JP3841719B2 - Shape measuring device - Google Patents

Shape measuring device Download PDF

Info

Publication number
JP3841719B2
JP3841719B2 JP2002137058A JP2002137058A JP3841719B2 JP 3841719 B2 JP3841719 B2 JP 3841719B2 JP 2002137058 A JP2002137058 A JP 2002137058A JP 2002137058 A JP2002137058 A JP 2002137058A JP 3841719 B2 JP3841719 B2 JP 3841719B2
Authority
JP
Japan
Prior art keywords
light
measured
interferometer
wafer
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002137058A
Other languages
Japanese (ja)
Other versions
JP2003329429A (en
Inventor
勉 森本
弘行 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002137058A priority Critical patent/JP3841719B2/en
Publication of JP2003329429A publication Critical patent/JP2003329429A/en
Application granted granted Critical
Publication of JP3841719B2 publication Critical patent/JP3841719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は,干渉計を用いて半導体ウェハ等の被測定物の形状(平坦度等)を測定する形状測定装置において,被測定物のエッジ検出を可能とする形状測定装置に関するものである。
【0002】
【従来の技術】
一般に,半導体ウェハ(以下,ウェハという)においては,その中央部での平坦度は十分確保されるが,そのエッジ部に向かうに従って平坦度が悪化する傾向にある。一方,近年,1枚のウェハから得られる半導体チップの数を極力増やすため,ウェハのエッジにより近い部分まで高い平坦度が要求される。このとき,ウェハ全範囲のうち,要求される平坦度を満足する有効範囲を表す指標として,エッジからの距離が用いられる。即ち,示されたエッジからの距離よりも内側が前記有効範囲であることを表す。
従来,ウェハの測定面に向かって照射した光の反射光を計測する干渉計により得られた干渉縞画像に基づいてウェハの形状を測定する形状測定装置が普及している。このような干渉計を用いた形状測定装置により得られた形状データに基づいて前記有効範囲をウェハのエッジからの距離で表すには,ウェハのエッジを検出する必要がある。
【0003】
【発明が解決しようとする課題】
しかしながら,図5に示すように,ウェハ1端面の先端部であるエッジSの近傍は,ウェハ1表面からエッジSにかけて徐々にカーブするチャンパー部1cを形成している。このため,従来の干渉計を用いた形状測定では,前記チャンパー部1cに照射された光はウェハ1の表面とは全く異なる方向へ反射して干渉縞が観測されず,前記チャンパー部1の外側のどの位置がエッジSであるかを検出することはできなかった。
また,ウェハ1の表面に測定針を接触させてその形状を測定する触針式の形状計を用いて,その測定針をウェハ1の内側からエッジS方向に移動させながら表面形状を測定する場合も,ウェハ1の形状測定に要求される0.1μmオーダーの精度を有する触針式形状計では,前記チャンパー部1cの途中で測定レンジをオーバーしてしまうためエッジSを検出できない。これを解決するため,「M. Kimura et al., Jpn.J.Appl.Phys. Vol.38(1999)」(先行文献)には,触針式の形状計を用いてウェハ1の形状及びそのエッジSを検出する方法が示されている。
前記先行文献に示されるエッジ検出方法では,触針式の形状計によりウェハ1の表面形状を測定するとともに,図6に示すように,ウェハ1の端部であるエッジSに角型のブロック部材51を当接させ,前記ブロック部材51の前記ウェハ1に当接する面5aに直交する面51bの形状(表面変位の変化)を,触針52を前記ウェハ1に向かう方向に移動させながら測定し,その測定値が急変する位置を前記ウェハ1のエッジとして検出する。これにより,検出されたウェハ1のエッジSと,同時に測定されたウェハ1の表面形状とに基づいて,前記有効範囲を表すエッジSからの距離を求めることが可能となる。
しかしながら,触針式の形状計を用いると,針圧によってウェハ1表面に傷等の汚染が生じる危険性があるという問題点があった。さらに,ウェハ1を載置するチェック台に高精度の平坦度が要求され,このチェック台の加工精度や,ウェハ1と前記ブロック部材51との間への塵の挟まりが測定精度に影響を及ぼすという問題点もあった。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,被測定物の表面形状及びそのエッジを被接触かつ高精度で測定できる形状測定装置を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成するために本発明は,被測定物の測定面に向かって照射した光の反射光を計測する干渉計を具備し,該干渉計により得られた画像に基づいて前記被測定物の形状を測定する形状測定装置において,前記被測定物の測定面の反対側から前記反射光に平行な光を照射し,照射した光が前記被測定物の背景光として前記干渉計に入射するよう構成された背景光照射手段と,前記干渉計により得られた画像に基づいて前記背景光の領域とその他の領域との境界を前記被測定物のエッジとして検出するエッジ検出手段と,を具備してなることを特徴とする形状測定装置である。
これにより,被測定物の表面形状及びそのエッジを干渉計を用いて光学的に被接触かつ高精度で測定でき,被測定物に傷等の汚染が生じることがない。さらに測定用のブロック部材を被測定物に当接せてエッジ検出を行う場合のように,塵の挟まりが測定精度に影響を及ぼすといったことも生じない。
前記エッジ検出手段としては,前記干渉計により得られた画像の輝度情報及び色情報の一方又は両方により前記背景光の領域とその他の領域との境界を検出するもの等が考えられる。
【0005】
また,前記干渉計が斜入射干渉計であってもかまわない。即ち,前記干渉計が前記被測定物の測定面に対して斜め方向に反射した反射光を計測するものであり,前記干渉計により計測される前記反射光及び前記背景光と,検出対象となる前記被測定物のエッジにおける前記測定面に平行な方向の接線とが,前記被測定物の測定面に垂直な方向から見て略平行となるよう構成すればよい。
これにより,前記背景光の方向が被測定物の面に対して斜めであっても,前記背景光は,被測定物の端部の先端(即ち,エッジ)を境界線とした(即ち,チャンパー部が境界線とならない)背景光となる。
【0006】
また,前記被測定物の測定面の裏面の形状を測定するための裏面側干渉計も具備し,該裏面側干渉計における前記被測定物の裏面への照射光が,前記被測定物の外側を通過して前記測定面側の前記干渉計に入射されるよう構成することにより,前記背景光照射手段を構成してなるものも考えられる。
これにより,被測定物の表裏両面の形状を干渉計により測定する場合,エッジ検出用の光源を別途設ける必要がない。
【0007】
また,前記背景光照射手段が,前記被測定物の測定面の反対側に近接する反射面を有し,前記被測定物の測定面に向かって照射された光のうち前記被測定物の外側を通過する光を前記反射面で反射することにより前記背景光を照射するよう構成されてなるものであってもよい。
これにより,被測定物の片面のみの形状を測定する場合に,裏面側に別途光源を設ける必要がない。
【0008】
【発明の実施の形態】
以下添付図面を参照しながら,本発明の実施の形態及び実施例について説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係る形状測定装置Xの構成図,図2は本発明の実施の形態に係る形状測定装置Xの具備する2つの干渉計における測定光の経路を模式的に表した図,図3は本発明の実施の形態に係る形状測定装置Xの具備する干渉計により得られる画像の例を模擬的に表した図,図4は本発明の実施の形態に係る形状測定装置Xによる測定データの一例を表すグラフ,図5はウェハのエッジ近傍の断面形状を模式的に表した図,図6は触針式の形状計を用いた従来のエッジ検出方法を説明する図である。
【0009】
図1を用いて,本発明の実施の形態に係る形状測定装置Xの構成について説明する。
本形状測定装置Xは,被測定物の一例であるウェハ1の主面1a側及び裏面1b側のそれぞれに設けられた斜入射干渉計10,20と,該斜入射干渉計10,20それぞれから得られる画像を入力する演算器31とを具備している。ここで,前記ウェハ1の一方の面を前記主面1a(前記測定面に相当),その反対面を前記裏面1bとしているが,これは便宜上そのように称するものであり,前記ウェハ1の特定の面を意味するものではない。
【0010】
2つの前記斜入射干渉計10,20は,それぞれ,前記ウェハ1に対して測定光12,22を出射する発光器11,21,その測定光12,22を前記ウェハ1の表面(主面1a,裏面1b)に対して斜め方向の平行ビームとするコリメータレンズ14,24,その平行ビーム12,22の一部を透過し,一部を反射する基準平面15a,25aを有する三角プリズム15,25,前記ウェハ1の表面1a,1bで反射された測定光が前記基準平面15a,25a(前記三角プリズム15,25)及びコリメータレンズ14’,24’等を経た光を受光するCCDカメラ等の受光器16,26,及び前記三角プリズム15,25を前記ウェハ1の面に略垂直な方向に移動させるピエゾアクチュエータ17,27を備えている。これら2つの前記斜入射干渉計10,20は,前記裏面1b側の前記発光器21と前記主面1a側の前記受光器16とが,さらに,前記主面1a側の前記発光器11と前記裏面1b側の前記受光器26とが,それぞれ対向するよう構成されている。そして,前記基準平面15a,25aでの反射光と,前記ウェハ1の表面1a,1bでの反射光とには,前記基準平面15a,25aと前記表面1a,1bとの距離に対応する光路差があるため,この光路差が,前記受光器16,26において,両反射光で形成される干渉縞として観測される。前記三角プリズム15,25は,前記基準平面15a,25aが前記ウェハ1の裏面1bに近接するよう(例えば,0.1mm程度の距離で)配置されている。前記測定光12,22としては,例えば,HeNeレーザ(λ=633nm)や,半導体レーザ等のコヒーレント光が用いられる。また,前記三角プリズム15,25は,フィゾー干渉で用いられるようなウェッジプリズム等の参照板を用いてもかまわない。
【0011】
図2(a),(b),(c)は,それぞれ本形状測定装置Xの正面(図1と同じ面)側,その側面側及び上面側から(前記ウェハ1の面1a,1bに垂直な方向から)見たときの,2つの前記三角プリズム15,25を通過する測定光の経路を模式的に表した図である。
図2(a)に示すように,前記ウェハ1の主面1a側の前記測定光12が前記三角プリズム15を通過後に前記主面1aで反射した反射光12bと,前記ウェハ1の裏面1b側の前記測定光22が前記三角プリズム25を通過した測定光22aとが平行となるように構成されている。これを側面側から見ると,図2(b)に示すように,2つの前記三角プリズム15,25が前記ウェハ1のエッジSよりも外側にはみ出るように配置されている。これにより,前記裏面1b側の三角プリズム25を通過した測定光22aが,前記ウェハ1の外側を通って前記主面1a側の前記三角プリズム15及び前記コリメータレンズ14’を経由し,前記ウェハ1の背景光22a’として前記主面1a側の前記受光器16に入射することになる。前記主面1aでの前記反射光12bと前記背景光22a’とは平行なので,それらは,前記主面1a側の前記コリメータレンズ14’にも平行に入射する。また,図2(c)に示すように,前記主面1aでの前記反射光12b及び前記背景光22a’と,前記ウェハ1の検出対象となる前記エッジSにおける前記主面1aに平行な方向の接線SSとが,ウェハ1の面1a,1bに垂直な方向から見て略平行となるように構成されている。これにより,前記背景光22a’の方向が前記ウェハ1の面に対して斜めであっても,前記背景光22a’は,前記ウェハ1端部の先端(即ち,エッジS)を境界線とした(前記チャンパー部1cが境界線とならない)背景光となる。
【0012】
2つの前記受光器16,26で得られる干渉縞画像は,画像入力手段を有するパーソナルコンピュータ等である前記演算器31(前記エッジ検出手段の一例)に入力され,入力された干渉縞画像に基づいて前記ウェハ1の主面1a及び裏面1bの表面形状(高さ分布)が演算される。
2つの前記干渉計10,20それぞれによる干渉縞画像は,前記ピアゾアクチュエータ17,27によって前記三角プリズム15,25(即ち,前記基準平面15a,25a)を,前記測定光12,22の前記ウェハ1の表面1a,1bへの入射角θを考慮した位置,例えば,0(所定の基準位置),λ/8/conθ,2λ/8/cosθ,3λ/8/cosθの各位置に移動させることにより,それぞれの位置での干渉縞画像の輝度データとして前記演算器31に取り込まれる。この輝度データにより求められる位相データに所定のアンラップ処理を施しすことにより,前記主面1aとその基準平面15aとの距離,及び前記裏面1bとその基準平面25aとの距離を算出できる。その算出方法としては,周知の方法を適用すればよいのでここでは説明を省略する。
【0013】
図3は,前記演算器31に入力される前記干渉縞画像の例を模擬的に表した図である。図中,干渉縞が現れているE部が前記ウェハ1の主面1a部分であり,その外側の黒いB部が前記チャンパー部1c,さらにその外側の比較的明るいA部が前記ウェハ1の外側(即ち,前記背景光22a’の部分)である。図3の画像において,白抜きの線分C−Dで示される位置(及びその延長線上)の輝度情報をグラフ化したものが図4である。図4のグラフにおいて,縦軸は輝度,横軸は線分C−D及びその延長線上の位置を表す。このグラフからわかるように,前記ウェハ1の外側は,前記背景光22a’を受けているため,他の部分よりも輝度が高いが,前記ウェハ1の内側(D側)に向かう途中で急激に下がる位置がある。この位置が,前記背景光22a’の領域(A部)とその他の領域(前記チャンパー部1cの部分(B部)等)との境界であり,この輝度が急激に下がる位置を前記演算器31によって前記ウェハ1のエッジSの位置として算出する。
これにより,前記ウェハ1の表面形状として許容される平坦度を有する前記有効範囲のうち,最も外側の位置(例えば,位置D)と前記エッジSとの距離を被接触で求めることが可能となる。しかも,2つの干渉計を用いてウェハの表裏両面の形状を測定する従来の形状測定装置において,前記発光器11,21や前記受光器16,26等の配置を考慮し,前記演算器31における演算処理プログラムを追加するだけで実現できるので適用が容易である。
【0014】
【実施例】
前記形状測定装置Xは,前記ウェハ1の表裏両側に2つの斜入射干渉計10,20を具備するものであったが,これに限るものでなく,前記ウェハ1の主面1a側及び裏面1b側それぞれに,前記ウェハ1の面に略垂直に光を照射する他の干渉計(例えば,フィゾー干渉計やマイケルソン干渉計等)であってもかまわない。この場合,前記主面1a側及び前記裏面1bそれぞれに,2つの干渉計を対向して配置すればよい。
もちろん,前記ウェハ1の一方の面(例えば,前記主面1a)の形状を測定する1つの干渉計のみを具備する形状測定装置に適用してもよい。この場合,前記裏面1b側の三角プリズム25を通過した前記測定光22aと同方向(即ち,前記主面1aでの前記反射光12bに平行)に光を照射する発光手段(例えば,図1における前記発光器21,前記コリメータレンズ24,及び前記三角プリズム25)を,前記裏面1b側に設ければよい。このとき,前記ウェハ1の面に略垂直に光を照射するタイプの干渉計を用いる場合は,前記ウェハ1の裏面1b側から,該裏面1bに略垂直に光を照射する発光手段を設ければよいことはいうまでもない。
また,前記ウェハ1の一方の面(例えば,前記主面1a)の形状を測定する1つの干渉計のみを具備する形状測定装置に適用する場合,前記ウェハ1の裏面1bに略平行に近接した反射面を有する反射板等を設け,前記ウェハ1の主面1aに向かって照射された光のうち前記ウェハ1の外側を通過する光をその反射面で反射することにより前記背景光を照射するよう構成してもよい。これにより,非常にシンプルな構成となる。
さらに,前記反射板等をピエゾアクチュエータに支持させる等により,前記反射面と前記ウェハ1の裏面1bとの距離を変えて複数の干渉縞画像を取得し,いわゆる位相シフト法で前記ウェハ1の表面形状を測定する場合と同様に前記複数の干渉画像からその干渉強度Ikyodoを求めれば,前記チャンパー部1c(図3のB部)に比べて前記背景光22a’の部分(図3のA部)の方がはるかに前記干渉強度Ikyodoが高くなるので,前記干渉強度Ikyodoが急変する境界線をエッジSとして求めてもよい。ここで前記干渉強度Ikyodoは,例えば前記反射面の位置を前記ウェハ1に照射する光の90°の位相ごとに4段階移動させたときの各干渉画像における輝度I0,I90,I180,I270に基づいて次式により求めればよい。
kyodo=((I90−I02+(I270−I18021/2
これにより,前記チャンパー部1c(図3のB部)と前記背景光22a’の部分(図3のA部)との境界線(即ちエッジ)をより明確に(正確に)検出することが可能となる。もちろん,前記干渉強度Ikyodoを求める方法は,前記反射面を90°の位相ごとに4段階移動させる方法に限らず他の周知の位相シフト法であってもかまわない。
【0015】
また,前記形状測定装置Xでは,前記背景光22a’の領域とその他の領域との境界を,干渉計で得られた画像データの輝度情報に基づいて求めたが,例えば,前記裏面1b側から照射する光(背景光)の色を,前記主面1a側の干渉計で用いる測定光の色と異なる色とし,干渉計で得られた画像データの色情報に基づいて前記境界を求めるよう構成することも考えられる。
また,前記実施の形態では,前記ピエゾアクチュエータ17,27により,前記2つの基準平面15a,25aを,90°の位相ごとに4段階移動させているが,他の位相シフト方法(例えば,波長掃引等)であってもかまわない。さらに,前記2つの基準平面15a,25aを移動させるのではなく,前記ウェハ1をアクチュエータで移動させる構成としてもよい。
【0016】
【発明の効果】
以上説明したように,本発明によれば,被測定物の表面形状及びそのエッジを干渉計を用いて光学的に被接触かつ高精度で測定できる。これにより,被測定物に傷等の汚染が生じることがなく,さらに測定用のブロック部材を被測定物に当接せてエッジ検出を行う場合のように,塵の挟まりが測定精度に影響を及ぼすといったことも生じない。
また,被測定物の測定面の裏面の形状を測定するための裏面側干渉計も具備する場合,該裏面側干渉計における被測定物の裏面への照射光が,被測定物の外側を通過して測定面側の前記干渉計に入射されるよう構成することにより,エッジ検出用の光源を別途設ける必要がない。
また,被測定物の片面のみの形状を測定する場合に,被測定物の測定面の反対側に近接する反射面を設け,被測定物の測定面に向かって照射された光のうち被測定物の外側を通過する光を前記反射面で反射するよう構成すれば,裏面側に別途光源を設ける必要がなく,より簡易かつ低コストでエッジ検出が可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る形状測定装置Xの構成図。
【図2】本発明の実施の形態に係る形状測定装置Xの具備する2つの干渉計における測定光の経路を模式的に表した図。
【図3】本発明の実施の形態に係る形状測定装置Xの具備する干渉計により得られる画像の例を模擬的に表した図。
【図4】本発明の実施の形態に係る形状測定装置Xによる測定データの一例を表すグラフ。
【図5】ウェハのエッジ近傍の断面形状を模式的に表した図。
【図6】触針式の形状計を用いた従来のエッジ検出方法を説明する図。
【符号の説明】
10,20…斜入射干渉計
11,21…発光器
12,22…測定光
14,14’,24,24’…コリメータレンズ
15,25…三角プリズム
15a,25a…基準平面
16,26…受光器
17,27…ピエゾアクチュエータ
31…演算器
1a…ウェハの主面
1b…ウェハの裏面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a shape measuring apparatus that can detect the edge of a measurement object in a shape measurement apparatus that measures the shape (flatness or the like) of the measurement object such as a semiconductor wafer using an interferometer.
[0002]
[Prior art]
In general, in a semiconductor wafer (hereinafter referred to as a wafer), the flatness at the center is sufficiently secured, but the flatness tends to deteriorate toward the edge. On the other hand, in recent years, in order to increase the number of semiconductor chips obtained from one wafer as much as possible, high flatness is required up to a portion closer to the edge of the wafer. At this time, the distance from the edge is used as an index representing the effective range that satisfies the required flatness in the entire wafer range. That is, it indicates that the inner side of the distance from the indicated edge is the effective range.
2. Description of the Related Art Conventionally, a shape measuring apparatus that measures the shape of a wafer based on an interference fringe image obtained by an interferometer that measures reflected light of light irradiated toward the measurement surface of the wafer has been widespread. In order to express the effective range by the distance from the edge of the wafer based on the shape data obtained by the shape measuring apparatus using such an interferometer, it is necessary to detect the edge of the wafer.
[0003]
[Problems to be solved by the invention]
However, as shown in FIG. 5, in the vicinity of the edge S, which is the tip of the end face of the wafer 1, a champ part 1c that gradually curves from the wafer 1 surface to the edge S is formed. For this reason, in the shape measurement using the conventional interferometer, the light irradiated on the champ part 1c is reflected in a direction completely different from the surface of the wafer 1, and no interference fringes are observed. It was not possible to detect which position of the edge S.
In the case where the surface shape is measured while moving the measuring needle from the inside of the wafer 1 toward the edge S using a stylus type shape meter that measures the shape by bringing the measuring needle into contact with the surface of the wafer 1. However, in the stylus type shape meter having the accuracy of the order of 0.1 μm required for the shape measurement of the wafer 1, the edge S cannot be detected because the measurement range is exceeded in the middle of the champ part 1c. In order to solve this problem, “M. Kimura et al., Jpn. J. Appl. Phys. Vol. 38 (1999)” (prior reference) describes the shape of the wafer 1 and the shape of the wafer 1 using a stylus shape meter. A method for detecting the edge S is shown.
In the edge detection method disclosed in the prior art document, the surface shape of the wafer 1 is measured by a stylus type shape meter, and a square block member is formed on the edge S which is the end of the wafer 1 as shown in FIG. 51, and the shape of the surface 51b (change in surface displacement) perpendicular to the surface 5a of the block member 51 contacting the wafer 1 is measured while moving the stylus 52 in the direction toward the wafer 1. The position where the measured value changes suddenly is detected as the edge of the wafer 1. Thus, the distance from the edge S representing the effective range can be obtained based on the detected edge S of the wafer 1 and the surface shape of the wafer 1 measured simultaneously.
However, when a stylus type shape meter is used, there is a problem that contamination such as scratches may occur on the surface of the wafer 1 due to the needle pressure. Furthermore, high accuracy flatness is required for the check table on which the wafer 1 is placed, and the processing accuracy of the check table and the trapping of dust between the wafer 1 and the block member 51 affect the measurement accuracy. There was also a problem.
Accordingly, the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a shape measuring apparatus capable of measuring the surface shape of an object to be measured and its edge in contact with high accuracy. .
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention comprises an interferometer for measuring reflected light of light irradiated toward the measurement surface of the object to be measured, and the object to be measured based on an image obtained by the interferometer. In the shape measuring apparatus for measuring the shape of the object, light parallel to the reflected light is irradiated from the opposite side of the measurement surface of the object to be measured, and the irradiated light is incident on the interferometer as background light of the object to be measured. Background light irradiation means configured as described above, and edge detection means for detecting a boundary between the background light area and the other area as an edge of the object to be measured based on an image obtained by the interferometer. It is a shape measuring device characterized by being formed.
As a result, the surface shape of the object to be measured and its edge can be optically contacted and measured with high accuracy using an interferometer, and the object to be measured is not contaminated such as scratches. Further, the dust trapping does not affect the measurement accuracy as in the case of performing edge detection by bringing a measurement block member into contact with the object to be measured.
As the edge detection means, one that detects a boundary between the background light region and the other region based on one or both of luminance information and color information of the image obtained by the interferometer is conceivable.
[0005]
The interferometer may be a grazing incidence interferometer. That is, the interferometer measures reflected light reflected in an oblique direction with respect to the measurement surface of the object to be measured. The reflected light and the background light measured by the interferometer and the detection target. What is necessary is just to comprise so that the tangent of a direction parallel to the said measurement surface in the edge of the said to-be-measured object may become substantially parallel seeing from the direction perpendicular | vertical to the measurement surface of the to-be-measured object.
As a result, even if the direction of the background light is oblique to the surface of the object to be measured, the background light has a boundary line at the end (ie, edge) of the end of the object to be measured (ie, the champ It becomes background light.
[0006]
Further, a back side interferometer for measuring the shape of the back side of the measurement surface of the object to be measured is provided, and the irradiation light on the back surface of the object to be measured in the back side interferometer is outside the object to be measured. It is also conceivable that the background light irradiating means is configured by passing the light beam through the interferometer on the measurement surface side.
As a result, when measuring the shape of the front and back surfaces of the object to be measured with an interferometer, it is not necessary to provide a separate light source for edge detection.
[0007]
Further, the background light irradiation means has a reflection surface close to the opposite side of the measurement surface of the object to be measured, and out of the object to be measured out of the light irradiated toward the measurement surface of the object to be measured. It may be configured to irradiate the background light by reflecting light passing through the reflecting surface.
As a result, when measuring the shape of only one side of the object to be measured, there is no need to provide a separate light source on the back side.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments and examples of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. It should be noted that the following embodiments and examples are examples embodying the present invention, and do not limit the technical scope of the present invention.
Here, FIG. 1 is a configuration diagram of the shape measuring apparatus X according to the embodiment of the present invention, and FIG. 2 shows paths of measurement light in the two interferometers included in the shape measuring apparatus X according to the embodiment of the present invention. FIG. 3 is a schematic diagram, FIG. 3 is a diagram schematically showing an example of an image obtained by an interferometer included in the shape measuring apparatus X according to the embodiment of the present invention, and FIG. 4 is an embodiment of the present invention. FIG. 5 is a diagram schematically showing a cross-sectional shape near the edge of the wafer, and FIG. 6 is a conventional edge detection method using a stylus type shape meter. FIG.
[0009]
The configuration of the shape measuring apparatus X according to the embodiment of the present invention will be described with reference to FIG.
The shape measuring apparatus X includes an oblique incidence interferometer 10 and 20 provided on each of the main surface 1a side and the back surface 1b side of the wafer 1 which is an example of an object to be measured, and the oblique incidence interferometers 10 and 20, respectively. And an arithmetic unit 31 for inputting the obtained image. Here, one surface of the wafer 1 is the main surface 1a (corresponding to the measurement surface) and the opposite surface is the back surface 1b, which is referred to as such for the sake of convenience. It does not mean that aspect.
[0010]
The two oblique incidence interferometers 10 and 20 respectively emit the measuring beams 12 and 22 to the wafer 1 and send the measuring beams 12 and 22 to the surface of the wafer 1 (main surface 1a). The collimator lenses 14 and 24, which are parallel beams oblique to the rear surface 1b), and triangular prisms 15 and 25 having reference planes 15a and 25a that transmit part of the parallel beams 12 and 22 and reflect part of them. , A CCD camera or the like that receives the measurement light reflected by the surfaces 1a and 1b of the wafer 1 through the reference planes 15a and 25a (the triangular prisms 15 and 25) and the collimator lenses 14 'and 24'. And piezo actuators 17 and 27 for moving the triangular prisms 15 and 25 in a direction substantially perpendicular to the surface of the wafer 1. These two oblique incidence interferometers 10 and 20 are composed of the light emitter 21 on the back surface 1b side and the light receiver 16 on the main surface 1a side, and the light emitter 11 on the main surface 1a side and the The light receiver 26 on the back surface 1b side is configured to face each other. The reflected light from the reference planes 15a and 25a and the reflected light from the surfaces 1a and 1b of the wafer 1 are optical path differences corresponding to the distance between the reference planes 15a and 25a and the surfaces 1a and 1b. Therefore, this optical path difference is observed as interference fringes formed by both reflected lights in the light receivers 16 and 26. The triangular prisms 15 and 25 are arranged so that the reference planes 15a and 25a are close to the back surface 1b of the wafer 1 (for example, at a distance of about 0.1 mm). As the measurement lights 12 and 22, for example, a HeNe laser (λ = 633 nm) or a coherent light such as a semiconductor laser is used. The triangular prisms 15 and 25 may be a reference plate such as a wedge prism used for Fizeau interference.
[0011]
2 (a), 2 (b), and 2 (c) respectively show the front surface (the same surface as FIG. 1) side, the side surface side, and the upper surface side of the shape measuring apparatus X (perpendicular to the surfaces 1a and 1b of the wafer 1). FIG. 6 is a diagram schematically showing a path of measurement light passing through the two triangular prisms 15 and 25 when viewed from a different direction.
2A, the measurement light 12 on the main surface 1a side of the wafer 1 is reflected by the main surface 1a after passing through the triangular prism 15, and the back surface 1b side of the wafer 1 is reflected. The measurement light 22 is configured to be parallel to the measurement light 22a that has passed through the triangular prism 25. When viewed from the side, the two triangular prisms 15 and 25 are arranged so as to protrude outward from the edge S of the wafer 1 as shown in FIG. As a result, the measurement light 22a that has passed through the triangular prism 25 on the back surface 1b side passes through the outside of the wafer 1 through the triangular prism 15 and the collimator lens 14 ′ on the main surface 1a side, and the wafer 1 Is incident on the light receiver 16 on the main surface 1a side as background light 22a '. Since the reflected light 12b on the main surface 1a and the background light 22a ′ are parallel, they also enter the collimator lens 14 ′ on the main surface 1a side in parallel. Further, as shown in FIG. 2 (c), wherein the reflected light 12b and the background light 22a 'in the main surface 1a, a direction parallel to the main surface 1a of the edge S to be detected of the wafer 1 The tangent line SS is configured to be substantially parallel when viewed from a direction perpendicular to the surfaces 1 a and 1 b of the wafer 1. Thereby, even if the direction of the background light 22a ′ is oblique with respect to the surface of the wafer 1, the background light 22a ′ uses the front end (that is, the edge S) of the end portion of the wafer 1 as a boundary line. It becomes background light (the champ part 1c does not become a boundary line).
[0012]
The interference fringe images obtained by the two light receivers 16 and 26 are input to the calculator 31 (an example of the edge detection means) such as a personal computer having image input means, and based on the input interference fringe images. Thus, the surface shapes (height distribution) of the main surface 1a and the back surface 1b of the wafer 1 are calculated.
Interference fringe images from the two interferometers 10 and 20 are obtained by the triangular actuators 15 and 25 (that is, the reference planes 15 a and 25 a) and the wafer 1 of the measuring beams 12 and 22 by the piazo actuators 17 and 27. Are moved to positions in consideration of the incident angle θ on the surfaces 1a and 1b, for example, 0 (predetermined reference position), λ / 8 / conθ, 2λ / 8 / cosθ, and 3λ / 8 / cosθ. , The luminance data of the interference fringe image at each position is taken into the calculator 31. By performing predetermined unwrap processing on the phase data obtained from the luminance data, the distance between the main surface 1a and its reference plane 15a and the distance between the back surface 1b and its reference plane 25a can be calculated. As the calculation method, a known method may be applied, and the description thereof is omitted here.
[0013]
FIG. 3 is a diagram schematically illustrating an example of the interference fringe image input to the calculator 31. In the figure, the E portion where the interference fringes appear is the main surface 1a portion of the wafer 1, the black B portion outside the champ portion 1c, and the relatively bright A portion outside thereof is the outside of the wafer 1. (That is, the portion of the background light 22a ′). In the image of FIG. 3, FIG. 4 is a graph of luminance information at the position indicated by the white line segment CD (and its extension line). In the graph of FIG. 4, the vertical axis represents the luminance, and the horizontal axis represents the line segment CD and the position on the extension line. As can be seen from this graph, the outer side of the wafer 1 receives the background light 22a ′, and thus has higher brightness than the other parts, but suddenly on the way to the inner side (D side) of the wafer 1. There is a position to go down. This position is a boundary between the area (A part) of the background light 22a ′ and other areas (the part (B part) of the champ part 1c, etc.), and the position at which the brightness rapidly decreases is calculated by the calculator 31. Is calculated as the position of the edge S of the wafer 1.
As a result, the distance between the outermost position (for example, position D) and the edge S in the effective range having the flatness allowed as the surface shape of the wafer 1 can be obtained by contact. . In addition, in a conventional shape measuring apparatus that measures the shape of the front and back surfaces of the wafer using two interferometers, the arrangement of the light emitters 11 and 21 and the light receivers 16 and 26 is taken into consideration in the arithmetic unit 31. Since it can be realized simply by adding an arithmetic processing program, it is easy to apply.
[0014]
【Example】
The shape measuring apparatus X includes two oblique incidence interferometers 10 and 20 on both the front and back sides of the wafer 1, but is not limited to this, and the main surface 1a side and the back surface 1b of the wafer 1 are not limited thereto. Each of the sides may be another interferometer (for example, a Fizeau interferometer or a Michelson interferometer) that irradiates light substantially perpendicularly to the surface of the wafer 1. In this case, two interferometers may be arranged opposite to each of the main surface 1a side and the back surface 1b.
Of course, the present invention may be applied to a shape measuring apparatus having only one interferometer for measuring the shape of one surface of the wafer 1 (for example, the main surface 1a). In this case, light emitting means for irradiating light in the same direction as the measurement light 22a that has passed through the triangular prism 25 on the back surface 1b side (that is, parallel to the reflected light 12b on the main surface 1a) (for example, in FIG. The light emitter 21, the collimator lens 24, and the triangular prism 25) may be provided on the back surface 1b side. At this time, in the case of using an interferometer that irradiates light substantially perpendicularly to the surface of the wafer 1, light emitting means that irradiates light substantially perpendicularly to the back surface 1b from the back surface 1b side of the wafer 1 is provided. It goes without saying.
Further, when applied to a shape measuring apparatus having only one interferometer for measuring the shape of one surface of the wafer 1 (for example, the main surface 1a), the wafer 1 approaches the back surface 1b of the wafer 1 substantially in parallel. A reflection plate having a reflecting surface is provided, and the background light is irradiated by reflecting light passing through the outside of the wafer 1 out of the light irradiated toward the main surface 1a of the wafer 1 by the reflecting surface. You may comprise. This results in a very simple configuration.
Furthermore, a plurality of interference fringe images are acquired by changing the distance between the reflecting surface and the back surface 1b of the wafer 1 by supporting the reflecting plate or the like with a piezo actuator, and the surface of the wafer 1 is obtained by a so-called phase shift method. If the interference intensity I kyodo is obtained from the plurality of interference images as in the case of measuring the shape, the portion of the background light 22a ′ (A portion in FIG. 3) compared to the champ portion 1c (B portion in FIG. 3). since) is towards increased much the interference intensity I Kyodo, the boundary line where the interference intensity I Kyodo suddenly changes may be determined as an edge S. Here, the interference intensity I kyodo is, for example, the luminances I 0 , I 90 , and I 180 in each interference image when the position of the reflecting surface is moved in four steps for every 90 ° phase of the light irradiating the wafer 1 . , I 270 based on the following equation.
I kyodo = ((I 90 -I 0 ) 2 + (I 270 -I 180 ) 2 ) 1/2
Thereby, it is possible to more clearly (accurately) detect a boundary line (that is, an edge) between the champ portion 1c (B portion in FIG. 3) and the background light 22a ′ portion (A portion in FIG. 3). It becomes. Of course, the method for obtaining the interference intensity I kyodo is not limited to the method in which the reflecting surface is moved in four steps for each 90 ° phase, and may be another known phase shift method.
[0015]
Further, in the shape measuring apparatus X, the boundary between the region of the background light 22a ′ and the other region is obtained based on the luminance information of the image data obtained by the interferometer. The illumination light (background light) has a color different from that of the measurement light used in the interferometer on the main surface 1a side, and the boundary is obtained based on color information of image data obtained by the interferometer. It is also possible to do.
In the embodiment, the two reference planes 15a and 25a are moved by the piezoelectric actuators 17 and 27 in four steps for each 90 ° phase, but other phase shift methods (for example, wavelength sweeping) are used. Etc.). Further, the wafer 1 may be moved by an actuator instead of moving the two reference planes 15a and 25a.
[0016]
【The invention's effect】
As described above, according to the present invention, the surface shape of an object to be measured and its edge can be optically contacted and measured with high accuracy using an interferometer. As a result, contamination such as scratches does not occur on the object to be measured, and dust trapping has an effect on the measurement accuracy as in the case of edge detection with a measurement block member in contact with the object to be measured. It does not occur.
In addition, when a back surface side interferometer for measuring the shape of the back surface of the object to be measured is provided, the irradiation light to the back surface of the object to be measured in the back surface side interferometer passes outside the object to be measured. Thus, it is not necessary to provide a separate light source for edge detection by being configured to be incident on the interferometer on the measurement surface side.
In addition, when measuring the shape of only one side of the object to be measured, a reflective surface is provided close to the opposite side of the measurement surface of the object to be measured, and the object to be measured out of the light irradiated toward the measurement surface of the object to be measured If the light passing through the outside of the object is reflected by the reflecting surface, it is not necessary to provide a separate light source on the back surface side, and edge detection can be performed more easily and at a low cost.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a shape measuring apparatus X according to an embodiment of the present invention.
FIG. 2 is a diagram schematically showing a path of measurement light in two interferometers included in the shape measuring apparatus X according to the embodiment of the present invention.
FIG. 3 is a diagram schematically illustrating an example of an image obtained by an interferometer included in the shape measuring apparatus X according to the embodiment of the present invention.
FIG. 4 is a graph showing an example of measurement data obtained by the shape measuring apparatus X according to the embodiment of the present invention.
FIG. 5 is a diagram schematically showing a cross-sectional shape near the edge of a wafer.
FIG. 6 is a diagram for explaining a conventional edge detection method using a stylus type shape meter.
[Explanation of symbols]
10, 20 ... Oblique incidence interferometers 11, 21 ... Light emitters 12, 22 ... Measuring light 14, 14 ', 24, 24' ... Collimator lenses 15, 25 ... Triangular prisms 15a, 25a ... Reference planes 16, 26 ... Light receivers 17, 27 ... Piezo actuator 31 ... Calculator 1a ... Main surface 1b of wafer ... Back surface of wafer

Claims (5)

被測定物の測定面に向かって照射した光の反射光を計測する干渉計を具備し,該干渉計により得られた画像に基づいて前記被測定物の形状を測定する形状測定装置において,
前記被測定物の測定面の反対側から前記反射光に平行な光を照射し,照射した光が前記被測定物の背景光として前記干渉計に入射するよう構成された背景光照射手段と,
前記干渉計により得られた画像に基づいて前記背景光の領域とその他の領域との境界を前記被測定物のエッジとして検出するエッジ検出手段と,
を具備してなることを特徴とする形状測定装置。
In a shape measuring apparatus comprising an interferometer that measures reflected light of light irradiated toward the measurement surface of the object to be measured, and measuring the shape of the object to be measured based on an image obtained by the interferometer,
A background light irradiation means configured to irradiate light parallel to the reflected light from the opposite side of the measurement surface of the object to be measured, and the irradiated light is incident on the interferometer as background light of the object to be measured;
Edge detection means for detecting a boundary between the area of the background light and the other area as an edge of the object to be measured based on an image obtained by the interferometer;
A shape measuring apparatus comprising:
前記エッジ検出手段が,前記干渉計により得られた画像の輝度情報及び色情報の一方又は両方により前記背景光の領域とその他の領域との境界を検出してなる請求項1に記載の形状測定装置。  2. The shape measurement according to claim 1, wherein the edge detection unit detects a boundary between the background light region and another region based on one or both of luminance information and color information of an image obtained by the interferometer. apparatus. 前記干渉計が前記被測定物の測定面に対して斜め方向に反射した反射光を計測するものであり,
前記干渉計により計測される前記反射光及び前記背景光と,検出対象となる前記被測定物のエッジにおける前記測定面に平行な方向の接線とが,前記被測定物の測定面に垂直な方向から見て略平行となるよう構成されてなる請求項1又は2のいずれかに記載の形状測定装置。
The interferometer measures reflected light reflected in an oblique direction with respect to the measurement surface of the object to be measured;
The reflected light and the background light measured by the interferometer, and the tangent line in the direction parallel to the measurement surface at the edge of the measurement object to be detected are perpendicular to the measurement surface of the measurement object The shape measuring apparatus according to claim 1, wherein the shape measuring apparatus is configured to be substantially parallel when viewed from above.
前記被測定物の測定面の裏面の形状を測定するための裏面側干渉計も具備し,
該裏面側干渉計における前記被測定物の裏面への照射光が,前記被測定物の外側を通過して前記測定面側の前記干渉計に入射されるよう構成することにより,前記背景光照射手段を構成してなる請求項1〜3のいずれかに記載の形状測定装置。
A back side interferometer for measuring the shape of the back side of the measurement surface of the object to be measured;
The background light irradiation is configured such that irradiation light on the back surface of the object to be measured in the back surface side interferometer passes through the outside of the object to be measured and enters the interferometer on the measurement surface side. The shape measuring apparatus according to claim 1, comprising means.
前記背景光照射手段が,前記被測定物の測定面の反対側に近接する反射面を有し,前記被測定物の測定面に向かって照射された光のうち前記被測定物の外側を通過する光を前記反射面で反射することにより前記背景光を照射するよう構成されてなる請求項1〜3のいずれかに記載の形状測定装置。  The background light irradiation means has a reflection surface close to the opposite side of the measurement surface of the object to be measured, and passes outside the object to be measured among the light irradiated toward the measurement surface of the object to be measured. The shape measuring device according to claim 1, wherein the shape measuring device is configured to irradiate the background light by reflecting light to be reflected by the reflecting surface.
JP2002137058A 2002-05-13 2002-05-13 Shape measuring device Expired - Lifetime JP3841719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002137058A JP3841719B2 (en) 2002-05-13 2002-05-13 Shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002137058A JP3841719B2 (en) 2002-05-13 2002-05-13 Shape measuring device

Publications (2)

Publication Number Publication Date
JP2003329429A JP2003329429A (en) 2003-11-19
JP3841719B2 true JP3841719B2 (en) 2006-11-01

Family

ID=29698915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002137058A Expired - Lifetime JP3841719B2 (en) 2002-05-13 2002-05-13 Shape measuring device

Country Status (1)

Country Link
JP (1) JP3841719B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5243706B2 (en) * 2006-08-28 2013-07-24 株式会社ミツトヨ Lightwave interference measuring device
US8855403B2 (en) * 2010-04-16 2014-10-07 Koh Young Technology Inc. Method of discriminating between an object region and a ground region and method of measuring three dimensional shape by using the same

Also Published As

Publication number Publication date
JP2003329429A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
CN102818528B (en) Apparatus and method for inspecting an object with increased depth of field
JPH06294750A (en) Optical substrate inspecting device
JP5268061B2 (en) Board inspection equipment
JP3881125B2 (en) Level difference measuring apparatus and etching monitor apparatus and etching method using the level difference measuring apparatus
WO2013091584A1 (en) Method and device for detecting defects in substrate
KR100785802B1 (en) Apparatus for measurment of three-dimensional shape
KR101446061B1 (en) Apparatus for measuring a defect of surface pattern of transparent substrate
JP2017151086A (en) Measurement method and measurement program
JP4427632B2 (en) High-precision 3D shape measuring device
JP3841719B2 (en) Shape measuring device
US10598604B1 (en) Normal incidence phase-shifted deflectometry sensor, system, and method for inspecting a surface of a specimen
KR20130088916A (en) Thickness measuring method using laser interferometer
JP4810693B2 (en) Lightwave interference measurement device
JP2001066127A (en) Optical surface inspecting mechanism and its device
TWI431240B (en) Three-dimensional measurement system
JP3907518B2 (en) Shape measuring device
JP4988577B2 (en) Interference system with a reference surface having a specular area
JP4555925B2 (en) 3D shape measuring device
JP3711892B2 (en) 3D surface shape measurement method
KR101321058B1 (en) Thickness Measuring Method of Film Using Laser
KR101319555B1 (en) Thickness change measurement apparatus and method
US9441945B2 (en) Scan lens, interferometric measuring device using same
JP2911283B2 (en) Non-contact step measurement method and device
JP2005106706A (en) Instrument and method for measuring refractive index and thickness
KR100900477B1 (en) Apparatus of thickness variation and measuring method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3841719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

EXPY Cancellation because of completion of term