JPH09212829A - Magnetoresistance element and magnetic recording and reproducing device using the same - Google Patents

Magnetoresistance element and magnetic recording and reproducing device using the same

Info

Publication number
JPH09212829A
JPH09212829A JP2090496A JP2090496A JPH09212829A JP H09212829 A JPH09212829 A JP H09212829A JP 2090496 A JP2090496 A JP 2090496A JP 2090496 A JP2090496 A JP 2090496A JP H09212829 A JPH09212829 A JP H09212829A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
film
bias
magnetic
magnetoresistance
direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2090496A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hamakawa
Hiroyuki Hoshiya
Yoshio Suzuki
裕之 星屋
佳弘 濱川
良夫 鈴木
Original Assignee
Hitachi Ltd
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Abstract

PROBLEM TO BE SOLVED: To obtain the magnetoresistance element consisting of a multilayer film having an enough output and linearity and particularly an improved bias characteristic by providing a single magnetic domain forming film and a lateral bias film on the upper and lower surfaces of a magnetoresistance multilayer film, and to provide a magnetic recording device using the element.
SOLUTION: The magnetoresistance multilayer film 10 is constituted by laminating plural ferromagnetic films 11-16 via nonmagnetic electroconductive films between them, and antiferromagnetic force is worked between the individual ferromagnetic films. The single magnetic domain forming film 21 is disposed by layering directly with the ferromagnetic film 11 to impress an exchanging combining bias upon the ferromagnetic film 11. The impressing direction 66 of the exchanging bias is almost parallel with the track widthwise direction 67, and the direction of a magnetic field to be sensed is almost parallel to the element height direction 65, whereas a bias magnetic field of the lateral bias film 22 is obtained by orienting the direction 61 of residual magnetization of this film toward the element height direction. The lateral bias film 22 is disposed laminatedly through the magnetoresistance multilayer film 10 via a pertinent nonmagnetic layer to impress the lateral bias magnetic field upon the magnetoresistance multilayer film 10.
COPYRIGHT: (C)1997,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、磁気記録再生装置および磁気抵抗効果素子に係り、特に、高記録密度磁気記録再生装置に関する。 The present invention relates to relates to a magnetic recording and reproducing apparatus and a magneto-resistance effect element, in particular, to high recording density magnetic recording and reproducing apparatus.

【0002】 [0002]

【従来の技術】特開平2−61572号公報は、中間層によって分離した強磁性薄膜の、その磁化の互いになす角度によって電気抵抗が変化する積層膜およびそれを用いた磁場センサ,磁気記録装置の記載がある。 BACKGROUND ART JP-A-2-61572 discloses the ferromagnetic thin films separated by an intermediate layer, laminated films and magnetic field sensor using the same that changes electrical resistance with the angle formed with each other in the magnetization of the magnetic recording apparatus it is described.

【0003】特開平6−60336号公報には磁性層の磁化の方向が垂直になるような手段、特に硬磁性膜を有する磁気抵抗感知システムの記載がある。 [0003] in JP-A-6-60336 is described a magnetoresistive sensing system having means, such as the direction of magnetization of the magnetic layer becomes perpendicular, especially hard magnetic film.

【0004】米国特許第5206590 号には非磁性膜で分離された強磁性膜の積層体に反強磁性膜が密着し、かつ積層体の端部に硬磁性材料が接触した構成の記載がある。 [0004] There are U.S. Pat antiferromagnetic film is in close contact with the stack of ferromagnetic films separated by nonmagnetic films. No. 5,206,590, and the description of structure hard magnetic material on the end of the laminate is in contact .

【0005】特開昭50−1712号公報には永久磁石薄膜をバイアス膜に用いた磁気抵抗効果素子の記載がある。 [0005] in JP-A-50-1712 there is a description of a magnetoresistive element using a permanent magnet thin film bias layer.

【0006】 [0006]

【発明が解決しようとする課題】従来の技術では、記録密度の充分に高い磁気記録装置、特にその再生部に外部磁界に対して十分な感度と出力で作用する磁気抵抗効果素子を実現し、さらに充分に対称性の良い良好な特性を得ることが出来ず、記録装置としての機能を実現することが困難であった。 In THE INVENTION It is an object of the prior art, a sufficiently high magnetic recording device for a recording density, and achieve the magnetoresistive element acting with sufficient sensitivity and output, especially for the external magnetic field to the reproducing unit, can not be further to obtain a sufficiently good symmetry good properties, it is difficult to realize the function as a recording apparatus.

【0007】記録密度の向上には記録媒体上の記録領域の1単位が狭くなることおよび磁気記録装置再生部の細小化が必要である。 [0007] The improvement in the recording density is required one unit is narrowed, and a magnetic recording apparatus and reproducing unit microangiopathy of the recording area on the recording medium. このような問題の解決策として、薄膜磁気ヘッドの再生部に磁気抵抗効果素子を配置し、磁気抵抗効果による電気抵抗の変化を出力として用いる方法が知られている。 As a solution to such problems, to place the magnetoresistive element to the reproduction of the thin film magnetic head, a method of using as an output a change in electrical resistance due to the magnetoresistive effect is known. この場合、問題となるのは小さい磁気抵抗効果素子では再生信号の対称性のわずかな悪化が出力をひずませ、性能劣化につながる点である。 In this case, distort a slight deterioration of the symmetry of the reproduced signal output is smaller magnetoresistive element The problem is that lead to performance degradation. 即ち、 In other words,
素子の外部磁界に対する出力特性が、磁界ゼロを中心に対称であるようにすることが重要である。 Output characteristics to an external magnetic field of the element, it is important to be a symmetrical around the zero magnetic field. 従来の技術としては、例えばSAL膜と呼ばれる磁性膜を磁気抵抗効果膜に積層して設け、素子の横バイアスを修正する手段が知られている。 As a conventional technique, for example, provided by laminating a magnetic film called SAL film magnetoresistive film, are known means for correcting the lateral bias of the element. このような素子の横バイアス特性を修正するために設ける膜を横バイアス膜と呼ぶ。 The film provided in order to correct the transverse bias characteristics of such elements is called a transverse bias layer.

