JP3839647B2 - Magneto-impedance effect element - Google Patents

Magneto-impedance effect element Download PDF

Info

Publication number
JP3839647B2
JP3839647B2 JP2000226233A JP2000226233A JP3839647B2 JP 3839647 B2 JP3839647 B2 JP 3839647B2 JP 2000226233 A JP2000226233 A JP 2000226233A JP 2000226233 A JP2000226233 A JP 2000226233A JP 3839647 B2 JP3839647 B2 JP 3839647B2
Authority
JP
Japan
Prior art keywords
film
thin film
magnetic field
magnetic thin
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000226233A
Other languages
Japanese (ja)
Other versions
JP2002043648A (en
Inventor
亮 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2000226233A priority Critical patent/JP3839647B2/en
Publication of JP2002043648A publication Critical patent/JP2002043648A/en
Application granted granted Critical
Publication of JP3839647B2 publication Critical patent/JP3839647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Thin Magnetic Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気インピーダンス効果を利用して外部磁界を検出する磁気インピーダンス効果素子に関するものである。
【0002】
【従来の技術】
従来のこの種の磁気インピーダンス効果素子は、例えば、図6に示すように、高い透磁率を有する帯状の磁性薄膜21が形成された非磁性基板22上に、磁性薄膜21にバイアス磁界を磁性薄膜21の長手方向に付与するバイアス磁界付与手段としての導電硬磁性薄膜23が磁性薄膜21を被覆するように固着され、磁性薄膜21の両端部に導電膜からなる一対の電極24,24が設けられた構造となっており、磁性薄膜21には、その膜面内で磁化容易軸の方向が磁性薄膜21の長手方向に対して垂直となるように、磁性薄膜21の幅方向(短手方向)に磁気異方性が付けられている。
【0003】
そして、この磁気インピーダンス効果素子は、磁性薄膜21の長手方向が図示せぬ被検知体から発せられる外部磁界Hに沿うように配置された状態で、一対の電極24,24を介して磁性薄膜21にMHz帯域の高周波電流を通電すると、磁性薄膜21の長手方向両端部間のインピーダンスが変化し、この変化を電気信号に変換して外部磁界Hの検出出力が得られるようになっており、導電硬磁性薄膜23が付与するバイアス磁界によって外部磁界Hが高精度に検出できるようになっている。
【0004】
この従来の磁気インピーダンス効果素子の製造は、スパッタリング法を用い真空中で非磁性基板22上に磁性薄膜21、一対の電極24,24及び導電硬磁性薄膜23をそれぞれ成膜した後、大気中で導電硬磁性薄膜23に着磁を施しこれを永久磁石にすることによって製造される。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した従来の磁気インピーダンス効果素子にあっては、導電硬磁性薄膜23をバイアス磁界付与手段として機能させるのに、これに着磁を施し導電硬磁性薄膜23を永久磁石にする必要があることから、真空中で磁性薄膜21、一対の電極24,24及び導電硬磁性薄膜23を成膜する成膜工程の他に、大気中で導電硬磁性薄膜23に着磁する着磁工程を要するため、製造工程が複雑なものになるという問題を有していた。
【0006】
本発明は上述した従来技術の事情に鑑みてなされたもので、その目的は、着磁工程を廃止でき、製造工程の簡素化を図ることの可能な磁気インピーダンス効果素子を提供することにある。
【0007】
【課題を解決するための手段】
本発明の磁気インピーダンス効果素子は、高周波電流を通電して外部磁界によりインピーダンスの変化を発生する磁性薄膜と、この磁性薄膜にバイアス磁界を付与するバイアス磁界付与手段とを備え、
反強磁性膜と、この反強磁性膜との交換結合により磁化方向が固定された被磁化方向固定膜とが順次積層された積層体が2つ以上重ね合わされて前記バイアス磁界付与手段が構成され、
前記磁性薄膜上に前記積層体が絶縁膜を介して積層され、この絶縁膜によって前記被磁化方向固定膜と前記磁性薄膜とが電気的に絶縁されていることを特徴とするものである。
【0010】
また、上記構成において、前記被磁化方向固定膜をFe−Ni合金からなる軟磁性膜とした構成とした。
【0011】
またさらに、上記構成において、前記反強磁性膜はX−Mn合金からなり、はPt,Ru,Rh,Ir,Crのいずれか1つからなる構成とした。
【0012】
また、上記構成において、前記反強磁性膜は、α−Fe23あるいはNiOからなる構成とした。
【0013】
【発明の実施の形態】
以下、磁気インピーダンス効果素子の第1の参考例を図1乃至図3に基づいて説明する。
【0014】
この磁気インピーダンス効果素子1は、高い透磁率を有する帯状の磁性薄膜3が形成された非磁性基板2の一面に、反強磁性膜5及び被磁化方向固定膜6を備えてなる積層体8が絶縁膜4を介して固着され、磁性薄膜3の長手方向両端部に一対の電極7,7が設けられた構造となっており、積層体8で磁性薄膜3にバイアス磁界を磁性薄膜3の長手方向に付与するバイアス磁界付与手段が構成されている。
【0015】
非磁性基板2は、Al23−TiCセラミックやSiO2等の絶縁性を有する非磁性材料を矩形状に成形してなるものである。
【0016】
磁性薄膜3は、FeHfCを含みbcc構造のFe微結晶粒子とHfCの微結晶粒子とを主体とする軟磁性薄膜であって、その膜面内で磁化容易軸の方向が磁性薄膜3の長手方向に対して垂直となるように、磁性薄膜3の幅方向(短手方向)に磁気異方性が付けられている。
【0017】
絶縁膜4は、被磁化方向固定膜6を磁性薄膜3から絶縁するためのもので、SiO2やAl23等の非磁性絶縁物からなり、非磁性基板2上に磁性薄膜3及び各電極7,7の一部分を被覆するように形成されている。
【0018】
反強磁性膜5は、Pt,Ru,Rh,Ir,Crのいずれか1つの元素とMnとを含む合金、または、α−Fe23あるいはNiOからなるもので、耐熱性及び耐食性に優れるという特徴を有し、被磁化方向固定膜6上に積層されて被磁化方向固定膜6とで積層体8を形成している。尚、反強磁性膜5には、耐食性に劣るが熱処理が不要なFe−Mn合金を用いることも可能である。
【0019】
被磁化方向固定膜6は、Fe−Ni合金等の軟磁性膜で形成されて絶縁膜4上に設けられ、反強磁性膜5と磁気交換結合により結合して磁化方向が磁性薄膜3の長手方向に固定されている。これにより、磁性薄膜3には、被磁化方向固定膜6と反強磁性膜5との磁気交換結合によって発生する交換結合磁界がバイアス磁界として磁性薄膜3の長手方向に付与された状態となっている。尚、被磁化方向固定膜6は、Co−Fe合金、Co−Fe−Ni合金等の他の軟磁性膜やAl等からなる常磁性膜で形成してもよいが、被磁化方向固定膜6にFe−Ni合金からなる軟磁性膜を用いると、大きな交換結合磁界を発生させることができ外部磁界の検出精度を向上させることができる。
【0020】
一対の電極7,7は、Au,W,Cr,Ta等の電気抵抗の小さい非磁性導電膜からなり、硬磁性膜4を挟むように配置されている。
【0021】
このように構成された磁気インピーダンス効果素子1は、磁性薄膜3の長手方向が図示せぬ被検知体から発せられる外部磁界Hに沿うように配置された状態で、一対の電極7,7を介して磁性薄膜3にMHz帯域の高周波電流を通電すると、磁性薄膜3の長手方向両端部間のインピーダンスが変化し、この変化を電気信号に変換して外部磁界Hの検出出力が得られるようになっており、積層体8を形成する被磁化方向固定膜6と反強磁性膜5との交換結合によって発生する交換結合磁界が磁性薄膜3にバイアス磁界として付与されて外部磁界Hが高精度に検出できるようになっている。
【0022】
しかして、この磁気インピーダンス効果素子1にあっては、真空中で非磁性基板2上にスパッタリング法を用い磁性薄膜3、一対の電極7,7、絶縁膜4、被磁化方向固定膜6及び反強磁性膜5をそれぞれ成膜するだけで、バイアス磁界付与手段として機能する積層体8を形成することができるため、従来技術に示した如き着磁工程を廃止することができ、製造工程が複雑なものになるという不具合を解消することができる。
【0023】
また、非磁性基板2上に磁性薄膜3、絶縁膜4、被磁化方向固定膜6及び反強磁性膜5がこの順番に積層され、磁性薄膜3と被磁化方向固定膜6とが絶縁膜4によって電気的に絶縁された状態となっているため、一対の電極7,7を介して磁性薄膜3に通電される上記高周波電流が被磁化方向固定膜6に分流するのを防ぐことができ、この分流に起因する外部磁界検出感度の低下を防止することができる。
【0024】
図4は本発明の実施の形態を示す図であって、絶縁膜4上に積層体8を2つ重ね合わせて積層したものであり、このようにすると一層大きな交換結合磁界をバイアス磁界として磁性薄膜に付与することができる。尚、積層体8を3つ以上重ね合わせて絶縁層4上に積層するようにしてもよく、重ね合わされる積層体8の数が増える程より一層大きなバイアス磁界を得ることができる。この場合、積層体8をいくつ重ね合わせるかは必要なバイアス磁界の大きさに応じて適宜選択すればよい。
【0025】
次に、本発明の磁気インピーダンス効果素子の第2の参考例を図5に基づいて説明する。
【0026】
この第2の参考例の磁気インピーダンス効果素子9が第1の参考例と異なる点は、積層体8に代えて反強磁性膜5と被磁化方向固定膜6とをこの順番に積層してなる積層体10を非磁性膜11を介して絶縁膜4上に固着した点が異なるのみで、他は第1の参考例の磁気インピーダンス効果素子1と同じである。
【0027】
ここで、非磁性膜11は、反強磁性膜5と磁性薄膜3とが磁気交換結合によって結合するのを確実に抑制し、これら両膜の結合に起因する外部磁界Hの検出感度の低下を防止するように機能する。また、非磁性膜11の膜厚を適宜調整することにより、磁性薄膜3における交換結合磁界の強さを調整でき、適切なバイアス磁界を磁性薄膜3に付与できる。
【0028】
このように構成された磁気インピーダンス効果素子9は、磁性薄膜3の長手方向が図示せぬ被検知体から発せられる外部磁界Hに沿うように配置された状態で、一対の電極7,7を介して磁性薄膜3にMHz帯域の高周波電流を通電すると、磁性薄膜3の長手方向両端部間のインピーダンスが変化し、この変化を電気信号に変換して外部磁界Hの検出出力が得られるようになっており、積層体10を形成する被磁化方向固定膜6と反強磁性膜5との交換結合によって発生する交換結合磁界が磁性薄膜3にバイアス磁界として付与されて外部磁界Hが高精度に検出できるようになっている。
【0029】
しかして、この磁気インピーダンス効果素子9にあっても、真空中で非磁性基板2上にスパッタリング法を用い磁性薄膜3、一対の電極7,7、絶縁膜4、非磁性膜11、反強磁性膜5及び被磁化固方向定膜6をそれぞれ成膜するだけで、積層体8と同じくバイアス磁界付与手段として機能する積層体10を形成することができるため、従来技術に示した如き着磁工程を廃止することができ、製造工程が複雑なものになるという不具合を解消することができる。
【0030】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0031】
高周波電流を通電して外部磁界によりインピーダンスの変化を発生する磁性薄膜と、この磁性薄膜にバイアス磁界を付与するバイアス磁界付与手段とを備え、反強磁性膜と、この反強磁性膜との交換結合により磁化方向が固定された被磁化方向固定膜とを備えてなる積層体で前記バイアス磁界付与手段が構成されているので、スパッタリング法を用い前記被磁化方向固定膜及び前記反強磁性膜をそれぞれ成膜するだけで、前記バイアス磁界付与手段として機能する前記積層体を形成することができるため、着磁工程を廃止でき、製造工程の簡素化を図ることが可能となる。
【0032】
また、前記積層体は前記被磁化方向固定膜と前記反強磁性膜とが順次積層された構造を有し、前記磁性薄膜上に前記積層体が絶縁膜を介して積層され、この絶縁膜によって前記被磁化方向固定膜と前記磁性薄膜とが電気的に絶縁されているので、前記磁性薄膜に通電される前記高周波電流が前記被磁化方向固定膜に分流するのを防ぐことができ、この分流に起因する外部磁界検出感度の低下を防止することができる。
【0033】
前記絶縁膜上に前記積層体が2つ以上重ね合わされて積層されているので、一層大きな交換結合磁界をバイアス磁界として磁性薄膜に付与することができる。
【0034】
また、前記被磁化方向固定膜をFe−Ni合金からなる軟磁性膜としたので、大きな交換結合磁界を発生させることができ外部磁界の検出精度を向上させることができる。
【0035】
さらにまた、前記反強磁性膜はX−Mn合金からなり、はPt,Ru,Rh,Ir,Crのいずれか1つからなるので耐熱性及び耐食性にすぐれた磁気インピーダンス効果素子を得ることができる。
【0036】
また、前記反強磁性膜は、α−Fe23あるいはNiOからなるので、耐熱性及び耐食性に優れた磁気インピーダンス効果素子を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の参考例に係わる磁気インピーダンス効果素子の斜視図。
【図2】図1の平面図。
【図3】図2の3−3線に沿う断面図。
【図4】本発明の第1の実施形態に係わる磁気インピーダンス効果素子を示す断面図。
【図5】本発明の第2の参考例に係わる磁気インピーダンス効果素子の断面図。
【図6】従来の磁気インピーダンス効果素子の斜視図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magneto-impedance effect element that detects an external magnetic field using the magneto-impedance effect.
[0002]
[Prior art]
For example, as shown in FIG. 6, a conventional magneto-impedance effect element of this type has a bias magnetic field applied to a magnetic thin film 21 on a nonmagnetic substrate 22 on which a strip-like magnetic thin film 21 having high permeability is formed. A conductive hard magnetic thin film 23 as a bias magnetic field applying means applied in the longitudinal direction of 21 is fixed so as to cover the magnetic thin film 21, and a pair of electrodes 24, 24 made of a conductive film are provided at both ends of the magnetic thin film 21. In the magnetic thin film 21, the width direction (short direction) of the magnetic thin film 21 is set so that the direction of the easy magnetization axis is perpendicular to the longitudinal direction of the magnetic thin film 21 in the film plane. Has magnetic anisotropy.
[0003]
The magneto-impedance effect element is arranged via the pair of electrodes 24 and 24 in a state where the longitudinal direction of the magnetic thin film 21 is arranged along an external magnetic field H emitted from a detection object (not shown). When a high frequency current in the MHz band is applied to the magnetic thin film, the impedance between both ends in the longitudinal direction of the magnetic thin film 21 changes, and this change is converted into an electric signal so that a detection output of the external magnetic field H can be obtained. The external magnetic field H can be detected with high accuracy by the bias magnetic field applied by the hard magnetic thin film 23.
[0004]
This conventional magneto-impedance effect element is manufactured by depositing the magnetic thin film 21, the pair of electrodes 24, 24 and the conductive hard magnetic thin film 23 on the nonmagnetic substrate 22 in a vacuum using a sputtering method, and then in the atmosphere. It is manufactured by magnetizing the conductive hard magnetic thin film 23 to make it a permanent magnet.
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional magneto-impedance effect element, in order for the conductive hard magnetic thin film 23 to function as a bias magnetic field applying means, it is necessary to magnetize the conductive hard magnetic thin film 23 to make the conductive hard magnetic thin film 23 a permanent magnet. Therefore, in addition to the film forming process for forming the magnetic thin film 21, the pair of electrodes 24 and 24 and the conductive hard magnetic thin film 23 in a vacuum, a magnetizing process for magnetizing the conductive hard magnetic thin film 23 in the atmosphere is required. Therefore, there has been a problem that the manufacturing process becomes complicated.
[0006]
The present invention has been made in view of the above-described prior art, and an object of the present invention is to provide a magneto-impedance effect element capable of eliminating the magnetizing process and simplifying the manufacturing process.
[0007]
[Means for Solving the Problems]
The magneto-impedance effect element of the present invention comprises a magnetic thin film that generates a change in impedance by an external magnetic field when energized with a high-frequency current, and a bias magnetic field applying means that applies a bias magnetic field to the magnetic thin film.
The bias magnetic field applying means is configured by stacking two or more laminated bodies in which an antiferromagnetic film and a magnetization direction fixed film whose magnetization direction is fixed by exchange coupling with the antiferromagnetic film are sequentially stacked. ,
The laminated body is laminated on the magnetic thin film via an insulating film, and the magnetization direction fixed film and the magnetic thin film are electrically insulated by the insulating film .
[0010]
In the above configuration, the magnetization direction fixed film is a soft magnetic film made of an Fe—Ni alloy.
[0011]
Furthermore, in the above configuration, the antiferromagnetic film is made of an X—Mn alloy, and X is made of any one of Pt, Ru, Rh, Ir, and Cr.
[0012]
In the above configuration, the antiferromagnetic film is made of α-Fe 2 O 3 or NiO.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a description will be given of a first reference example of magnetic impedance effect element in FIGS.
[0014]
The magneto-impedance effect element 1 includes a laminated body 8 including an antiferromagnetic film 5 and a magnetization direction fixed film 6 on one surface of a nonmagnetic substrate 2 on which a band-shaped magnetic thin film 3 having high permeability is formed. The magnetic thin film 3 is fixed via an insulating film 4 and has a structure in which a pair of electrodes 7 and 7 are provided at both ends in the longitudinal direction of the magnetic thin film 3. Bias magnetic field applying means for applying in the direction is configured.
[0015]
The nonmagnetic substrate 2 is formed by forming a nonmagnetic material having insulation properties such as Al 2 O 3 —TiC ceramic or SiO 2 into a rectangular shape.
[0016]
The magnetic thin film 3 is a soft magnetic thin film containing FeHfC and mainly composed of Fe microcrystalline particles having a bcc structure and HfC microcrystalline particles, and the direction of the easy axis of magnetization in the film surface is the longitudinal direction of the magnetic thin film 3. Magnetic anisotropy is given in the width direction (short direction) of the magnetic thin film 3 so as to be perpendicular to the magnetic field.
[0017]
The insulating film 4 is for insulating the magnetized direction fixed film 6 from the magnetic thin film 3 and is made of a nonmagnetic insulator such as SiO 2 or Al 2 O 3. The electrode 7 is formed so as to cover a part of the electrode 7.
[0018]
The antiferromagnetic film 5 is made of an alloy containing any one element of Pt, Ru, Rh, Ir, and Cr and Mn, or α-Fe 2 O 3 or NiO, and has excellent heat resistance and corrosion resistance. The laminated body 8 is formed by being laminated on the magnetization direction fixed film 6 and the magnetization direction fixed film 6. The antiferromagnetic film 5 may be made of an Fe—Mn alloy that is inferior in corrosion resistance but does not require heat treatment.
[0019]
The magnetization direction fixed film 6 is formed of a soft magnetic film such as an Fe—Ni alloy and is provided on the insulating film 4. The magnetization direction fixed film 6 is coupled to the antiferromagnetic film 5 by magnetic exchange coupling so that the magnetization direction is the longitudinal direction of the magnetic thin film 3. It is fixed in the direction. As a result, the magnetic thin film 3 is in a state where an exchange coupling magnetic field generated by magnetic exchange coupling between the magnetized direction fixed film 6 and the antiferromagnetic film 5 is applied as a bias magnetic field in the longitudinal direction of the magnetic thin film 3. Yes. The magnetization direction fixed film 6 may be formed of another soft magnetic film such as a Co—Fe alloy or a Co—Fe—Ni alloy, or a paramagnetic film made of Al or the like. If a soft magnetic film made of an Fe—Ni alloy is used, a large exchange coupling magnetic field can be generated and the detection accuracy of the external magnetic field can be improved.
[0020]
The pair of electrodes 7 and 7 is made of a non-magnetic conductive film having a small electric resistance such as Au, W, Cr, Ta, and is disposed so as to sandwich the hard magnetic film 4.
[0021]
The magneto-impedance effect element 1 configured as described above is arranged via a pair of electrodes 7 and 7 in a state where the longitudinal direction of the magnetic thin film 3 is arranged along an external magnetic field H emitted from a detection target (not shown). When a high frequency current in the MHz band is applied to the magnetic thin film 3, the impedance between the longitudinal ends of the magnetic thin film 3 changes, and this change is converted into an electric signal to obtain a detection output of the external magnetic field H. The exchange coupling magnetic field generated by the exchange coupling between the magnetization direction fixed film 6 and the antiferromagnetic film 5 forming the laminated body 8 is applied to the magnetic thin film 3 as a bias magnetic field, and the external magnetic field H is detected with high accuracy. It can be done.
[0022]
In the magneto-impedance effect element 1, the magnetic thin film 3, the pair of electrodes 7 and 7, the insulating film 4, the magnetized direction fixed film 6 and the anti-magnetic film 6 are formed on the nonmagnetic substrate 2 in a vacuum by using a sputtering method. Since the laminated body 8 functioning as a bias magnetic field applying means can be formed only by forming each of the ferromagnetic films 5, the magnetizing process as shown in the prior art can be eliminated and the manufacturing process is complicated. It is possible to solve the problem of becoming a trouble.
[0023]
A magnetic thin film 3, an insulating film 4, a magnetization direction fixed film 6, and an antiferromagnetic film 5 are laminated in this order on the nonmagnetic substrate 2, and the magnetic thin film 3 and the magnetization direction fixed film 6 are formed in the insulating film 4. Therefore, the high-frequency current that is passed through the magnetic thin film 3 through the pair of electrodes 7 and 7 can be prevented from being shunted to the magnetization direction fixed film 6. It is possible to prevent a decrease in the external magnetic field detection sensitivity due to this diversion.
[0024]
FIG. 4 is a diagram showing an embodiment of the present invention, in which two laminated bodies 8 are laminated on the insulating film 4 and are magnetically formed with a larger exchange coupling magnetic field as a bias magnetic field. It can be applied to a thin film. Note that three or more stacked bodies 8 may be stacked and stacked on the insulating layer 4, and a larger bias magnetic field can be obtained as the number of stacked stacked bodies 8 increases. In this case, the number of stacked bodies 8 may be appropriately selected according to the required bias magnetic field.
[0025]
Next, a second reference example of the magneto-impedance effect element of the present invention will be described with reference to FIG.
[0026]
Magneto-impedance effect element 9 of the second reference example differs from the first reference example, formed by laminating an antiferromagnetic film 5 and the magnetization direction pinned layer 6 in this order instead of the laminate 8 The only difference is that the laminated body 10 is fixed on the insulating film 4 via the nonmagnetic film 11, and the rest is the same as the magneto-impedance effect element 1 of the first reference example .
[0027]
Here, the nonmagnetic film 11 reliably suppresses the antiferromagnetic film 5 and the magnetic thin film 3 from being coupled by magnetic exchange coupling, and reduces the detection sensitivity of the external magnetic field H due to the coupling of these two films. Functions to prevent. Further, by appropriately adjusting the film thickness of the nonmagnetic film 11, the strength of the exchange coupling magnetic field in the magnetic thin film 3 can be adjusted, and an appropriate bias magnetic field can be applied to the magnetic thin film 3.
[0028]
The magneto-impedance effect element 9 configured in this way is arranged via a pair of electrodes 7 and 7 in a state where the longitudinal direction of the magnetic thin film 3 is arranged along an external magnetic field H emitted from a detection object (not shown). When a high frequency current in the MHz band is applied to the magnetic thin film 3, the impedance between the longitudinal ends of the magnetic thin film 3 changes, and this change is converted into an electric signal to obtain a detection output of the external magnetic field H. The exchange coupling magnetic field generated by the exchange coupling between the magnetization direction fixed film 6 and the antiferromagnetic film 5 forming the laminated body 10 is applied to the magnetic thin film 3 as a bias magnetic field, and the external magnetic field H is detected with high accuracy. It can be done.
[0029]
Even in the magneto-impedance effect element 9, the magnetic thin film 3, the pair of electrodes 7 and 7, the insulating film 4, the nonmagnetic film 11, and the antiferromagnetic material are formed on the nonmagnetic substrate 2 in a vacuum using a sputtering method. Just by forming the film 5 and the magnetized fixed direction fixed film 6 respectively, it is possible to form the laminated body 10 that functions as a bias magnetic field applying means like the laminated body 8. Can be eliminated, and the problem that the manufacturing process becomes complicated can be solved.
[0030]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects.
[0031]
Exchange of antiferromagnetic film and antiferromagnetic film with magnetic thin film that changes impedance by external magnetic field when high-frequency current is applied and bias magnetic field applying means that applies a bias magnetic field to the magnetic thin film Since the bias magnetic field applying means is composed of a laminate including a magnetization direction fixed film whose magnetization direction is fixed by coupling, the magnetization direction fixed film and the antiferromagnetic film are formed using a sputtering method. Since the laminated body functioning as the bias magnetic field applying means can be formed only by forming each film, the magnetizing process can be eliminated and the manufacturing process can be simplified.
[0032]
The stacked body has a structure in which the magnetization direction fixed film and the antiferromagnetic film are sequentially stacked, and the stacked body is stacked on the magnetic thin film via an insulating film. Since the magnetization direction fixed film and the magnetic thin film are electrically insulated, the high-frequency current passed through the magnetic thin film can be prevented from being shunted to the magnetization direction fixed film. It is possible to prevent the external magnetic field detection sensitivity from being lowered due to the above.
[0033]
Since two or more of the laminates are stacked on the insulating film, a larger exchange coupling magnetic field can be applied to the magnetic thin film as a bias magnetic field.
[0034]
Further, since the magnetization direction fixed film is a soft magnetic film made of Fe—Ni alloy, a large exchange coupling magnetic field can be generated, and the detection accuracy of the external magnetic field can be improved.
[0035]
Furthermore, since the antiferromagnetic film is made of an X-Mn alloy and X is made of any one of Pt, Ru, Rh, Ir, and Cr, a magneto-impedance effect element having excellent heat resistance and corrosion resistance can be obtained. it can.
[0036]
In addition, since the antiferromagnetic film is made of α-Fe 2 O 3 or NiO, a magneto-impedance effect element having excellent heat resistance and corrosion resistance can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view of a magneto-impedance effect element according to a first reference example of the present invention.
FIG. 2 is a plan view of FIG.
3 is a cross-sectional view taken along line 3-3 in FIG.
Sectional view of a magnetic impedance effect element according to a first embodiment of the present invention; FIG.
FIG. 5 is a cross-sectional view of a magneto-impedance effect element according to a second reference example of the present invention.
FIG. 6 is a perspective view of a conventional magneto-impedance effect element.

Claims (4)

高周波電流を通電して外部磁界によりインピーダンスの変化を発生する磁性薄膜と、この磁性薄膜にバイアス磁界を付与するバイアス磁界付与手段とを備え、
反強磁性膜と、この反強磁性膜との交換結合により磁化方向が固定された被磁化方向固定膜とが順次積層された積層体が2つ以上重ね合わされて前記バイアス磁界付与手段が構成され、
前記磁性薄膜上に前記積層体が絶縁膜を介して積層され、この絶縁膜によって前記被磁化方向固定膜と前記磁性薄膜とが電気的に絶縁されていることを特徴とする磁気インピーダンス効果素子。
A magnetic thin film that generates a change in impedance due to an external magnetic field by energizing a high-frequency current, and a bias magnetic field applying means that applies a bias magnetic field to the magnetic thin film,
The bias magnetic field applying means is configured by stacking two or more laminated bodies in which an antiferromagnetic film and a magnetization direction fixed film whose magnetization direction is fixed by exchange coupling with the antiferromagnetic film are sequentially stacked. ,
The magneto-impedance effect element , wherein the laminated body is laminated on the magnetic thin film through an insulating film, and the magnetization direction fixed film and the magnetic thin film are electrically insulated by the insulating film .
前記被磁化方向固定膜をFe−Ni合金からなる軟磁性膜としたことを特徴とする請求項1に記載の磁気インピーダンス効果素子。2. The magneto-impedance effect element according to claim 1, wherein the magnetization direction fixed film is a soft magnetic film made of an Fe-Ni alloy. 前記反強磁性膜はX−Mn合金からなり、はPt,Ru,Rh,Ir,Crのいずれか1つからなることを特徴とする請求項1又は2に記載の磁気インピーダンス効果素子。 3. The magneto-impedance effect element according to claim 1, wherein the antiferromagnetic film is made of an X—Mn alloy, and X is made of any one of Pt, Ru, Rh, Ir, and Cr. 前記反強磁性膜は、α−Fe23あるいはNiOからなることを特徴とする請求項1又は2に記載の磁気インピーダンス効果素子。The antiferromagnetic film, a magnetic impedance effect element according to claim 1 or 2, characterized in that it consists of alpha-Fe 2 O 3 or NiO.
JP2000226233A 2000-07-21 2000-07-21 Magneto-impedance effect element Expired - Fee Related JP3839647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000226233A JP3839647B2 (en) 2000-07-21 2000-07-21 Magneto-impedance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000226233A JP3839647B2 (en) 2000-07-21 2000-07-21 Magneto-impedance effect element

Publications (2)

Publication Number Publication Date
JP2002043648A JP2002043648A (en) 2002-02-08
JP3839647B2 true JP3839647B2 (en) 2006-11-01

Family

ID=18719884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000226233A Expired - Fee Related JP3839647B2 (en) 2000-07-21 2000-07-21 Magneto-impedance effect element

Country Status (1)

Country Link
JP (1) JP3839647B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197089A (en) 2007-01-17 2008-08-28 Fujikura Ltd Magnetic sensor element and method for manufacturing the same
JP2018054460A (en) 2016-09-29 2018-04-05 大同特殊鋼株式会社 Thin film magnetic sensor
JP7259293B2 (en) * 2018-11-29 2023-04-18 株式会社レゾナック Magnetic sensor and method for manufacturing magnetic sensor

Also Published As

Publication number Publication date
JP2002043648A (en) 2002-02-08

Similar Documents

Publication Publication Date Title
US6937449B2 (en) Spin-valve head containing closed-flux-structure domain control films
US20040196595A1 (en) Magnetoresistive sensor with magnetostatic coupling of magnetic regions
JPH10172118A (en) Thin-film magnetic structure and its formation
CN110678768A (en) Magnetic sensor and method for manufacturing magnetic sensor
JP2000099922A (en) Magnetic tunnel element and its production
JP3839647B2 (en) Magneto-impedance effect element
JPH0870148A (en) Magnetoresistance element
JP2005534198A (en) Magnetoresistive layer system and sensor element comprising the layer system
JPH07220246A (en) Magneto-resistance effect film, magneto-resistance effect type head and magnetic recording and reproducing device
JPH11259824A (en) Magnetic recording and reproducing device and magnetoresistive effect magnetic head to be used for the same
JPH1074658A (en) Manufacture of spin valve magnetoresistive effect device
JPH09106913A (en) Magnetoelectric transducer
JP3295013B2 (en) Exchange coupling film, magnetoresistive element and magnetic head using the same
JP3866498B2 (en) Magneto-impedance effect element and manufacturing method thereof
JPH05175572A (en) Magnetoresistance effect element, and magnetic head and recording/reproducing device using same
JPH04339309A (en) Magneto-resistance effect element using multilayred magneto-resistance effect film
JPH09212829A (en) Magnetoresistance element and magnetic recording and reproducing device using the same
JP2806549B2 (en) Magnetoresistance effect element
JP2004178659A (en) Spin valve head and magnetic recorder
JP2000200403A (en) Multilayered film magnetic body, magnetic head and production of magnetic head using the same, and magnetic reproducing device using this magnetic head
JP2661068B2 (en) Magnetoresistive magnetic head
US6064551A (en) Magnetoresistance effect type magnetic head
US6706156B1 (en) Method of making an improved MR sensor
JP2002043647A (en) Magnetic impedance effect element
JP2002055148A (en) Magnetic impedance effect element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees