JP3840728B2 - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
JP3840728B2
JP3840728B2 JP02505897A JP2505897A JP3840728B2 JP 3840728 B2 JP3840728 B2 JP 3840728B2 JP 02505897 A JP02505897 A JP 02505897A JP 2505897 A JP2505897 A JP 2505897A JP 3840728 B2 JP3840728 B2 JP 3840728B2
Authority
JP
Japan
Prior art keywords
heat
chamber
case
temperature coefficient
positive temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02505897A
Other languages
Japanese (ja)
Other versions
JPH10223355A (en
Inventor
誠 桜田
仁司 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohizumi Mfg Co Ltd
Original Assignee
Ohizumi Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohizumi Mfg Co Ltd filed Critical Ohizumi Mfg Co Ltd
Priority to JP02505897A priority Critical patent/JP3840728B2/en
Publication of JPH10223355A publication Critical patent/JPH10223355A/en
Application granted granted Critical
Publication of JP3840728B2 publication Critical patent/JP3840728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catching Or Destruction (AREA)
  • Resistance Heating (AREA)
  • Thermistors And Varistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液体式電子蚊取器の吸液芯のような被加熱物を加熱又は加温する発熱装置に関する。
【0002】
【従来の技術】
液体式電子蚊取器に関し、その吸液芯に吸液された薬剤を蒸散させる発熱装置の熱源には、正特性サーミスタ素子が使用され、正特性サーミスタ素子の発する熱を放熱筒に伝え、放熱筒内に挿入された吸液芯を加温する方式が用いられている。図6は、正特性サーミスタ素子21と、該素子21の両面に配設する電極板22,23の対と、絶縁性伝熱板24と、金属体25との組合せを用い、これを絶縁ケース26に取付ける例である(特開平7−320849号参照)。この構造によるときには、正特性サーミスタ素子21に発した熱は、絶縁性伝熱板24を介して金属体25に伝えられる。金属体25は、貫通孔27を有する放熱筒である。
【0003】
貫通孔27内には、被加熱物として吸液芯が挿入される。上記構造においては、正特性サーミスタと金属体との熱結合を樹脂を用いずに行うことで、正特性サーミスタの自己発熱量は樹脂を介して周囲の不要部分へ熱伝達することがなく、そのほとんどの発熱量を弾性体電極板で圧接する各構成部材を介して、金属体の筒状の貫通孔に集中して熱伝達できることから、熱伝達にロスの少ない発熱装置を容易に実現できるという効果が強調されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記構造によるときには、放熱筒である金属体の表面が外気に晒されることから、金属体の熱が外気中に放散されて熱伝達にロスが生ずるのではないかと思われる。一方、特開平8−78207号公報には、放熱筒であるパイプをケース内に設置する正特性サーミスタ装置が記載されている。図7において正特性サーミスタ素子31は、対の電極32,33に挾んでケース34の凹部35内に設置される。この構造によれば、放熱筒であるパイプ36をケース34内に収容し、ケース34にはアルミナ等の絶縁性無機材料を使用することによって、絶縁樹脂を介して絶縁ケース34の全体に正特性サーミスタ素子31からの発熱が伝わることによる問題点を解消したというのであるが、熱伝導効率のよいアルミナをケース材料に用いたときに、正特性サーミスタ素子31の熱は、ケース34を通じてパイプ36に効率よく伝えられるかも知れないが、ケース全体も暖められ、ケース表面から外気へ放散される熱量のロスは決して無視できるレベルではないものと思われる。
【0005】
本発明の目的は、ケースを通じて大気中に放散される熱量のロスを極力抑えて熱の利用効率を高めた発熱装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明による発熱装置は、熱伝導体と、発熱ユニットとを断熱性を有する中空のケース内に有する発熱装置であって、
ケースは、第1室と第2室との2室に区画され、第1室に開口を有し、
開口は、被加熱物を挿入する孔であり、
熱伝導体は、ケースの両室間に跨ってケース内に設置され、放熱部と受熱部と連結部とを有し、
放熱部は、筒であり、第1室の開口に連通して被加熱物の挿入用貫通孔を形成し、
連結部は、放熱部の筒の周上に放射状に張り出した杆であり、放熱部と受熱部とをつなぎ、両室間に跨って設置され、
受熱部は、連結部の杆の端部に直交して形成された平板部分であり、ケースの第2室に設置され、発熱ユニットの発する熱を受熱するものであり、
少なくとも連結部と放熱部との周囲には空気層が形成され、
発熱ユニットは、正特性サーミスタ素子と絶縁性伝熱板とを有し、正特性サーミスタ素子は、対の給電端子間に挾んでケースの第2室に設置され、給電により発熱し、
絶縁性伝熱板は、正特性サーミスタ素子と熱伝導体とを電気的に絶縁して正特性サーミスタ素子の発熱を熱伝導体の受熱部に伝えるものである
【0007】
また、開口は、被加熱物を挿入する孔であり、その開口面積は、放熱部の筒の直径に較べて小径に設定されているものである。
【0008】
また、ケースは、容器の両側壁から向き合わせに張り出した対の張り出し部分によって第1室と、第2室とに区画され、第2室側の張り出し部分の面は、熱伝導体の受熱面を支える面となり、両張り出し部分の間は熱伝導体の連結部を通す隙間となり、放熱部と、連結部とは、ケースの第1室内に収容され、両張り出し部分と連結部との間に空気層が形成されているものである。
【0010】
また、発熱ユニットは、正特性サーミスタ素子と第1及び第2の給電端子と、絶縁性伝板との積層であり、第1の給電端子はばね性を有し、正特性サーミスタ素子と接触させる面に複数のブリスターが形成され、
ブリスターは、正特性サーミスタ素子と第1給電端子間の電気的接触を確実にするとともに、接触面積を可及的減少させて第1給電端子側への正特性サーミスタの発する熱の放散を最小限に押さえるものであり、第2給電端子は、第1給電端子のばね力を作用させて絶縁性伝熱板に圧接されるものである
【0011】
【発明の実施の形態】
以下に本発明の実施の形態を図によって説明する。図1〜図3において、本発明による発熱装置においては、熱伝導体1と、発熱ユニット2とをケース3内に有し、ケース3は、PPSなどの断熱性を有する材料からなる中空の容器4を蓋5で施蓋したものである。ケース3内は、第1室6と第2室7との2室に区画され、第1室6の容器4の底及び蓋5の部分には、開口8が形成されている。開口8は、液体式電子蚊取器の吸液芯を被加熱物として挿入する孔である。なお、第1室6と第2室7との区別は説明の都合のものであり、いずれの側が第1室又は第2室であっても構わない。
【0012】
本発明において、熱伝導体1は、図4に示すようにアルミニウムや銅などの熱良導体を加工して放熱部9と、受熱部10と、連結部11とを一体成形したものである。図において、放熱部9は筒であり、連結部11は放熱部9の筒の周上に2〜3mmの長さで放射方向に張り出した杆であり、受熱部10は杆の端部を直角に張り出させた平板部分である。
熱伝導体1は金属の型加工によるほか、図5(a)に示すような大径の金属環状体18を用い、図5(b)に示すように筒と杆と平板部分とに曲げ加工して放熱部9,連結部11,受熱部10を一体成形することもできる。
【0013】
ケース3は、容器4の両内側壁から向き合わせに張り出した対の張り出し部分12によって第1室6と第2室7との2室に区画されているものであり、第2室7側の張り出し部分12の面は、熱伝導体1の受熱部10を支える面となり、両張り出し部分の間は、熱伝導体1の連結部11を通す隙間となる。第1室6は、熱伝導体1の放熱部9の収容空間であり、放熱部9の筒を容器4の開口8の位置に合わせて第1室6に収容し、連結部11を第1室6から張り出し部分12の隙間を通して第2室7に挿し入み、両室6,7間に跨って配置し、受熱部10を第2室7内で張り出し部分12の面に係止させる。第2室7には、正特性サーミスタ素子13と、該正特性サーミスタ素子13を挾む第1及び第2の給電端子14,15と、絶縁性伝熱板16との組合せからなる発熱ユニット2を挿入する。