【0008】近年、強磁性金属膜を非磁性金属膜を介して積層した多層膜の磁気抵抗効果、いわゆる巨大磁気抵抗効果で、従来の単層の強磁性薄膜に比べて抵抗の変化が大きいことが知られている。 In recent years, magneto-resistance effect of the multilayer film and the ferromagnetic metal film are laminated through a non-magnetic metal film, a so-called giant magnetoresistive effect, the change in resistance than the ferromagnetic thin film of the conventional single layer is large It has been known. この場合、磁気抵抗効果は、非磁性膜で隔てられた強磁性膜の、磁化と磁化のなす角度によって電気抵抗が変化する。 In this case, the magnetoresistance effect of the ferromagnetic films separated by nonmagnetic films, electric resistance changes by an angle of the magnetization and the magnetization. 非磁性膜で隔てられた強磁性膜の間には、お互いの磁化を反平行状態にしようとする、反強磁性的な結合力が働いている。 Between the ferromagnetic films separated by nonmagnetic films, attempts to the magnetization of each other in the anti-parallel state, the antiferromagnetic coupling force is acting. 磁気抵抗効果素子として用いる場合、必要な特性は二つある。 When used as a magnetoresistive element, characteristics required are two.
外部磁界に対して線形な出力があること、および、磁壁移動などで発生するノイズのないことである。 That linear output to an external magnetic field, and that there is no noise generated by such magnetic wall displacement. 多層膜の巨大磁気抵抗効果で線形な出力を得るには、公知例で指摘されているように、磁界ゼロの状態で、各々の強磁性膜の磁化の方向が互いに直角である必要がある。 To obtain a linear output with giant magnetoresistance effect of the multilayer film, as pointed out in known example, in a state of zero magnetic field, it is necessary direction of magnetization of each ferromagnetic film are perpendicular to each other. 例えば、感知すべき磁界の方向に対して、各々の磁化が交互に±45度をむいているようにすることで、磁気抵抗効果の出力を線形性よく得ることができる。 For example, with respect to the direction of the magnetic field to be detected, by so each magnetization is peeled ± 45 ° alternately, it is possible to obtain good linearity the output of the magnetoresistive effect. 磁気ディスク装置で言うならば、感知すべき磁界の方向は素子高さ方向である。 If say in the magnetic disk device, the direction of the magnetic field to be sensed element is a height direction. 線形性をよくする、または素子の磁界応答点を調整する目的で、磁気抵抗効果膜に素子高さ方向にバイアスを印加する膜を横バイアス膜と呼ぶ。 Better linearity, or the purpose of adjusting the magnetic field response point of the device, called a film for applying a bias element in the height direction to the magnetoresistive film and the transverse bias layer.

【0009】磁気抵抗素子の磁壁移動に起因するノイズの抑制方法として、強磁性膜の単磁区化が一般的である。 [0009] As method for suppressing noise due to domain wall motion of the magnetoresistive element, single domain ferromagnetic film is generally used. 例えば、感知すべき磁界の方向に対して垂直方向に、磁気抵抗効果膜にバイアス磁界を印加して単磁区化することが有効である。 For example, in a direction perpendicular to the direction of the magnetic field to be detected, it is effective to a single domain by applying a bias magnetic field to the magnetoresistive film. 即ち、磁壁を消失すると共に磁化の方向を、磁化過程が磁化回転によって生じるように設定できるからである。 That is, the direction of magnetization with a loss of domain walls, the magnetization process is because it set as caused by magnetization rotation. このバイアスを印加する手段は、磁気抵抗効果膜のトラック幅方向の端部に接触して、硬磁性膜もしくは反強磁性膜で交換結合を印加された強磁性膜を配置し、その残留磁化により漏洩する静磁界を用いる方法が知られている。 It means for applying the bias contacts the end of the track width direction of the magnetoresistive film, placing a ferromagnetic film which is applied an exchange coupling in the hard magnetic layer or the antiferromagnetic film, by its residual magnetization a method using a static magnetic field leaking is known. この場合、残留磁化あるいは交換結合の方向は感知すべき磁界と垂直方向,磁気ディスク装置で言うトラック幅方向である。 In this case, the direction of residual magnetization or the exchange coupling magnetic field and the vertical direction to be sensed, the track width direction as referred to the magnetic disk device. このバイアスを印加するための膜を縦バイアス膜と呼ぶ。 It referred to the film for applying the bias and the longitudinal bias layer. また、 Also,
強磁性膜を単磁区化する目的の膜を単磁区化膜と呼ぶ。 The purpose of the film of single domain ferromagnetic film is referred to as a single domain film.

【0010】このように、高記録密度に対応した磁気ヘッドは巨大磁気抵抗効果を応用し、磁気抵抗効果多層膜に、縦バイアス膜を適応する構成が望ましいが、問題は先に述べた、単磁区化である。 [0010] Thus, the magnetic head corresponding to high recording density by applying a giant magnetoresistance effect, a magnetoresistive multilayer film, but configured to accommodate the longitudinal bias layer is desired, the problem mentioned earlier, a single a magnetic domain.

【0011】一般に、強磁性膜を単磁区化するには、単磁区化膜として縦バイアス膜を用いることができる。 [0011] Generally, in a single magnetic domain of the ferromagnetic film can be formed using a vertical bias film as single domain film. すなわち、強磁性膜にバイアス磁界を印加して単磁区化することができるが、磁気抵抗効果膜が多層膜である場合、これは困難である。 That is, it is possible to single domain by applying a bias magnetic field to the ferromagnetic film, if the magnetoresistance effect film is a multilayer film, which is difficult. 即ち、前述したように、線形な出力を得るためには多層膜の強磁性膜が素子高さ方向に対して交互に正負の方向に並んでいるべきだが、これは、単磁区化がそれぞれこの方向に行われるべきことを示している。 That is, as described above, in order to obtain a linear output is should are arranged in positive and negative direction alternately ferromagnetic film to the element height direction of the multilayer film, which is a single magnetic domain is the respective It indicates that it should be done in the direction. 従来の方法で、多層膜に縦バイアス膜を適応して単磁区化を図ると、強磁性膜の磁化はすべて一つの方向を向いてしまい、多層膜の磁気抵抗効果を線形には生じなくなってしまうのである。 In conventional methods, the adapting the longitudinal bias layer in multilayer film achieve single domain, the magnetization of the ferromagnetic films will face the one direction all, no longer occur magnetoresistive multilayer film linearly it is put away for.

【0012】本発明の目的は高密度記録に対応した磁気記録装置および充分な出力と線形性、特にバイアス特性を改善した多層膜からなる磁気抵抗効果素子を提供することにある。 An object of the present invention is to provide a magnetoresistance effect element formed of a high-density magnetic recording apparatus and a sufficient output and linearity corresponding to the recording, multi-layer film, especially improved bias characteristic.

【0013】 [0013]

【課題を解決するための手段】上記課題を解決するため、本発明は磁気抵抗効果素子を構成する磁気抵抗効果多層膜の表面(または底面)に位置する強磁性膜の面に密着して一方向異方性を印加する単磁区化膜、特に反強磁性膜を配置した。 In order to solve the above problems SUMMARY OF THE INVENTION The present invention is in close contact with the surface of the ferromagnetic film located on the surface of the magnetoresistive multilayer film forming the magnetoresistive effect element (or bottom) Single single domain film which applies a directional anisotropy, in particular arranged antiferromagnetic film. さらに多層膜に隣接して、線形性を適性とするための横バイアス手段、特に横バイアス膜を積層した。 Moreover adjacent the multilayer film, the transverse biasing means for the suitability of linearity, in particular laminated transverse bias film. すなわち、磁気抵抗効果多層膜を構成する強磁性膜すべての磁化を素子高さ方向の一方向に向ける横バイアス膜と、磁気抵抗効果多層膜の表面に位置する一つ或いは二つの強磁性膜の磁化を固定し、単磁区化する。 In other words, a transverse bias film directing ferromagnetic film all magnetization which constitute the magnetoresistive multilayer film in one direction in the element height direction, of one or two ferromagnetic films positioned on the surface of the magnetoresistive multilayer film the magnetization is fixed, a single magnetic domain. この結果、横バイアス,単磁区化、および多層膜の強磁性膜の間に働く反強磁性的な結合力の相互作用により、上記強磁性膜の磁化の方向は、単磁区化膜に近い側で±180度に近く、単磁区化膜から離れるにつれて± As a result, the horizontal bias, single magnetic domain, and the interaction of the antiferromagnetic coupling force acting between the ferromagnetic films of the multilayer film, the direction of magnetization of the ferromagnetic film, the side closer to the single domain film in near ± 180 degrees, ± increasing distance from the single domain film
45度に近づく配列が安定になる。 Approaches 45 degrees sequences is stabilized.

【0014】本発明ではこのように単純な構成で、多層膜磁気抵抗効果膜を効果的に磁気抵抗効果素子として機能させ、これを再生部とした磁気記録再生装置で、高記録密度、すなわち、記録媒体上に記録される記録波長が短く、また、記録トラックの幅が狭い記録を実現して、 [0014] In the present invention in such simple structure, effectively function as a magnetoresistive element a multilayer film magnetoresistive film, the magnetic recording and reproducing apparatus and reproducing unit of this high recording density, i.e., short recording wavelength is recorded on the recording medium, and the width of the recording track to achieve a narrow recording,
十分な再生出力を得、記録を良好に保つことができる。 Obtain sufficient reproduced output can maintain good recording.

【0015】 [0015]

【発明の実施の形態】本発明の磁気抵抗効果素子を構成する膜は高周波マグネトロンスパッタリング装置により以下のように作製した。 Film forming the magnetoresistive effect element of the embodiment of the present invention was prepared as follows by RF magnetron sputtering apparatus. アルゴン3ミリトールの雰囲気中にて、厚さ1mm,直径3インチのセラミックス基板に以下の材料を順に積層して作製した。 In an argon 3 in mTorr atmosphere, thickness 1 mm, it was manufactured by laminating the following materials on a ceramic substrate having a diameter of 3 inches forward. スパッタリングターゲットとして酸化ニッケル,タンタル,クロム,ニッケル−20at%鉄合金,コバルト−20%白金,銅のターゲットを用いた。 Nickel oxide as a sputtering target, using tantalum, chromium, nickel -20At% iron alloy, cobalt -20% platinum, copper target. 積層膜は、各ターゲットを配置したカソードに各々高周波電力を印加して装置内にプラズマを発生させておき、各カソードごとに配置されたシャッタを一つずつ開閉して順次各層を形成した。 Film stack advance by generating plasma to each the device by applying a high frequency power to a cathode arranged each target, were sequentially forming each layer one by one off the shutter disposed in each cathode. 膜形成時には基板面内で直交する二対の電磁石を用いて基板に平行におよそ50エルステッドの磁界を印加して、一軸異方性を持たせるとともに、酸化ニッケル膜の交換結合バイアスの方向をそれぞれの方向に誘導した。 During film formation by applying a magnetic field parallel to approximately 50 oersted to a substrate using two pairs of electromagnets perpendicular in the substrate surface, causes have uniaxial anisotropy, the direction of the exchange coupling bias nickel oxide film, respectively It was induced in the direction of the.

【0016】異方性の誘導は、積層膜形成後に反強磁性膜のネール温度近くから磁界中冷却を行い、反強磁性バイアスの方向を磁界の方向に誘導した。 The anisotropy induced performs field during cooling from the Neel temperature near the antiferromagnetic film after lamination film, to induce the direction of the antiferromagnetic bias in the direction of the magnetic field. さらに、室温で3キロエルステッドの磁化処理を行って硬磁性膜の磁化方向を誘導した。 Moreover, to induce the magnetization direction of the hard magnetic film performs the magnetization for 3 kOe at room temperature.

【0017】基体上の素子の形成はフォトレジスト工程によってパターニングした。 [0017] The elements on the substrate was patterned by a photoresist process. その後、基体はスライダ加工し、磁気記録装置に搭載した。 Thereafter, the substrate is a slider processing, mounted on a magnetic recording apparatus.

【0018】以下に本発明の具体的な実施例を図を追って説明する。 [0018] will be described step by Fig specific embodiments of the present invention are described below.

【0019】図1は本発明の磁気抵抗効果素子の第一例の構造を示す説明図である。 [0019] FIG. 1 is an explanatory view showing the structure of a first example of the magnetoresistive element of the present invention.

【0020】磁気抵抗効果多層膜10は複数の強磁性膜11,12,13,14,15,16を非磁性導電膜を介して積層した膜からなり、各々の強磁性膜の間には反強磁性的な結合力が働いている。 The magnetoresistive multilayer film 10 comprises a plurality of ferromagnetic films 11, 12 are laminated via a non-magnetic conductive film layer, between each of the ferromagnetic film anti ferromagnetic coupling force is working. 磁気抵抗効果多層膜1 Magneto-resistive effect multilayer film 1
0の片面の強磁性膜11には、直接、積層して単磁区化膜21が配置され、強磁性膜11に交換結合バイアスを印加している。 On one side of the ferromagnetic film 11 of 0 is directly laminated single domain film 21 is disposed, it applies a exchange coupling bias to the ferromagnetic film 11. 交換結合バイアスの印加方向66はトラック幅方向67とほぼ平行とする。 Application direction 66 of the exchange coupling bias is substantially parallel to the track width direction 67. 感知すべき磁界の方向は素子高さ方向65とほぼ平行であり、横バイアス膜22のバイアス磁界は、この膜の残留磁化の方向61 Direction of the magnetic field to be detected are substantially parallel to the sensor height direction 65, the bias magnetic field in the transverse bias layer 22, the direction of residual magnetization of the film 61
を、素子高さ方向とすることで得られる。 The obtained by the element height direction. 横バイアス膜22は磁気抵抗効果多層膜10と適切な非磁性層を介して積層、または隣接した位置に配置され、磁気抵抗効果多層膜10に横バイアス磁界を印加する。 Transverse bias layer 22 is disposed in laminated via a suitable non-magnetic layer and the magnetoresistive multilayer film 10, or adjacent positions, applying a transverse bias magnetic field to the magnetoresistive multilayer film 10.

【0021】ここで、強磁性膜はNi−Fe膜,非磁性導電膜はCu膜を用いた。 [0021] Here, the ferromagnetic film Ni-Fe film, a non-magnetic conductive film using a Cu film. 単磁区化膜21は酸化ニッケル膜,横バイアス膜22はCo−Pt膜を用いた。 Single domain film 21 is a nickel oxide film, the lateral bias film 22 using Co-Pt film.

【0022】図中、強磁性膜の部分に印した矢印は、外部磁界がない状態の強磁性膜の磁化の方向を示している。 [0022] In the figure, arrows marked on the portion of the ferromagnetic film indicates the direction of magnetization of the ferromagnetic film of the absence of an external magnetic field. 強磁性膜の磁化の方向は、強磁性膜15では、単磁区化膜21の異方性の方向、即ちトラック幅方向67にほぼ平行であるが、単磁区化膜21から離れるにつれて磁化の方向は素子高さ方向65に近づき、強磁性膜1 The direction of magnetization of the ferromagnetic film, the ferromagnetic film 15, the direction of the anisotropy of a single magnetic domain film 21, i.e., is substantially parallel to the track width direction 67, the direction of magnetization with distance from the single domain film 21 It approaches the sensor height direction 65, the ferromagnetic film 1
4,15,16ではほぼ45度程度にすることができる。 In 4,15,16 it can be substantially 45 degrees.

【0023】このように、磁気抵抗効果膜20は、磁気抵抗効果多層膜10,単磁区化膜21および横バイアス膜22からなる。 [0023] Thus, the magnetoresistive effect film 20 is made of a magnetoresistive multilayer film 10, single domain film 21 and the transverse bias layer 22. 横バイアス膜22は磁気抵抗効果膜と厚さ方向に積層してなるか、または素子高さ方向に端部を接するように配置しても良い。 Transverse bias layer 22 may be arranged in contact with an end portion or formed by laminating the magnetoresistive effect film and the thickness direction, or the element height direction. その場合は横バイアス膜22の残留磁化の方向は図1の逆方向となる。 Its direction of residual magnetization in the transverse bias layer 22 case is reverse of Figure 1.

【0024】図2は本発明の磁気抵抗効果膜20の膜構造の一例を示す説明図である。 [0024] FIG. 2 is an explanatory diagram showing an example of a film structure of the magnetoresistive film 20 of the present invention. 磁気抵抗効果多層膜10 Magneto-resistive effect multilayer film 10
は強磁性膜11,12,13,14,15,16と非磁性導電膜31,32,33,34,35を交互に積層してなる。 It is formed by alternately stacking nonmagnetic conductive layer 31, 32, 33, 34 and the ferromagnetic film 11, 12. 単磁区化膜21は磁気抵抗多層膜10の表面の強磁性膜11に直接密着して形成し、交換結合による一方向異方性を発生させる。 Single domain film 21 is formed directly adhered to the ferromagnetic film 11 on the surface of the magnetoresistive multilayer film 10, to generate a unidirectional anisotropy by exchange coupling. 横バイアス膜22は磁気抵抗効果多層膜10と、中間膜23を介して積層する。 Transverse bias layer 22 and the magnetoresistance effect multilayer film 10 is laminated via an intermediate layer 23. 横バイアス膜22の基体側には下地膜25を配置すると横バイアス膜22の特性を安定にできる。 The base side of the lateral bias film 22 can the characteristics of the transverse bias layer 22 stably Placing a base film 25. ここでは、中間膜23はタンタル、下地膜25はクロムを用いた。 Here, the intermediate layer 23 is tantalum, the base film 25 using chromium. ここでは横バイアス膜22に対して、単磁区化膜21が基体5 Here the lateral bias film 22 is a single magnetic domain film 21 base 5
0の側の構成を示したが、この位置関係は逆でも特性を損なわない。 0 shows a side structure of, this positional relationship is not destroy properties be reversed. その場合、下地膜25の積層位置は、横バイアス膜22の基体側に配置する。 In that case, stacking position of the base film 25 is disposed on the base side of the lateral bias film 22.

【0025】図3は本発明の磁気抵抗効果膜20の膜構造の第二例を示す説明図である。 [0025] FIG. 3 is an explanatory view showing a second example of the film structure of the magnetoresistive film 20 of the present invention. 磁気抵抗効果多層膜1 Magneto-resistive effect multilayer film 1
0は強磁性膜11,12,13,14,15,16と非磁性導電膜31,32,33,34,35を交互に積層してなる。 0 formed by laminating alternately a ferromagnetic layer 11, 12 of non-magnetic conductive film 31, 32, 33, 34. 単磁区化膜21は磁気抵抗多層膜10の表面の強磁性膜11に直接密着して形成し、交換結合による一方向異方性を発生させる。 Single domain film 21 is formed directly adhered to the ferromagnetic film 11 on the surface of the magnetoresistive multilayer film 10, to generate a unidirectional anisotropy by exchange coupling. 横バイアス膜22は磁気抵抗効果多層膜10と、単磁区化膜21及び中間膜24を介して積層する。 Transverse bias layer 22 and the magnetoresistance effect multilayer film 10 is laminated via a single domain film 21 and the intermediate layer 24. 横バイアス膜22の基体側には下地膜25を配置すると横バイアス膜22の特性を安定にできる。 The base side of the lateral bias film 22 can the characteristics of the transverse bias layer 22 stably Placing a base film 25. ここでは、中間膜24はタンタル、下地膜25はクロムを用いた。 Here, the intermediate layer 24 is tantalum, the base film 25 using chromium. ここでは磁気抵抗効果多層膜10に対して、単磁区化膜21および横バイアス膜22が基体50 Here the magnetic resistance effect multilayer film 10, single domain film 21 and the transverse bias layer 22 is the base 50
の側の構成を示したが、この位置関係は逆でも特性を損なわない。 Showed the side structure, the positional relationship does not impair the properties be reversed. その場合、下地膜25の積層位置は、横バイアス膜22の基体側に配置する。 In that case, stacking position of the base film 25 is disposed on the base side of the lateral bias film 22. 横バイアス膜22は硬磁性膜、または反強磁性膜と交換結合した軟磁性膜から形成することで所定の着磁工程によって残留磁化を所定の方向に向けることができる。 Transverse bias layer 22 can direct the residual magnetization in a predetermined direction by a predetermined magnetizing step by forming a hard magnetic film or antiferromagnetic film and exchange-coupled with the soft magnetic film. 同様に単磁区化膜21は反強磁性膜または硬磁性膜にて形成し、直接積層した強磁性膜に、所定の着磁工程によって所定の方向の異方性を誘起することができる。 Similarly single domain film 21 is formed by the antiferromagnetic film or the hard magnetic film, a ferromagnetic film laminated directly can induce anisotropy in the predetermined direction by a predetermined magnetizing step.

【0026】図4は磁気抵抗効果多層膜10のみで測定した磁気抵抗効果曲線である。 [0026] FIG. 4 is a magnetoresistive curve measured with only the magnetoresistive multilayer film 10. 磁気抵抗効果曲線は磁界の正負に対称で、線形性が得られていない。 Magnetoresistive curve symmetrical in positive and negative magnetic field, is not obtained linearity. さらに磁界の往復でヒステリシスが生じ、ノイズの原因となる。 Moreover hysteresis occurs in a reciprocating magnetic field, causing noise. 図5は磁気抵抗効果多層膜10に横バイアス膜22及び単磁区化膜21を用いた場合の磁気抵抗効果曲線である。 Figure 5 is a magnetoresistance effect curve in the case of using the transverse bias layer 22 and single domain film 21 to the magnetoresistive multilayer film 10.
信号は線形性を有し、かつヒステリシスのない良好な応答が得られた。 Signal has a linearity and no hysteresis good response was obtained.

【0027】図6は本発明の磁気抵抗効果素子を用いた磁気ヘッド装置の説明図である。 [0027] FIG. 6 is an explanatory view of the magnetic head apparatus using the magnetoresistive effect element of the present invention. 表面に記録媒体を有したディスク91には所定のトラック幅44でトラック状に情報が記録されている。 The disc 91 having a recording medium on the surface information in a track shape with a predetermined track width 44 is recorded. 磁気的に記録された信号は漏洩磁場64として現われ、磁気ヘッドスライダ90は対向面63をディスク91面上に近接して、搭載した磁気抵抗効果素子に漏洩磁界64を導入して信号に変換する。 Magnetically recorded signal appears as leakage magnetic field 64, the magnetic head slider 90 is opposed surface 63 in proximity to the disk 91 surface, into a signal by introducing the leakage magnetic field 64 in the magnetoresistive element equipped with . 磁気抵抗効果素子は磁気抵抗効果膜20と電極40 Magnetoresistive film 20 magnetoresistive element and the electrode 40
からなり、磁界の変化を電気信号に変換する。 It consists, for converting a change in the magnetic field into an electric signal. 図中記録用ヘッドは描かれていないが、同一のスライダ上に記録ヘッドを形成して、それぞれ記録及び再生を行わせることが出来る。 The recording head is not depicted in the drawing, to form a recording head on the same slider, it is possible to respectively perform recording and reproduction.

【0028】横バイアス膜の残留磁化の方向61および単磁区化膜21の異方性の方向66は、それぞれ、ヘッドスライダ90の対向面63にそれぞれ垂直及び平行な方向として定義され、素子高さ方向65及びトラック幅方向67とほぼ同一である。 The anisotropy direction 66 of the lateral bias film of the residual magnetization in the direction 61 and single domain film 21, respectively, are defined as respectively perpendicular and parallel directions to the opposing surface 63 of the head slider 90, the sensor height it is substantially identical to the direction 65 and the track width direction 67. 電極40はこの磁気抵抗効果積層膜10に電流を通じるとともに、外部磁界によって変化する磁気抵抗効果積層膜10の電気抵抗を電気信号、特に電圧として取り出す。 Electrode 40 with leads current to the magnetoresistive layered film 10, take out the electrical resistance of the magnetoresistive layered film 10 changes by an external magnetic field electrical signals, in particular as a voltage.

【0029】図7は本発明の磁気記録再生装置の説明図である。 FIG. 7 is an explanatory view of a magnetic recording and reproducing apparatus of the present invention. 磁気的に情報を記録する記録媒体を面上に形成したディスク91をスピンドルモータ93にて回転させ、アクチュエータ92によってヘッドスライダ90を記録媒体91のトラック上に誘導する。 The disc 91 forming a recording medium for magnetically recording information on the surface is rotated by a spindle motor 93, to induce the head slider 90 on a track of the recording medium 91 by the actuator 92. 即ち、磁気ディスク装置ではヘッドスライダ90上に形成した再生ヘッド、及び記録ヘッドがこの機構に依って記録媒体91上の所定の記録位置に近接して相対運動し、信号を順次書き込み、及び読み取る。 That is, the relative motion reproducing head formed on the head slider 90 in the magnetic disk device, and the recording head is close to the predetermined recording position on the recording medium 91 by this mechanism, sequential write signal, and reading. 記録信号は信号処理系94を通じて記録ヘッドにて媒体上に記録し、再生ヘッドの出力を信号処理系94を経て信号として得る。 Recording signal is recorded on the medium by the recording head through the signal processing system 94 is obtained as a signal through the signal processing system 94 the output of the reproducing head. さらに再生ヘッドを所望の記録トラック上へ移動させるに際して、本再生ヘッドからの高感度な出力を用いてトラック上の位置を検出し、アクチュエータを制御して、ヘッドスライダの位置決めを行うことができる。 Further when moving the reproducing head to a desired recording track, using sensitive output from the read head to detect the position on the track, by controlling the actuator, it is possible to position the head slider. 本図ではヘッドスライダ90,ディスク91を各1個示したが、これらは複数であってもよい。 The head slider 90 in this figure, the disk 91 shown one each, may be they are plural. また記録媒体はディスク91の両面に情報を記録してもよい。 The recording medium may record information on both sides of the disk 91. 情報の記録がディスク両面の場合ヘッドスライダ90はディスク91の両面に配置する。 Recording information the head slider 90 when the disk both sides arranged on both sides of the disk 91.

【0030】図8は本発明の磁気抵抗効果素子の第二例の構造を示す説明図である。 FIG. 8 is an explanatory view showing the structure of a second example of the magnetoresistive element of the present invention. 磁気抵抗効果多層膜10は複数の強磁性膜11,12,13,14,15,16を非磁性導電膜を介して積層した膜からなり、各々の強磁性膜の間には反強磁性的な結合力が働いている。 Magnetoresistive multilayer film 10 comprises a plurality of ferromagnetic films 11, 12 are laminated via a non-magnetic conductive film layer, antiferromagnetic between each ferromagnetic film bonding force is working Do not. 磁気抵抗効果多層膜10の両面の強磁性膜11および16には、直接、積層して単磁区化膜21,25が配置され、 On both sides of the ferromagnetic film 11 and 16 of the magnetoresistive multilayer film 10 is directly laminated single domain film 21, 25 is arranged,
強磁性膜11および16に交換結合バイアスを印加している。 It applies a exchange coupling bias to the ferromagnetic film 11 and 16. 交換結合バイアスの印加方向66,68はトラック幅方向67とほぼ平行で互いに逆方向とする。 Application direction 66, 68 of the exchange coupling bias the opposite directions substantially parallel to the track width direction 67. 感知すべき磁界の方向は素子高さ方向65とほぼ平行であり、 Direction of the magnetic field to be detected are substantially parallel to the element height direction 65,
横バイアス膜22のバイアス磁界は、この膜の残留磁化の方向61を、素子高さ方向とすることで得られる。 Bias magnetic field transverse bias layer 22, the direction 61 of the residual magnetization of the film, obtained by the element height direction. 横バイアス膜22は単磁区化膜25と適切な非磁性層を介して積層するか、または素子高さ方向の隣接した位置に端部を接して配置され、磁気抵抗効果多層膜10に横バイアス磁界を印加する。 Transverse bias layer 22 is disposed in contact with end portions in adjacent positions or laminated via a suitable non-magnetic layer and the single magnetic domain film 25 or the element height direction, lateral bias to the magnetoresistive multilayer film 10 applying a magnetic field.

【0031】図9は本発明の磁気抵抗効果素子の第三例の構造を示す説明図である。 FIG. 9 is an explanatory view showing the structure of a third example of the magnetoresistive element of the present invention. 磁気抵抗効果多層膜10は複数の強磁性膜11,12,13,14,15,16, Magnetoresistive multilayer film 10 includes a plurality of ferromagnetic films 11, 12,
17を非磁性導電膜を介して積層した膜からなり、各々の強磁性膜の間には反強磁性的な結合力が働いている。 It made a 17 film of laminated layers with a nonmagnetic conductive layer, between each of the ferromagnetic films are working antiferromagnetic coupling strength.
磁気抵抗効果多層膜10の両面の強磁性膜11および1 Both sides of the ferromagnetic magnetoresistive multilayer film 10 film 11 and 1
7には、直接、積層して単磁区化膜21,25が配置され、強磁性膜11および17に交換結合バイアスを印加している。 The 7 directly laminated single domain films 21 and 25 are arranged, are applied an exchange coupling bias to the ferromagnetic film 11 and 17. 交換結合バイアスの印加方向66,68はトラック幅方向67とほぼ平行で互いに逆方向とする。 Application direction 66, 68 of the exchange coupling bias the opposite directions substantially parallel to the track width direction 67. 感知すべき磁界の方向は素子高さ方向65とほぼ平行であり、横バイアス膜22のバイアス磁界は、この膜の残留磁化の方向61を、素子高さ方向とすることで得られる。 Direction of the magnetic field to be detected are substantially parallel to the sensor height direction 65, the bias magnetic field in the transverse bias layer 22, the direction 61 of the residual magnetization of the film, obtained by the element height direction. 横バイアス膜22は単磁区化膜25と適切な非磁性層を介して積層するか、または素子高さ方向の隣接した位置に端部を接して配置され、磁気抵抗効果多層膜10 Transverse bias layer 22 is disposed in contact with end portions in adjacent positions or laminated via a suitable non-magnetic layer and the single magnetic domain film 25 or the element height direction, magnetoresistive multilayer film 10
に横バイアス磁界を印加する。 Applying a transverse bias magnetic field to. このように本発明の磁気抵抗効果素子の多層膜の膜数は強磁性膜が三枚以上であれば奇数でも偶数でもよく、特に4から10枚の強磁性膜を含む多層膜を用いると良い。 Thus film number of the multilayer film of the magnetoresistive element of the present invention may ferromagnetic film may be an even even odd if three or more sheets, using a multi-layer film, especially including 10 sheets of ferromagnetic film 4 .

【0032】 [0032]

【発明の効果】本発明によれば磁区制御された、線形性の良い出力を得られる磁気抵抗効果素子が得られ、高信頼性の高密度磁気記録再生装置を得ることができる。 According to the present invention are domain control, magnetoresistive element obtained linearity good output is obtained, it is possible to obtain a high-density magnetic recording and reproducing apparatus of high reliability.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明による磁気抵抗効果素子の第一例の説明図。 The first example of the illustration of the magnetoresistive element according to the invention; FIG.

【図2】本発明による磁気抵抗効果多層膜の第一例の説明図。 The first example of the illustration of the magnetoresistive multilayer film according to the invention, FIG.

【図3】本発明による磁気抵抗効果多層膜の第二例の説明図。 Illustration of a second example of the magnetoresistive multilayer film according to the present invention; FIG.

【図4】磁気抵抗効果多層膜のみを用いた場合の磁界応答の特性図。 [4] characteristic diagram of the magnetic field response in the case of using only the magnetoresistive multilayer film.

【図5】本発明による磁気抵抗効果素子の磁界応答の特性図。 Characteristic diagram of the magnetic field response of the magnetoresistive element according to the present invention; FIG.

【図6】本発明による磁気ヘッドの説明図。 Illustration of a magnetic head according to the present invention; FIG.

【図7】本発明の磁気記録再生装置の説明図。 Figure 7 is an explanatory diagram of a magnetic recording and reproducing apparatus of the present invention.

【図8】本発明の磁気抵抗効果素子の第二例の説明図。 [8] Second example of the illustration of the magnetoresistive element of the present invention.

【図9】本発明の磁気抵抗効果素子の第三例の説明図。 [9] Third example of explanatory view of a magnetoresistive effect element of the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

10…磁気抵抗効果膜、11,12,13,14,1 10 ... magneto-resistance effect film, 11,12,13,14,1
5,16…強磁性膜、20…磁気抵抗効果多層膜、21 5,16 ... ferromagnetic film, 20 ... magnetoresistive multilayer film 21
…単磁区化膜、22…横バイアス膜、61…横バイアス膜の残留磁化の方向、65…素子高さ方向、66…単磁区化膜の異方性の方向、67…トラック幅方向。 ... single domain film, 22 ... lateral bias film, 61 ... lateral bias residual magnetization in the direction of the film, 65 ... sensor height direction, 66 ... direction of anisotropy of a single magnetic domain film, 67 ... track width direction.

Claims (9)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】三枚以上の強磁性膜を、非磁性導電膜を介して順次、かつ、直接に積層した多層膜であって、上記非磁性導電膜を介して隣接する上記強磁性膜の互いの磁化のなす角度によって電気抵抗が変化し、上記非磁性導電膜を介して隣接する上記強磁性膜の間には互いの磁化を反平行の方向に向けようとする反強磁性的な結合力が存在する磁気抵抗効果多層膜を用いた磁気抵抗効果素子において、検出しようとする磁界の方向に対して略平行な成分を有する静磁界バイアス印加手段と、上記磁気抵抗効果多層膜を構成する上記強磁性膜のうち、最上面もしくは最下面の強磁性膜に直接密着して、上記最上面もしくは上記最下面の強磁性膜に、上記検出しようとする磁界の方向に対して略垂直な方向に一方向異方性を誘起する一方向性バイ The method according to claim 1 A three or more sheets of ferromagnetic films sequentially with a nonmagnetic conductive layer, and a multilayer film formed by laminating directly to the ferromagnetic film adjacent via the non-magnetic conductive film electric resistance is changed by an angle of mutual magnetization, antiferromagnetic coupling to be Mukeyo in the direction antiparallel to the magnetization of each other between the ferromagnetic film adjacent via the non-magnetic conductive film in the magnetoresistive element using a magnetoresistive multilayer film forces are present, a static magnetic field bias applying means having a substantially parallel component to the direction of the magnetic field to be detected, constituting the magnetoresistive multilayer film among the ferromagnetic film is directly adhered to the top surface or bottom surface of the ferromagnetic film, a ferromagnetic film of the uppermost surface or the bottom surface, substantially perpendicular to the direction of the magnetic field to be the detection one-way by inducing a unidirectional anisotropy in ス膜とを有することを特徴とする磁気抵抗効果素子。 Magnetoresistive element characterized by having a scan film.
  2. 【請求項2】上記強磁性膜が積層された順序によって、 By 2. The sequence in which the ferromagnetic films are laminated,
    各々、膜厚と磁束密度の積が異なる請求項1の磁気抵抗効果素子。 Each magnetoresistive element of the product of the thickness and the magnetic flux density is different claims 1.
  3. 【請求項3】上記静磁界バイアス手段が、上記磁気抵抗効果多層膜と非磁性層を介して積層された、硬磁性膜からなる請求項1または2の磁気抵抗効果素子。 Wherein said static magnetic field biasing means, the magnetoresistive multilayer film and a non-magnetic layer are laminated via, according to claim 1 or 2 of the magnetoresistance effect element consists of a hard magnetic film.
  4. 【請求項4】上記静磁界バイアス手段が、上記磁気抵抗効果多層膜と非磁性層を介して積層された、軟磁性膜と、上記軟磁性膜と直接積層して一方向異方性を誘起する反強磁性膜からなる請求項1または2の磁気抵抗効果素子。 Wherein said static magnetic field biasing means, the stacked via the magnetoresistive multilayer film and a non-magnetic layer, the induced and the soft magnetic film, the unidirectional anisotropy are laminated directly with the soft magnetic film claim 1 or 2 of the magnetoresistive element of an antiferromagnetic film.
  5. 【請求項5】上記一方向性バイアス膜が反強磁性膜からなる請求項1,2,3または4の磁気抵抗効果素子。 5. A magnetoresistance effect element according to claim 1, 2, 3 or 4 above unidirectional bias film is made of an antiferromagnetic film.
  6. 【請求項6】上記一方向性バイアス膜が硬磁性膜からなる請求項1,2,3,4または5の磁気抵抗効果素子。 6. The magnetoresistive element according to claim 1, 2, 3, 4 or 5 the unidirectional bias film is made of a hard magnetic film.
  7. 【請求項7】上記反強磁性膜が酸化ニッケル膜である請求項4または5の磁気抵抗効果素子。 7. The magnetoresistive element according to claim 4 or 5 above antiferromagnetic film is a nickel oxide film.
  8. 【請求項8】上記硬磁性膜が、コバルト系合金と、酸化物,窒化物,炭化物,硼化物などの共有結合性化合物などの絶縁体あるいは半導体との混合分散膜である請求項4または7の磁気抵抗効果素子。 8. The hard magnetic film, a cobalt-based alloy, oxide, claim 4 or 7 which is a mixed dispersion film of nitride, carbide, an insulator or a semiconductor, such as covalent compounds such as borides magnetoresistive element.
  9. 【請求項9】信号を磁気的に記録した強磁性記録媒体を有するディスクと、上記ディスクにに対向面を近接して、上記記録媒体から漏洩する磁界を磁気抵抗効果素子によって検出する磁気ヘッドとを有し、上記磁気抵抗効果素子が、請求項1の上記磁気抵抗効果素子である磁気記録再生装置。 A disc having a ferromagnetic recording medium magnetically recorded 9. signals, in close proximity to opposing surfaces on the disk, a magnetic head for detecting the magnetic field leaking from the recording medium by the magneto-resistive element has, the magnetoresistive element, a magnetic recording and reproducing apparatus which is the magnetoresistive element according to claim 1.
JP2090496A 1996-02-07 1996-02-07 Magnetoresistance element and magnetic recording and reproducing device using the same Pending JPH09212829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2090496A JPH09212829A (en) 1996-02-07 1996-02-07 Magnetoresistance element and magnetic recording and reproducing device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2090496A JPH09212829A (en) 1996-02-07 1996-02-07 Magnetoresistance element and magnetic recording and reproducing device using the same

Publications (1)

Publication Number Publication Date
JPH09212829A true true JPH09212829A (en) 1997-08-15

Family

ID=12040228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2090496A Pending JPH09212829A (en) 1996-02-07 1996-02-07 Magnetoresistance element and magnetic recording and reproducing device using the same

Country Status (1)

Country Link
JP (1) JPH09212829A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332340A (en) * 2005-05-26 2006-12-07 Toshiba Corp Magnetoresistance effect element, magnetic head, magnetic recording/reproducing apparatus, and magnetic memory
JP2011101026A (en) * 2001-06-09 2011-05-19 Robert Bosch Gmbh Magneto-resistive laminate structure, and gradiometer including the same
JP5288293B2 (en) * 2008-08-25 2013-09-11 日本電気株式会社 Magnetoresistive elements, logic gates, and method of operation of the logic gate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101026A (en) * 2001-06-09 2011-05-19 Robert Bosch Gmbh Magneto-resistive laminate structure, and gradiometer including the same
JP2006332340A (en) * 2005-05-26 2006-12-07 Toshiba Corp Magnetoresistance effect element, magnetic head, magnetic recording/reproducing apparatus, and magnetic memory
JP4521316B2 (en) * 2005-05-26 2010-08-11 株式会社東芝 The magnetoresistive element, magnetic head, and magnetic recording and reproducing apparatus
JP5288293B2 (en) * 2008-08-25 2013-09-11 日本電気株式会社 Magnetoresistive elements, logic gates, and method of operation of the logic gate

Similar Documents

Publication Publication Date Title
US5898547A (en) Magnetic tunnel junction magnetoresistive read head with sensing layer as flux guide
US7532433B2 (en) Thin film perpendicular magnetic recording head, their fabrication process and magnetic disk drive using it
US6473275B1 (en) Dual hybrid magnetic tunnel junction/giant magnetoresistive sensor
US6127053A (en) Spin valves with high uniaxial anisotropy reference and keeper layers
US5936810A (en) Magnetoresistive effect head
US6301088B1 (en) Magnetoresistance effect device and method of forming the same as well as magnetoresistance effect sensor and magnetic recording system
US6219212B1 (en) Magnetic tunnel junction head structure with insulating antiferromagnetic layer
US5465185A (en) Magnetoresistive spin valve sensor with improved pinned ferromagnetic layer and magnetic recording system using the sensor
US5218497A (en) Magnetic recording-reproducing apparatus and magnetoresistive head having two or more magnetoresistive films for use therewith
US6117569A (en) Spin valves with antiferromagnetic exchange pinning and high uniaxial anisotropy reference and keeper layers
US5563752A (en) Magnetic recording and reproducing device using a giant magnetoresistive film
US5901018A (en) Magnetic tunnel junction magnetoresistive read head with sensing layer as rear flux guide
US5701223A (en) Spin valve magnetoresistive sensor with antiparallel pinned layer and improved exchange bias layer, and magnetic recording system using the sensor
US6038107A (en) Antiparallel-pinned spin valve sensor
US6034847A (en) Apparatus and thin film magnetic head with magnetic membrane layers of different resistivity
US5818685A (en) CIP GMR sensor coupled to biasing magnet with spacer therebetween
US5583725A (en) Spin valve magnetoresistive sensor with self-pinned laminated layer and magnetic recording system using the sensor
US6724585B2 (en) Magnetoresistive element and device utilizing magnetoresistance effect
US6040962A (en) Magnetoresistive element with conductive films and magnetic domain films overlapping a central active area
US6631055B2 (en) Tunnel valve flux guide structure formed by oxidation of pinned layer
US6282069B1 (en) Magnetoresistive element having a first antiferromagnetic layer contacting a pinned magnetic layer and a second antiferromagnetic layer contacting a free magnetic layer
US6714374B1 (en) Magnetoresistive sensor, magnetoresistive head, and magnetic recording/reproducing apparatus
US6127045A (en) Magnetic tunnel junction device with optimized ferromagnetic layer
US6018443A (en) Thin film magnetic head having hard films for magnetizing a shield layer in a single domain state
US20030123198A1 (en) Magnetic sensor using magneto-resistive effect, a magnetic head using magneto-resistive effect, a magnetic reproducing apparatus, a method of manufacturing a magnetic sensor using magneto-resistive effect and a method of manufacturing a magnetic head using magneto-resistive effect