JPH09212829A - Magnetoresistance element and magnetic recording and reproducing device using the same - Google Patents

Magnetoresistance element and magnetic recording and reproducing device using the same

Info

Publication number
JPH09212829A
JPH09212829A JP8020904A JP2090496A JPH09212829A JP H09212829 A JPH09212829 A JP H09212829A JP 8020904 A JP8020904 A JP 8020904A JP 2090496 A JP2090496 A JP 2090496A JP H09212829 A JPH09212829 A JP H09212829A
Authority
JP
Japan
Prior art keywords
film
magnetoresistive effect
magnetic
bias
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8020904A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hoshiya
裕之 星屋
Yoshio Suzuki
良夫 鈴木
Yoshihiro Hamakawa
佳弘 濱川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8020904A priority Critical patent/JPH09212829A/en
Publication of JPH09212829A publication Critical patent/JPH09212829A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the magnetoresistance element consisting of a multilayer film having an enough output and linearity and particularly an improved bias characteristic by providing a single magnetic domain forming film and a lateral bias film on the upper and lower surfaces of a magnetoresistance multilayer film, and to provide a magnetic recording device using the element. SOLUTION: The magnetoresistance multilayer film 10 is constituted by laminating plural ferromagnetic films 11-16 via nonmagnetic electroconductive films between them, and antiferromagnetic force is worked between the individual ferromagnetic films. The single magnetic domain forming film 21 is disposed by layering directly with the ferromagnetic film 11 to impress an exchanging combining bias upon the ferromagnetic film 11. The impressing direction 66 of the exchanging bias is almost parallel with the track widthwise direction 67, and the direction of a magnetic field to be sensed is almost parallel to the element height direction 65, whereas a bias magnetic field of the lateral bias film 22 is obtained by orienting the direction 61 of residual magnetization of this film toward the element height direction. The lateral bias film 22 is disposed laminatedly through the magnetoresistance multilayer film 10 via a pertinent nonmagnetic layer to impress the lateral bias magnetic field upon the magnetoresistance multilayer film 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記録再生装置
および磁気抵抗効果素子に係り、特に、高記録密度磁気
記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording / reproducing apparatus and a magneto-resistance effect element, and more particularly to a high recording density magnetic recording / reproducing apparatus.

【0002】[0002]

【従来の技術】特開平2−61572号公報は、中間層によっ
て分離した強磁性薄膜の、その磁化の互いになす角度に
よって電気抵抗が変化する積層膜およびそれを用いた磁
場センサ,磁気記録装置の記載がある。
2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 2-61572 discloses a laminated film in which the electric resistance of a ferromagnetic thin film separated by an intermediate layer changes depending on the angle formed by the magnetizations thereof, a magnetic field sensor using the same, and a magnetic recording device. There is a description.

【0003】特開平6−60336号公報には磁性層の磁化の
方向が垂直になるような手段、特に硬磁性膜を有する磁
気抵抗感知システムの記載がある。
Japanese Unexamined Patent Publication (Kokai) No. 6-60336 describes a means for making the magnetization direction of a magnetic layer perpendicular, particularly a magnetoresistive sensing system having a hard magnetic film.

【0004】米国特許第5206590 号には非磁性膜で分離
された強磁性膜の積層体に反強磁性膜が密着し、かつ積
層体の端部に硬磁性材料が接触した構成の記載がある。
US Pat. No. 5,206,590 describes a structure in which an antiferromagnetic film is in close contact with a stack of ferromagnetic films separated by a non-magnetic film, and a hard magnetic material is in contact with the end of the stack. .

【0005】特開昭50−1712号公報には永久磁石薄膜を
バイアス膜に用いた磁気抵抗効果素子の記載がある。
Japanese Unexamined Patent Publication No. 50-1712 describes a magnetoresistive element using a permanent magnet thin film as a bias film.

【0006】[0006]

【発明が解決しようとする課題】従来の技術では、記録
密度の充分に高い磁気記録装置、特にその再生部に外部
磁界に対して十分な感度と出力で作用する磁気抵抗効果
素子を実現し、さらに充分に対称性の良い良好な特性を
得ることが出来ず、記録装置としての機能を実現するこ
とが困難であった。
In the prior art, a magnetic recording device having a sufficiently high recording density, in particular, a magnetoresistive effect element which acts on the reproducing portion with sufficient sensitivity and output to an external magnetic field, is realized. Furthermore, it was not possible to obtain good characteristics with good symmetry, and it was difficult to realize the function as a recording device.

【0007】記録密度の向上には記録媒体上の記録領域
の1単位が狭くなることおよび磁気記録装置再生部の細
小化が必要である。このような問題の解決策として、薄
膜磁気ヘッドの再生部に磁気抵抗効果素子を配置し、磁
気抵抗効果による電気抵抗の変化を出力として用いる方
法が知られている。この場合、問題となるのは小さい磁
気抵抗効果素子では再生信号の対称性のわずかな悪化が
出力をひずませ、性能劣化につながる点である。即ち、
素子の外部磁界に対する出力特性が、磁界ゼロを中心に
対称であるようにすることが重要である。従来の技術と
しては、例えばSAL膜と呼ばれる磁性膜を磁気抵抗効
果膜に積層して設け、素子の横バイアスを修正する手段
が知られている。このような素子の横バイアス特性を修
正するために設ける膜を横バイアス膜と呼ぶ。
In order to improve the recording density, it is necessary to narrow one unit of the recording area on the recording medium and to miniaturize the reproducing portion of the magnetic recording device. As a solution to such a problem, a method is known in which a magnetoresistive effect element is arranged in the reproducing portion of a thin film magnetic head and a change in electric resistance due to the magnetoresistive effect is used as an output. In this case, the problem is that in a small magnetoresistive effect element, a slight deterioration in the symmetry of the reproduction signal distorts the output, leading to performance degradation. That is,
It is important that the output characteristics of the device with respect to the external magnetic field are symmetrical about the zero magnetic field. As a conventional technique, there is known a means for correcting a lateral bias of an element by providing a magnetic film called a SAL film by laminating it on a magnetoresistive film. A film provided to correct the lateral bias characteristics of such an element is called a lateral bias film.

【0008】近年、強磁性金属膜を非磁性金属膜を介し
て積層した多層膜の磁気抵抗効果、いわゆる巨大磁気抵
抗効果で、従来の単層の強磁性薄膜に比べて抵抗の変化
が大きいことが知られている。この場合、磁気抵抗効果
は、非磁性膜で隔てられた強磁性膜の、磁化と磁化のな
す角度によって電気抵抗が変化する。非磁性膜で隔てら
れた強磁性膜の間には、お互いの磁化を反平行状態にし
ようとする、反強磁性的な結合力が働いている。磁気抵
抗効果素子として用いる場合、必要な特性は二つある。
外部磁界に対して線形な出力があること、および、磁壁
移動などで発生するノイズのないことである。多層膜の
巨大磁気抵抗効果で線形な出力を得るには、公知例で指
摘されているように、磁界ゼロの状態で、各々の強磁性
膜の磁化の方向が互いに直角である必要がある。例え
ば、感知すべき磁界の方向に対して、各々の磁化が交互
に±45度をむいているようにすることで、磁気抵抗効
果の出力を線形性よく得ることができる。磁気ディスク
装置で言うならば、感知すべき磁界の方向は素子高さ方
向である。線形性をよくする、または素子の磁界応答点
を調整する目的で、磁気抵抗効果膜に素子高さ方向にバ
イアスを印加する膜を横バイアス膜と呼ぶ。
In recent years, due to the magnetoresistive effect of a multi-layered film in which ferromagnetic metal films are laminated via a nonmagnetic metal film, so-called giant magnetoresistive effect, the change in resistance is larger than that of a conventional single-layered ferromagnetic thin film. It has been known. In this case, in the magnetoresistive effect, the electric resistance changes depending on the angle formed by the magnetizations of the ferromagnetic films separated by the nonmagnetic film. Between the ferromagnetic films separated by the non-magnetic film, an antiferromagnetic coupling force that tries to make their magnetizations antiparallel is working. When used as a magnetoresistive element, there are two required characteristics.
It has a linear output with respect to an external magnetic field, and has no noise generated due to domain wall movement. In order to obtain a linear output due to the giant magnetoresistive effect of the multilayer film, the magnetization directions of the respective ferromagnetic films must be perpendicular to each other in the state of zero magnetic field, as pointed out in the known example. For example, it is possible to obtain the output of the magnetoresistive effect with good linearity by making the respective magnetizations alternate ± 45 degrees with respect to the direction of the magnetic field to be sensed. In the magnetic disk device, the direction of the magnetic field to be sensed is the element height direction. A film for applying a bias to the magnetoresistive film in the element height direction for the purpose of improving linearity or adjusting the magnetic field response point of the device is called a lateral bias film.

【0009】磁気抵抗素子の磁壁移動に起因するノイズ
の抑制方法として、強磁性膜の単磁区化が一般的であ
る。例えば、感知すべき磁界の方向に対して垂直方向
に、磁気抵抗効果膜にバイアス磁界を印加して単磁区化
することが有効である。即ち、磁壁を消失すると共に磁
化の方向を、磁化過程が磁化回転によって生じるように
設定できるからである。このバイアスを印加する手段
は、磁気抵抗効果膜のトラック幅方向の端部に接触し
て、硬磁性膜もしくは反強磁性膜で交換結合を印加され
た強磁性膜を配置し、その残留磁化により漏洩する静磁
界を用いる方法が知られている。この場合、残留磁化あ
るいは交換結合の方向は感知すべき磁界と垂直方向,磁
気ディスク装置で言うトラック幅方向である。このバイ
アスを印加するための膜を縦バイアス膜と呼ぶ。また、
強磁性膜を単磁区化する目的の膜を単磁区化膜と呼ぶ。
As a method of suppressing the noise caused by the domain wall motion of the magnetoresistive element, the ferromagnetic film is generally made into a single magnetic domain. For example, it is effective to apply a bias magnetic field to the magnetoresistive effect film in a direction perpendicular to the direction of the magnetic field to be sensed to form a single magnetic domain. That is, the domain wall can be eliminated and the direction of magnetization can be set so that the magnetization process is caused by magnetization rotation. The means for applying this bias is to arrange a ferromagnetic film to which exchange coupling is applied by a hard magnetic film or an antiferromagnetic film in contact with the end portion of the magnetoresistive film in the track width direction, and A method using a leaking static magnetic field is known. In this case, the direction of remanent magnetization or exchange coupling is perpendicular to the magnetic field to be sensed, that is, the track width direction of the magnetic disk device. A film for applying this bias is called a vertical bias film. Also,
A film intended to make a ferromagnetic film into a single domain is called a single domain film.

【0010】このように、高記録密度に対応した磁気ヘ
ッドは巨大磁気抵抗効果を応用し、磁気抵抗効果多層膜
に、縦バイアス膜を適応する構成が望ましいが、問題は
先に述べた、単磁区化である。
As described above, it is desirable that the magnetic head compatible with a high recording density applies the giant magnetoresistive effect, and the longitudinal bias film is applied to the magnetoresistive effect multi-layer film. It is magnetic domain.

【0011】一般に、強磁性膜を単磁区化するには、単
磁区化膜として縦バイアス膜を用いることができる。す
なわち、強磁性膜にバイアス磁界を印加して単磁区化す
ることができるが、磁気抵抗効果膜が多層膜である場
合、これは困難である。即ち、前述したように、線形な
出力を得るためには多層膜の強磁性膜が素子高さ方向に
対して交互に正負の方向に並んでいるべきだが、これ
は、単磁区化がそれぞれこの方向に行われるべきことを
示している。従来の方法で、多層膜に縦バイアス膜を適
応して単磁区化を図ると、強磁性膜の磁化はすべて一つ
の方向を向いてしまい、多層膜の磁気抵抗効果を線形に
は生じなくなってしまうのである。
Generally, in order to make the ferromagnetic film into a single magnetic domain, a longitudinal bias film can be used as the single magnetic domain forming film. That is, a bias magnetic field can be applied to the ferromagnetic film to form a single magnetic domain, but this is difficult when the magnetoresistive film is a multilayer film. That is, as described above, in order to obtain a linear output, the ferromagnetic films of the multilayer film should be arranged alternately in the positive and negative directions with respect to the element height direction. Indicates what should be done in the direction. If a longitudinal bias film is applied to the multilayer film to achieve a single magnetic domain by the conventional method, all the magnetizations of the ferromagnetic film are oriented in one direction, and the magnetoresistive effect of the multilayer film does not linearly occur. It ends up.

【0012】本発明の目的は高密度記録に対応した磁気
記録装置および充分な出力と線形性、特にバイアス特性
を改善した多層膜からなる磁気抵抗効果素子を提供する
ことにある。
It is an object of the present invention to provide a magnetic recording device compatible with high density recording and a magnetoresistive effect element composed of a multilayer film with improved sufficient output and linearity, particularly improved bias characteristics.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するた
め、本発明は磁気抵抗効果素子を構成する磁気抵抗効果
多層膜の表面(または底面)に位置する強磁性膜の面に
密着して一方向異方性を印加する単磁区化膜、特に反強
磁性膜を配置した。さらに多層膜に隣接して、線形性を
適性とするための横バイアス手段、特に横バイアス膜を
積層した。すなわち、磁気抵抗効果多層膜を構成する強
磁性膜すべての磁化を素子高さ方向の一方向に向ける横
バイアス膜と、磁気抵抗効果多層膜の表面に位置する一
つ或いは二つの強磁性膜の磁化を固定し、単磁区化す
る。この結果、横バイアス,単磁区化、および多層膜の
強磁性膜の間に働く反強磁性的な結合力の相互作用によ
り、上記強磁性膜の磁化の方向は、単磁区化膜に近い側
で±180度に近く、単磁区化膜から離れるにつれて±
45度に近づく配列が安定になる。
In order to solve the above-mentioned problems, the present invention adheres to the surface of a ferromagnetic film located on the surface (or bottom surface) of a magnetoresistive effect multilayer film constituting a magnetoresistive effect element. A single domain domainization film for applying directional anisotropy, especially an antiferromagnetic film was arranged. Further, a lateral bias means for optimizing the linearity, in particular, a lateral bias film was laminated adjacent to the multilayer film. That is, a lateral bias film that directs the magnetizations of all the ferromagnetic films constituting the magnetoresistive effect multilayer film in one direction in the element height direction, and one or two ferromagnetic films located on the surface of the magnetoresistive effect multilayer film. The magnetization is fixed and a single magnetic domain is formed. As a result, the direction of magnetization of the ferromagnetic film is closer to the single domain film due to the interaction of lateral bias, single domain, and antiferromagnetic coupling force acting between the ferromagnetic films of the multilayer film. Is close to ± 180 degrees, and it is ±
An array approaching 45 degrees becomes stable.

【0014】本発明ではこのように単純な構成で、多層
膜磁気抵抗効果膜を効果的に磁気抵抗効果素子として機
能させ、これを再生部とした磁気記録再生装置で、高記
録密度、すなわち、記録媒体上に記録される記録波長が
短く、また、記録トラックの幅が狭い記録を実現して、
十分な再生出力を得、記録を良好に保つことができる。
In the present invention, with such a simple structure, the multilayer magnetoresistive effect film effectively functions as a magnetoresistive effect element, and a magnetic recording / reproducing apparatus using this as a reproducing portion has a high recording density, that is, The recording wavelength recorded on the recording medium is short, and the recording track width is narrow.
It is possible to obtain a sufficient reproduction output and maintain good recording.

【0015】[0015]

【発明の実施の形態】本発明の磁気抵抗効果素子を構成
する膜は高周波マグネトロンスパッタリング装置により
以下のように作製した。アルゴン3ミリトールの雰囲気
中にて、厚さ1mm,直径3インチのセラミックス基板に
以下の材料を順に積層して作製した。スパッタリングタ
ーゲットとして酸化ニッケル,タンタル,クロム,ニッ
ケル−20at%鉄合金,コバルト−20%白金,銅の
ターゲットを用いた。積層膜は、各ターゲットを配置し
たカソードに各々高周波電力を印加して装置内にプラズ
マを発生させておき、各カソードごとに配置されたシャ
ッタを一つずつ開閉して順次各層を形成した。膜形成時
には基板面内で直交する二対の電磁石を用いて基板に平
行におよそ50エルステッドの磁界を印加して、一軸異
方性を持たせるとともに、酸化ニッケル膜の交換結合バ
イアスの方向をそれぞれの方向に誘導した。
BEST MODE FOR CARRYING OUT THE INVENTION The film constituting the magnetoresistive effect element of the present invention was produced by a high frequency magnetron sputtering apparatus as follows. The following materials were sequentially laminated on a ceramic substrate having a thickness of 1 mm and a diameter of 3 inches in an atmosphere of 3 mTorr of argon. As a sputtering target, nickel oxide, tantalum, chromium, nickel-20 at% iron alloy, cobalt-20% platinum, and copper targets were used. In the laminated film, high frequency power was applied to the cathodes on which the targets were arranged to generate plasma in the apparatus, and the shutters arranged on the respective cathodes were opened and closed one by one to sequentially form the layers. At the time of film formation, a magnetic field of about 50 Oersted is applied in parallel to the substrate by using two pairs of electromagnets orthogonal to each other in the plane of the substrate to give uniaxial anisotropy, and the direction of the exchange coupling bias of the nickel oxide film is set, respectively. Was guided in the direction of.

【0016】異方性の誘導は、積層膜形成後に反強磁性
膜のネール温度近くから磁界中冷却を行い、反強磁性バ
イアスの方向を磁界の方向に誘導した。さらに、室温で
3キロエルステッドの磁化処理を行って硬磁性膜の磁化
方向を誘導した。
In order to induce the anisotropy, the antiferromagnetic film was cooled in a magnetic field from near the Neel temperature of the antiferromagnetic film after the formation of the laminated film to induce the antiferromagnetic bias direction in the magnetic field direction. Furthermore, the magnetization direction of the hard magnetic film was induced by performing a magnetization treatment of 3 kilo Oersted at room temperature.

【0017】基体上の素子の形成はフォトレジスト工程
によってパターニングした。その後、基体はスライダ加
工し、磁気記録装置に搭載した。
The elements on the substrate were patterned by a photoresist process. Thereafter, the substrate was processed by a slider and mounted on a magnetic recording device.

【0018】以下に本発明の具体的な実施例を図を追っ
て説明する。
A specific embodiment of the present invention will be described below with reference to the drawings.

【0019】図1は本発明の磁気抵抗効果素子の第一例
の構造を示す説明図である。
FIG. 1 is an explanatory view showing the structure of the first example of the magnetoresistive effect element of the present invention.

【0020】磁気抵抗効果多層膜10は複数の強磁性膜
11,12,13,14,15,16を非磁性導電膜を
介して積層した膜からなり、各々の強磁性膜の間には反
強磁性的な結合力が働いている。磁気抵抗効果多層膜1
0の片面の強磁性膜11には、直接、積層して単磁区化
膜21が配置され、強磁性膜11に交換結合バイアスを
印加している。交換結合バイアスの印加方向66はトラ
ック幅方向67とほぼ平行とする。感知すべき磁界の方
向は素子高さ方向65とほぼ平行であり、横バイアス膜
22のバイアス磁界は、この膜の残留磁化の方向61
を、素子高さ方向とすることで得られる。横バイアス膜
22は磁気抵抗効果多層膜10と適切な非磁性層を介し
て積層、または隣接した位置に配置され、磁気抵抗効果
多層膜10に横バイアス磁界を印加する。
The magnetoresistive effect multi-layered film 10 is composed of a plurality of ferromagnetic films 11, 12, 13, 14, 15, 16 laminated with a non-magnetic conductive film interposed between the ferromagnetic films. A ferromagnetic coupling force is working. Magnetoresistive multilayer film 1
A single domain domainization film 21 is directly laminated on the ferromagnetic film 11 on one side of 0, and an exchange coupling bias is applied to the ferromagnetic film 11. The exchange coupling bias application direction 66 is substantially parallel to the track width direction 67. The direction of the magnetic field to be sensed is almost parallel to the element height direction 65, and the bias magnetic field of the lateral bias film 22 is the direction 61 of the residual magnetization of this film.
Is obtained in the element height direction. The lateral bias film 22 is laminated with the magnetoresistive effect multilayer film 10 via an appropriate non-magnetic layer, or is arranged at an adjacent position, and applies a lateral bias magnetic field to the magnetoresistive effect multilayer film 10.

【0021】ここで、強磁性膜はNi−Fe膜,非磁性
導電膜はCu膜を用いた。単磁区化膜21は酸化ニッケ
ル膜,横バイアス膜22はCo−Pt膜を用いた。
Here, a Ni—Fe film was used as the ferromagnetic film and a Cu film was used as the non-magnetic conductive film. A nickel oxide film was used for the single domain film 21, and a Co—Pt film was used for the lateral bias film 22.

【0022】図中、強磁性膜の部分に印した矢印は、外
部磁界がない状態の強磁性膜の磁化の方向を示してい
る。強磁性膜の磁化の方向は、強磁性膜15では、単磁
区化膜21の異方性の方向、即ちトラック幅方向67に
ほぼ平行であるが、単磁区化膜21から離れるにつれて
磁化の方向は素子高さ方向65に近づき、強磁性膜1
4,15,16ではほぼ45度程度にすることができ
る。
In the figure, the arrow marked on the ferromagnetic film indicates the direction of magnetization of the ferromagnetic film in the absence of an external magnetic field. In the ferromagnetic film 15, the magnetization direction of the ferromagnetic film is substantially parallel to the anisotropy direction of the single domain domainization film 21, that is, the track width direction 67. Approaches the element height direction 65, and the ferromagnetic film 1
With 4, 15 and 16, the angle can be set to about 45 degrees.

【0023】このように、磁気抵抗効果膜20は、磁気
抵抗効果多層膜10,単磁区化膜21および横バイアス
膜22からなる。横バイアス膜22は磁気抵抗効果膜と
厚さ方向に積層してなるか、または素子高さ方向に端部
を接するように配置しても良い。その場合は横バイアス
膜22の残留磁化の方向は図1の逆方向となる。
As described above, the magnetoresistive effect film 20 is composed of the magnetoresistive effect multi-layer film 10, the single magnetic domain dividing film 21 and the lateral bias film 22. The lateral bias film 22 may be laminated in the thickness direction with the magnetoresistive film, or may be arranged so that its end portion is in contact with the element height direction. In that case, the direction of the residual magnetization of the lateral bias film 22 is opposite to that in FIG.

【0024】図2は本発明の磁気抵抗効果膜20の膜構
造の一例を示す説明図である。磁気抵抗効果多層膜10
は強磁性膜11,12,13,14,15,16と非磁
性導電膜31,32,33,34,35を交互に積層し
てなる。単磁区化膜21は磁気抵抗多層膜10の表面の
強磁性膜11に直接密着して形成し、交換結合による一
方向異方性を発生させる。横バイアス膜22は磁気抵抗
効果多層膜10と、中間膜23を介して積層する。横バ
イアス膜22の基体側には下地膜25を配置すると横バ
イアス膜22の特性を安定にできる。ここでは、中間膜
23はタンタル、下地膜25はクロムを用いた。ここで
は横バイアス膜22に対して、単磁区化膜21が基体5
0の側の構成を示したが、この位置関係は逆でも特性を
損なわない。その場合、下地膜25の積層位置は、横バ
イアス膜22の基体側に配置する。
FIG. 2 is an explanatory view showing an example of the film structure of the magnetoresistive effect film 20 of the present invention. Magnetoresistive multilayer film 10
Is formed by alternately stacking ferromagnetic films 11, 12, 13, 14, 15, 16 and non-magnetic conductive films 31, 32, 33, 34, 35. The single domain domainization film 21 is formed by directly adhering to the ferromagnetic film 11 on the surface of the magnetoresistive multilayer film 10 to generate unidirectional anisotropy due to exchange coupling. The lateral bias film 22 is laminated with the magnetoresistive effect multilayer film 10 with the intermediate film 23 interposed therebetween. By disposing the base film 25 on the base side of the lateral bias film 22, the characteristics of the lateral bias film 22 can be stabilized. Here, tantalum is used for the intermediate film 23 and chromium is used for the base film 25. Here, the single domain domainization film 21 is used for the base 5 with respect to the lateral bias film 22.
Although the configuration on the side of 0 is shown, the characteristics are not impaired even if this positional relationship is reversed. In that case, the lamination position of the base film 25 is arranged on the base side of the lateral bias film 22.

【0025】図3は本発明の磁気抵抗効果膜20の膜構
造の第二例を示す説明図である。磁気抵抗効果多層膜1
0は強磁性膜11,12,13,14,15,16と非
磁性導電膜31,32,33,34,35を交互に積層
してなる。単磁区化膜21は磁気抵抗多層膜10の表面
の強磁性膜11に直接密着して形成し、交換結合による
一方向異方性を発生させる。横バイアス膜22は磁気抵
抗効果多層膜10と、単磁区化膜21及び中間膜24を
介して積層する。横バイアス膜22の基体側には下地膜
25を配置すると横バイアス膜22の特性を安定にでき
る。ここでは、中間膜24はタンタル、下地膜25はク
ロムを用いた。ここでは磁気抵抗効果多層膜10に対し
て、単磁区化膜21および横バイアス膜22が基体50
の側の構成を示したが、この位置関係は逆でも特性を損
なわない。その場合、下地膜25の積層位置は、横バイ
アス膜22の基体側に配置する。横バイアス膜22は硬
磁性膜、または反強磁性膜と交換結合した軟磁性膜から
形成することで所定の着磁工程によって残留磁化を所定
の方向に向けることができる。同様に単磁区化膜21は
反強磁性膜または硬磁性膜にて形成し、直接積層した強
磁性膜に、所定の着磁工程によって所定の方向の異方性
を誘起することができる。
FIG. 3 is an explanatory view showing a second example of the film structure of the magnetoresistive effect film 20 of the present invention. Magnetoresistive multilayer film 1
0 is formed by alternately stacking ferromagnetic films 11, 12, 13, 14, 15, 16 and nonmagnetic conductive films 31, 32, 33, 34, 35. The single domain domainization film 21 is formed by directly adhering to the ferromagnetic film 11 on the surface of the magnetoresistive multilayer film 10 to generate unidirectional anisotropy due to exchange coupling. The lateral bias film 22 is laminated with the magnetoresistive effect multilayer film 10 via the single domain domainization film 21 and the intermediate film 24. By disposing the base film 25 on the base side of the lateral bias film 22, the characteristics of the lateral bias film 22 can be stabilized. Here, tantalum is used for the intermediate film 24 and chromium is used for the base film 25. Here, with respect to the magnetoresistive effect multilayer film 10, the single domain domainization film 21 and the lateral bias film 22 are formed on the substrate 50.
Although the configuration on the side of is shown, even if this positional relationship is reversed, the characteristics are not impaired. In that case, the lamination position of the base film 25 is arranged on the base side of the lateral bias film 22. By forming the lateral bias film 22 from a hard magnetic film or a soft magnetic film exchange-coupled with an antiferromagnetic film, the residual magnetization can be directed in a predetermined direction by a predetermined magnetizing process. Similarly, the single-domain film 21 is formed of an antiferromagnetic film or a hard magnetic film, and anisotropy in a predetermined direction can be induced in a directly laminated ferromagnetic film by a predetermined magnetizing process.

【0026】図4は磁気抵抗効果多層膜10のみで測定
した磁気抵抗効果曲線である。磁気抵抗効果曲線は磁界
の正負に対称で、線形性が得られていない。さらに磁界
の往復でヒステリシスが生じ、ノイズの原因となる。図
5は磁気抵抗効果多層膜10に横バイアス膜22及び単
磁区化膜21を用いた場合の磁気抵抗効果曲線である。
信号は線形性を有し、かつヒステリシスのない良好な応
答が得られた。
FIG. 4 is a magnetoresistive effect curve measured only with the magnetoresistive effect multilayer film 10. The magnetoresistive effect curve is symmetrical to the positive and negative of the magnetic field, and linearity is not obtained. Further, the reciprocating magnetic field causes hysteresis, which causes noise. FIG. 5 is a magnetoresistive effect curve when the lateral bias film 22 and the single domain domainization film 21 are used for the magnetoresistive effect multilayer film 10.
The signal has linearity and a good response without hysteresis was obtained.

【0027】図6は本発明の磁気抵抗効果素子を用いた
磁気ヘッド装置の説明図である。表面に記録媒体を有し
たディスク91には所定のトラック幅44でトラック状
に情報が記録されている。磁気的に記録された信号は漏
洩磁場64として現われ、磁気ヘッドスライダ90は対
向面63をディスク91面上に近接して、搭載した磁気
抵抗効果素子に漏洩磁界64を導入して信号に変換す
る。磁気抵抗効果素子は磁気抵抗効果膜20と電極40
からなり、磁界の変化を電気信号に変換する。図中記録
用ヘッドは描かれていないが、同一のスライダ上に記録
ヘッドを形成して、それぞれ記録及び再生を行わせるこ
とが出来る。
FIG. 6 is an explanatory diagram of a magnetic head device using the magnetoresistive effect element of the present invention. Information is recorded in a track shape with a predetermined track width 44 on a disk 91 having a recording medium on its surface. The magnetically recorded signal appears as a leakage magnetic field 64, and the magnetic head slider 90 brings the opposing surface 63 close to the surface of the disk 91 and introduces the leakage magnetic field 64 into the mounted magnetoresistive element to convert it into a signal. . The magnetoresistive effect element includes a magnetoresistive effect film 20 and an electrode 40.
And converts changes in the magnetic field into electrical signals. Although the recording head is not shown in the figure, the recording head can be formed on the same slider to perform recording and reproduction, respectively.

【0028】横バイアス膜の残留磁化の方向61および
単磁区化膜21の異方性の方向66は、それぞれ、ヘッ
ドスライダ90の対向面63にそれぞれ垂直及び平行な
方向として定義され、素子高さ方向65及びトラック幅
方向67とほぼ同一である。電極40はこの磁気抵抗効
果積層膜10に電流を通じるとともに、外部磁界によっ
て変化する磁気抵抗効果積層膜10の電気抵抗を電気信
号、特に電圧として取り出す。
The direction 61 of remanent magnetization of the lateral bias film and the direction 66 of anisotropy of the single domain domainization film 21 are defined as the directions perpendicular and parallel to the facing surface 63 of the head slider 90, respectively, and the element height. It is almost the same as the direction 65 and the track width direction 67. The electrode 40 passes a current through the magnetoresistive laminated film 10 and takes out the electric resistance of the magnetoresistive laminated film 10 which is changed by an external magnetic field as an electric signal, particularly a voltage.

【0029】図7は本発明の磁気記録再生装置の説明図
である。磁気的に情報を記録する記録媒体を面上に形成
したディスク91をスピンドルモータ93にて回転さ
せ、アクチュエータ92によってヘッドスライダ90を
記録媒体91のトラック上に誘導する。即ち、磁気ディ
スク装置ではヘッドスライダ90上に形成した再生ヘッ
ド、及び記録ヘッドがこの機構に依って記録媒体91上
の所定の記録位置に近接して相対運動し、信号を順次書
き込み、及び読み取る。記録信号は信号処理系94を通
じて記録ヘッドにて媒体上に記録し、再生ヘッドの出力
を信号処理系94を経て信号として得る。さらに再生ヘ
ッドを所望の記録トラック上へ移動させるに際して、本
再生ヘッドからの高感度な出力を用いてトラック上の位
置を検出し、アクチュエータを制御して、ヘッドスライ
ダの位置決めを行うことができる。本図ではヘッドスラ
イダ90,ディスク91を各1個示したが、これらは複
数であってもよい。また記録媒体はディスク91の両面
に情報を記録してもよい。情報の記録がディスク両面の
場合ヘッドスライダ90はディスク91の両面に配置す
る。
FIG. 7 is an explanatory diagram of the magnetic recording / reproducing apparatus of the present invention. A disk 91 having a recording medium for magnetically recording information formed on its surface is rotated by a spindle motor 93, and an actuator 92 guides a head slider 90 onto a track of the recording medium 91. That is, in the magnetic disk device, the reproducing head and the recording head formed on the head slider 90 relatively move close to a predetermined recording position on the recording medium 91 by this mechanism, and sequentially write and read signals. The recording signal is recorded on the medium by the recording head through the signal processing system 94, and the output of the reproducing head is obtained as a signal through the signal processing system 94. Further, when the reproducing head is moved to a desired recording track, the position on the track can be detected by using a highly sensitive output from the reproducing head, and the actuator can be controlled to position the head slider. Although one head slider 90 and one disk 91 are shown in this figure, they may be plural. The recording medium may record information on both sides of the disc 91. When information is recorded on both sides of the disc, the head sliders 90 are arranged on both sides of the disc 91.

【0030】図8は本発明の磁気抵抗効果素子の第二例
の構造を示す説明図である。磁気抵抗効果多層膜10は
複数の強磁性膜11,12,13,14,15,16を
非磁性導電膜を介して積層した膜からなり、各々の強磁
性膜の間には反強磁性的な結合力が働いている。磁気抵
抗効果多層膜10の両面の強磁性膜11および16に
は、直接、積層して単磁区化膜21,25が配置され、
強磁性膜11および16に交換結合バイアスを印加して
いる。交換結合バイアスの印加方向66,68はトラッ
ク幅方向67とほぼ平行で互いに逆方向とする。感知す
べき磁界の方向は素子高さ方向65とほぼ平行であり、
横バイアス膜22のバイアス磁界は、この膜の残留磁化
の方向61を、素子高さ方向とすることで得られる。横
バイアス膜22は単磁区化膜25と適切な非磁性層を介
して積層するか、または素子高さ方向の隣接した位置に
端部を接して配置され、磁気抵抗効果多層膜10に横バ
イアス磁界を印加する。
FIG. 8 is an explanatory view showing the structure of the second example of the magnetoresistive effect element of the present invention. The magnetoresistive effect multilayer film 10 is composed of a plurality of ferromagnetic films 11, 12, 13, 14, 15, 16 laminated via non-magnetic conductive films, and antiferromagnetic films are provided between the respective ferromagnetic films. A strong bond is working. The single magnetic domain dividing films 21 and 25 are directly laminated to the ferromagnetic films 11 and 16 on both sides of the magnetoresistive effect multilayer film 10,
An exchange coupling bias is applied to the ferromagnetic films 11 and 16. The exchange coupling bias application directions 66 and 68 are substantially parallel to the track width direction 67 and opposite to each other. The direction of the magnetic field to be sensed is almost parallel to the element height direction 65,
The bias magnetic field of the lateral bias film 22 is obtained by setting the direction 61 of the residual magnetization of this film to the element height direction. The lateral bias film 22 is laminated with the single domain domainization film 25 via an appropriate non-magnetic layer, or is arranged with its ends in contact with each other at adjacent positions in the element height direction. Apply a magnetic field.

【0031】図9は本発明の磁気抵抗効果素子の第三例
の構造を示す説明図である。磁気抵抗効果多層膜10は
複数の強磁性膜11,12,13,14,15,16,
17を非磁性導電膜を介して積層した膜からなり、各々
の強磁性膜の間には反強磁性的な結合力が働いている。
磁気抵抗効果多層膜10の両面の強磁性膜11および1
7には、直接、積層して単磁区化膜21,25が配置さ
れ、強磁性膜11および17に交換結合バイアスを印加
している。交換結合バイアスの印加方向66,68はト
ラック幅方向67とほぼ平行で互いに逆方向とする。感
知すべき磁界の方向は素子高さ方向65とほぼ平行であ
り、横バイアス膜22のバイアス磁界は、この膜の残留
磁化の方向61を、素子高さ方向とすることで得られ
る。横バイアス膜22は単磁区化膜25と適切な非磁性
層を介して積層するか、または素子高さ方向の隣接した
位置に端部を接して配置され、磁気抵抗効果多層膜10
に横バイアス磁界を印加する。このように本発明の磁気
抵抗効果素子の多層膜の膜数は強磁性膜が三枚以上であ
れば奇数でも偶数でもよく、特に4から10枚の強磁性
膜を含む多層膜を用いると良い。
FIG. 9 is an explanatory view showing the structure of the third example of the magnetoresistive effect element of the present invention. The magnetoresistive effect multilayer film 10 includes a plurality of ferromagnetic films 11, 12, 13, 14, 15, 16,
It is composed of films in which 17 are laminated via a non-magnetic conductive film, and an antiferromagnetic coupling force works between the ferromagnetic films.
Ferromagnetic films 11 and 1 on both sides of the magnetoresistive effect multilayer film 10.
In FIG. 7, the single domain domainization films 21 and 25 are directly laminated and arranged, and the exchange coupling bias is applied to the ferromagnetic films 11 and 17. The exchange coupling bias application directions 66 and 68 are substantially parallel to the track width direction 67 and opposite to each other. The direction of the magnetic field to be sensed is almost parallel to the element height direction 65, and the bias magnetic field of the lateral bias film 22 is obtained by setting the direction 61 of the residual magnetization of this film to the element height direction. The lateral bias film 22 is laminated with the single domain domainization film 25 via an appropriate non-magnetic layer, or is arranged in contact with its end at an adjacent position in the element height direction.
A lateral bias magnetic field is applied to. As described above, the number of multilayer films of the magnetoresistive effect element of the present invention may be odd or even if the number of ferromagnetic films is three or more, and it is particularly preferable to use a multilayer film including 4 to 10 ferromagnetic films. .

【0032】[0032]

【発明の効果】本発明によれば磁区制御された、線形性
の良い出力を得られる磁気抵抗効果素子が得られ、高信
頼性の高密度磁気記録再生装置を得ることができる。
According to the present invention, a magnetoresistive effect element in which magnetic domains are controlled and an output with good linearity can be obtained, and a highly reliable high density magnetic recording / reproducing apparatus can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による磁気抵抗効果素子の第一例の説明
図。
FIG. 1 is an explanatory diagram of a first example of a magnetoresistive effect element according to the present invention.

【図2】本発明による磁気抵抗効果多層膜の第一例の説
明図。
FIG. 2 is an explanatory diagram of a first example of a magnetoresistive effect multilayer film according to the present invention.

【図3】本発明による磁気抵抗効果多層膜の第二例の説
明図。
FIG. 3 is an explanatory diagram of a second example of a magnetoresistive effect multilayer film according to the present invention.

【図4】磁気抵抗効果多層膜のみを用いた場合の磁界応
答の特性図。
FIG. 4 is a characteristic diagram of a magnetic field response when only a magnetoresistive multilayer film is used.

【図5】本発明による磁気抵抗効果素子の磁界応答の特
性図。
FIG. 5 is a characteristic diagram of a magnetic field response of the magnetoresistive effect element according to the present invention.

【図6】本発明による磁気ヘッドの説明図。FIG. 6 is an explanatory diagram of a magnetic head according to the present invention.

【図7】本発明の磁気記録再生装置の説明図。FIG. 7 is an explanatory diagram of a magnetic recording / reproducing apparatus of the present invention.

【図8】本発明の磁気抵抗効果素子の第二例の説明図。FIG. 8 is an explanatory diagram of a second example of the magnetoresistive effect element of the present invention.

【図9】本発明の磁気抵抗効果素子の第三例の説明図。FIG. 9 is an explanatory diagram of a third example of the magnetoresistive effect element of the present invention.

【符号の説明】[Explanation of symbols]

10…磁気抵抗効果膜、11,12,13,14,1
5,16…強磁性膜、20…磁気抵抗効果多層膜、21
…単磁区化膜、22…横バイアス膜、61…横バイアス
膜の残留磁化の方向、65…素子高さ方向、66…単磁
区化膜の異方性の方向、67…トラック幅方向。
10 ... Magnetoresistive film, 11, 12, 13, 14, 1
5, 16 ... Ferromagnetic film, 20 ... Magnetoresistive multilayer film, 21
... single-domain film, 22 ... lateral bias film, 61 ... direction of residual magnetization of lateral bias film, 65 ... element height direction, 66 ... direction of single-domain film anisotropy, 67 ... track width direction.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】三枚以上の強磁性膜を、非磁性導電膜を介
して順次、かつ、直接に積層した多層膜であって、上記
非磁性導電膜を介して隣接する上記強磁性膜の互いの磁
化のなす角度によって電気抵抗が変化し、上記非磁性導
電膜を介して隣接する上記強磁性膜の間には互いの磁化
を反平行の方向に向けようとする反強磁性的な結合力が
存在する磁気抵抗効果多層膜を用いた磁気抵抗効果素子
において、検出しようとする磁界の方向に対して略平行
な成分を有する静磁界バイアス印加手段と、上記磁気抵
抗効果多層膜を構成する上記強磁性膜のうち、最上面も
しくは最下面の強磁性膜に直接密着して、上記最上面も
しくは上記最下面の強磁性膜に、上記検出しようとする
磁界の方向に対して略垂直な方向に一方向異方性を誘起
する一方向性バイアス膜とを有することを特徴とする磁
気抵抗効果素子。
1. A multilayer film in which three or more ferromagnetic films are sequentially and directly laminated with a non-magnetic conductive film interposed between the ferromagnetic films adjacent to each other with the non-magnetic conductive film interposed therebetween. The electric resistance changes depending on the angle formed by the mutual magnetizations, and the antiferromagnetic coupling between the adjacent ferromagnetic films via the nonmagnetic conductive film tends to direct the mutual magnetizations in antiparallel directions. In a magnetoresistive effect element using a magnetoresistive effect multilayer film in which force exists, static magnetic field bias applying means having a component substantially parallel to the direction of a magnetic field to be detected and the magnetoresistive effect multilayer film are configured. A direction which is in direct contact with the uppermost or lowermost ferromagnetic film of the ferromagnetic films, and is substantially perpendicular to the direction of the magnetic field to be detected, on the uppermost or lowermost ferromagnetic film. Unidirectional anisotropy that induces unidirectional anisotropy in Magnetoresistive element characterized by having a scan film.
【請求項2】上記強磁性膜が積層された順序によって、
各々、膜厚と磁束密度の積が異なる請求項1の磁気抵抗
効果素子。
2. The order in which the ferromagnetic films are stacked is
The magnetoresistive effect element according to claim 1, wherein the products of the film thickness and the magnetic flux density are different from each other.
【請求項3】上記静磁界バイアス手段が、上記磁気抵抗
効果多層膜と非磁性層を介して積層された、硬磁性膜か
らなる請求項1または2の磁気抵抗効果素子。
3. The magnetoresistive effect element according to claim 1, wherein the static magnetic field biasing means comprises a hard magnetic film laminated with the magnetoresistive effect multilayer film via a nonmagnetic layer.
【請求項4】上記静磁界バイアス手段が、上記磁気抵抗
効果多層膜と非磁性層を介して積層された、軟磁性膜
と、上記軟磁性膜と直接積層して一方向異方性を誘起す
る反強磁性膜からなる請求項1または2の磁気抵抗効果
素子。
4. A static magnetic field bias means is laminated directly on the soft magnetic film and the soft magnetic film, which are laminated with the magnetoresistive effect multilayer film via a non-magnetic layer, to induce unidirectional anisotropy. 3. The magnetoresistive effect element according to claim 1, which is made of an antiferromagnetic film.
【請求項5】上記一方向性バイアス膜が反強磁性膜から
なる請求項1,2,3または4の磁気抵抗効果素子。
5. The magnetoresistive effect element according to claim 1, wherein the unidirectional bias film is an antiferromagnetic film.
【請求項6】上記一方向性バイアス膜が硬磁性膜からな
る請求項1,2,3,4または5の磁気抵抗効果素子。
6. The magnetoresistive element according to claim 1, wherein the unidirectional bias film is a hard magnetic film.
【請求項7】上記反強磁性膜が酸化ニッケル膜である請
求項4または5の磁気抵抗効果素子。
7. The magnetoresistive element according to claim 4, wherein the antiferromagnetic film is a nickel oxide film.
【請求項8】上記硬磁性膜が、コバルト系合金と、酸化
物,窒化物,炭化物,硼化物などの共有結合性化合物な
どの絶縁体あるいは半導体との混合分散膜である請求項
4または7の磁気抵抗効果素子。
8. The hard magnetic film is a mixed dispersion film of a cobalt-based alloy and an insulator or semiconductor such as a covalent compound such as an oxide, a nitride, a carbide and a boride. Magnetoresistive effect element.
【請求項9】信号を磁気的に記録した強磁性記録媒体を
有するディスクと、上記ディスクにに対向面を近接し
て、上記記録媒体から漏洩する磁界を磁気抵抗効果素子
によって検出する磁気ヘッドとを有し、上記磁気抵抗効
果素子が、請求項1の上記磁気抵抗効果素子である磁気
記録再生装置。
9. A disk having a ferromagnetic recording medium on which a signal is magnetically recorded, and a magnetic head having a facing surface close to the disk and detecting a magnetic field leaking from the recording medium by a magnetoresistive element. A magnetic recording / reproducing apparatus having the above-mentioned magnetoresistive effect element, wherein the magnetoresistive effect element is the magnetoresistive effect element according to claim 1.
JP8020904A 1996-02-07 1996-02-07 Magnetoresistance element and magnetic recording and reproducing device using the same Pending JPH09212829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8020904A JPH09212829A (en) 1996-02-07 1996-02-07 Magnetoresistance element and magnetic recording and reproducing device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8020904A JPH09212829A (en) 1996-02-07 1996-02-07 Magnetoresistance element and magnetic recording and reproducing device using the same

Publications (1)

Publication Number Publication Date
JPH09212829A true JPH09212829A (en) 1997-08-15

Family

ID=12040228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8020904A Pending JPH09212829A (en) 1996-02-07 1996-02-07 Magnetoresistance element and magnetic recording and reproducing device using the same

Country Status (1)

Country Link
JP (1) JPH09212829A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332340A (en) * 2005-05-26 2006-12-07 Toshiba Corp Magnetoresistance effect element, magnetic head, magnetic recording/reproducing apparatus, and magnetic memory
JP2011101026A (en) * 2001-06-09 2011-05-19 Robert Bosch Gmbh Magneto-resistive laminate structure, and gradiometer including the same
JP5288293B2 (en) * 2008-08-25 2013-09-11 日本電気株式会社 Magnetoresistive element, logic gate, and operation method of logic gate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101026A (en) * 2001-06-09 2011-05-19 Robert Bosch Gmbh Magneto-resistive laminate structure, and gradiometer including the same
JP2006332340A (en) * 2005-05-26 2006-12-07 Toshiba Corp Magnetoresistance effect element, magnetic head, magnetic recording/reproducing apparatus, and magnetic memory
JP4521316B2 (en) * 2005-05-26 2010-08-11 株式会社東芝 Magnetoresistive element, magnetic head, and magnetic recording / reproducing apparatus
JP5288293B2 (en) * 2008-08-25 2013-09-11 日本電気株式会社 Magnetoresistive element, logic gate, and operation method of logic gate

Similar Documents

Publication Publication Date Title
US6125019A (en) Magnetic head including magnetoresistive element
US6469873B1 (en) Magnetic head and magnetic storage apparatus using the same
US5729410A (en) Magnetic tunnel junction device with longitudinal biasing
US6023395A (en) Magnetic tunnel junction magnetoresistive sensor with in-stack biasing
US7072155B2 (en) Magnetoresistive sensor including magnetic domain control layers having high electric resistivity, magnetic head and magnetic disk apparatus
US6937449B2 (en) Spin-valve head containing closed-flux-structure domain control films
US6914761B2 (en) Magnetoresistive sensor with magnetic flux paths surrounding non-magnetic regions of ferromagnetic material layer
JPH08279117A (en) Gigantic magnetoresistance effect material film and its production and magnetic head using the same
JP2005203063A (en) Magnetic head and magnetic recording/reproducing device
JPH07296340A (en) Magnetoresistance effect device and thin film magnetic head utilizing the device
US6327123B1 (en) Magnetic head employing magnetoresistive sensor and magnetic storage and retrieval system
JP2001307308A (en) Magnetoresistive effect type head and information reproducing device
JPH0944819A (en) Magnetic conversion element and thin-film magnetic head
JPH09212829A (en) Magnetoresistance element and magnetic recording and reproducing device using the same
WO2010067730A1 (en) Magnetic head
JPH08293107A (en) Magnetic recording and reproducing device formed by using transverse bias film
JP2000276714A (en) Spin valve sensor fixing magnetization with current
JPH0992904A (en) Giant magnetoresistance material film, its manufacture, and magnetic head using the same
JP2003006818A (en) Magnetic-reluctance reproducing head with two ferromagnetic films bound to each other in nonpararrel
JPH05175572A (en) Magnetoresistance effect element, and magnetic head and recording/reproducing device using same
JPH10320717A (en) Magnetic sensor
JP2861714B2 (en) Magnetoresistive head and magnetic disk drive
JP2830711B2 (en) Magnetic head and magnetic disk drive
JPH10334422A (en) Magnetic recorder
JP2006338719A (en) Magnetic head