【0014】
正特性サーミスタ素子13は、第1及び第2給電端子14,15間に支えられ、絶縁性伝熱板16は、放熱性に優れた板、例えば放熱性シリコン板であり、第2給電端子15と、熱伝導体1の受熱部10間に介装される。第1給電端子14は、ばね性が付与され、正特性サーミスタ素子13と接触させる電極面には、複数個のブリスター17を突設している。ブリスター17は、正特性サーミスタ素子13と第1給電端子14間の電気的接触を確実にするとともに、接触面積を可及的減少させて第1給電端子14側への正特性サーミスタ素子13の発する熱の放散を最小限に押さえるものである。
【0015】
図2において、第1室6内に熱伝導体1を収容し、発熱ユニット2である正特性サーミスタ素子13と、第1及び第2給電端子14,15と、絶縁性伝熱板16とを第2室7に収納し、第1給電端子14のばね力を絶縁性伝熱板16に作用させ、受熱部10を張り出し部分12に圧接して熱伝導体1を保型し、容器4を蓋5で施蓋する。
【0016】
これによって、熱伝導体1の放熱部9の筒は、蓋5及び容器4の開口8に連通して、被加熱物の挿入用貫通孔が形成される。また図2に明らかなとおり、連結部11及び放熱部9とケース3との間には空間(空気層)が形成され、また、ケース3の開口8は、図3に示すようにその開口面積を放熱部9の筒の直径に較べて小径に設定して外気からの直接の影響を少なくしている。
【0017】
第1及び第2給電端子14,15はケース3の外部へ引き出され、電源回路から通電される。正特性サーミスタ13は、両給電端子14,15から給電されると、発熱し、その熱は、絶縁性伝熱板16を通じて熱伝導体1の受熱部10に伝えられ、さらに受熱部10に伝えられた熱は、連結部11を通じて放熱部9に伝わり、放熱部9が熱せられ、放熱部9の筒内に挿入された被加熱物を加温又は加熱する。
【0018】
本発明においては、発熱ユニットの熱が直接熱伝導体1に伝えられてその放熱部9である筒を加熱するものであるため熱効率がよく、筒内に挿入された被加熱物を集中的に加温又は加熱することができる。
【0019】
【発明の効果】
以上のように本発明によるときには、発熱ユニットの発する熱を、直接熱伝導体に伝えて放熱部の筒を発熱させることができ、熱伝導体は、ケース内に収容され、且つ熱伝導体の周囲には空気層が形成されるために、熱伝導体の周囲への放熱は少なく、更にケースはPPSなどの熱伝導率の低い材料で構成されているため、外部への放熱は極めて少なく、ケース内部で蓄熱,保温され、専ら放熱部の筒内に集中して放熱することができる。
【0020】
また、本発明によれば、熱伝導体は、型加工によるほか、一個の金属環状体を屈曲加工して、放熱部を筒状に、受熱部を平板状に、連結部を杆状に成形し、受熱部を発熱ユニットとケースの張り出し部分間に挾み、連結部を張り出し部分の対間のわずかの隙間を通して設置して放熱部に熱を伝えることができる。
【0021】
さらに、発熱ユニットの第1給電端子のばね力を利用して熱伝導体をケースの張り出し部分に圧接保持でき、第1給電端子に複数のブリスターを付して正特性サーミスタ素子との接触性を高め、しかも、第1給電端子を通じてケースに放熱される放熱量を極力抑え、消費電力を大幅に軽減できる効果を有する。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す発熱装置を示す図である。
【図2】蓋を除いた発熱装置の平面図である。
【図3】図1のA−A線断面図である。
【図4】熱伝導体の一例を示す図である。
【図5】熱伝導体の他の例を示すもので(a)は加工前、(b)は(a)の金属環状体を用いて加工した熱伝導体を示す図である。
【図6】発熱装置の従来例の一つを示す図である。
【図7】発熱装置の他の従来例の分解図である。
【符号の説明】
1 熱伝導体
2 発熱ユニット
3 ケース
4 容器
5 蓋
6 第1室
7 第2室
8 開口
9 放熱部
10 受熱部
11 連結部
12 張り出し部分
13 正特性サーミスタ素子
14 第1給電端子
15 第2給電端子
16 絶縁性伝熱板
17 ブリスター
18 金属環状体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heating device for heating or heating an object to be heated such as a liquid absorption core of a liquid electronic mosquito trap.
[0002]
[Prior art]
For liquid electronic mosquito traps, a positive temperature coefficient thermistor element is used as the heat source of the heat generating device that evaporates the drug absorbed in the liquid absorption core. A method of heating the liquid absorption core inserted in the cylinder is used. FIG. 6 shows a combination of a positive temperature coefficient thermistor element 21, a pair of electrode plates 22 and 23 disposed on both sides of the element 21, an insulating heat transfer plate 24, and a metal body 25. 26 (see Japanese Patent Laid-Open No. 7-320849). With this structure, the heat generated by the positive temperature coefficient thermistor element 21 is transferred to the metal body 25 through the insulating heat transfer plate 24. The metal body 25 is a heat radiating cylinder having a through hole 27.
[0003]
A liquid absorption core is inserted into the through-hole 27 as an object to be heated. In the above structure, by performing the thermal coupling between the positive temperature coefficient thermistor and the metal body without using a resin, the self-heat generation amount of the positive temperature coefficient thermistor does not transfer heat to the surrounding unnecessary part via the resin. Because most heat generation can be concentrated and transferred to the cylindrical through-holes of the metal body through the constituent members pressed by the elastic electrode plate, it is possible to easily realize a heat generating device with little loss in heat transfer. The effect is emphasized.
[0004]
[Problems to be solved by the invention]
However, when the above structure is used, the surface of the metal body, which is a heat radiating cylinder, is exposed to the outside air. Therefore, it is considered that the heat of the metal body is dissipated into the outside air, causing a loss in heat transfer. On the other hand, Japanese Patent Application Laid-Open No. 8-78207 describes a positive temperature coefficient thermistor device in which a pipe as a heat radiating cylinder is installed in a case. In FIG. 7, the positive temperature coefficient thermistor element 31 is installed in the recess 35 of the case 34 so as to be sandwiched between the pair of electrodes 32 and 33. According to this structure, the pipe 36 which is a heat radiating cylinder is accommodated in the case 34, and an insulating inorganic material such as alumina is used for the case 34, so that the entire insulating case 34 has a positive characteristic via the insulating resin. It is said that the problem caused by the heat generated from the thermistor element 31 has been solved. When alumina having a good heat conduction efficiency is used as the case material, the heat of the positive temperature coefficient thermistor element 31 is transferred to the pipe 36 through the case 34. Although it may be communicated efficiently, the entire case is also warmed, and the loss of heat dissipated from the case surface to the outside air is by no means a negligible level.
[0005]
An object of the present invention is to provide a heat generating device that suppresses the loss of the amount of heat dissipated into the atmosphere through the case as much as possible and enhances the heat utilization efficiency.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a heat generating device according to the present invention is a heat generating device having a heat conductor and a heat generating unit in a hollow case having heat insulation,
The case is divided into two chambers, a first chamber and a second chamber, and has an opening in the first chamber,
The opening is a hole for inserting an object to be heated,
The heat conductor is installed in the case across both chambers of the case, and has a heat radiating part, a heat receiving part, and a connecting part,
The heat dissipating part is a cylinder, and communicates with the opening of the first chamber to form a through hole for inserting an object to be heated.
Connecting part is a rod that projects radially over the circumference of the cylindrical heat radiation member, technique and a heat radiating portion and the heat receiving portion tuna, disposed across between the chambers,
The heat receiving portion is a flat plate portion formed orthogonal to the end of the flange of the connecting portion, and is installed in the second chamber of the case to receive the heat generated by the heat generating unit.
An air layer is formed at least around the connection part and the heat dissipation part,
The heat generating unit includes a positive temperature coefficient thermistor element and an insulating heat transfer plate. The positive temperature coefficient thermistor element is installed in the second chamber of the case between the pair of power supply terminals, and generates heat by power supply.
The insulating heat transfer plate electrically insulates the positive temperature coefficient thermistor element from the heat conductor and transfers heat generated by the positive temperature coefficient thermistor element to the heat receiving portion of the heat conductor.
The opening is a hole for inserting an object to be heated, and the opening area is set smaller than the diameter of the cylinder of the heat radiating portion .
[0008]
The case is divided into a first chamber and a second chamber by a pair of projecting portions projecting from both side walls of the container so as to face each other, and the surface of the projecting portion on the second chamber side is a heat receiving surface of the heat conductor The space between the two overhanging portions is a gap through which the connecting portion of the heat conductor passes, and the heat radiating portion and the connecting portion are accommodated in the first chamber of the case, and between the two overhanging portions and the connecting portion. An air layer is formed .
[0010]
The heat generating unit is a laminate of a positive temperature coefficient thermistor element, first and second power supply terminals, and an insulating heat transfer plate. The first power supply terminal has a spring property and contacts the positive temperature coefficient thermistor element. A plurality of blisters are formed on the surface to be
The blister ensures electrical contact between the positive temperature coefficient thermistor element and the first power supply terminal, and minimizes the heat dissipation generated by the positive temperature coefficient thermistor to the first power supply terminal side by reducing the contact area as much as possible. The second power supply terminal is pressed against the insulating heat transfer plate by applying the spring force of the first power supply terminal .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3, in a heat generating device according to the present invention, a heat conductor 1 and a heat generating unit 2 are provided in a case 3, and the case 3 is a hollow container made of a heat insulating material such as PPS. 4 is covered with a lid 5. The case 3 is partitioned into two chambers, a first chamber 6 and a second chamber 7, and an opening 8 is formed in the bottom of the container 4 and the lid 5 in the first chamber 6. The opening 8 is a hole for inserting the liquid absorption core of the liquid electronic mosquito trap as an object to be heated. The distinction between the first chamber 6 and the second chamber 7 is for convenience of explanation, and either side may be the first chamber or the second chamber.
[0012]
In the present invention, as shown in FIG. 4, the heat conductor 1 is obtained by processing a heat good conductor such as aluminum or copper and integrally forming the heat radiating portion 9, the heat receiving portion 10, and the connecting portion 11. In the figure, the heat radiating part 9 is a cylinder, the connecting part 11 is a ridge projecting in the radial direction with a length of 2 to 3 mm on the circumference of the radiating part 9, and the heat receiving part 10 is perpendicular to the end of the ridge. It is the flat plate part overhanging.
In addition to metal mold processing, the heat conductor 1 uses a large-diameter metal annular body 18 as shown in FIG. 5 (a), and is bent into a cylinder, a collar, and a flat plate portion as shown in FIG. 5 (b). Thus, the heat dissipating part 9, the connecting part 11, and the heat receiving part 10 can be integrally formed.
[0013]
The case 3 is divided into two chambers, a first chamber 6 and a second chamber 7, by a pair of projecting portions 12 projecting from both inner side walls of the container 4 so as to face each other. The surface of the overhanging portion 12 is a surface that supports the heat receiving portion 10 of the heat conductor 1, and the space between the both overhanging portions is a gap through which the connecting portion 11 of the heat conductor 1 is passed. The first chamber 6 is a housing space for the heat dissipating part 9 of the heat conductor 1. The cylinder of the heat dissipating part 9 is accommodated in the first chamber 6 in accordance with the position of the opening 8 of the container 4, and the connecting part 11 is the first. The chamber 6 is inserted into the second chamber 7 through a gap between the overhanging portions 12 and is disposed across the chambers 6 and 7, and the heat receiving portion 10 is locked to the surface of the overhanging portion 12 in the second chamber 7. In the second chamber 7, a heat generating unit 2 comprising a combination of a positive temperature coefficient thermistor element 13, first and second power supply terminals 14 and 15 sandwiching the positive temperature coefficient thermistor element 13, and an insulating heat transfer plate 16. Insert.
[0014]
The positive temperature coefficient thermistor element 13 is supported between the first and second power supply terminals 14 and 15, and the insulating heat transfer plate 16 is a plate excellent in heat dissipation, for example, a heat dissipation silicon plate. And interposed between the heat receiving portions 10 of the heat conductor 1. The first power supply terminal 14 is provided with a spring property, and a plurality of blisters 17 project from the electrode surface to be brought into contact with the positive temperature coefficient thermistor element 13. The blister 17 ensures electrical contact between the positive temperature coefficient thermistor element 13 and the first power supply terminal 14 and reduces the contact area as much as possible to emit the positive temperature coefficient thermistor element 13 toward the first power supply terminal 14. Minimize heat dissipation.
[0015]
In FIG. 2, the heat conductor 1 is accommodated in the first chamber 6, and the positive temperature coefficient thermistor element 13 which is the heat generating unit 2, the first and second power supply terminals 14 and 15, and the insulating heat transfer plate 16 are arranged. Housed in the second chamber 7, the spring force of the first power supply terminal 14 is applied to the insulating heat transfer plate 16, the heat receiving portion 10 is pressed against the protruding portion 12, the heat conductor 1 is retained, and the container 4 is Cover with lid 5.
[0016]
Thereby, the cylinder of the heat radiating portion 9 of the heat conductor 1 communicates with the lid 5 and the opening 8 of the container 4 to form a through-hole for inserting an object to be heated. 2, a space (air layer) is formed between the connecting portion 11 and the heat radiating portion 9 and the case 3, and the opening 8 of the case 3 has an opening area as shown in FIG. Is set to a smaller diameter than the diameter of the cylinder of the heat dissipating section 9 to reduce the direct influence from the outside air.
[0017]
The first and second power supply terminals 14 and 15 are drawn out of the case 3 and are energized from the power supply circuit. The positive temperature coefficient thermistor 13 generates heat when power is supplied from both power supply terminals 14 and 15, and the heat is transmitted to the heat receiving part 10 of the heat conductor 1 through the insulating heat transfer plate 16 and further to the heat receiving part 10. The generated heat is transmitted to the heat radiating portion 9 through the connecting portion 11, the heat radiating portion 9 is heated, and the object to be heated inserted into the cylinder of the heat radiating portion 9 is heated or heated.
[0018]
In the present invention, since the heat of the heat generating unit is directly transmitted to the heat conductor 1 to heat the cylinder which is the heat radiating portion 9, the heat efficiency is high, and the object to be heated inserted into the cylinder is concentrated. Can be heated or heated.
[0019]
【The invention's effect】
As described above, according to the present invention, the heat generated by the heat generating unit can be directly transmitted to the heat conductor to generate heat in the cylinder of the heat radiating portion. The heat conductor is housed in the case and the heat conductor Since an air layer is formed around the heat conductor, heat radiation to the surroundings of the heat conductor is small, and since the case is made of a material having low heat conductivity such as PPS, heat radiation to the outside is extremely small, Heat is stored and kept inside the case, and can be concentrated and radiated exclusively in the cylinder of the heat radiating section.
[0020]
Further, according to the present invention, the heat conductor is not only molded, but also bent one metal annular body, the heat radiation part is formed into a cylindrical shape, the heat receiving part is formed into a flat plate shape, and the connection part is formed into a bowl shape. The heat receiving portion can be sandwiched between the heat generating unit and the protruding portion of the case, and the connecting portion can be installed through a slight gap between the pair of the protruding portions to transmit heat to the heat radiating portion.
[0021]
Further, the heat conductor can be held in pressure contact with the projecting portion of the case using the spring force of the first power supply terminal of the heat generating unit, and a plurality of blisters can be attached to the first power supply terminal to provide contact with the positive temperature coefficient thermistor element. In addition, the amount of heat radiated to the case through the first power supply terminal is suppressed as much as possible, and the power consumption can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a view showing a heat generating device according to an embodiment of the present invention.
FIG. 2 is a plan view of the heat generating device with a lid removed.
FIG. 3 is a cross-sectional view taken along line AA in FIG.
FIG. 4 is a diagram showing an example of a heat conductor.
FIGS. 5A and 5B show another example of a heat conductor, wherein FIG. 5A is a view showing a heat conductor processed using the metal ring body shown in FIG.
FIG. 6 is a diagram showing one conventional example of a heat generating device.
FIG. 7 is an exploded view of another conventional heat generating device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Thermal conductor 2 Heat generating unit 3 Case 4 Container 5 Lid 6 1st chamber 7 2nd chamber 8 Opening 9 Heat radiation part 10 Heat receiving part 11 Connection part 12 Overhang | projection part 13 Positive characteristic thermistor element 14 1st electric power feeding terminal 15 2nd electric power feeding terminal 16 Insulating heat transfer plate 17 Blister 18 Metal ring

Claims (4)

熱伝導体と、発熱ユニットとを断熱性を有する中空のケース内に有する発熱装置であって、
ケースは、第1室と第2室との2室に区画され、第1室に開口を有し、
開口は、被加熱物を挿入する孔であり、
熱伝導体は、ケースの両室間に跨ってケース内に設置され、放熱部と受熱部と連結部とを有し、
放熱部は、筒であり、第1室の開口に連通して被加熱物の挿入用貫通孔を形成し、
連結部は、放熱部の筒の周上に放射状に張り出した杆であり、放熱部と受熱部とをつなぎ、両室間に跨って設置され、
受熱部は、連結部の杆の端部に直交して形成された平板部分であり、ケースの第2室に設置され、発熱ユニットの発する熱を受熱するものであり、
少なくとも連結部と放熱部との周囲には空気層が形成され、
発熱ユニットは、正特性サーミスタ素子と絶縁性伝熱板とを有し、正特性サーミスタ素子は、対の給電端子間に挾んでケースの第2室に設置され、給電により発熱し、
絶縁性伝熱板は、正特性サーミスタ素子と熱伝導体とを電気的に絶縁して正特性サーミスタ素子の発熱を熱伝導体の受熱部に伝えるものであることを特徴とする発熱装置。
A heat generating device having a heat conductor and a heat generating unit in a heat-insulating hollow case,
The case is divided into two chambers, a first chamber and a second chamber, and has an opening in the first chamber,
The opening is a hole for inserting an object to be heated,
The heat conductor is installed in the case across both chambers of the case, and has a heat radiating part, a heat receiving part, and a connecting part,
The heat dissipating part is a cylinder, and communicates with the opening of the first chamber to form a through hole for inserting an object to be heated.
Connecting part is a rod that projects radially over the circumference of the cylindrical heat radiation member, technique and a heat radiating portion and the heat receiving portion tuna, disposed across between the chambers,
The heat receiving portion is a flat plate portion formed orthogonal to the end of the flange of the connecting portion, and is installed in the second chamber of the case to receive the heat generated by the heat generating unit.
An air layer is formed at least around the connection part and the heat dissipation part,
The heat generating unit includes a positive temperature coefficient thermistor element and an insulating heat transfer plate. The positive temperature coefficient thermistor element is installed in the second chamber of the case between the pair of power supply terminals, and generates heat by power supply.
An insulating heat transfer plate electrically insulates a positive temperature coefficient thermistor element from a heat conductor and transmits heat generated by the positive temperature coefficient thermistor element to a heat receiving portion of the heat conductor.
開口は、被加熱物を挿入する孔であり、その開口面積は、放熱部の筒の直径に較べて小径に設定されていることを特徴とする請求項1に記載の発熱装置。The heating device according to claim 1, wherein the opening is a hole into which an object to be heated is inserted, and the opening area is set to be smaller than the diameter of the cylinder of the heat radiating portion. ケースは、容器の両側壁から向き合わせに張り出した対の張り出し部分によって第1室と、第2室とに区画され、第2室側の張り出し部分の面は、熱伝導体の受熱面を支える面となり、両張り出し部分の間は熱伝導体の連結部を通す隙間となり、放熱部と、連結部とは、ケースの第1室内に収容され、両張り出し部分と連結部との間に空気層が形成されていることを特徴とする請求項1に記載の発熱装置。 The case is partitioned into a first chamber and a second chamber by a pair of projecting portions projecting from both side walls of the container so as to face each other, and the surface of the projecting portion on the second chamber side supports the heat receiving surface of the heat conductor. Between the two overhanging portions, and a gap through which the connecting portion of the heat conductor is passed. The heat radiating portion and the connecting portion are accommodated in the first chamber of the case, and an air layer is formed between the both overhanging portions and the connecting portion. The heat generating device according to claim 1, wherein the heat generating device is formed. 発熱ユニットは、正特性サーミスタ素子と第1及び第2の給電端子と、絶縁性伝板との積層であり、第1の給電端子はばね性を有し、正特性サーミスタ素子と接触させる面に複数のブリスターが形成され、
ブリスターは、正特性サーミスタ素子と第1給電端子間の電気的接触を確実にするとともに、接触面積を可及的減少させて第1給電端子側への正特性サーミスタの発する熱の放散を最小限に押さえるものであり、第2給電端子は、第1給電端子のばね力を作用させて絶縁性伝熱板に圧接されるものであることを特徴とする請求項1に記載の発熱装置。
The heat generating unit is a laminate of a positive temperature coefficient thermistor element, first and second power supply terminals, and an insulating heat transfer plate. The first power supply terminal has a spring property and is a surface to be brought into contact with the positive temperature coefficient thermistor element. Multiple blisters are formed in
The blister ensures electrical contact between the positive temperature coefficient thermistor element and the first power supply terminal, and minimizes the heat dissipation generated by the positive temperature coefficient thermistor to the first power supply terminal side by reducing the contact area as much as possible. The heat generating device according to claim 1 , wherein the second power supply terminal is pressed against the insulating heat transfer plate by applying a spring force of the first power supply terminal .
JP02505897A 1997-02-07 1997-02-07 Heating device Expired - Fee Related JP3840728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02505897A JP3840728B2 (en) 1997-02-07 1997-02-07 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02505897A JP3840728B2 (en) 1997-02-07 1997-02-07 Heating device

Publications (2)

Publication Number Publication Date
JPH10223355A JPH10223355A (en) 1998-08-21
JP3840728B2 true JP3840728B2 (en) 2006-11-01

Family

ID=12155336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02505897A Expired - Fee Related JP3840728B2 (en) 1997-02-07 1997-02-07 Heating device

Country Status (1)

Country Link
JP (1) JP3840728B2 (en)

Also Published As

Publication number Publication date
JPH10223355A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
KR880012149A (en) Positive temperature coefficient (PTC) heating device
KR940006424A (en) Heating mechanism, manufacturing method thereof and condensation prevention mirror equipped with heating mechanism
JP3840728B2 (en) Heating device
WO1993000689A1 (en) Thermister device of positive characteristic
JP3753875B2 (en) Electronics
JP2008035797A (en) Heat generation apparatus for liquid transpiration device
JP2001061270A (en) Power unit
JP2002344177A (en) Electronic device
JP2003173858A (en) Heat radiator using ptc heater
KR200164651Y1 (en) Ultrasonic humidifier having a heating device submerged in water
JPH0526722Y2 (en)
JP3077518B2 (en) Positive characteristic thermistor device
JPS6135345Y2 (en)
JPH085523Y2 (en) PTC thermistor device
JPH11233979A (en) Heat radiating structure for electronic equipment and power unit using the same
JPS6135346Y2 (en)
JPH039335Y2 (en)
JPH0239556A (en) Semiconductor device
JP2003298125A (en) Heat exchanger using thermoelectric module
JP2002270358A (en) Power supply equipment for magnetron
JPS6280340U (en)
JPH0731505Y2 (en) Battery
JP2024003647A (en) Circuit structure
JP2000340978A (en) Heat radiation structure for communication equipment
JPH0626202U (en) PTC thermistor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees