JP3842199B2 - Method for producing metal nanowires - Google Patents

Method for producing metal nanowires Download PDF

Info

Publication number
JP3842199B2
JP3842199B2 JP2002300744A JP2002300744A JP3842199B2 JP 3842199 B2 JP3842199 B2 JP 3842199B2 JP 2002300744 A JP2002300744 A JP 2002300744A JP 2002300744 A JP2002300744 A JP 2002300744A JP 3842199 B2 JP3842199 B2 JP 3842199B2
Authority
JP
Japan
Prior art keywords
thin film
autocatalytic
metal
metal thin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002300744A
Other languages
Japanese (ja)
Other versions
JP2003221664A (en
Inventor
允 煕 李
柄 權 朱
潤 澤 張
昌 勳 崔
Original Assignee
コリア インスティテュート オブ サイエンス アンド テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コリア インスティテュート オブ サイエンス アンド テクノロジー filed Critical コリア インスティテュート オブ サイエンス アンド テクノロジー
Publication of JP2003221664A publication Critical patent/JP2003221664A/en
Application granted granted Critical
Publication of JP3842199B2 publication Critical patent/JP3842199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property

Description

【0001】
【発明の属する技術分野】
本発明は、金属ナノ線(nanowire)の製造方法に関し、より詳しくは、金属ナノ線を、リソグラフィー工程を行うことなく、基板上に多量に成長し得る金属ナノ線の製造方法に関するものである。
【0002】
【従来の技術】
従来、金属ナノ線は、原子間力顕微鏡(AMF:Atomic Force Microscpe)又は走査トンネル顕微鏡(STM:Scanning Tunneling Microscope)の探針又は電子放出表示装置の電子放出用チップ等に使用されているが、主に、高度の微細エッチング工程によって製造されている。
【0003】
近年、半導体素子の小型化及び集積化が、急速且つ持続的に行われており、この分野でも金属ナノ線の利用はますます増加すると予想されるが、現在まで製品化されたシリコンにより具現される金属ナノ線の最小直径は、約0.35μmで、将来約0.1μmまですることが可能であると展望されている。しかし、従来のリソグラフィー工程によって製造されるものは、0.1μmより細くするのは困難であり、半導体基板上に微細な金属ナノ線を形成し得る新しい方式が要求されている。
【0004】
最近、リソグラフィーの技術に依存せず、ナノ単位の大きさの高集積半導体素子を製造するボトムアップ方式により、自己組立体(self-assembly)、1次元量子線(quantum wire)のナノ線及びナノロッド(nano-rod)を成長させる試みも行われている。
ここで、半導体素子の製造を、現在のトップダウン方式からボトムアップ方式に代置しなければならないと展望されている。前者の方式は、規則性及び再現性に優れている既に確立された技術により、半導体素子を集積化することができるという長所があるが、リソグラフィー技術の発展に絶対的に依存するという短所がある。一方、後者の方式は、半導体素子を製造するとき、材料自体がナノ単位の大きさに形成されるメカニズムを利用するもので、リソグラフィー技術に依存してないものの、再現性及び定形化を達成し難く、分子素子(molecular device)を高歩留りで集積化することが困難であるという短所がある。
【0005】
従来技術の一例として図6及び図7(a)、(b)に示す前記電子放出用チップにおけるタングステンナノ線は、バルク材料に微細なエッチングを施して加工するため、広い基底面(base)から上に向かうほど鋭くなる構造を有しているが、定形化し難いという問題があった。
【0006】
【発明が解決しようとする課題】
然るに、このような従来のチップにおいては、チップの模様が夫々異なり、定形化することが難しいという不都合な点があった。
又、前記各電子放出用チップは、電界放出表示素子(Field Emission Display Device)又は増幅器の電子放出源(Field Emission Source)に夫々適用するために、直径1μmのホールの中に、均一にエッチング加工して形成することが難しいという不都合な点があった。
【0007】
本発明は、このような従来の課題に鑑みなされたもので、金属ナノ線を、リソグラフィー工程を行うことなく、工程中に基板上に多量に成長し得る金属ナノ線の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
このような目的を達成するため、本発明は、基板上に厚さ30μm〜1000μmの自己触媒金属薄膜を形成する段階と、前記自己触媒金属薄膜を、低圧CVD装置を用いて、10秒〜5000秒の間、自己触媒反応により成長させることで、自己触媒金属薄膜の表面にナノ線を成長させる段階と、を順次行うことを特徴とする金属ナノ線の製造方法を提供するものである。
【0009】
本発明に係る金属ナノ線の製造方法においては、前記自己触媒金属薄膜を自己触媒反応によって成長させる時間が重要であり、その理由は下記の通りである。
自己触媒金属薄膜が自己触媒反応によって金属ナノ線に成長するためには、前記自己触媒金属薄膜内に熱エネルギーによる特定値以上の応力が存在する必要がある。更に、このような効果を表すためには、その成長時間が10秒以上である必要があるが、成長時間が5000秒を超えると、成長し過ぎたナノ線が相互に縺れ合って固まり、従来の連続膜の形態に転移するので、成長時間を10秒〜5000秒にする。
【0010】
請求項2の発明は、前記自己触媒金属薄膜の形成前に、前記基板の上面に所定厚さの絶縁膜を形成する段階をさらに含めて構成され、前記絶縁膜は、湿式酸化法で形成される酸化膜であることを特徴とする。
請求項3のように、前記自己触媒金属薄膜は、99.9%以上のタングステン金属ソースをスパッタ装置に装着し、25℃〜300℃の温度でスパッタリングによって形成するとよい。
【0011】
請求項4のように、前記自己触媒金属薄膜の成長は、低圧CVD装置のチャンバの内部にAr/H2ガスを30〜300sccmで注入し、10mtorr〜100torrのガス圧力及び500〜850℃の温度条件下で行うとよい。
【0012】
【発明の実施の形態】
以下、本発明の金属ナノ線の製造方法について、実施例に基づき、より詳しく説明する。
実施例
例えばSi基板(ウエハー)を電気炉に入れて、湿式酸化法(wet air oxidation)を施して基板上に絶縁膜の酸化膜を厚さ200〜1000nmで形成して、電子ビーム蒸着装置(E-beam Evaporator)又はスパッタ装置を利用し、前記酸化膜が形成された基板の表面に自己触媒金属薄膜(layer of autocatalytic metal)として例えばタングステン薄膜を厚さ30〜1000nmで形成する。次いで、前記タングステン薄膜が形成された基板を、低圧CVD装置を用いて自己触媒反応(autocatalytic reaction)を施すことで、前記タングステン薄膜の表面に個別又は束状のタングステンナノ線を成長させる。
【0013】
以下、上記製造方法を、より詳しく説明する。
本実施例は、a)基板上に絶縁膜を形成する段階と、b)上記絶縁膜の上に自己触媒金属薄膜を形成する段階と、c)金属ナノ線を成長させる段階からなる。より詳しくは、
a) 電気炉の内部に基板を装入して、電気炉を1100℃の温度下で湿式酸化法を施して前記基板の表面に500nmの絶縁膜である酸化膜を形成する段階と、
b) 99.9%以上のタングステンから成る金属ソースをスパッタ装置の内部に装着し、スパッタ装置の内部温度を25℃〜300℃下でスパッタリングを施して酸化膜表面に30〜1000nmのタングステン薄膜を形成する、前記絶縁膜である酸化膜の上に自己触媒金属薄膜を形成する段階と、
c) 前記タングステン薄膜が形成された基板を低圧CVD装置に入れ、低圧CVD装置のチャンバ内部にAr/H2ガスを30〜300sccmで注入し、10mtorr〜100torrのガス圧力及び500〜850℃の温度に約10秒〜5000秒間保持することで、タングステン薄膜を自己触媒化させて薄膜表面にタングステンナノ線を成長させる、金属ナノ線を成長させる段階とからなっている。
【0014】
図1(a)、(b)及び図2に示す本実施例により成長されたタングステンナノ線は、直径約10〜100nmで、直径4インチの基板の表面に高密度、かつ均一に形成されると共に、直線性に優れている。
又、タングステンナノ線の面密度は、ナノ線の成長時間及び自己触媒金属薄膜の厚さを変更することで、調節することができる。図3及び図4に示したように、ナノ線の成長時間及びタングステン薄膜の厚さを変化させることでタングステンナノ線の面密度が異なることが分かる。特に、図5に示したように、ナノ線の成長時間が非常に短い場合(図5(a)、10秒未満の場合)にはナノ線の成長が全然行われず、これと反対に、ナノ線の成長時間が非常に長い場合(図5(c)、5000秒超過の場合)には自己触媒金属膜の表面状態が成長前と同じような状態になる。図5(b)は、本発明により成長時間を10〜5000秒とした時、基板の全面に均一に形成された金属ナノ線を示している。
【0015】
本発明に係る金属ナノ線の製造方法の最も大きい特徴の一つは、図2〜図4に示したように、ナノ線の成長過程で、基板に蒸着された金属薄膜の全面積が自己触媒役割を行うと同時に、金属薄膜自体がナノ線に成長展開されるということである。即ち、本発明に係る金属ナノ線の製造方法においては、ナノリソグラフィー技術を使用することなく、金属ナノ線を工程中に直接基板上に成長させることができる。
【0016】
従来は、バルクタングステン片又は厚さ数mmのタングステン線をエッチング溶液に浸漬して全体又は先端を加工するか、若しくは、半導体微細ホトエッチング及びリソグラフィー工程を施してマイクロチップを形成していた。しかし、本発明に係る金属ナノ線の製造方法においては、ナノリソグラフィー工程を行うことなく、ナノ単位の大きさの直径を有するナノ線を工程中に基板上に成長させることができる。
【0017】
尚、本発明の技術的思想及び範囲は、上記実施例により限定されるものではなく、本発明の範囲から外れない限り、金属ナノ線を成長させる基材となる基板等の単純変更は、本発明の範囲に属する。例えば、金属ナノ線を成長させる基板としては、Siの他、通常700℃以上の高温で変形が起らない高融点ガラス、アルミナ等を適用することも可能である。
【0018】
また、上記実施例では、本発明により成長されたナノ線が電子素材分野に応用されることを想定して、基板に酸化膜の絶縁膜を形成することを前提としているが、絶縁膜の形成が本発明によるナノ線の成長メカニズムに重要な影響を及ぼすものではなく、絶縁膜の形成段階は省略することができる。
【0019】
【発明の効果】
以上で述べたように、本発明に係る金属ナノ線の製造方法においては、基板上に直接金属ナノ線を成長させる方法であって、工程中に基板の所望の位置に選択的に金属ナノ線を成長させて集積化し得るため、極めて便利であるという効果がある。
【0020】
又、本発明に係る金属ナノ線の製造方法においては、金属ナノ線を利用したナノ電子/スピン素子類、ナノ機器類、探針類、電子放出表示装置(electron emission display)、ナノ生体駆動器(nano-biodriver)等の核心作動体(core effector)及び結線を量産する技術として利用することができる。
【図面の簡単な説明】
【図1】(a)、(b)は本発明の金属ナノ線の製造方法により基板上に工程中に成長したタングステンナノ線を示した走査電子顕微鏡写真。
【図2】本発明の金属ナノ線の製造方法により基板上に工程中に成長したタングステンナノ線を示した走査電子顕微鏡写真。
【図3】自己触媒薄膜の厚さとナノ線の成長時間を変化させてナノ線の面密度を調節した状態を示した走査電子顕微鏡写真。
【図4】自己触媒薄膜の厚さとナノ線の成長時間を変化させてナノ線の面密度を調節した状態を示した別の走査電子顕微鏡写真。
【図5】(a)〜(c)はナノ線の異なる成長時間によって観察された基板の表面状態を示した走査電子顕微鏡写真。
【図6】従来の微細エッチング工程により製造されたタングステンナノ線を示した走査電子顕微鏡写真。
【図7】(a)、(b)は従来の薄膜コーティング工程により炭素ナノチューブの表面に形成されたタングステンナノ線を示した走査電子顕微鏡写真。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a metal nanowire, and more particularly, to a method for producing a metal nanowire that can grow a metal nanowire on a substrate in a large amount without performing a lithography process.
[0002]
[Prior art]
Conventionally, metal nanowires are used for atomic force microscope (AMF) or scanning tunneling microscope (STM) probes or electron emission tips of electron emission display devices. It is mainly manufactured by an advanced fine etching process.
[0003]
In recent years, miniaturization and integration of semiconductor devices have been performed rapidly and continuously, and the use of metal nanowires is expected to increase in this field as well. The minimum diameter of metal nanowires is about 0.35 μm, and it is expected that it can be reduced to about 0.1 μm in the future. However, it is difficult to make an object manufactured by a conventional lithography process thinner than 0.1 μm, and a new method capable of forming fine metal nanowires on a semiconductor substrate is required.
[0004]
Recently, self-assembly, one-dimensional quantum wire nanowires and nanorods have been developed by a bottom-up method that manufactures highly integrated semiconductor devices of nanometer size without depending on lithography technology. Attempts have also been made to grow (nano-rod).
Here, it is expected that the manufacture of semiconductor elements must be replaced with the current top-down method from the bottom-up method. The former method has an advantage that the semiconductor element can be integrated by an established technique that is excellent in regularity and reproducibility, but has a disadvantage that it absolutely depends on the development of the lithography technique. . On the other hand, the latter method uses a mechanism in which the material itself is formed in a nano-unit size when manufacturing a semiconductor element, and does not depend on the lithography technique, but achieves reproducibility and standardization. However, it is difficult to integrate molecular devices with a high yield.
[0005]
As an example of the prior art, the tungsten nanowires in the electron-emitting chip shown in FIGS. 6 and 7A and 7B are processed by performing fine etching on the bulk material. Although it has a structure that becomes sharper toward the top, there is a problem that it is difficult to form.
[0006]
[Problems to be solved by the invention]
However, such a conventional chip has a disadvantage that it is difficult to form a chip because the patterns of the chips are different.
Each of the electron emission chips is uniformly etched into a 1 μm diameter hole for application to a field emission display device or an electron emission source of an amplifier (field emission source), respectively. Therefore, there is a disadvantage that it is difficult to form.
[0007]
The present invention has been made in view of such conventional problems, and provides a method for producing metal nanowires that can grow metal nanowires on a substrate in a large amount during the process without performing a lithography process. With the goal.
[0008]
[Means for Solving the Problems]
In order to achieve such an object, the present invention comprises a step of forming an autocatalytic metal thin film having a thickness of 30 μm to 1000 μm on a substrate, and the autocatalytic metal thin film is formed using a low pressure CVD apparatus for 10 seconds to 5000 seconds. The present invention provides a method for producing a metal nanowire, characterized in that a step of growing nanowires on the surface of an autocatalytic metal thin film is performed in order by growing the nanowires on the surface of the autocatalytic metal thin film for 2 seconds.
[0009]
In the method for producing a metal nanowire according to the present invention, time for growing the autocatalytic metal thin film by an autocatalytic reaction is important, and the reason is as follows.
In order for an autocatalytic metal thin film to grow into a metal nanowire by an autocatalytic reaction, it is necessary that stress exceeding a specific value due to thermal energy exists in the autocatalytic metal thin film. Furthermore, in order to express such an effect, the growth time needs to be 10 seconds or more. However, when the growth time exceeds 5000 seconds, the overgrown nanowires are twisted together and solidified. Therefore, the growth time is set to 10 seconds to 5000 seconds.
[0010]
The invention of claim 2 further includes a step of forming an insulating film having a predetermined thickness on the upper surface of the substrate before forming the autocatalytic metal thin film, and the insulating film is formed by a wet oxidation method. It is characterized by being an oxide film.
According to a third aspect of the present invention, the autocatalytic metal thin film is preferably formed by sputtering at a temperature of 25 ° C. to 300 ° C. with a tungsten metal source of 99.9% or more attached to a sputtering apparatus.
[0011]
5. The growth of the autocatalytic metal thin film is performed by injecting Ar / H 2 gas at 30 to 300 sccm into a chamber of a low pressure CVD apparatus, gas pressure of 10 mtorr to 100 torr, and temperature of 500 to 850 ° C. It is good to carry out under conditions.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the manufacturing method of the metal nanowire of this invention is demonstrated in detail based on an Example.
Example For example, an Si substrate (wafer) is placed in an electric furnace, and an oxide film of an insulating film is formed on the substrate to a thickness of 200 to 1000 nm by wet oxidation, and an electron beam evaporation apparatus ( For example, a tungsten thin film having a thickness of 30 to 1000 nm is formed as a layer of autocatalytic metal on the surface of the substrate on which the oxide film is formed by using an E-beam evaporator or a sputtering apparatus. Next, the substrate on which the tungsten thin film is formed is subjected to an autocatalytic reaction using a low-pressure CVD apparatus, thereby growing individual or bundle-like tungsten nanowires on the surface of the tungsten thin film.
[0013]
Hereinafter, the manufacturing method will be described in more detail.
This example comprises a) forming an insulating film on the substrate, b) forming an autocatalytic metal thin film on the insulating film, and c) growing metal nanowires. More details
a) charging a substrate into an electric furnace, and subjecting the electric furnace to a wet oxidation method at a temperature of 1100 ° C. to form an oxide film which is an insulating film of 500 nm on the surface of the substrate;
b) A metal source composed of 99.9% or more of tungsten is mounted inside the sputtering apparatus, and sputtering is performed at an internal temperature of 25 to 300 ° C. to form a tungsten thin film of 30 to 100 nm on the oxide film surface. Forming an autocatalytic metal thin film on the insulating film, the oxide film;
c) The substrate on which the tungsten thin film is formed is put in a low pressure CVD apparatus, Ar / H 2 gas is injected into the chamber of the low pressure CVD apparatus at 30 to 300 sccm, a gas pressure of 10 mtorr to 100 torr and a temperature of 500 to 850 ° C. And holding for about 10 seconds to 5000 seconds to make the tungsten thin film self-catalyzed to grow tungsten nanowires on the surface of the thin film, thereby growing metal nanowires.
[0014]
The tungsten nanowires grown by this embodiment shown in FIGS. 1A, 1B, and 2 have a diameter of about 10 to 100 nm and are uniformly formed on the surface of a substrate having a diameter of 4 inches. In addition, it has excellent linearity.
Further, the surface density of the tungsten nanowire can be adjusted by changing the growth time of the nanowire and the thickness of the autocatalytic metal thin film. As shown in FIGS. 3 and 4, it can be seen that the surface density of the tungsten nanowires is different by changing the growth time of the nanowires and the thickness of the tungsten thin film. In particular, as shown in FIG. 5, when the nanowire growth time is very short (FIG. 5 (a), less than 10 seconds), the nanowire is not grown at all. When the growth time of the line is very long (FIG. 5C, when it exceeds 5000 seconds), the surface state of the autocatalytic metal film becomes the same as that before the growth. FIG. 5B shows metal nanowires uniformly formed on the entire surface of the substrate when the growth time is 10 to 5000 seconds according to the present invention.
[0015]
One of the greatest features of the method for producing metal nanowires according to the present invention is that the entire area of the metal thin film deposited on the substrate is self-catalyzed during the nanowire growth process as shown in FIGS. At the same time as performing the role, the metal thin film itself grows and expands into nanowires. That is, in the method for producing a metal nanowire according to the present invention, the metal nanowire can be directly grown on the substrate during the process without using a nanolithography technique.
[0016]
Conventionally, bulk tungsten pieces or tungsten wires with a thickness of several millimeters are immersed in an etching solution to process the whole or the tip, or a semiconductor microphotoetching and lithography process is performed to form a microchip. However, in the method for producing a metal nanowire according to the present invention, a nanowire having a nanometer-sized diameter can be grown on the substrate during the process without performing the nanolithography process.
[0017]
The technical idea and scope of the present invention are not limited by the above-described embodiments, and simple changes such as a substrate serving as a base material on which metal nanowires are grown are not limited unless they depart from the scope of the present invention. It belongs to the scope of the invention. For example, as the substrate on which the metal nanowires are grown, it is possible to apply Si, refractory glass, alumina, or the like that does not deform at a high temperature of usually 700 ° C. or higher.
[0018]
In the above embodiment, it is assumed that an oxide film is formed on a substrate on the assumption that nanowires grown according to the present invention are applied to the field of electronic materials. However, this does not significantly affect the nanowire growth mechanism according to the present invention, and the step of forming the insulating film can be omitted.
[0019]
【The invention's effect】
As described above, in the method for producing a metal nanowire according to the present invention, a method for growing a metal nanowire directly on a substrate, wherein the metal nanowire is selectively placed at a desired position on the substrate during the process. Can be grown and integrated, which is very convenient.
[0020]
Further, in the method for producing a metal nanowire according to the present invention, nano-electron / spin elements, nano-equipment, probes, electron emission display, nano-biological driver using metal nano-wire It can be used as a technology for mass-producing core effectors such as (nano-biodriver) and connections.
[Brief description of the drawings]
FIGS. 1A and 1B are scanning electron micrographs showing tungsten nanowires grown on a substrate in the process by the method for producing metal nanowires of the present invention.
FIG. 2 is a scanning electron micrograph showing tungsten nanowires grown on a substrate in the process by the method for producing metal nanowires of the present invention.
FIG. 3 is a scanning electron micrograph showing a state in which the surface density of the nanowire is adjusted by changing the thickness of the autocatalytic thin film and the growth time of the nanowire.
FIG. 4 is another scanning electron micrograph showing a state in which the surface density of the nanowire is adjusted by changing the thickness of the autocatalytic thin film and the growth time of the nanowire.
FIGS. 5A to 5C are scanning electron micrographs showing the surface state of a substrate observed with different growth times of nanowires. FIGS.
FIG. 6 is a scanning electron micrograph showing a tungsten nanowire produced by a conventional fine etching process.
7A and 7B are scanning electron micrographs showing tungsten nanowires formed on the surface of carbon nanotubes by a conventional thin film coating process.

Claims (4)

基板上に厚さ30μm〜1000μmの自己触媒金属薄膜を形成する段階と、
前記自己触媒金属薄膜を、低圧CVD装置を用いて、10秒〜5000秒の間、自己触媒反応により成長させることで、自己触媒金属薄膜の表面にナノ線を成長させる段階と、
を順次行うことを特徴とする金属ナノ線の製造方法。
Forming an autocatalytic metal thin film having a thickness of 30 μm to 1000 μm on the substrate;
Growing the autocatalytic metal thin film on the surface of the autocatalytic metal thin film by growing the autocatalytic metal thin film by autocatalytic reaction for 10 seconds to 5000 seconds using a low pressure CVD apparatus;
The metal nanowire manufacturing method characterized by performing sequentially.
前記自己触媒金属薄膜の形成前に、前記基板の上面に所定厚さの絶縁膜を形成する段階をさらに含めて構成され、前記絶縁膜は、湿式酸化法で形成される酸化膜であることを特徴とする請求項1に記載の金属ナノ線の製造方法。Before forming the autocatalytic metal thin film, the method further includes a step of forming an insulating film having a predetermined thickness on the upper surface of the substrate, and the insulating film is an oxide film formed by a wet oxidation method. The manufacturing method of the metal nanowire of Claim 1 characterized by the above-mentioned. 前記自己触媒金属薄膜は、99.9%以上のタングステン金属ソースをスパッタ装置に装着し、25℃〜300℃の温度でスパッタリングによって形成することを特徴とする請求項1又は2に記載の金属ナノ線の製造方法。3. The metal nanowire according to claim 1, wherein the autocatalytic metal thin film is formed by sputtering at a temperature of 25 ° C. to 300 ° C. with a tungsten metal source of 99.9% or more attached to a sputtering apparatus. Production method. 前記自己触媒金属薄膜の成長は、低圧CVD装置のチャンバの内部にAr/H2ガスを30〜300sccmで注入し、10mtorr〜100torrのガス圧力及び500〜850℃の温度条件下で行うことを特徴とする請求項1〜3のいずれか1つに記載の金属ナノ線の製造方法。The growth of the autocatalytic metal thin film is performed by injecting Ar / H 2 gas into a chamber of a low-pressure CVD apparatus at 30 to 300 sccm, under a gas pressure of 10 mtorr to 100 torr and a temperature condition of 500 to 850 ° C. The manufacturing method of the metal nanowire as described in any one of Claims 1-3.
JP2002300744A 2001-10-15 2002-10-15 Method for producing metal nanowires Expired - Fee Related JP3842199B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2001-0063421A KR100388433B1 (en) 2001-10-15 2001-10-15 Fabricating method of metallic nanowires
KR2001-63421 2001-10-15

Publications (2)

Publication Number Publication Date
JP2003221664A JP2003221664A (en) 2003-08-08
JP3842199B2 true JP3842199B2 (en) 2006-11-08

Family

ID=19715125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300744A Expired - Fee Related JP3842199B2 (en) 2001-10-15 2002-10-15 Method for producing metal nanowires

Country Status (3)

Country Link
US (1) US6808605B2 (en)
JP (1) JP3842199B2 (en)
KR (1) KR100388433B1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100456016B1 (en) * 2002-01-10 2004-11-06 학교법인 포항공과대학교 A process for preparing a zinc oxide nanowire by metal organic chemical vapor deposition and a nanowire prepared therefrom
KR100647581B1 (en) * 2003-07-02 2006-11-24 삼성에스디아이 주식회사 Microporous thin film comprising nano particles and preparing process thereof
US7181836B2 (en) * 2003-12-19 2007-02-27 General Electric Company Method for making an electrode structure
US20050279274A1 (en) * 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
WO2007001343A2 (en) * 2004-08-20 2007-01-04 Ion America Corporation Nanostructured fuel cell electrode
KR100723418B1 (en) * 2005-02-25 2007-05-30 삼성전자주식회사 Silicon nano wire, Semicondutor device comprising silicon nano wire and manufacturing method of silicon nano wire
WO2006099776A1 (en) * 2005-03-25 2006-09-28 Zhongshan University Preparing a single component metal nanowire directly by physical vapor phase method
US7402531B1 (en) 2005-12-09 2008-07-22 Hewlett-Packard Development Company, L.P. Method for selectively controlling lengths of nanowires
KR100790863B1 (en) * 2005-12-28 2008-01-03 삼성전자주식회사 Method of manufacturing nano-wire
JP2008004412A (en) * 2006-06-23 2008-01-10 Dialight Japan Co Ltd Cold-cathode electron source
US7859036B2 (en) 2007-04-05 2010-12-28 Micron Technology, Inc. Memory devices having electrodes comprising nanowires, systems including same and methods of forming same
KR100904588B1 (en) * 2007-07-05 2009-06-25 삼성전자주식회사 Method of preparing core/shell type Nanowire, Nanowire prepared therefrom and Display device comprising the same
US8623288B1 (en) 2009-06-29 2014-01-07 Nanosys, Inc. Apparatus and methods for high density nanowire growth
US8839659B2 (en) * 2010-10-08 2014-09-23 Board Of Trustees Of Northern Illinois University Sensors and devices containing ultra-small nanowire arrays
CN103050350A (en) * 2012-12-28 2013-04-17 青岛润鑫伟业科贸有限公司 Preparation method of field emitting cathode
US9618465B2 (en) 2013-05-01 2017-04-11 Board Of Trustees Of Northern Illinois University Hydrogen sensor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581091A (en) * 1994-12-01 1996-12-03 Moskovits; Martin Nanoelectric devices
JPH09301789A (en) * 1996-05-17 1997-11-25 Sumitomo Electric Ind Ltd High porosity ceramic film and its production
WO1998048456A1 (en) * 1997-04-24 1998-10-29 Massachusetts Institute Of Technology Nanowire arrays
US5879827A (en) * 1997-10-10 1999-03-09 Minnesota Mining And Manufacturing Company Catalyst for membrane electrode assembly and method of making
JPH11246300A (en) * 1997-10-30 1999-09-14 Canon Inc Titanium nano fine wire, production of titanium nano fine wire, structural body, and electron-emitting element
JP3363759B2 (en) * 1997-11-07 2003-01-08 キヤノン株式会社 Carbon nanotube device and method of manufacturing the same
KR100276431B1 (en) * 1997-12-22 2000-12-15 정선종 Formation method for regular silicon quantum dot
JP2000219600A (en) * 1999-01-27 2000-08-08 Nippon Steel Corp Microcrystal grain and microcrystal fine line and their formation
JP3913442B2 (en) * 1999-12-02 2007-05-09 株式会社リコー Carbon nanotube, method for producing the same, and electron emission source
KR100480773B1 (en) * 2000-01-07 2005-04-06 삼성에스디아이 주식회사 Method for fabricating triode-structure carbon nanotube field emitter array
JP2002141633A (en) * 2000-10-25 2002-05-17 Lucent Technol Inc Article comprising vertically nano-interconnected circuit device and method for making the same
US20030189202A1 (en) * 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication

Also Published As

Publication number Publication date
KR20030031334A (en) 2003-04-21
US20030072885A1 (en) 2003-04-17
KR100388433B1 (en) 2003-06-25
JP2003221664A (en) 2003-08-08
US6808605B2 (en) 2004-10-26

Similar Documents

Publication Publication Date Title
JP3842199B2 (en) Method for producing metal nanowires
KR100376768B1 (en) Parallel and selective growth and connection method of carbon nanotubes on the substrates for electronic-spintronic device applications
US8207449B2 (en) Nano-wire electronic device
JP4970038B2 (en) Method for synthesizing nanoscale fiber structure and electronic component including the fiber structure
US7402736B2 (en) Method of fabricating a probe having a field effect transistor channel structure
KR100307310B1 (en) Manufacturing method for nano-size diamond whisker
WO2004027127A1 (en) Acicular silicon crystal and process for producing the same
JP2004193523A (en) Nanostructure, electronic device, and its manufacturing method
JP2007534508A (en) Nanostructures and methods for producing such nanostructures
KR20070048943A (en) Method for producing branched nanowire
TW200805435A (en) Post structure, semiconductor device and light emitting device using the structure, and method for forming the same
JP4670640B2 (en) Carbon nanotube manufacturing method, device using carbon nanotube structure, and wiring
KR20100007255A (en) Silica nano wire comprising silicon nanodot and process for preparing the same
JP4120918B2 (en) Method for selective growth of columnar carbon structure and electronic device
KR100405974B1 (en) Method for developing carbon nanotube horizontally
KR20070104034A (en) Method of manufacturing tips for field emission, tips for field emission manufactured by the same, and device comprising the same
KR100434272B1 (en) Method for developing carbon nanotube horizontally
KR100855882B1 (en) Single crystal nanowire array having heterojunction and method for manufacturing the same
KR100455663B1 (en) Metal/nanomaterial heterostructure and method for the preparation thereof
JP2005288636A (en) Carbon nano-tube forming method using nano-indent edge and anti-dot catalyst array
JP3421332B1 (en) Method for producing carbon nanotube
KR100374042B1 (en) Semiconductor device fabrication method using selective excluding process of carbon nanotube having various characteristics
CN100370579C (en) Method for forming quantum point
CN114613844B (en) Miniaturized array preparation method of nano air channel electronic device
KR100829578B1 (en) Metal nano-tip and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees