JP3841660B2 - Harvester prime mover structure - Google Patents

Harvester prime mover structure Download PDF

Info

Publication number
JP3841660B2
JP3841660B2 JP2001302924A JP2001302924A JP3841660B2 JP 3841660 B2 JP3841660 B2 JP 3841660B2 JP 2001302924 A JP2001302924 A JP 2001302924A JP 2001302924 A JP2001302924 A JP 2001302924A JP 3841660 B2 JP3841660 B2 JP 3841660B2
Authority
JP
Japan
Prior art keywords
cooling air
negative pressure
supply port
oil cooler
intake negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001302924A
Other languages
Japanese (ja)
Other versions
JP2003104070A (en
Inventor
信美 香本
照男 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2001302924A priority Critical patent/JP3841660B2/en
Publication of JP2003104070A publication Critical patent/JP2003104070A/en
Application granted granted Critical
Publication of JP3841660B2 publication Critical patent/JP3841660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combines (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンルームを形成する中空構造体の枠体の内側壁に、エンジン冷却風をエンジンルーム内に供給する給気口を形成し、前記枠体の外側壁に、防塵構造の外気吸引口の複数を少なくとも一つが前記給気口に対向する状態に形成し、前記枠体内の前記給気口の冷却風流動方向上手側に、複数の通気孔を形成した吸気負圧分散板を配置してある収穫機の原動部構造に関する。
【0002】
【従来の技術】
収穫機にあっては、収穫作業の際、穀稈を引起こし処理するとともに刈取り処理するなどの収穫部から塵埃が多く発生することがある。この場合、小さい外気吸引口や、数少ない外気吸引口から冷却風を取り入れるようになっていると、外気吸引口の防塵構造に塵埃による目詰まりが発生して冷却風の取入れに支障が出やすくなる。このため、上記原動部構造は、前記枠体の外側壁の複数部位に外気吸引口を形成するとともに、エンジンルームで発生する冷却風吸引力のために発生する吸気負圧が、吸気負圧分散板のために枠体内の各部に分散して給気口に対向する外気吸引口以外の外気吸引口にも適切に作用するように構成し、原動部周辺の広範囲にわたって分散するとか、全体として吸気口面積が大きくなる外気吸引口から冷却風を取り入れるようになったものである。
【0003】
【発明が解決しようとする課題】
上記収穫機において、静油圧式無段変速装置など、作動油を使用する機器のためのオイルクーラを、前記枠体内の前記給気口の冷却風流動方向上手側に配置すれば、オイルクーラ専用の特別な冷却風取入れ手段を備えなくとも、エンジン冷却風を利用して構造簡単にオイル冷却を行える。
ところが、この場合、オイルクーラを単に配置しただけでは、オイルクーラによって発生する吸気抵抗に起因し、吸気負圧が作用しにくい外気吸引口部分ができ、エンジンルーム内で発生する冷却風吸引力の割には、エンジンやオイルの冷却性能が悪くなることがある。
【0004】
本発明の目的は、エンジン冷却性能の低下を抑制しながらエンジン冷却風を利用してオイル冷却が効果的にできる収穫機の原動部構造を提供することにある。
【0005】
【課題を解決するための手段】
請求項1による発明の構成、作用、効果はつぎのとおりである。
【0006】
〔構成〕
エンジンルームを形成する中空構造体の枠体の内側壁に、エンジン冷却風をエンジンルーム内に供給する給気口を形成し、前記枠体の外側壁に、防塵構造の外気吸引口の複数を少なくとも一つが前記給気口に対向する状態に形成し、前記枠体内の前記給気口の冷却風流動方向上手側に、複数の通気孔を形成した吸気負圧分散板を配置してある収穫機の原動部構造において、
前記枠体内の前記給気口の冷却風流動方向上手側にオイルクーラを配置するとともに、前記吸気負圧分散板のうち前記オイルクーラに対向する部分における単位面積当たりでの冷却風通過面積を他の部分におけるそれよりも大きくし、その冷却風通過面積を大きくした前記対向する部分の周囲における吸気負圧分散板と前記オイルクーラの外周部との間をシール部材でシールしてある
【0007】
〔作用〕
吸気負圧分散板のオイルクーラに対向する部分と他の部分との間に前記冷却風通過面積差があることにより、オイルクーラが給気口の冷却風流動方向上手側に位置して吸気抵抗になる割には、吸気負圧が枠体内の各中空部に適切に分散して複数の外気吸引口のいずれにも作用する。これにより、いずれの外気吸引口からも冷却風が吸引されて、エンジンルームに冷却風を不足がないように供給できるとともに、冷却風がオイルクーラを確実に通過して冷却作用するようにできる。
【0008】
オイルクーラの外周部と吸気負圧分散板との間に隙間があると、この隙間を通ってオイルクーラを迂回して流れる冷却風が発生しやすくなるが、その間をシールしてあるものだから、その隙間に起因してオイルクーラを迂回する冷却風が発生しにくくなり、その分オイルクーラを通過して冷却作用する冷却風が多くなる。
【0009】
〔効果〕
従って、オイルクーラに極力多くの冷却風が作用してオイル冷却が効率よく行われる。しかも、冷却風をいずれの外気吸引口からも吸引させてエンジンルームに不足が出ないように供給させ、エンジン冷却も良好に行わせられる。
【0010】
【発明の実施の形態】
〔第1実施形態〕
図1に示すように、クローラ式走行装置1、搭乗型の運転部、運転座席2の支持台に兼用のエンジンボンネット10を有する原動部を備えている走行機体の機体フレーム3の前部の横一端側に、バリカン型の刈取装置4aなどを備えている刈取部4を昇降操作自在に連結するとともに、前記走行機体の機体フレーム3の後端側に、脱穀装置5、穀粒タンク6を設けて、稲・ 麦などの穀粒を収穫するようにコンバインを構成してある。
すなわち、刈取部4は、走行機体が走行していく伴い、稲・麦などの植立穀稈を引起こし処理するとともに前記刈取装置4aによって刈取り処理し、刈取穀稈を脱穀装置5の始端部に搬送する。脱穀装置5は、刈取部4からの刈取穀稈を脱穀処理し、脱穀粒をワラ屑などの塵埃と分離させる選別処理を行う。穀粒タンク6は、脱穀装置5からの脱穀粒を送り込まれて貯留していく。穀粒タンク6に貯留された穀粒は、穀粒タンク6の後部に縦スクリュー部7aが連設しているオーガ7によって取出すように構成してある。
【0011】
前記原動部は、図2及び図3に示す如く構成してある。
すなわち、横壁部11、前壁部12、後壁部13、運転座席2を支持する天板部14、横壁部11の後端側に立っている吸気部15のそれぞれで成るとともに前記横壁部11と前記前壁部12と前記吸気部15の各部が中空構造体になっている枠体によって前記エンジンボンネット10を構成し、このエンジンボンネット10が横壁部11の内側壁11aと、前壁部12の内側壁12aと、後壁部13と、天板部14とによって形成しているとともに機体内側に向かって開口しているエンジンルーム16にエンジン17を設置してある。
【0012】
エンジンボンネット10の前記横壁部11における内側壁11aに形成してある給気口18と、エンジン17が回転及び駆動自在に備えている冷却ファン19との間に、エンジン冷却用のラジエータ20を設け、前記横壁部11の内部の前記給気口18に対して冷却風流動方向上手側に位置する部位に、前記給気口18よりも広い面積を備える吸気負圧分散板21を機体側面視で給気口18を全体にわたって覆うように配置した状態で、かつ、前記内側壁11aが備えている支持部材22によって支持されるように構成した状態で設け、前記横壁部11の外側壁11bに前記給気口18に対向するとともに機体横外向きの外気吸引口11cを、前記前壁部12の外側壁12bに機体前方向きの外気吸引口12cを、前記吸気部15の外側壁15bに機体横外向きの外気吸引口15cをそれぞれ形成するとともに、各外気吸引口11c,12c,15cを、吸引口11c,12c,15cの全体にわたって防塵網23が付いている防塵構造に構成してある。
【0013】
エンジンボンネット10の前記横壁部11における内部の前記給気口18に対して冷却風流動方向上手側に位置する部位で、前記吸気負圧分散板21の両側面のうち前記給気口18に面する方の側面がわにオイルクーラ24を設けるとともに、このオイルクーラ24の外周部と吸気負圧分散板21との間に、この間をオイルクーラ24の全周にわたってシールするシール部材25を設けてある。
前記オイルクーラ24は、前記エンジン17の出力を前進側と後進側に切り換えるとともに前進側においても後進側においても無段階に変速してクローラ式走行装置1に伝達したり、この走行装置1の駆動停止を行うように走行用ミッションに付設してある静油圧式無段変速装置(図示せず)に補給する油を冷却し、これによって変速装置を冷却するものである。
【0014】
図4(イ)に示すように、吸気負圧分散板21の前記オイルクーラ24に対向する部分21aには、一つの大きな通気孔26を形成し、その他の部分21bには、均等な密度で分布する複数の小さい通気孔27を形成することにより、吸気負圧分散板21の前記クーラ対向部分21aにおける単位面積当たりでの冷却風通過面積を、前記クーラ対向外部分21bにおける単位面積当たりでの冷却風通過面積よりも大きくしてある。
つまり、前記横壁部11の外気吸引口11cが前記給気口18に対向し、前記前壁部12の外気吸引口12cも、前記吸気部15の外気吸引口15cも前記給気口18から離れているにもかかわらず、さらに、オイルクーラ24が給気口18の冷却風流動方向下手側に位置して吸気抵抗となるにもかかわらず、吸気負圧分散板21は、冷却ファン19の回転によって発生する吸引力のためにラジエータ20の前面側に発生する吸気負圧を横壁部11と前壁部12と吸気部15の各部の中空部に分散させて作用させ、吸気負圧が横壁部11の外気吸引口11cと、前壁部12の外気吸引口12cと、吸気部15の外気吸引口15cとのいずれにも作用するようにしている。
【0015】
これにより、原動部は、次の如くエンジン17と変速装置の冷却を行う。
すなわち、ファン19がエンジン17によって駆動されて発生する吸引力によってラジエータ20の前面側に吸気負圧を発生させ、この吸気負圧を吸気負圧分散板21の作用によって横壁部11と前壁部12と吸気部15の各内部に分散させて作用させ、エンジンボンネット外気を横壁部11の外気吸引口11cからこの横壁部11の内部に、前壁部12の外気吸引口12cからこの前壁部12の内部に、吸気部15の外気吸引口15cからこの吸気部15の内部にそれぞれ冷却風として吸引する。このとき、ワラ屑などの塵埃を防塵網23によって受け止めさせて、塵埃が外気と共に流入することを防止しながら吸引する。そして、前壁部12の内部に吸引した冷却風を、横壁部11の内側壁11aの前端側で横壁部11と前壁部12の内部どうしを連通させている連通口28から横壁部11の内部に、吸気部15の内部に吸引した冷却風を、横壁部11の上壁部の後端側で横壁部11と吸気部15の内部どうしを連通させている連通口29から横壁部11の内部にそれぞれ導入し、横壁部11の外気吸引口11cからの冷却風と合流させ、その合流冷却風の一部を吸気負圧分散板21のクーラ対向部分21aを通してオイルクーラ24に導入し、この冷却風との熱交換によってクーラ内油を冷却する。このとき、吸気負圧分散板21とオイルクーラ24の間をシールしてあることにより、吸気負圧分散板21のクーラ対向部分21aからの冷却風が吸気負圧分散板21とオイルクーラ24の間を通ってオイルクーラ24を迂回しないようにしながら導入する。
オイルクーラ24を通過した冷却風と、横壁部11内の前記合流冷却風のうち吸気負圧分散板21のクーラ対向外部分21bを通して吸引した冷却風とを給気口18からエンジンルーム16の内部に導入してラジエータ20に供給し、この冷却風との熱交換によってラジエータ内のエンジン冷却水を冷却する。
【0016】
〔第2実施形態〕
図4(ロ)は、第2実施形態を備える吸気負圧分散板21を示し、この吸気負圧分散板21にあっては、オイルクーラ24に対応する部分21aに、複数の第1通気孔30を形成し、その他の部分21bに、均等な密度で分布する複数の第2通気孔27を形成してある。第1 通気孔30の孔径が第2通気孔27の孔径より大であることと、第1通気孔30が分布している密度と第2通気孔27が分布している密度とが異なることにより、前記クーラ対向部分21aにおける単位面積当たりでの冷却風通過面積が、前記クーラ対向外部分21bにおける単位面積当たりでの冷却風通過面積よりも大きくなっており、エンジンボンネット10の中空部に発生する吸気負圧を、各外気吸引口11c,12c,15cに作用するように横壁部11と前壁部12と吸気部15の各部の中空部に分散させる。
【0017】
〔別実施形態〕
吸気負圧分散板21としては、上記各実施形態の如き構成を有するものの他、クーラ対向部分21aとクーラ対向外部分21bとに同じ孔径の通気孔を形成するとともに、クーラ対向部分21aに通気孔が分布する蜜度を、クーラ対向外部分21bに通気孔が分布する密度を大にすることにより、クーラ対向部分21aにおける単位面積当たりでの冷却風通過面積が、クーラ対向外部分21bにおける冷却風通過面積より大になり、吸気負圧を複数の外気吸引口11c,12c,15cに分散させる構成のものを採用して実施してもよい。
【0018】
本発明は、オイルクーラ24を、吸気負圧分散板21の両側面のうち外気吸引口11cに対向する方の側面がわに配置したものにも適用できる。
【0019】
本発明は、コンバインの他、人参や玉ねぎなど稲・麦以外の作物を収穫対象とする各種の収穫作業機にも適用できる。従って、これらコンバインや収穫作業機を総称して収穫機と呼称する。
【図面の簡単な説明】
【図1】 コンバイン全体の側面図
【図2】 原動部の一部切欠き状態での側面図
【図3】 原動部の横断平面図
【図4】 吸気負圧分散板の正面図
【符号の説明】
10 枠体
11a 内側壁
11b,12b,15b 外側壁
11c,12c,15c 外気吸引口
16 エンジンルーム
18 給気口
21 吸気負圧分散板
21a 吸気負圧分散板のオイルクーラに対向する部分
21b 吸気負圧分散板のその他の部分
25 シール部材
26,27,30 通気孔
[0001]
BACKGROUND OF THE INVENTION
The present invention forms an air supply port for supplying engine cooling air into the engine room on the inner side wall of the frame of the hollow structure that forms the engine room, and sucks the outside air of the dust-proof structure on the outer wall of the frame. An intake negative pressure dispersion plate having a plurality of holes formed in a state where at least one of the ports faces the air supply port, and a plurality of air holes are formed on the upper side of the air supply port in the cooling air flow direction. It relates to the structure of the power section of a harvesting machine.
[0002]
[Prior art]
In the harvesting machine, a large amount of dust may be generated from the harvesting unit such as raising and processing cereal grains and harvesting during harvesting. In this case, if the cooling air is taken in from a small outside air suction port or a few outside air suction ports, the dust-proof structure of the outside air suction port is clogged with dust, and it becomes easy to disturb the intake of the cooling air. . For this reason, the prime mover structure forms an outside air suction port at a plurality of portions on the outer wall of the frame body, and the intake negative pressure generated due to the cooling air suction force generated in the engine room distributes the intake negative pressure. Because of the plate, it is distributed to each part of the frame body and is configured to work properly on the outside air suction port other than the outside air suction port facing the air supply port. The cooling air is introduced from the outside air suction port having a large mouth area.
[0003]
[Problems to be solved by the invention]
In the above harvesting machine, if an oil cooler for equipment that uses hydraulic oil, such as a hydrostatic continuously variable transmission, is arranged on the upper side in the cooling air flow direction of the air supply port in the frame, the oil cooler only Even if the special cooling air intake means is not provided, oil cooling can be easily performed using the engine cooling air.
However, in this case, the simple arrangement of the oil cooler creates an outside air suction port portion where intake negative pressure is hard to act due to the intake resistance generated by the oil cooler, and the cooling air suction force generated in the engine room is reduced. For some reasons, the cooling performance of the engine and oil may deteriorate.
[0004]
An object of the present invention is to provide a prime mover structure for a harvesting machine that can effectively perform oil cooling using engine cooling air while suppressing a decrease in engine cooling performance.
[0005]
[Means for Solving the Problems]
The configuration, operation, and effect of the invention according to claim 1 are as follows.
[0006]
〔Constitution〕
An air supply port for supplying engine cooling air into the engine room is formed on the inner side wall of the hollow structure frame that forms the engine room, and a plurality of dust-proof outside air suction ports are formed on the outer wall of the frame. A harvesting device in which at least one is formed so as to face the air supply port, and an intake negative pressure dispersion plate having a plurality of air holes formed on the upper side in the cooling air flow direction of the air supply port in the frame. In the prime mover structure of the machine,
An oil cooler is arranged on the upper side in the cooling air flow direction of the air supply port in the frame body, and the cooling air passage area per unit area in the portion of the intake negative pressure dispersion plate facing the oil cooler is changed. The space between the intake negative pressure dispersion plate and the outer periphery of the oil cooler around the facing portion, which is larger than that in the portion and the cooling air passage area is increased, is sealed with a seal member .
[0007]
[Action]
Due to the cooling air passage area difference between the portion of the intake negative pressure dispersion plate facing the oil cooler and the other portion, the oil cooler is positioned on the upper side in the cooling air flow direction of the air supply port, and the intake resistance However, the intake negative pressure is appropriately dispersed in each hollow portion in the frame and acts on any of the plurality of outside air suction ports. Thus, the cooling air is sucked from any of the outside air suction ports so that the cooling air can be supplied to the engine room so as not to be insufficient, and the cooling air can surely pass through the oil cooler to perform the cooling action.
[0008]
If there is a gap between the outer periphery of the oil cooler and the intake negative pressure dispersion plate, it will be easy to generate cooling air that flows around the oil cooler through this gap, but it is sealed between them, Due to the gap, the cooling air that bypasses the oil cooler is less likely to be generated, and accordingly, the cooling air that passes through the oil cooler and acts to cool increases.
[0009]
〔effect〕
Accordingly, as much cooling air as possible acts on the oil cooler, so that the oil is efficiently cooled. In addition, the cooling air is sucked from any of the outside air suction ports so that the engine room is not deficient, and the engine is cooled well.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
As shown in FIG. 1, the crawler type traveling device 1, a boarding type driving unit, and a lateral side of the front part of the vehicle body frame 3 of the traveling machine body including a driving unit having a combined engine bonnet 10 on the support base of the driver seat 2. A cutting part 4 having a clipper type cutting device 4a and the like is connected to one end side so as to be movable up and down, and a threshing device 5 and a grain tank 6 are provided on the rear end side of the body frame 3 of the traveling machine body. Combines are configured to harvest grains such as rice and wheat.
That is, as the traveling machine body travels, the reaping unit 4 raises and processes planted cereals such as rice and wheat, and also performs reaping processing by the reaping device 4a. Transport to. The threshing device 5 performs a threshing process on the harvested cereal from the reaping unit 4 and performs a sorting process for separating the threshed grains from dust such as straw scraps. The grain tank 6 feeds and stores the threshed grains from the threshing device 5. The grain stored in the grain tank 6 is configured to be taken out by the auger 7 in which the vertical screw part 7 a is connected to the rear part of the grain tank 6.
[0011]
The driving part is configured as shown in FIGS.
That is, the horizontal wall portion 11, the front wall portion 12, the rear wall portion 13, the top plate portion 14 for supporting the driver's seat 2, and the intake portion 15 standing on the rear end side of the horizontal wall portion 11 and the horizontal wall portion 11. The engine bonnet 10 is constituted by a frame body in which each part of the front wall portion 12 and the intake portion 15 has a hollow structure, and the engine bonnet 10 includes an inner wall 11a of the lateral wall portion 11 and a front wall portion 12. The engine 17 is installed in an engine room 16 which is formed by the inner wall 12a, the rear wall 13 and the top plate 14 and which opens toward the inside of the machine body.
[0012]
A radiator 20 for cooling the engine is provided between the air supply port 18 formed in the inner wall 11a of the lateral wall portion 11 of the engine bonnet 10 and the cooling fan 19 provided in the engine 17 so as to be rotatable and drivable. The intake negative pressure dispersion plate 21 having a larger area than the air supply port 18 at a position located on the upper side in the cooling air flow direction with respect to the air supply port 18 inside the horizontal wall portion 11 in a side view of the body. The air supply port 18 is disposed so as to cover the entire surface, and is provided so as to be supported by the support member 22 provided in the inner wall 11a, and is provided on the outer wall 11b of the lateral wall 11. outside air suction port 11c of the body lateral outward with facing the air supply opening 18, the outside air suction port 12c of the fuselage forward facing outside wall 12b of the front wall 12, outer wall 1 of the intake section 15 The external air suction ports 15c facing outward from the fuselage are respectively formed in b, and each of the external air suction ports 11c, 12c, 15c is constructed in a dustproof structure with a dustproof net 23 over the entire suction ports 11c, 12c, 15c. It is.
[0013]
A portion of the side wall portion 11 of the engine bonnet 10 that is positioned on the upper side of the cooling air flow direction with respect to the air supply port 18 inside, and faces the air supply port 18 among the both side surfaces of the intake negative pressure dispersion plate 21. An oil cooler 24 is provided on the side surface of the oil cooler 24, and a seal member 25 is provided between the outer periphery of the oil cooler 24 and the intake negative pressure dispersion plate 21 to seal the entire periphery of the oil cooler 24. is there.
The oil cooler 24 switches the output of the engine 17 between the forward side and the reverse side, and continuously changes the speed on both the forward side and the reverse side to transmit to the crawler type traveling device 1 or drive the traveling device 1. Oil to be supplied to a hydrostatic continuously variable transmission (not shown) attached to the traveling mission so as to be stopped is cooled, thereby cooling the transmission.
[0014]
As shown in FIG. 4 (a), one large vent hole 26 is formed in the portion 21a of the intake negative pressure dispersion plate 21 facing the oil cooler 24, and the other portion 21b has a uniform density. By forming a plurality of small vent holes 27 distributed, the cooling air passage area per unit area in the cooler facing portion 21a of the intake negative pressure dispersion plate 21 can be reduced per unit area in the cooler facing outer portion 21b. It is larger than the cooling air passage area.
That is, the outside air suction port 11 c of the lateral wall portion 11 faces the air supply port 18, and the outside air suction port 12 c of the front wall portion 12 and the outside air suction port 15 c of the intake portion 15 are separated from the air supply port 18. In spite of this, the intake negative pressure dispersion plate 21 rotates the cooling fan 19 even though the oil cooler 24 is positioned on the lower side of the air supply port 18 in the cooling air flow direction and becomes the intake resistance. The suction negative pressure generated on the front side of the radiator 20 due to the suction force generated by the air is dispersed and applied to the hollow portions of the horizontal wall portion 11, the front wall portion 12, and the suction portion 15, and the negative suction pressure is applied to the horizontal wall portion. 11, the outside air suction port 12 c of the front wall portion 12, and the outside air suction port 15 c of the intake portion 15.
[0015]
Thereby, the prime mover cools the engine 17 and the transmission as follows.
That is, negative suction pressure is generated on the front side of the radiator 20 by the suction force generated when the fan 19 is driven by the engine 17, and this negative suction pressure is generated by the action of the negative intake pressure dispersion plate 21 to the side wall portion 11 and the front wall portion. The engine bonnet outside air is allowed to act in a distributed manner inside each of the air intake portion 15 and the air intake portion 15, and the front wall portion from the outside air suction port 12 c of the front wall portion 12 to the inside of the horizontal wall portion 11 from the outside air suction port 11 c of the side wall portion 11. 12 is sucked into the intake portion 15 from the outside air suction port 15c of the intake portion 15 as cooling air. At this time, dust such as straw scraps is received by the dust screen 23 and sucked while preventing the dust from flowing in along with the outside air. Then, the cooling air sucked into the interior of the front wall portion 12 is introduced into the lateral wall portion 11 from the communication port 28 that communicates the interior of the lateral wall portion 11 and the front wall portion 12 on the front end side of the inner wall 11a of the lateral wall portion 11. The cooling air sucked into the inside of the intake portion 15 is introduced into the lateral wall portion 11 from the communication port 29 that connects the lateral wall portion 11 and the inside of the intake portion 15 on the rear end side of the upper wall portion of the lateral wall portion 11. Each is introduced into the interior and merged with the cooling air from the outside air suction port 11c of the lateral wall portion 11, and a part of the combined cooling air is introduced into the oil cooler 24 through the cooler facing portion 21a of the intake negative pressure dispersion plate 21, Cooler oil is cooled by heat exchange with cooling air. At this time, by it is sealed between the intake negative pressure distribution plate 21 and the oil cooler 24, cooling air from the cooler facing portion 21a of the intake negative pressure distribution plate 21 of the intake negative pressure distribution plate 21 and the oil cooler 24 The oil cooler 24 is introduced so as not to bypass the gap.
The cooling air that has passed through the oil cooler 24 and the cooling air that is sucked through the cooler-opposing outer portion 21 b of the intake negative pressure dispersion plate 21 out of the combined cooling air in the lateral wall portion 11 from the air supply port 18 to the inside of the engine room 16. Is supplied to the radiator 20 and the engine coolant in the radiator is cooled by heat exchange with the cooling air.
[0016]
[Second Embodiment]
FIG. 4B shows an intake negative pressure dispersion plate 21 having the second embodiment. In the intake negative pressure dispersion plate 21, a plurality of first vent holes are formed in a portion 21a corresponding to the oil cooler 24. 30 and a plurality of second vent holes 27 distributed at an equal density are formed in the other portion 21b. The hole diameter of the first vent hole 30 is larger than the hole diameter of the second vent hole 27 and the density at which the first vent holes 30 are distributed differs from the density at which the second vent holes 27 are distributed. The cooling air passage area per unit area in the cooler facing portion 21 a is larger than the cooling air passage area per unit area in the cooler facing outer portion 21 b and is generated in the hollow portion of the engine bonnet 10. The negative intake pressure is dispersed in the hollow portions of the lateral wall portion 11, the front wall portion 12, and the intake portion 15 so as to act on the external air suction ports 11 c, 12 c, and 15 c.
[0017]
[Another embodiment]
As the intake negative pressure dispersion plate 21, in addition to those having the configurations as in the above embodiments, a vent hole having the same hole diameter is formed in the cooler facing portion 21a and the cooler facing outer portion 21b, and a vent hole is formed in the cooler facing portion 21a. Is increased, and the density at which the air holes are distributed in the cooler facing portion 21b is increased, so that the cooling air passage area per unit area in the cooler facing portion 21a is reduced by the cooling air in the cooler facing portion 21b. A configuration in which the intake negative pressure is distributed to the plurality of outside air suction ports 11c, 12c, and 15c, which is larger than the passage area, may be employed.
[0018]
The present invention can also be applied to the oil cooler 24 in which the side surface facing the outside air suction port 11c of the both sides of the intake negative pressure dispersion plate 21 is arranged on the side.
[0019]
The present invention can be applied to various harvesting machines for harvesting crops other than rice and wheat such as carrots and onions in addition to combine. Therefore, these combines and harvesting machines are collectively called harvesting machines.
[Brief description of the drawings]
[Fig. 1] Side view of the entire combine [Fig. 2] Side view of the prime mover partly cut away [Fig. 3] Transverse plan view of the prime mover [Fig. 4] Front view of the intake negative pressure dispersion plate Explanation】
DESCRIPTION OF SYMBOLS 10 Frame 11a Inner side wall 11b, 12b, 15b Outer side wall 11c, 12c, 15c Outside air suction port 16 Engine room 18 Air supply port 21 Intake negative pressure dispersion plate 21a Portion of intake negative pressure dispersion plate facing oil cooler 21b Intake negative Other parts of the pressure distribution plate
25 Seal members 26, 27, 30 Ventilation holes

Claims (1)

エンジンルームを形成する中空構造体の枠体の内側壁に、エンジン冷却風をエンジンルーム内に供給する給気口を形成し、前記枠体の外側壁に、防塵構造の外気吸引口の複数を少なくとも一つが前記給気口に対向する状態に形成し、前記枠体内の前記給気口の冷却風流動方向上手側に、複数の通気孔を形成した吸気負圧分散板を配置してある収穫機の原動部構造であって、
前記枠体内の前記給気口の冷却風流動方向上手側にオイルクーラを配置するとともに、前記吸気負圧分散板のうち前記オイルクーラに対向する部分における単位面積当たりでの冷却風通過面積を他の部分におけるそれよりも大きくし、その冷却風通過面積を大きくした前記対向する部分の周囲における吸気負圧分散板と前記オイルクーラの外周部との間をシール部材でシールしてある収穫機の原動部構造。
An air supply port for supplying engine cooling air into the engine room is formed on the inner side wall of the hollow structure frame that forms the engine room, and a plurality of dust-proof outside air suction ports are formed on the outer wall of the frame. A harvesting device in which at least one is formed so as to face the air supply port, and an intake negative pressure dispersion plate having a plurality of air holes formed on the upper side in the cooling air flow direction of the air supply port in the frame. The prime mover structure of the machine,
An oil cooler is arranged on the upper side in the cooling air flow direction of the air supply port in the frame body, and the cooling air passage area per unit area in the portion of the intake negative pressure dispersion plate facing the oil cooler is changed. The harvesting machine is sealed with a seal member between the intake negative pressure dispersion plate and the outer periphery of the oil cooler around the facing part, which is larger than that in the part and the cooling air passage area is increased . Driving part structure.
JP2001302924A 2001-09-28 2001-09-28 Harvester prime mover structure Expired - Fee Related JP3841660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001302924A JP3841660B2 (en) 2001-09-28 2001-09-28 Harvester prime mover structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302924A JP3841660B2 (en) 2001-09-28 2001-09-28 Harvester prime mover structure

Publications (2)

Publication Number Publication Date
JP2003104070A JP2003104070A (en) 2003-04-09
JP3841660B2 true JP3841660B2 (en) 2006-11-01

Family

ID=19123092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302924A Expired - Fee Related JP3841660B2 (en) 2001-09-28 2001-09-28 Harvester prime mover structure

Country Status (1)

Country Link
JP (1) JP3841660B2 (en)

Also Published As

Publication number Publication date
JP2003104070A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
JP6983516B2 (en) Work platform
JP6345103B2 (en) Work vehicle
JP6226800B2 (en) Working machine
JP5325165B2 (en) Dust-proof structure of self-detaching combine
JP6355549B2 (en) Work vehicle
JP3841660B2 (en) Harvester prime mover structure
JP4024515B2 (en) Engine-related structure in the combine
JP6614518B1 (en) Combiner power structure
JPH106796A (en) Combine
WO1998046064A1 (en) Engine device
JP4716475B2 (en) Agricultural machine
CN209990542U (en) Harvester
KR101965450B1 (en) Combine
JP3857447B2 (en) Cooling and heating equipment for agricultural machines
CN213784218U (en) Harvester
JP2019116256A (en) Work vehicle
JP6687916B2 (en) Combined drive structure
JP2008296687A (en) Motor part of combine
JPH0833418A (en) Cooler for combine
CN210076045U (en) Harvester
JP2019004815A (en) Combine harvester
JP6770930B2 (en) combine
JP2000083448A (en) Harvester
JPS6029629Y2 (en) Hydraulic oil cooling system in hydraulic equipment
JP4323640B2 (en) Combine oil cooler arrangement structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140818

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees