansion and contraction of the resin layer 3b is restricted by the base 3a. However, the base 3a is abolished, and the bending strain of the resin layer 3b accompanying the volume expansion of the particles 2a of the hydrogen storage alloy is reduced. It may be measured by a strain sensor such as the gauge 3c. Even in such a case, the particles 2a of the hydrogen storage alloy are dispersed in the resin layer 3b along the plane direction and the resin exists between the particles 2a. Since the abrasion, pulverization, and falling off of the steel are prevented, the amount of hydrogen can be repeatedly detected.
Further, in order to further improve the sensitivity of the hydrogen amount detection device 1, regulating plates (not shown) may be provided on both sides of the hydrogen detecting layer 2 and the resin layer 3b to restrict the resin layer 3b from extending in the width direction. Good.
[0012]
(2nd Embodiment)
FIG. 4 shows a second embodiment of the hydrogen amount detection device according to the present invention. FIG. 4 (a) is a perspective view of the hydrogen amount detection device 11, and FIG. 4 (b) is a longitudinal sectional view of FIG. 4 (a). is there. In this embodiment, the base 13a is formed in a cylindrical shape having an open upper end, and the particles 2a of the hydrogen storage alloy are uniformly dispersed and held by the resin layer 13b inserted into the base 13a. ing. The resin layer 13b is a porous body for absorbing the hydrogen by exposing the internal hydrogen storage alloy particles 2a to an external hydrogen atmosphere, and by the volume expansion when the hydrogen storage alloy particles 2a occlude hydrogen. It has an elasticity that expands and conversely contracts when hydrogen is released. As shown in FIG. 5, a base material 13d for holding the internal holes 13c is dispersed in the resin layer 13b. The strain gauge 3c is attached to the surface of the resin layer 13b.
[0013]
The material of the base material 13d is not particularly limited as long as it is a corrosion-resistant material capable of holding the holes 13c. However, in order to expose the hydrogen storage alloy particles 2a to the outside, a ceramic porous material is used. It is desirable to do. When the resin layer 13b is made of a thermosetting resin, and after foaming, the shape of the holes 13c can be maintained by heating, the base material 13d can be eliminated.
[0014]
FIG. 6A shows a state before the hydrogen amount detection device 11 detects the hydrogen amount (hydrogen release), and FIG. 6B shows a state at the time of hydrogen storage (at the time of hydrogen measurement).
As shown in FIG. 6A, before the detection of the amount of hydrogen, the particles 2a of the hydrogen storage alloy are not exposed to hydrogen and do not store hydrogen, so that the resin layer 13b as a holding layer is elongated. Therefore, the strain gauge 3c does not sense the strain. In this state, when a strain gauge (not shown) is connected to the strain gauge 3c of the hydrogen content detection device 11 and the hydrogen content detection device 11 is placed in a hydrogen atmosphere, the individual particles 2a of the hydrogen storage alloy are shown in FIG. Since hydrogen is absorbed through the holes 13c of the resin layer 13b as shown, the volume expands. Since the lower end surface and the outer peripheral surface of the resin layer 13b are constrained by the cylindrical base 13a, the resin layer 13b protrudes in the opening direction of the base 13a serving as a relief. For this reason, the strain gauge 3c attached to the upper surface of the resin layer 13b senses the strain amount corresponding to the amount of protrusion, and the sensed strain amount is output to the strain measuring device. Therefore, also in this embodiment, if the measured strain amount is compared with the correlation characteristic between the strain amount and the hydrogen amount measured by the hydrogen amount detection device 11 under the same pressure and temperature in advance, the hydrogen amount can be accurately determined. Can be estimated.
In the repeated measurement of the hydrogen amount, a resin is present between the particles 2a of the hydrogen storage alloy of the hydrogen amount detection device 11, and the particles 2a move integrally with the resin constituting the resin layer 13b. Even if the storage alloy particles 2a repeatedly expand and contract for measuring the amount of hydrogen, sliding of the hydrogen storage alloy particles 2a does not occur. For this reason, the hydrogen amount can be repeatedly measured in the same manner as in the hydrogen amount detection device 1 of the first embodiment. The expansion and contraction direction of the resin layer 13b is specified in the direction along the axis of the base 13a by the bottom surface and the inner surface of the base 13a, and the expansion amount of the entire hydrogen detection layer 2 due to the expansion of the hydrogen storage alloy particles 2a. , The sensitivity of the hydrogen amount detection device 11 is also greatly improved.
[0015]
In the hydrogen amount detecting device 11, since the direction of extension of the resin layer 13b is specified, the strain gauge 3c may be arranged at the center of the resin layer 13b along the axis X of the base 13a. Further, a strain sensor using an optical fiber may be used instead of the strain gauge 3c.
[0016]
7 to 9 show a hydrogen storage (hydrogen tank) to which the hydrogen amount detection device 11 is attached, FIG. 7 is a perspective view of the hydrogen storage, FIG. 8 is a cross-sectional view of the hydrogen storage, and FIG. It is a part detailed sectional view.
The hydrogen storage 20 is filled with particles MT of a hydrogen storage alloy, and a heat transfer tube 21 for switching between hydrogen storage and hydrogen release is attached.
The hydrogen amount detection device is the hydrogen amount detection device 11 described in the second embodiment. It is attached. The hydrogen amount detecting device 11 is separated from the hydrogen storage alloy particles MT in the hydrogen storage 20 by a box-shaped partition wall 22 attached to the inner wall 20a of the hydrogen amount detecting device 11, and is formed on the box-shaped partition wall 22. It communicates with the inside of the hydrogen storage 20 via the communication part 22a.
In this example, the particles 2a of the hydrogen storage alloy of the hydrogen amount detection device 11 are made of the same material as the hydrogen storage alloy MH in the hydrogen storage 20, and the volume of the partition wall 22 corresponds to the expansion of the resin layer 13b. Determined. Incidentally, when heated for hydrogen release in this embodiment, the hydrogen storage alloy such that the temperature becomes the thermal equilibrium temperature of 60 ° C., for example, using a LaNi 5.
In this embodiment, the temperature of the hydrogen storage alloy particles MT of the hydrogen storage 20 and the temperature of the hydrogen storage alloy particles 2a of the hydrogen storage device 11 are quickly made the same on the base 13a of the hydrogen storage device 11. Are mounted on the outer surface, and each fin 13e extends into the hydrogen storage 20 through the communication portion 22a.
[0017]
The detection of the amount of hydrogen in the hydrogen storage 20 by the hydrogen amount detection device 11 is performed when the hydrogen storage 20 is filled with hydrogen. In this case, a low-temperature heat medium is circulated through the heat transfer tube 21. At this time, the pressure in the hydrogen storage 20 is maintained at the hydrogen gas supply pressure of the hydrogen gas supply system, that is, the pressure of hydrogen storage of the hydrogen storage alloy particles MT in the hydrogen storage 20, and the temperature flows through the heat transfer tube 21. It is cooled to the temperature of the heat medium, that is, the hydrogen storage temperature in the hydrogen storage 20. Of course, the inside of the partition 22 is maintained at the same temperature and the same pressure as the inside of the hydrogen storage 20 by the communicating portion 22a of the partition 22. When the inside of the hydrogen storage 20 is filled with hydrogen gas from the hydrogen gas inlet / outlet 20b, the particles MT of the hydrogen storage alloy in the hydrogen storage 20 expand by absorbing the hydrogen gas, and the hydrogen storage alloy of the hydrogen amount detection device 11 is expanded. Particles 2a also expand by absorbing hydrogen gas through the holes 13 (see FIG. 5) of the resin layer 13b.
The strain gauge 3c attached to the hydrogen amount detection device 11 outputs a strain amount corresponding to the hydrogen amount in the hydrogen storage 20 to a strain meter (not shown). Therefore, the relationship between the hydrogen storage amount of the hydrogen storage 20 and the expansion amount of the hydrogen storage alloy particles 2a of the hydrogen storage alloy device of the hydrogen amount detection device 11 installed in the hydrogen storage 20, ie, the strain amount of the strain gauge 3c, is converted into data. Then, by comparing this with the actually measured strain amount, the hydrogen storage amount of the hydrogen storage 20 can be accurately estimated. In this example, the hydrogen amount detecting device 11 described in the second embodiment has been described as being attached as the hydrogen amount detecting device. However, the hydrogen amount detecting device 1 described in the first embodiment is attached to the inner wall 20a of the hydrogen storage 20. The hydrogen storage 20 in the initial stage may be bonded via a heat insulating adhesive so as not to act.
[0018]
【The invention's effect】
As is apparent from the above description, the present invention exerts the following excellent effects.
(1) Since the hydrogen storage alloy can be prevented from being worn, pulverized, and dropped, it can be repeatedly used for measuring the amount of hydrogen. The amount of expansion of the resin layer is the sum of the expansion of the granular hydrogen storage alloy, and the expansion can be detected by the strain sensor, so that the amount of hydrogen can be detected with high sensitivity (claims 1 and 3). .
(2) Since the direction of expansion and contraction of the holding layer due to expansion of the granular hydrogen storage alloy is specified in a direction along the joint surface between the holding layer and the base, the sensitivity of the hydrogen amount detection device is substantially improved (claim). Item 2).
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view showing a structure of a first embodiment of a hydrogen amount detection device according to the present invention.
FIG. 2 is a vertical sectional view of FIG. 1 showing a structure of the first embodiment of the hydrogen amount detecting device according to the present invention.
3A and 3B show a change in the state of the hydrogen amount detection device of the first embodiment, FIG. 3A is a cross-sectional view showing a state before the hydrogen amount detection device detects the hydrogen amount, and FIG. It is sectional drawing which shows the state at the time of hydrogen amount detection of a detection apparatus.
4A and 4B show a hydrogen amount detecting device of a second embodiment, FIG. 4A is a perspective view of the hydrogen amount detecting device, and FIG. 4B is a longitudinal sectional view of FIG. 4A.
FIG. 5 is an enlarged sectional view of a main part of FIG. 4 (b).
6A and 6B show a change in the state of the hydrogen amount detection device according to the second embodiment, FIG. 6A is a sectional view showing a state before the hydrogen amount detection device detects the hydrogen amount, and FIG. It is sectional drawing which shows the state at the time.
FIG. 7 is a perspective view of a hydrogen storage to which a hydrogen amount detection device is attached.
FIG. 8 is a cross-sectional view of the hydrogen storage.
FIG. 9 is a detailed sectional view of a portion A in FIG. 8;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hydrogen detection apparatus 2 Hydrogen detection layer 2a Hydrogen storage alloy particles 3 Data conversion layer 3a Base 3b Resin layer (holding layer)
3c strain gauge (strain sensor)
11 Hydrogen amount detector 13a Base 13b Resin layer (holding layer)
13c Hole 13d Base material 13e Fin 20 Hydrogen storage 21 Heat transfer tube 22 Partition wall 22a Communication part MT Hydrogen storage alloy particles

Claims (3)

水素量検出装置であって、粒状の水素吸蔵合金を、伸縮性を有する保持層の表面から一部露出するように分散させて配置し、前記水素吸蔵合金が水素を吸蔵した際の体積膨張による前記保持層の伸縮を検知するひずみセンサを備えたことを特徴とする水素量検出装置。A hydrogen amount detection device, wherein a granular hydrogen storage alloy is dispersed and disposed so as to be partially exposed from the surface of a stretchable holding layer, and the hydrogen storage alloy is caused by volume expansion when storing hydrogen. A hydrogen amount detecting device comprising a strain sensor for detecting expansion and contraction of the holding layer. 前記保持層の少なくとも一面を板状の基台に固定し、前記ひずみセンサを前記保持層の内側に配置したことを特徴とする請求項1記載の水素量検出装置。The hydrogen amount detecting device according to claim 1, wherein at least one surface of the holding layer is fixed to a plate-like base, and the strain sensor is disposed inside the holding layer. 水素量検出装置であって、
一方の端面を開放した筒状の基台と、
該基台の内側に収容され、粒状の水素吸蔵合金を分散させて配置した伸縮性を有する保持層と、
前記保持層に設けられ、粒状の水素吸蔵合金を外部に晒すための孔とを備え、前記水素吸蔵合金が水素を吸蔵した際の体積膨張による前記保持層の伸縮を検知するひずみセンサを前記保持層の表面で、且つ前記基台の開放した端面側に設けたことを特徴とする水素量検出装置。
A hydrogen amount detection device,
A cylindrical base with one end open,
An elastic holding layer accommodated inside the base and having the granular hydrogen storage alloy dispersed therein,
A hole provided in the holding layer, for exposing the granular hydrogen storage alloy to the outside, wherein the strain sensor detects expansion and contraction of the holding layer due to volume expansion when the hydrogen storage alloy absorbs hydrogen. A hydrogen amount detection device provided on the surface of the layer and on the open end surface side of the base.
JP2002184528A 2002-06-25 2002-06-25 Hydrogen detection device Expired - Fee Related JP3844297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184528A JP3844297B2 (en) 2002-06-25 2002-06-25 Hydrogen detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184528A JP3844297B2 (en) 2002-06-25 2002-06-25 Hydrogen detection device

Publications (2)

Publication Number Publication Date
JP2004028756A true JP2004028756A (en) 2004-01-29
JP3844297B2 JP3844297B2 (en) 2006-11-08

Family

ID=31180424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184528A Expired - Fee Related JP3844297B2 (en) 2002-06-25 2002-06-25 Hydrogen detection device

Country Status (1)

Country Link
JP (1) JP3844297B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3045910A1 (en) * 2015-01-15 2016-07-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and measuring device for determining the amount of a gas contained in a storage device on a porous storage material
JP2017173149A (en) * 2016-03-24 2017-09-28 株式会社日本製鋼所 Hydrogen residual quantity sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3045910A1 (en) * 2015-01-15 2016-07-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and measuring device for determining the amount of a gas contained in a storage device on a porous storage material
JP2017173149A (en) * 2016-03-24 2017-09-28 株式会社日本製鋼所 Hydrogen residual quantity sensor

Also Published As

Publication number Publication date
JP3844297B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
TWI421491B (en) Hygrometer, dew point meter and constant temperature and humidity tank
Yang et al. A novel oxidized composite braided wires wick structure applicable for ultra-thin flattened heat pipes
EP2244046B1 (en) Plate fin heat exchanger
US20070153872A1 (en) Device for measuring temperature of heat pipe
JP4831487B2 (en) Differential scanning calorimeter
US7972738B2 (en) Residual capacity detection method and residual capacity detection system for fuel cell battery
JP5969596B2 (en) Hygrometer and temperature and humidity chamber equipped with this hygrometer
US9970801B2 (en) Thermal mass-flow meter and mass-flow control device using same
US20190226918A1 (en) Contact Temperature Sensor
EP2103863B1 (en) Apparatus for detecting position of liquid surface and determining liquid volume
JP2004028756A (en) Hydrogen amount detector
US8941398B2 (en) Heat spreader flatness detection
JP5685142B2 (en) Dew point meter and hygrometer
US8699227B2 (en) Well logging tool
JP5555123B2 (en) Dew point meter, hygrometer, dew point deriving device, humidity deriving device, dew point measuring method, and humidity measuring method
CN105954680B (en) The device and method of power battery heat power test
US20030192671A1 (en) Heat pipe with inner layer
US20140105241A1 (en) Exact solution for temperature gradient bifurcation in porous media
JP2005083920A (en) Linear expansion coefficient measuring device
HUE027300T2 (en) Measuring cell
WO2022013914A1 (en) Measurement device
ES2776379T3 (en) Measuring device and procedure for determining the amount of a gas received in an accumulator in a porous storage material
JP2015055556A (en) Hygrometer constituent member, hygrometer, and environment testing device
US20240102952A1 (en) Thermal conductivity measuring device
KR102352623B1 (en) Stack method of Battery cell having swelling detection technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060811

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees