JP3843046B2 - Polymer electrolyte fuel cell system - Google Patents

Polymer electrolyte fuel cell system Download PDF

Info

Publication number
JP3843046B2
JP3843046B2 JP2002184661A JP2002184661A JP3843046B2 JP 3843046 B2 JP3843046 B2 JP 3843046B2 JP 2002184661 A JP2002184661 A JP 2002184661A JP 2002184661 A JP2002184661 A JP 2002184661A JP 3843046 B2 JP3843046 B2 JP 3843046B2
Authority
JP
Japan
Prior art keywords
cooling water
heat exchange
gas
fuel cell
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002184661A
Other languages
Japanese (ja)
Other versions
JP2004031073A (en
Inventor
隆 川鍋
陽 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002184661A priority Critical patent/JP3843046B2/en
Publication of JP2004031073A publication Critical patent/JP2004031073A/en
Application granted granted Critical
Publication of JP3843046B2 publication Critical patent/JP3843046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池に供給される反応ガスを湿熱交換型加湿器を用いて加熱・加湿する固体高分子形燃料電池システムの改良に関する。
【0002】
【従来の技術】
固体高分子形燃料電池は、固体高分子電解質膜をアノード電極(燃料極)とカソード電極(酸化剤極)とでサンドイッチ状に挟んだ構造の単セルを形成し、それぞれの電極に反応ガスを流通させるためのセパレータ(ガス不透性プレート)を単セルの両側に配置して単電池を形成し、更に単電池を複数個積層すると共に両端部にエンドプレートを配置し、これらを締め付けロッドで締め付け一体化することにより電池モジュールを構成して成るものである。そして、アノード電極に水素等の燃料ガス、カソード電極に空気等の酸化剤ガスを供給し、電気化学反応により生じる起電力を取り出す。
【0003】
この固体高分子形燃料電池の固体高分子電解質膜としては、例えばフッ素系イオン交換膜であるパーフルオロスルホン酸膜が用いられているが、これは湿潤状態でプロトン伝導性を発揮する特性を有している。固体高分子電解質膜が湿潤不足又は乾燥状態であると、プロトン伝導性が悪化して発電性能が低下するため、発電中において固体高分子電解質膜を湿潤状態に保持する手段がとられている。
【0004】
固体高分子電解質膜の湿潤手段としては、従来例えば、特開平7−288134のように、酸化剤ガス(一般には空気が用いられる)や燃料ガスを加湿タンクに送り込んで加湿し、この加湿されたガスを電池モジュールに供給することにより固体高分子電解質膜を湿潤させることが知られている。又、電池モジュールに温湿度交換部を付設し、電池モジュールから排出されるオフガスを温湿度交換部に導入すると共に、電池モジュールに供給する反応ガスを温湿度交換部に導入し、この温湿度交換部で温度及び湿度を交換して反応ガスを加熱・加湿し、電池モジュールに供給するようにした手段も公開されている(例えば、特開平6−132032号公報、特開2000−164229号公報)。
【0005】
上記従来の温湿度交換部によると、図8のように前面のエンドプレートAと後面のエンドプレートBとの間に、反応ガス(未反応ガス)用のガスメッシュプレートC、オフガス(既反応ガス)用のメッシュプレートD及び保水性の多孔質体Eを交互に積層し、前面のエンドプレートAの上部には反応ガス入口マニホールドF、下部にはオフガス出口マニホールドGが配設され、後面エンドプレートBの上部にはオフガス入口マニホールドH、下部には反応ガス出口マニホールドIが配設された構造になっている。そして、温湿度交換部に導入されたオフガスと反応ガスは、保水性の多孔質体Eを介して互いに接触することにより温度及び湿度が交換される。
【0006】
【発明が解決しようとする課題】
上記従来の電解質膜湿潤手段のうち、加湿タンクによる場合は、加湿タンクを備えなければならず、且つ加湿タンク内の水を適温に加熱するための外部熱源が必要となるため、固体高分子形燃料電池システムの全体構成が大型化する問題がある。一方、電池モジュールに温湿度交換部を付設する場合は、電池モジュールから排出されるオフガスを利用し、反応ガスとの間で温度及び湿度を交換するので加湿タンクや外部熱源を必要としないが、オフガスを利用するだけでは加湿能力が低く、加湿不足が生じる問題がある。
【0007】
本発明は、このような従来の問題を解決するためになされ、電池モジュールから排出されるオフガスと、電池モジュールに供給する反応ガスとの間で温度及び湿度を交換する場合において、被加湿反応ガスの加湿不足を防止し、温度・湿度を適切な状態に制御できるようにした固体高分子形燃料電池システムを提供することを目的とする。
【0008】
【課題を解決するための手段】
この目的を達成するための手段として、本発明の請求項1は、燃料電池に供給される反応ガスの加熱源及び加湿源として、電池モジュールからのオフガス及び温水を使用する湿熱交換型加湿器を備え、この湿熱交換型加湿器は、オフガス流路と電池冷却水加湿流路が、反応ガス流路を挟んで隣り合って配置されていることを特徴とする。
【0009】
又、本発明の請求項2は、前記温水には電池モジュールから排出された電池冷却水の全量又はその一部を使用することを特徴とする。
【0010】
本発明の請求項3は、前記電池冷却水は、電池モジュールの冷却水出口付近で電池冷却水主回路と電池冷却水加湿回路に分岐し、この分岐箇所には流量制御手段を設け、電池冷却水加湿回路への流量を調整することにより電池モジュールへ供給する反応ガスの露点(温度・湿度)を制御することを特徴とする。
【0012】
本発明の請求項は、前記反応ガスがオフガスによる加湿部分を通過した後、電池冷却水による加湿部分で更に加湿されるように配置されていることを特徴とする。
【0013】
本発明の請求項は、前記湿熱交換型加湿器内では湿熱交換用素子を挟んで反応ガスとオフガスが対向していることを特徴とする。
【0014】
本発明の請求項は、前記湿熱交換型加湿器内では湿熱交換用素子を挟んで反応ガスと電池冷却水が対向していることを特徴とする。
【0015】
本発明の請求項は、前記湿熱交換用素子には透湿膜を用いることを特徴とする。
【0016】
本発明の請求項は、前記湿熱交換用素子は、1種類又は複数種類の材料から形成され、更に1枚又は複数枚から形成されていることを特徴とする。
【0017】
本発明の請求項は、前記湿熱交換型加湿器は電池モジュールとは別体であることを特徴とする。
【0018】
本発明では、電池モジュールに供給する反応ガスを、湿熱交換型加湿器において電池モジュールから排出されるオフガスによるのみならず、温水特に電池モジュールから排出される電池冷却水を利用して加熱・加湿するため、温湿度交換を効率良く行えると共に適切な加湿調整を実現することができる。
【0019】
【発明の実施の形態】
次に、本発明に係る固体高分子形燃料電池システムの実施形態について添付図面を参照しながら説明する。本実施形態では、電池モジュールに供給する酸化剤ガスの加熱・加湿の場合である。
【0020】
図1は、固体高分子形燃料電池システムの構成を示すブロック図である。図中、1は電池モジュールであり、内部構造は省略したが固体高分子電解質膜をアノード電極(燃料極)とカソード電極(酸化剤極)とでサンドイッチ状に挟んだ構造の単セルを形成し、それぞれの電極に反応ガス(燃料ガス又は酸化剤ガス)を流通させるためのセパレータ(ガス不透性プレート)を単セルの両側に配置して単電池を形成し、更に単電池を複数個積層すると共に両端部にエンドプレートを配置し、これらを締め付けロッドで締め付け一体化することにより構成してある。
【0021】
2は湿熱交換型加湿器であり、基本的構成として湿熱交換型加湿器2内のオフガス流路3と反応ガス流路4とが湿熱交換用素子6を挟んで配置され、更に反応ガス流路4と電池冷却水加湿流路5とがもう一つの湿熱交換用素子6を挟んで配置されている。
【0022】
この湿熱交換型加湿器2は、上記電池モジュール1とオフガス回路、被加湿反応ガス回路、電池冷却水加湿回路の3本の接続管を介して連結されている。図2に示すように、湿熱交換型加湿器2内部は、オフガス流路3、反応ガス流路4、電池冷却水加湿流路5、更に反応ガス流路4が湿熱交換用素子6を挟んで、積層構造を形成し、各反応ガス流路4を流通したガスはオフガス流路3と電池冷却水加湿流路5の両側から湿熱交換用素子6を介して加湿され、被加湿反応ガス回路を通り電池モジュール1へ送られる。
【0023】
図3は、図2の湿熱交換型加湿器2のバリエーションの一例であり、この湿熱交換型加湿器2Aは、図2のように電池冷却水加湿流路5とオフガス流路3が1:1の割合で配置されず、1:2の割合で配置されたものである。即ち、図2とは異なり、両側をオフガス流路3に挟まれた反応ガス流路4が存在することになる。尚、この他の配置例も種々考えられ、オフガス流路3と電池冷却水加湿流路5の組み合わせ方及び数は限定されない。
【0024】
図4は湿熱交換型加湿器2の他の構成例を示すもので、オフガス流路3と電池冷却水加湿流路5が、反応ガス流路4から見て直列に配置されたものである。図4(a)と(b)はオフガス流路3と電池冷却水加湿流路5が連結又は積層された一体型のもの、(c)は別体型のものである。
【0025】
図4(a)に示す湿熱交換型加湿器2Bは、反応ガス流路の前半部はオフガスにより加熱・加湿され、後半部は電池冷却水により加熱・加湿される構成に特徴を有する。又、図4(b)に示す湿熱交換型加湿器2Cは、反応ガスがオフガスにより加熱・加湿された後に電池冷却水により加熱・加湿される2Bの構成と、オフガス流路3、反応ガス流路4、電池冷却水加湿流路5を積層する図2のような基本構造を合わせた特徴を有する。更に、図4(c)に示す湿熱交換型加湿器2Dは、オフガス流路3と電池冷却水加湿流路5とを分離する構成に特徴を有する。図4(a)〜(c)の反応ガスはいずれもオフガスにより加熱・加湿された後、電池冷却水により更に加熱・加湿されるような配置になっている点では共通性を備えている。尚、オフガスと電池冷却水の加熱・加湿順序は逆にする構成も可能である。
【0026】
図5に湿熱交換型加湿器2における反応ガスと、オフガス又は電池冷却水との流通方向を示す。図5(a)は対向流、(b)は並行流、(c)は直交流である。一般的に、並行流より対向流の方が熱交換器としての性能は高く、構造上可能であるならば、対向流となるように配置することが望ましい。しかし、本発明の湿熱交換型加湿器における反応ガスと、オフガス又は電池冷却水との流通方向は特に限定しない。
【0027】
ここで、前記湿熱交換用素子6について説明する。この湿熱交換用素子6としては透湿膜を用いる。湿熱交換型加湿器2内では、反応ガスとオフガスの間と、反応ガスと電池冷却水の間とで同じ湿熱交換用素子を使う場合と、違う湿熱交換用素子を使う場合がある。反応ガスと電池冷却水の間の湿熱交換用素子は、液体が直接接触するため、反応ガスとオフガスの間の湿熱交換用素子より高い強度(組成、厚さ等)が要求される。しかし、一般的に湿熱交換用素子6の強度を上げると水分の透過性が悪くなるので、反応ガスとオフガスの間の湿熱交換用素子6は、必要とされる強度を満たす透過性の高い湿熱交換用素子を使用する方が望ましい。
【0028】
湿熱交換用素子6として要求される要素は、湿熱交換を行うため素子内部を水分が移動可能であること、温度交換のためできるだけ薄いこと、湿潤状態で水分は通すがガスは透過しないこと、保水性が高いこと等である。このような湿熱交換用素子6としては、例えば膜状又はチューブ状の高分子(ジャパンゴアテックス社製Gore−select、デュポン社製Nafion、旭化成社製Aciplex、旭硝子社製Flemion等)の他、植物性天然繊維(パルプ、コルク、綿等)、動物性天然繊維、化学繊維、又はガラス繊維を紙状、織布状、又は不織布状にしたもの、具体的には紙、和紙、フィルタ、フェルト等を挙げることができる。更に、高分子吸収剤、カーボン(カーボンペーパー、カーボン織布、カーボン不織布、多孔質カーボンプレート)、セルロース、動物の腸等でもよい。尚、いずれか1種類の材料で形成する場合と、2種類以上の複数の材料から形成する場合とがあり、又1枚で形成する場合と、複数枚で形成する場合とがある。
【0029】
ところで、図1において湿熱交換型加湿器2には電池モジュール1から排出される電池冷却水が導入されるが、この電池冷却水は電池モジュール1の冷却水出口付近で電池冷却水主回路7と電池冷却水加湿回路8に分岐し、電池冷却水加湿回路8を流れた電池冷却水は湿熱交換型加湿器2内で湿熱交換を行った後に電池冷却水主回路7と合流する。そして、電池冷却水主回路7と電池冷却水加湿回路8の分岐箇所に流量制御手段9を設け、湿熱交換型加湿器2へ導入する電池冷却水の流量を調整することにより電池モジュール1へ供給する反応ガスの露点(温度・湿度)を制御する。
【0030】
又、湿熱交換型加湿器2の反応ガス出口には第1のセンサ10が設けられ、電池モジュール1の電池冷却水出口には第2のセンサ11が設けられ、更に電池モジュール1の内部又は表面には第3のセンサ12が適宜設けられ、これらのセンサを介して上記流量制御手段9を制御するように構成されている。この場合、便宜上第1のセンサ10〜第3のセンサ12を全て図1中に記載してあるが、制御の仕方によっては全てのセンサを用いるとは限らない。以下に、いくつかの制御実施例を記載する。
【0031】
[制御実施例1]
湿熱交換型加湿器2の被加湿ガス出口に設けられた第1のセンサ10により流量制御手段9を電子制御する。この場合、第1のセンサ10は温度センサ又は/及び湿度センサであり、流量制御手段9は電子制御バルブである。第1のセンサ10による被加湿反応ガスの出口温度又は/及び湿度の検出値に応じて、流量制御手段9を切り換えることにより湿熱交換型加湿器2に導入する電池冷却水の流量を増減する。
【0032】
[制御実施例2]
湿熱交換型加湿器2の反応ガス流路4出口に設けられた第1のセンサ10に反応する感温型ダイヤフラムにより湿熱交換型加湿器2に導入する電池冷却水の量を制御する。この場合、第1のセンサ10は温度センサであり、流量制御手段9は感温型ダイヤフラムである。
【0033】
[制御実施例3]
電池モジュール1の電池冷却水出口に設けられた第2のセンサ11により流量制御手段9を電子制御する。この場合、第2のセンサ11は温度センサ又は/及び湿度センサであり、流量制御手段9は電子制御バルブである。電池モジュール1から排出される電池冷却水の出口温度又は/及び湿度の検出値に応じて、流量制御手段9を切り換えて湿熱交換型加湿器2に導入する電池冷却水の流量を増減する。
【0034】
[制御実施例4]
電池モジュール1の電池冷却水出口に設けられた第2のセンサ11に反応する感温型ダイヤフラムにより湿熱交換型加湿器2に導入する電池冷却水の量を制御する。この場合、第2のセンサ11は温度センサであり、流量制御手段9は感温型ダイヤフラムである。
【0035】
[制御実施例5]
電池モジュール1に設けられた第3のセンサ12により流量制御手段9を電子制御する。この場合、第3のセンサ12は温度センサ又は/及び湿度センサであり、流量制御手段9は電子制御バルブである。電池モジュール1の内部温度又は/及び湿度の検出値に応じて、流量制御手段9を切り換えて湿熱交換型加湿器2に導入する電池冷却水の流量を増減する。
【0036】
[制御実施例6]
電池モジュール1に設けられた第3のセンサ12に反応する感温型ダイヤフラムにより湿熱交換型加湿器2に導入する電池冷却水の量を制御する。この場合、第3のセンサ12は温度センサであり、流量制御手段9は感温型ダイヤフラムである。
【0037】
[制御実施例7]
図示は省略したが、予め電池冷却水主回路7と湿熱交換型加湿器2への電池冷却水加湿回路8の分岐部に電池冷却水主回路7と電池冷却水加湿回路8への流量比を設定したオリフィスを用いる。この場合は、第1のセンサ10〜第3のセンサ12はいずれも設けなくてよい。
【0038】
このように構成された固体高分子形燃料電池システムにおいて、反応ガスは湿熱交換型加湿器2を流通した後に電池モジュール1に供給される。湿熱交換型加湿器2を流通する際に、反応ガスと、電池モジュール1から排出されたオフガス及び電池冷却水との間で温度及び湿度が交換される。即ち、顕熱のみならず潜熱も同時に交換される。
【0039】
電池モジュール1から排出されるオフガスは、その時点での電池モジュール1の内部温度とほぼ同じ温度を有し、且つ電気化学反応によりカソード電極で生じる生成水(飽和に近い水蒸気)を含んでいる。このオフガスと反応ガスとの温湿度交換は、湿熱交換型加湿器2内のオフガス流路3と反応ガス流路4が湿熱交換用素子6を介して接触することで行われる。
【0040】
即ち、低温低湿の反応ガスと高温高湿のオフガスとが、湿熱交換用素子6を介して接触することにより、オフガス中に含まれている水蒸気が凝縮し、その凝縮水により湿熱交換用素子6が濡れる。又、同時に熱交換も行われるため、反応ガスの温度が上昇すると共に、湿熱交換用素子6から水分が蒸発することにより反応ガスが加湿される。これにより、加熱・加湿された被加湿反応ガスを電池モジュール1に供給できる。
【0041】
このオフガスによる反応ガスの加熱・加湿と同時に、湿熱交換型加湿器2の電池冷却水加湿流路5において、電池モジュール1から排出された電池冷却水と反応ガスとの間で温度及び湿度交換が行われる。電池モジュール1から排出された電池冷却水は、その時点での電池モジュール1の内部温度とほぼ同じ温度を有しており、この温水と反応ガスとが湿熱交換用素子6を介して接触することにより、温度及び湿度の交換が行われる。これにより、反応ガスはオフガスによる加熱・加湿のみならず電池冷却水による加熱・加湿が加わるため、温湿度交換が効率良く行われると共に、加湿能力が増大するため電池モジュール1の固体高分子電解質膜を充分に加湿することができる。
【0042】
電池モジュール1の運転開始時には、未だ電池モジュール1の温度は低く、電池モジュール1から排出されるオフガスの温度が低い。オフガスの温度が低いとオフガスの飽和水蒸気量が低く、この低温のオフガスを湿熱交換型加湿器2に導入して反応ガスとの間で温度及び湿度を交換しても反応ガスを充分に加湿することはできない。
【0043】
このようなオフガス低温(低露点)時において、例えば前記制御実施例5を用いた場合、電池モジュール1の温度又は/及び湿度を第3のセンサ12で検出し、その検出信号を制御装置(図略)に入力して演算し、この制御装置から流量制御手段9に指令信号が出力される。そして、流量制御手段9により電池モジュール1から排出される電池冷却水を湿熱交換型加湿器2に適量導入する。従って、高温高湿のオフガスが得られない発電開始時においても、電池冷却水の一部を利用することで充分に加熱・加湿した被加湿反応ガスを電池モジュール1に供給することが可能となる。
【0044】
電池モジュール1の温度が徐々に上昇して運転温度になると、電池モジュール1から排出されるオフガスの温度が運転温度近傍まで上昇する。運転中のオフガスは多量の水蒸気を含んでいるため、オフガスを湿熱交換型加湿器2に導入して反応ガスとの間で温度及び湿度を交換すると反応ガスを充分に加湿することができる。
【0045】
このようなオフガス高温(高露点)時において、例えば前記制御実施例5を用いた場合、電池モジュール1の温度又は/及び湿度を第3のセンサ12で検出し、その検出信号を制御装置に入力して演算し、この制御装置から流量制御手段9に指令信号が出力される。そして、流量制御手段9により電池モジュール1から排出される電池冷却水を湿熱交換型加湿器2に適量導入する。この時はオフガス低温時とは異なって、オフガスによる加湿能力が高いため、電池冷却水による加湿能力は低くてよい。従って、湿熱交換型加湿器2に導入する電池冷却水の流量は少なくて済む。
【0046】
このようにして、例えば前記制御実施例5を用いた場合、電池モジュール1の温度又は/及び湿度を第3のセンサ12で検出し、この検出値に基づいて流量制御手段9を制御し、電池モジュール1から湿熱交換型加湿器2に導入する電池冷却水の流量を調整することにより、電池モジュール1に供給すべき被加湿反応ガスの加熱・加湿を最適に行うことができる。
【0047】
図6は反応ガスの加熱源及び加湿源としてオフガスのみを用いた場合と、オフガス+電池冷却水を用いた場合との実験結果を示すグラフである。電池モジュール1から排出される電池冷却水を併用することにより著しく能力改善できることが判明した。この実験において、湿熱交換用素子6として透湿膜(和紙)を用いた。尚、酸化剤利用率:40%、電池冷却水分配比率:30%である。
【0048】
本実施形態の他の特徴点として、前記湿熱交換型加湿器2は電池モジュール1とは別体に構成したことである。従来では電池モジュールと一体に形成されているため長大となり、システム全体が大型化する傾向にあった。本実施形態では、別体構成であるから電池モジュール1に対する湿熱交換型加湿器2の配置場所の自由度が大きくなり、図7のように電池モジュール1の近傍いずれの位置でもよい。湿熱交換型加湿器2の配置場所を任意に選択することでシステム全体の小型化が可能となり、又、メンテナンス時における点検、修理等の作業が電池モジュール1とは関係なく行えるため、容易になる。
【0049】
尚、上記の実施形態では、被加湿反応ガスは酸化剤ガスについて説明したが、本発明は酸化剤ガスに限定されることなく、燃料ガスについても同様の要領で実施することが可能である。
【0050】
【発明の効果】
以上説明したように、本発明に係る固体高分子形燃料電池システムにおいて、請求項1の発明によれば、燃料電池に供給される反応ガスの加熱源及び加湿源として、電池モジュールからのオフガス及び温水を使用する湿熱交換型加湿器を備えているので、オフガスによる温湿度交換のみならず、温水による温湿度交換も行え、反応ガスを効率良く加熱・加湿することができる。又、湿熱交換型加湿器は、オフガス流路と電池冷却水加湿流路が、反応ガス流路を挟んで隣り合って配置されているので、両流路から同時に加湿することができる。
【0051】
又、請求項2の発明によれば、前記温水には電池モジュールから排出された電池冷却水の全量又はその一部を使用するので、温水を作るための外部熱源が不要となり、システムの小型化が可能になると共に、温湿度交換用媒体として適切に有効利用することができる。又、電池冷却水はオフガスよりも熱量が大きいので、オフガスだけでは達成できない高露点への加熱・加湿が可能となる。
【0052】
請求項3の発明よれば、前記湿熱交換型加湿器用温水は、電池モジュールの冷却水出口付近で電池冷却水主回路と電池冷却水加湿回路に分岐し、この分岐箇所には流量制御手段を設け、前記電池冷却水加湿回路への流量を調整することにより電池モジュールへ供給する反応ガスの露点(温度・湿度)を制御するので、温湿度交換用媒体としての作用を適切に調整することができる。又、湿熱交換型加湿器へ流通する電池冷却水の比率は、電池冷却水主回路の0〜100%の範囲で任意に可変できる。
【0054】
請求項の発明によれば、前記反応ガスがオフガスによる加湿部分を通過した後、電池冷却水による加湿部分で更に加湿されるように配置されているので、オフガスの露点に対して一意に決まる値まで加湿された反応ガスを、電池冷却水により再加熱・加湿することにより、電池モジュールの状態に合わせた最適な加湿制御が可能となる。
【0055】
請求項の発明によれば、前記湿熱交換型加湿器内では湿熱交換用素子を挟んで反応ガスとオフガスが対向しているので、並行流の場合よりもオフガスによる温湿度交換を効率良く行うことができる。
【0056】
請求項の発明によれば、前記湿熱交換型加湿器内では湿熱交換用素子を挟んで反応ガスと電池冷却水が対向しているので、並行流の場合よりも電池冷却水による温湿度交換を効率良く行うことができる。
【0057】
請求項の発明によれば、前記湿熱交換用素子には透湿膜を用いるので、透水性に優れており且つ保水状態においてはガスを通さず、このため温湿度交換が円滑に行われると共に、反応ガス中にオフガスが混入するのを防止することができる。
【0058】
請求項の発明によれば、前記湿熱交換用素子は、1種類又は複数種類の材料から形成され、更に1枚又は複数枚から形成されているので、湿熱交換用素子として最適な機能を有するものを容易に作製できると共に、電池モジュールの規模に対応する機能を備えた湿熱交換型加湿器を作製することができる。
【0059】
そして、請求項の発明によれば、前記湿熱交換型加湿器は電池モジュールとは別体であるので、電池モジュールに対する湿熱交換型加湿器の配置場所の自由度が向上し、電池モジュールとの接続配管や燃料電池システム内のレイアウトを考慮して最適な配置を選ぶことが可能となる。又、システム全体の小型化を図ることも可能となる。更に、湿熱交換型加湿器の保守又は調整時に、電池モジュールとは関係なく作業ができるため便利である。
【図面の簡単な説明】
【図1】本発明に係る固体高分子形燃料電池システムの実施形態を示す構成ブロック図である。
【図2】本発明に係る固体高分子形燃料電池システムにおける湿熱交換型加湿器の基本的構成を示す説明図である。
【図3】本発明に係る固体高分子形燃料電池システムにおける湿熱交換型加湿器の基本的構成に対し、オフガス流路の数と電池冷却水加湿流路の数の比率を変化させたものの説明図である。
【図4】本発明に係る固体高分子形燃料電池システムにおける湿熱交換型加湿器の他の構成例を示すもので、オフガス流路と電池冷却水加湿流路が反応ガス流路から見て直列に配置された構成で、(a)と(b)はオフガス流路と電池冷却水加湿流路が連結又は積層された一体型、(c)は別体型をそれぞれ示す説明図である。
【図5】本発明に係る固体高分子形燃料電池システムにおける湿熱交換型加湿器の反応ガスと、オフガス又は電池冷却水との流通方向を示すもので、(a)は対向流の場合、(b)は並行流の場合、(c)は直交流の場合をそれぞれ示す説明図である。
【図6】本発明に係る固体高分子形燃料電池システムにおける反応ガスの加熱源・加湿源としてオフガスのみを用いた場合と、オフガス+電池冷却水を用いた場合との実験結果を示すグラフである。
【図7】本発明に係る固体高分子形燃料電池システムにおける湿熱交換型加湿器と電池モジュールの位置関係を示す説明図である。
【図8】従来の固体高分子形燃料電池システム例における温湿度交換部を示す構成ブロック図である。
【符号の説明】
1…電池モジュール
2…湿熱交換型加湿器
3…オフガス流路
4…反応ガス流路
5…電池冷却水加湿流路
6…湿熱交換用素子
7…電池冷却水主回路
8…電池冷却水加湿回路
9…流量制御手段
10…第1のセンサ
11…第2のセンサ
12…第3のセンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a polymer electrolyte fuel cell system in which a reaction gas supplied to a fuel cell is heated and humidified using a humid heat exchange type humidifier.
[0002]
[Prior art]
A polymer electrolyte fuel cell forms a single cell having a structure in which a solid polymer electrolyte membrane is sandwiched between an anode electrode (fuel electrode) and a cathode electrode (oxidant electrode), and a reactive gas is supplied to each electrode. Separators (gas-impermeable plates) for distribution are arranged on both sides of a single cell to form a single cell, and a plurality of single cells are stacked and end plates are arranged at both ends, and these are clamped with a rod. A battery module is formed by fastening and integrating. Then, a fuel gas such as hydrogen is supplied to the anode electrode and an oxidant gas such as air is supplied to the cathode electrode, and an electromotive force generated by the electrochemical reaction is taken out.
[0003]
For example, a perfluorosulfonic acid membrane, which is a fluorine-based ion exchange membrane, is used as the solid polymer electrolyte membrane of this polymer electrolyte fuel cell, and this has the property of exhibiting proton conductivity in a wet state. is doing. When the solid polymer electrolyte membrane is insufficiently wet or in a dry state, proton conductivity is deteriorated and power generation performance is lowered. Therefore, means for keeping the solid polymer electrolyte membrane in a wet state during power generation is taken.
[0004]
As a means for wetting the solid polymer electrolyte membrane, conventionally, for example, as disclosed in JP-A-7-288134, an oxidant gas (generally air is used) or a fuel gas is sent to a humidification tank and humidified. It is known to wet a solid polymer electrolyte membrane by supplying gas to a battery module. In addition, a temperature / humidity exchange unit is attached to the battery module, and off-gas discharged from the battery module is introduced into the temperature / humidity exchange unit, and a reaction gas supplied to the battery module is introduced into the temperature / humidity exchange unit. Means for heating and humidifying the reaction gas by exchanging temperature and humidity in the unit and supplying the battery module to the battery module are also disclosed (for example, JP-A-6-132032, JP-A-2000-164229). .
[0005]
According to the conventional temperature / humidity exchanging section, a gas mesh plate C for reactive gas (unreacted gas), an off-gas (reacted gas) between the front end plate A and the rear end plate B as shown in FIG. ) Mesh plates D and water-retaining porous bodies E are alternately stacked, and a reaction gas inlet manifold F is disposed at the upper part of the front end plate A, and an off-gas outlet manifold G is disposed at the lower part. An off-gas inlet manifold H is disposed in the upper part of B, and a reaction gas outlet manifold I is disposed in the lower part. Then, the off-gas and the reaction gas introduced into the temperature / humidity exchange section are brought into contact with each other via the water-retaining porous body E, whereby the temperature and humidity are exchanged.
[0006]
[Problems to be solved by the invention]
Among the conventional electrolyte membrane wetting means, in the case of a humidifying tank, a humidifying tank must be provided, and an external heat source for heating the water in the humidifying tank to an appropriate temperature is required. There is a problem that the overall configuration of the fuel cell system is increased. On the other hand, when the temperature / humidity exchange part is attached to the battery module, the off-gas discharged from the battery module is used, and the temperature and humidity are exchanged with the reaction gas. The use of off-gas alone has a problem of insufficient humidification, resulting in insufficient humidification.
[0007]
The present invention has been made to solve such a conventional problem. In the case where the temperature and humidity are exchanged between the off-gas discharged from the battery module and the reaction gas supplied to the battery module, the humidified reaction gas is used. It is an object of the present invention to provide a polymer electrolyte fuel cell system which can prevent insufficient humidification and can control the temperature and humidity to appropriate states.
[0008]
[Means for Solving the Problems]
  As means for achieving this object, claim 1 of the present invention provides a heating source for a reaction gas supplied to a fuel cell.as well asOff-gas from battery module as humidification sourceas well asHumid heat exchange type humidifier using hot waterIn this wet heat exchange type humidifier, the off-gas flow path and the battery cooling water humidification flow path are arranged adjacent to each other with the reaction gas flow path interposed therebetween.It is characterized by that.
[0009]
According to a second aspect of the present invention, the total amount of battery cooling water discharged from the battery module or a part thereof is used as the hot water.
[0010]
According to a third aspect of the present invention, the battery cooling water branches into a battery cooling water main circuit and a battery cooling water humidification circuit in the vicinity of the cooling water outlet of the battery module. The dew point (temperature / humidity) of the reaction gas supplied to the battery module is controlled by adjusting the flow rate to the water humidification circuit.
[0012]
  Claims of the invention4Is characterized in that the reaction gas is disposed so as to be further humidified in the humidified portion by the battery cooling water after passing through the humidified portion by the off-gas.
[0013]
  Claims of the invention5Is characterized in that the reactive gas and the off-gas are opposed to each other with the wet heat exchange element sandwiched in the wet heat exchange type humidifier.
[0014]
  Claims of the invention6Is characterized in that the reaction gas and the battery cooling water face each other with the wet heat exchange element sandwiched in the wet heat exchange type humidifier.
[0015]
  Claims of the invention7Is characterized in that a moisture permeable membrane is used for the wet heat exchange element.
[0016]
  Claims of the invention8Is characterized in that the wet heat exchange element is formed of one or more kinds of materials and further formed of one or more sheets.
[0017]
  Claims of the invention9The wet heat exchange type humidifier is separate from the battery module.
[0018]
In the present invention, the reaction gas supplied to the battery module is heated / humidified not only by the off-gas discharged from the battery module in the wet heat exchange type humidifier, but also using hot water, particularly battery cooling water discharged from the battery module. Therefore, the temperature and humidity can be exchanged efficiently and appropriate humidification adjustment can be realized.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of a polymer electrolyte fuel cell system according to the present invention will be described with reference to the accompanying drawings. In this embodiment, it is a case of heating and humidifying the oxidant gas supplied to the battery module.
[0020]
FIG. 1 is a block diagram showing the configuration of a polymer electrolyte fuel cell system. In the figure, 1 is a battery module, and the internal structure is omitted, but a single cell having a structure in which a solid polymer electrolyte membrane is sandwiched between an anode electrode (fuel electrode) and a cathode electrode (oxidant electrode) is formed. A separator (gas impervious plate) for flowing a reaction gas (fuel gas or oxidant gas) to each electrode is arranged on both sides of a single cell to form a single cell, and a plurality of single cells are stacked. At the same time, end plates are arranged at both ends, and these are integrated by fastening with a fastening rod.
[0021]
Reference numeral 2 denotes a wet heat exchange type humidifier. As a basic configuration, an off-gas flow path 3 and a reaction gas flow path 4 in the wet heat exchange humidifier 2 are arranged with a wet heat exchange element 6 interposed therebetween, and further a reaction gas flow path. 4 and the battery cooling water humidification channel 5 are arranged with another wet heat exchange element 6 interposed therebetween.
[0022]
The humid heat exchange type humidifier 2 is connected to the battery module 1 through three connection pipes of an off gas circuit, a humidified reaction gas circuit, and a battery cooling water humidification circuit. As shown in FIG. 2, the inside of the humid heat exchange type humidifier 2 includes an off gas passage 3, a reaction gas passage 4, a battery cooling water humidification passage 5, and a reaction gas passage 4 sandwiching a wet heat exchange element 6. The gas that has formed the laminated structure and has flowed through each reaction gas channel 4 is humidified from both sides of the off-gas channel 3 and the battery cooling water humidification channel 5 through the wet heat exchange element 6, To the battery module 1.
[0023]
FIG. 3 is an example of a variation of the wet heat exchange type humidifier 2 of FIG. 2, and this wet heat exchange type humidifier 2A has a battery cooling water humidification channel 5 and an off-gas channel 3 of 1: 1 as shown in FIG. Are not arranged at a ratio of 1: 2, but are arranged at a ratio of 1: 2. That is, unlike FIG. 2, there is a reaction gas channel 4 sandwiched between the off-gas channels 3 on both sides. Various other arrangement examples are also conceivable, and the combination and number of off-gas passages 3 and battery cooling water humidification passages 5 are not limited.
[0024]
FIG. 4 shows another configuration example of the wet heat exchange type humidifier 2, in which the off gas passage 3 and the battery cooling water humidification passage 5 are arranged in series as viewed from the reaction gas passage 4. 4A and 4B show an integrated type in which the off-gas flow path 3 and the battery cooling water humidification flow path 5 are connected or stacked, and FIG. 4C shows a separate type.
[0025]
The wet heat exchange type humidifier 2B shown in FIG. 4A is characterized in that the first half of the reaction gas channel is heated and humidified by off-gas and the latter half is heated and humidified by battery cooling water. Also, the humid heat exchange type humidifier 2C shown in FIG. 4B has a configuration of 2B in which the reaction gas is heated and humidified by the off gas and then heated and humidified by the battery cooling water, the off gas flow path 3, the reaction gas flow 2 and the battery cooling water humidification flow path 5 are laminated together. Furthermore, the wet heat exchange type humidifier 2D shown in FIG. 4C is characterized in that the off-gas flow path 3 and the battery cooling water humidification flow path 5 are separated. The reaction gases in FIGS. 4A to 4C are common in that they are arranged to be further heated and humidified by battery cooling water after being heated and humidified by off-gas. In addition, the structure which reverses the heating and humidification order of off gas and battery cooling water is also possible.
[0026]
FIG. 5 shows the flow direction of the reaction gas and off gas or battery cooling water in the wet heat exchange type humidifier 2. FIG. 5A shows a counter flow, FIG. 5B shows a parallel flow, and FIG. 5C shows a cross flow. In general, the counter flow is higher in performance as a heat exchanger than the parallel flow, and it is desirable to arrange the counter flow so that the counter flow is possible if structurally possible. However, the flow direction of the reaction gas and the off gas or the battery cooling water in the wet heat exchange type humidifier of the present invention is not particularly limited.
[0027]
Here, the wet heat exchange element 6 will be described. A moisture permeable film is used as the wet heat exchange element 6. In the wet heat exchange type humidifier 2, there are cases where the same wet heat exchange element is used between the reaction gas and the off gas, and between the reaction gas and the battery cooling water, and different wet heat exchange elements are used. The wet heat exchange element between the reaction gas and the battery cooling water is required to have higher strength (composition, thickness, etc.) than the wet heat exchange element between the reaction gas and off-gas because the liquid is in direct contact. However, since the moisture permeability generally deteriorates when the strength of the wet heat exchange element 6 is increased, the wet heat exchange element 6 between the reaction gas and the off-gas has high permeability wet heat that satisfies the required strength. It is preferable to use a replacement element.
[0028]
The elements required as the wet heat exchange element 6 are that moisture can move inside the element to perform wet heat exchange, that it is as thin as possible for temperature exchange, that moisture passes through in a wet state but does not pass gas, It is high in nature. Examples of the wet heat exchange element 6 include, for example, a membrane-like or tube-like polymer (Gore-select manufactured by Japan Gore-Tex, Nafion manufactured by DuPont, Aciplex manufactured by Asahi Kasei Co., Ltd., Flemion manufactured by Asahi Glass Co., etc.), and plants. Natural fiber (pulp, cork, cotton, etc.), animal natural fiber, chemical fiber, or glass fiber in paper, woven, or non-woven fabric, specifically paper, Japanese paper, filter, felt, etc. Can be mentioned. Furthermore, it may be a polymer absorbent, carbon (carbon paper, carbon woven fabric, carbon nonwoven fabric, porous carbon plate), cellulose, animal intestine, or the like. It should be noted that there is a case where it is formed from any one kind of material, a case where it is formed from two or more kinds of materials, a case where it is formed from one sheet, and a case where it is formed from a plurality of sheets.
[0029]
Incidentally, in FIG. 1, the battery cooling water discharged from the battery module 1 is introduced into the wet heat exchange type humidifier 2, and this battery cooling water is connected to the battery cooling water main circuit 7 near the cooling water outlet of the battery module 1. The battery cooling water branching to the battery cooling water humidification circuit 8 and flowing through the battery cooling water humidification circuit 8 is subjected to wet heat exchange in the humid heat exchange type humidifier 2 and then merges with the battery cooling water main circuit 7. Then, a flow rate control means 9 is provided at a branching point of the battery cooling water main circuit 7 and the battery cooling water humidification circuit 8 to supply the battery module 1 by adjusting the flow rate of the battery cooling water introduced into the wet heat exchange type humidifier 2. Control the dew point (temperature / humidity) of the reaction gas.
[0030]
In addition, a first sensor 10 is provided at the reaction gas outlet of the humid heat exchange type humidifier 2, a second sensor 11 is provided at the battery cooling water outlet of the battery module 1, and the inside or the surface of the battery module 1. The third sensor 12 is provided as appropriate, and is configured to control the flow rate control means 9 via these sensors. In this case, all of the first sensor 10 to the third sensor 12 are illustrated in FIG. 1 for convenience, but not all sensors are used depending on the control method. Several control examples are described below.
[0031]
[Control Example 1]
The flow rate control means 9 is electronically controlled by the first sensor 10 provided at the humidified gas outlet of the humid heat exchange type humidifier 2. In this case, the first sensor 10 is a temperature sensor and / or a humidity sensor, and the flow rate control means 9 is an electronic control valve. The flow rate of the battery cooling water introduced into the wet heat exchange type humidifier 2 is increased or decreased by switching the flow rate control means 9 according to the outlet temperature of the humidified reaction gas or / and the detected humidity value by the first sensor 10.
[0032]
[Control Example 2]
The amount of battery cooling water introduced into the wet heat exchange type humidifier 2 is controlled by a temperature sensitive diaphragm that reacts with the first sensor 10 provided at the outlet of the reaction gas flow path 4 of the wet heat exchange type humidifier 2. In this case, the first sensor 10 is a temperature sensor, and the flow rate control means 9 is a temperature-sensitive diaphragm.
[0033]
[Control Example 3]
The flow rate control means 9 is electronically controlled by the second sensor 11 provided at the battery cooling water outlet of the battery module 1. In this case, the second sensor 11 is a temperature sensor and / or a humidity sensor, and the flow rate control means 9 is an electronic control valve. In accordance with the outlet temperature of the battery cooling water discharged from the battery module 1 and / or the detected value of humidity, the flow rate control means 9 is switched to increase or decrease the flow rate of the battery cooling water introduced into the humid heat exchange type humidifier 2.
[0034]
[Control Example 4]
The amount of battery cooling water introduced into the wet heat exchange humidifier 2 is controlled by a temperature-sensitive diaphragm that reacts with the second sensor 11 provided at the battery cooling water outlet of the battery module 1. In this case, the second sensor 11 is a temperature sensor, and the flow rate control means 9 is a temperature-sensitive diaphragm.
[0035]
[Control Example 5]
The flow rate control means 9 is electronically controlled by a third sensor 12 provided in the battery module 1. In this case, the third sensor 12 is a temperature sensor and / or a humidity sensor, and the flow rate control means 9 is an electronic control valve. According to the detected value of the internal temperature or / and humidity of the battery module 1, the flow rate control means 9 is switched to increase or decrease the flow rate of the battery cooling water introduced into the wet heat exchange type humidifier 2.
[0036]
[Control Example 6]
The amount of battery cooling water introduced into the wet heat exchange type humidifier 2 is controlled by a temperature sensitive diaphragm that reacts with the third sensor 12 provided in the battery module 1. In this case, the third sensor 12 is a temperature sensor, and the flow rate control means 9 is a temperature-sensitive diaphragm.
[0037]
[Control Example 7]
Although not shown in the figure, the flow rate ratio to the battery cooling water main circuit 7 and the battery cooling water humidification circuit 8 is preliminarily added to the branch portion of the battery cooling water main circuit 7 and the battery cooling water humidification circuit 8 to the wet heat exchange humidifier 2. Use the set orifice. In this case, it is not necessary to provide any of the first sensor 10 to the third sensor 12.
[0038]
In the polymer electrolyte fuel cell system configured as described above, the reaction gas is supplied to the battery module 1 after passing through the humid heat exchange type humidifier 2. When circulating through the humid heat exchange type humidifier 2, the temperature and humidity are exchanged between the reaction gas and the off gas and battery cooling water discharged from the battery module 1. That is, not only sensible heat but also latent heat is exchanged at the same time.
[0039]
The off-gas discharged from the battery module 1 has substantially the same temperature as the internal temperature of the battery module 1 at that time, and includes generated water (saturated water vapor) generated at the cathode electrode by an electrochemical reaction. The temperature / humidity exchange between the off gas and the reaction gas is performed by contacting the off gas flow path 3 and the reaction gas flow path 4 in the wet heat exchange type humidifier 2 via the wet heat exchange element 6.
[0040]
That is, the low-temperature and low-humidity reaction gas and the high-temperature and high-humidity off-gas are brought into contact with each other through the wet heat exchange element 6, whereby water vapor contained in the off gas is condensed, and the wet heat exchange element 6 is condensed by the condensed water. Gets wet. Further, since heat exchange is also performed at the same time, the temperature of the reaction gas rises and the reaction gas is humidified by evaporating moisture from the wet heat exchange element 6. Thereby, the humidified reaction gas heated and humidified can be supplied to the battery module 1.
[0041]
Simultaneously with the heating and humidification of the reaction gas by the off-gas, the temperature and humidity are exchanged between the battery cooling water discharged from the battery module 1 and the reaction gas in the battery cooling water humidification passage 5 of the wet heat exchange type humidifier 2. Done. The battery cooling water discharged from the battery module 1 has substantially the same temperature as the internal temperature of the battery module 1 at that time, and the hot water and the reaction gas are in contact with each other through the wet heat exchange element 6. Thus, the temperature and humidity are exchanged. As a result, the reaction gas is not only heated / humidified by off-gas but also heated / humidified by the battery cooling water, so that the temperature / humidity can be exchanged efficiently and the humidifying capacity is increased, so that the solid polymer electrolyte membrane of the battery module 1 is increased. Can be sufficiently humidified.
[0042]
At the start of operation of the battery module 1, the temperature of the battery module 1 is still low, and the temperature of the off-gas discharged from the battery module 1 is low. When the off-gas temperature is low, the amount of saturated water vapor in the off-gas is low. Even if the low-temperature off-gas is introduced into the wet heat exchange humidifier 2 and the temperature and humidity are exchanged with the reaction gas, the reaction gas is sufficiently humidified. It is not possible.
[0043]
At such an off-gas low temperature (low dew point), for example, when the control example 5 is used, the temperature or / and humidity of the battery module 1 is detected by the third sensor 12, and the detection signal is transmitted to the control device (FIG. The control device outputs a command signal to the flow rate control means 9. Then, an appropriate amount of battery cooling water discharged from the battery module 1 by the flow rate control means 9 is introduced into the wet heat exchange type humidifier 2. Therefore, even at the start of power generation where a high-temperature and high-humidity off-gas cannot be obtained, it becomes possible to supply the humidified reaction gas sufficiently heated and humidified to the battery module 1 by using a part of the battery cooling water. .
[0044]
When the temperature of the battery module 1 gradually rises to the operating temperature, the temperature of the offgas discharged from the battery module 1 rises to near the operating temperature. Since the off gas during operation contains a large amount of water vapor, the reaction gas can be sufficiently humidified by introducing the off gas into the wet heat exchange humidifier 2 and exchanging the temperature and humidity with the reaction gas.
[0045]
At such high off-gas temperature (high dew point), for example, when the control example 5 is used, the temperature or / and humidity of the battery module 1 is detected by the third sensor 12, and the detection signal is input to the control device. Then, a command signal is output from the control device to the flow rate control means 9. Then, an appropriate amount of battery cooling water discharged from the battery module 1 by the flow rate control means 9 is introduced into the wet heat exchange type humidifier 2. At this time, unlike the off-gas low temperature, since the humidification capability by off-gas is high, the humidification capability by battery cooling water may be low. Therefore, the flow rate of the battery cooling water introduced into the wet heat exchange type humidifier 2 is small.
[0046]
Thus, for example, when the control embodiment 5 is used, the temperature or / and humidity of the battery module 1 is detected by the third sensor 12, and the flow rate control means 9 is controlled based on the detected value, so that the battery By adjusting the flow rate of the battery cooling water introduced from the module 1 into the humid heat exchange type humidifier 2, the humidified reaction gas to be supplied to the battery module 1 can be heated and humidified optimally.
[0047]
  FIG. 6 shows a reaction gas heating source.as well asIt is a graph which shows the experimental result with the case where only off gas is used as a humidification source, and the case where off gas + battery cooling water is used. It has been found that the capacity can be remarkably improved by using battery cooling water discharged from the battery module 1 in combination. In this experiment, a moisture permeable film (Japanese paper) was used as the wet heat exchange element 6. The oxidant utilization rate is 40% and the battery cooling water distribution ratio is 30%.
[0048]
Another feature of the present embodiment is that the humid heat exchange type humidifier 2 is configured separately from the battery module 1. Conventionally, since the battery module is formed integrally with the battery module, the battery system is long and the entire system tends to be large. In this embodiment, since it is a separate structure, the degree of freedom of the arrangement location of the wet heat exchange type humidifier 2 with respect to the battery module 1 is increased, and any position in the vicinity of the battery module 1 as shown in FIG. By arbitrarily selecting the location of the humid heat exchange type humidifier 2, it is possible to reduce the size of the entire system, and it is easy to perform inspections, repairs, etc. during maintenance regardless of the battery module 1. .
[0049]
In the above-described embodiment, the humidified reaction gas is described as the oxidant gas. However, the present invention is not limited to the oxidant gas, and the fuel gas can be implemented in the same manner.
[0050]
【The invention's effect】
  As described above, in the polymer electrolyte fuel cell system according to the present invention, according to the invention of claim 1, the heating source of the reaction gas supplied to the fuel cell.as well asOff-gas from battery module as humidification sourceas well asSince the wet heat exchange type humidifier using hot water is provided, not only temperature / humidity exchange by off-gas but also temperature / humidity exchange by hot water can be performed, and the reaction gas can be efficiently heated and humidified.Further, in the wet heat exchange type humidifier, the off gas flow path and the battery cooling water humidification flow path are arranged adjacent to each other with the reaction gas flow path interposed therebetween, so that humidification can be simultaneously performed from both flow paths.
[0051]
According to the invention of claim 2, since the whole amount or a part of the battery cooling water discharged from the battery module is used for the hot water, an external heat source for making the hot water is unnecessary, and the system is miniaturized. In addition, the temperature and humidity exchange medium can be appropriately and effectively used. In addition, since the battery cooling water has a larger amount of heat than the off gas, it can be heated and humidified to a high dew point that cannot be achieved by the off gas alone.
[0052]
According to the invention of claim 3, the hot water for the humid heat exchange type humidifier branches into a battery cooling water main circuit and a battery cooling water humidification circuit in the vicinity of the cooling water outlet of the battery module, and a flow rate control means is provided at this branching location. Since the dew point (temperature / humidity) of the reaction gas supplied to the battery module is controlled by adjusting the flow rate to the battery cooling water humidification circuit, the operation as a temperature / humidity exchange medium can be adjusted appropriately. . Further, the ratio of the battery cooling water flowing to the wet heat exchange type humidifier can be arbitrarily changed in the range of 0 to 100% of the battery cooling water main circuit.
[0054]
  Claim4According to the invention, since the reaction gas is disposed so as to be further humidified by the humidified portion by the battery cooling water after passing through the humidified portion by the offgas, the humidified to a value uniquely determined with respect to the dew point of the offgas. By reheating and humidifying the reaction gas thus obtained with battery cooling water, it is possible to perform optimum humidification control in accordance with the state of the battery module.
[0055]
  Claim5According to the invention, since the reaction gas and the off gas are opposed to each other with the wet heat exchange element in the wet heat exchange type humidifier, the temperature and humidity exchange by the off gas can be performed more efficiently than in the case of the parallel flow. .
[0056]
  Claim6According to the invention, since the reaction gas and the battery cooling water are opposed to each other with the wet heat exchange element in the wet heat exchange type humidifier, the temperature and humidity exchange by the battery cooling water can be performed more efficiently than in the case of parallel flow. It can be carried out.
[0057]
  Claim7According to the invention, since the moisture heat exchange element uses a moisture permeable film, the moisture permeable film is excellent in water permeability and does not pass gas in the water retention state. It is possible to prevent the off gas from being mixed therein.
[0058]
  Claim8According to the invention, the element for wet heat exchange is formed of one or a plurality of types of materials, and further formed of one or a plurality of sheets, so that an element having an optimum function as the element for wet heat exchange can be easily obtained. In addition, a wet heat exchange type humidifier having a function corresponding to the scale of the battery module can be manufactured.
[0059]
  And claims9According to the invention, since the wet heat exchange type humidifier is separate from the battery module, the degree of freedom of the arrangement location of the wet heat exchange type humidifier with respect to the battery module is improved, and the connection pipe to the battery module and the fuel cell are improved. It is possible to select an optimal arrangement in consideration of the layout in the system. It is also possible to reduce the size of the entire system. Furthermore, it is convenient because work can be performed regardless of the battery module during maintenance or adjustment of the humid heat exchange type humidifier.
[Brief description of the drawings]
FIG. 1 is a configuration block diagram showing an embodiment of a polymer electrolyte fuel cell system according to the present invention.
FIG. 2 is an explanatory diagram showing a basic configuration of a wet heat exchange type humidifier in the polymer electrolyte fuel cell system according to the present invention.
FIG. 3 is a diagram illustrating a basic structure of a wet heat exchange type humidifier in a polymer electrolyte fuel cell system according to the present invention, in which the ratio of the number of off-gas flow paths and the number of battery cooling water humidification flow paths is changed. FIG.
FIG. 4 shows another example of the configuration of the humid heat exchange type humidifier in the polymer electrolyte fuel cell system according to the present invention, in which the off gas flow path and the battery cooling water humidification flow path are viewed in series as viewed from the reaction gas flow path. (A) and (b) are the integrated type by which the off-gas flow path and the battery cooling water humidification flow path were connected or laminated | stacked, (c) is explanatory drawing which shows a separate type | mold, respectively.
FIG. 5 shows the flow direction of the reaction gas of the wet heat exchange type humidifier in the polymer electrolyte fuel cell system according to the present invention and off-gas or battery cooling water. (b) is explanatory drawing in the case of a parallel flow, (c) is explanatory drawing which shows the case of a cross flow, respectively.
FIG. 6 is a graph showing experimental results when only off gas is used as a reaction gas heating source / humidification source and when off gas + battery cooling water is used in the polymer electrolyte fuel cell system according to the present invention. is there.
FIG. 7 is an explanatory diagram showing a positional relationship between a wet heat exchange type humidifier and a battery module in the polymer electrolyte fuel cell system according to the present invention.
FIG. 8 is a configuration block diagram showing a temperature / humidity exchanging unit in an example of a conventional polymer electrolyte fuel cell system.
[Explanation of symbols]
1 ... Battery module
2. Humid heat exchange type humidifier
3. Off-gas flow path
4 ... Reaction gas flow path
5 ... Battery cooling water humidification flow path
6 ... Moist heat exchange element
7. Battery cooling water main circuit
8 ... Battery cooling water humidification circuit
9. Flow rate control means
10: First sensor
11 ... second sensor
12 ... Third sensor

Claims (9)

燃料電池に供給される反応ガスの加熱源及び加湿源として、電池モジュールからのオフガス及び温水を使用する湿熱交換型加湿器を備え、この湿熱交換型加湿器は、オフガス流路と電池冷却水加湿流路が、反応ガス流路を挟んで隣り合って配置されていることを特徴とする固体高分子形燃料電池システム。As a heating source and humidification source for the reaction gas supplied to the fuel cell, a wet heat exchange type humidifier that uses off gas and hot water from the battery module is provided . A solid polymer fuel cell system, wherein the flow paths are arranged adjacent to each other with the reaction gas flow path interposed therebetween . 前記温水には電池モジュールから排出された電池冷却水の全量又はその一部を使用することを特徴とする請求項1記載の固体高分子形燃料電池システム。  2. The polymer electrolyte fuel cell system according to claim 1, wherein the hot water uses the whole amount or a part of the battery cooling water discharged from the battery module. 前記電池冷却水は、電池モジュールの冷却水出口付近で電池冷却水主回路と電池冷却水加湿回路に分岐し、この分岐箇所には流量制御手段を設け、前記電池冷却水加湿回路への流量を調整することにより電池モジュールへ供給する反応ガスの露点(温度・湿度)を制御することを特徴とする請求項2記載の固体高分子形燃料電池システム。  The battery cooling water branches into a battery cooling water main circuit and a battery cooling water humidification circuit in the vicinity of the cooling water outlet of the battery module. 3. The polymer electrolyte fuel cell system according to claim 2, wherein the dew point (temperature / humidity) of the reaction gas supplied to the battery module is controlled by adjusting the temperature. 前記反応ガスがオフガスによる加湿部分を通過した後、電池冷却水による加湿部分で更に加湿されるように配置されていることを特徴とする請求項2又は請求項3記載の固体高分子形燃料電池システム。After the reaction gas is passed through the humidifying part by off gas, according to claim 2 or claim 3 polymer electrolyte fuel cell according to characterized in that it is arranged to be further humidified in the humidification portion by battery coolant system. 前記湿熱交換型加湿器内では湿熱交換用素子を挟んで反応ガスとオフガスが対向していることを特徴とする請求項1乃至請求項4いずれか1項記載の固体高分子形燃料電池システム。 Claims 1 to 4 polymer electrolyte fuel cell system of any one of claims, characterized in that the reaction gas and the off gas across the heat and moisture exchanging element is opposed within said heat and moisture exchange humidifier. 前記湿熱交換型加湿器内では湿熱交換用素子を挟んで反応ガスと電池冷却水が対向していることを特徴とする請求項1乃至請求項5いずれか1項記載の固体高分子形燃料電池システム。6. The polymer electrolyte fuel cell according to claim 1 , wherein the reaction gas and the battery cooling water are opposed to each other with the wet heat exchange element sandwiched in the wet heat exchange type humidifier. system. 前記湿熱交換用素子には透湿膜を用いることを特徴とする請求項5又は請求項6記載の固体高分子形燃料電池システム。7. The polymer electrolyte fuel cell system according to claim 5, wherein a moisture permeable membrane is used for the wet heat exchange element. 前記湿熱交換用素子は、1種類又は複数種類の材料から形成され、更に1枚又は複数枚から形成されていることを特徴とする請求項5乃至請求項7いずれか1項記載の固体高分子形燃料電池システム。The solid polymer according to any one of claims 5 to 7, wherein the wet heat exchange element is formed of one or more kinds of materials, and further formed of one or more pieces. Fuel cell system. 前記湿熱交換型加湿器は電池モジュールとは別体であることを特徴とする請求項1乃至請求項8いずれか1項記載の固体高分子形燃料電池システム。The heat and moisture exchange humidifier claims 1 to 8 the polymer electrolyte fuel cell system of any one of claims, characterized in that the battery modules are separate.
JP2002184661A 2002-06-25 2002-06-25 Polymer electrolyte fuel cell system Expired - Fee Related JP3843046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184661A JP3843046B2 (en) 2002-06-25 2002-06-25 Polymer electrolyte fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184661A JP3843046B2 (en) 2002-06-25 2002-06-25 Polymer electrolyte fuel cell system

Publications (2)

Publication Number Publication Date
JP2004031073A JP2004031073A (en) 2004-01-29
JP3843046B2 true JP3843046B2 (en) 2006-11-08

Family

ID=31180525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184661A Expired - Fee Related JP3843046B2 (en) 2002-06-25 2002-06-25 Polymer electrolyte fuel cell system

Country Status (1)

Country Link
JP (1) JP3843046B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369307C (en) * 2004-08-17 2008-02-13 比亚迪股份有限公司 Method and device for humidifying proton exchange membrane of fuel cell
JP4034804B2 (en) * 2004-12-28 2008-01-16 松下電器産業株式会社 Polymer electrolyte fuel cell power generation system
WO2006077741A1 (en) * 2004-12-28 2006-07-27 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell generation system
JP2006196249A (en) * 2005-01-12 2006-07-27 Matsushita Electric Ind Co Ltd Fuel cell system
JP2006196284A (en) * 2005-01-13 2006-07-27 Matsushita Electric Ind Co Ltd Fuel cell system
JP5140904B2 (en) * 2005-01-28 2013-02-13 パナソニック株式会社 Fuel cell system
JP2006210150A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Fuel cell system
JP2006210149A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Fuel cell system
JP2006210151A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Fuel cell system
JP4915044B2 (en) * 2005-02-01 2012-04-11 パナソニック株式会社 Fuel cell system
JP2006318798A (en) * 2005-05-13 2006-11-24 Aisin Seiki Co Ltd Fuel cell system
JP4918233B2 (en) * 2005-07-21 2012-04-18 本田技研工業株式会社 Fuel cell cogeneration system
KR100748535B1 (en) 2005-11-23 2007-08-13 엘지전자 주식회사 Humidification device for fuel cell and method thereof
JP2008243540A (en) * 2007-03-27 2008-10-09 Fuji Electric Holdings Co Ltd Polymer electrolyte fuel cell power-generating device
US9726654B2 (en) 2014-03-14 2017-08-08 Ricoh Company, Ltd. Atmosphere sensor and method of producing the same, and method of producing printed matter

Also Published As

Publication number Publication date
JP2004031073A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP4037698B2 (en) Solid polymer cell assembly
JP3843046B2 (en) Polymer electrolyte fuel cell system
US6106964A (en) Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
US6783878B2 (en) Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
JP4456188B2 (en) Fuel cell stack
US7749661B2 (en) High performance, compact and low pressure drop spiral-wound fuel cell humidifier design
JP4295847B2 (en) Polymer electrolyte fuel cell system
JP4096575B2 (en) Fuel cell system
JP2000164229A (en) Solid high molecular fuel cell system
JP4453192B2 (en) Polymer electrolyte fuel cell
JP4603920B2 (en) Humidifier for fuel cell and fuel cell system provided with the same
JP2004327089A (en) Fuel cell stack
WO2019098642A2 (en) Fuel cell membrane humidifier
JP3276175B2 (en) Solid polymer electrolyte fuel cell
KR20190035002A (en) Hollow fiber membrane module with hollow fiber membrane of different material and fuel cell membrane humidifier comprising thereof
JP2008243540A (en) Polymer electrolyte fuel cell power-generating device
KR101091662B1 (en) Fuel cell system having improved humidification performance
JP4815728B2 (en) Fuel cell
JP3530419B2 (en) Fuel cell system
JP2007294347A (en) Fuel cell system
JP2004206951A (en) Fuel cell with dehumidification/humidification device
CN111029621A (en) Hydrogen fuel cell self-humidifying structure and system
KR100823928B1 (en) Desiccant apparatus using fuel cell system
JP4996005B2 (en) Humidifier for fuel cell
US20090047551A1 (en) Methods of operating fuel cell systems having a humidification device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060811

R151 Written notification of patent or utility model registration

Ref document number: 3843046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees