JP3838379B2 - Method for promoting dry distillation of coke oven kiln - Google Patents

Method for promoting dry distillation of coke oven kiln Download PDF

Info

Publication number
JP3838379B2
JP3838379B2 JP11786795A JP11786795A JP3838379B2 JP 3838379 B2 JP3838379 B2 JP 3838379B2 JP 11786795 A JP11786795 A JP 11786795A JP 11786795 A JP11786795 A JP 11786795A JP 3838379 B2 JP3838379 B2 JP 3838379B2
Authority
JP
Japan
Prior art keywords
heat
coke oven
gas passage
kiln
furnace lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11786795A
Other languages
Japanese (ja)
Other versions
JPH08283735A (en
Inventor
秀行 國政
恵三 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11786795A priority Critical patent/JP3838379B2/en
Priority to US08/619,616 priority patent/US5735917A/en
Priority to DE19581091T priority patent/DE19581091T1/en
Priority to PCT/JP1995/001536 priority patent/WO1996004352A1/en
Priority to KR1019960701704A priority patent/KR100342331B1/en
Publication of JPH08283735A publication Critical patent/JPH08283735A/en
Application granted granted Critical
Publication of JP3838379B2 publication Critical patent/JP3838379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、室炉式コークス炉でコークスを製造する方法において、不均一乾留を改善するための窯口部の乾留促進方法に関する。
【0002】
【従来の技術】
通常の室炉式コークス炉は、炉体の下部に蓄熱室があり、その上部に燃焼室と炭化室とが交互に配列されている。炭化室は、炉幅400〜500mm、炉高4000〜7500mm、炉長13000〜17000mmで、コークスの押出しを容易にするため、コークサイドがマシンサイドより50〜80mm程度広幅のテーパが設けられている。
コークス炉の炭化室へ装入する原料石炭は、通常全水分5〜10%、粒度3mm以下80〜90%の配合炭、あるいは該配合炭と粒径20〜50mmの成型炭からなる装入炭を、装炭車から重力落下により装入している。このため、炭化室内の装入嵩密度は、落下時の衝撃や粒径差に基づく安息角の相違等によって、炭化室の上下、水平方向で偏析が生じることは避けられない。
室炉式コークス炉によるコークスの製造においては、炭化室の炉長、炉高、炉幅方向で生成するコークスの品質にバラツキの生じることが知られている。
【0003】
また、炭化室に装入された装入炭は、両側の25〜30余のフリュー列からなる燃焼室から炉壁を介して間接加熱される。この燃焼室の端フリューは、図4に示すとおり、炉壁41を介して外気と接触しており、また、コークスの窯出しの都度炉蓋42が取外され、窯口が外気に晒されるので、熱放散が大きく、各フリュー列の平均温度に比較して100℃近く低くなる。しかも、コークス窯出し終了後取り付けられる炉蓋42は、コークス押出しの間外気に接触して冷却され、かつ、炉蓋42の断熱煉瓦43は装入される常温の装入炭44と接触して冷却されると共に、炉蓋42からの熱放散が大きい。このため、窯口近傍の装入炭44は、コークス化が炉中央部より遅れることが避けられない。
このように、窯口部における品質偏差は、際立って大きく、これら窯口部の不均一乾留の改善を図らなければ、コークス炉の乾留効率化とコークス品質の安定化はあり得ないとさえ言えるほどである。
【0004】
この窯口部の乾留遅れを改善するための対策としては、端フリューに供給する燃料ガス量を他のフリューに比べて多くしたり、燃料ガスのカロリーを高くして昇温する等の対策も試みられているが、端フリューの温度の上昇には限度があり、十分な効果を上げるには至っていない。また、他の方法としては、窯口部に装入する装入炭の水分を中央部に装入する装入炭の水分より低減する方法(特開昭60−32885号公報)が提案されている。この方法は、原理的には肯定できるものの、水分の異なる装入炭を炭化室の窯口部と中央部にそれぞれ装入する具体的な方法が確立されておらず、実用的ではない。
【0005】
また、炉蓋側の積極的対策としては、図5に示すとおり炉蓋51の本体金物52に断熱材53を内張りし、連結部材54を介して耐熱板55を設置し、断熱材53と耐熱板55の間に乾留時の発生ガスの導出を促進するガス通路56を垂直に形成せしめ、さらにこのガス通路内に管57から空気または酸素を導入して積極的に増熱をはかる炉蓋(特公平5−38795号公報)が提案されている。
特公平5−38795号公報に開示の方式の耐熱板55としては、経済性を考慮してステンレス鋼材が一般に使用されているが、熱変形や腐食等の問題から耐久性が不十分である。また、耐久性を有するセラミック材も試用されてはいるが、高価であると共に、耐衝撃性に劣り実用に耐えるものではない。さらに、連結部材54は、導入された空気または酸素による高温燃焼ガスに直接さらされるために熱変形や腐食を受けその耐久性に問題がある。さらにまた、耐熱板55と炉壁58との間には、炉蓋装脱着時の接触トラブルを回避するために、所定の間隙が設けられているが、耐熱板55が薄いためにこの間隙から装入炭の一部がガス通路56に侵入し、コークス化して固着し、炉蓋脱着作業が円滑にできないばかりでなく、窯口への落骸が多量に発生し、窯出し作業に支障をきたす場合がある。特に最近の調湿炭操業では、この傾向は著しい。また、この炉蓋の構造では、ガス通路を通過するガスが窯口の金属製ドアフレームと直接接触することは避けられず、ガス通路内に導入した空気または酸素により燃焼した熱のかなりの部分はドアフレームを通じて外部へ放散され、窯口の乾留改善に有効に使用されないばかりか、ドアフレームを通じて鋳鉄製の保護板の昇温を招き、保護板の膨張損傷により、炉体に重大な損傷を与える可能性が大きい。これらの理由からいまだ実用化されるに至っていない。
【0006】
そこで、本発明者らは、補強用ファイバーを混入したキャスタブル製耐熱部材を空隙部を残して嵌合して炉蓋の本体金物に取付け、形成したガス通路へ空気もしくは酸素を吹き込むことにより、窯口部ガス圧を減少し、さらに、ガス通路内への装入炭の侵入を防止しつつ炭化室からガス通路へのガス流れが確保でき、空気または酸素による安定的な燃焼が可能となると共に、ドアフレームへの抜熱が防止できることを見いだした。そして、図3に示すとおり、コークス炉の炉蓋31の本体金物32の内側に設けた断熱材33に、断熱材33との連結部は装入炭がガス通路34に侵入しないよう閉じた形状とし、補強用ファイバー入りで中央部にガス通路34を形成せしめたキャスタブルからなる複数個の耐熱部材35を、それぞれ隙間36を残して嵌合して、連結部材37を用いて固定し、その形成せしめたガス通路34に炉蓋31に連結した管38から空気もしくは酸素を吹き込み、乾留中に発生する可燃性ガスの一部を燃焼させることによって、コークス炉窯口部コークスの乾留が促進され、炉体への損傷を与えないことを確認し、すでに特願平6−201446号として特許出願している。
【0007】
【発明が解決しようとする課題】
コークス炉の炉蓋に形成したガス通路へ乾留中の発生ガスを導入し、外部より空気もしくは酸素吹き込み、燃焼させる上記特願平6−201446号の発明は、窯口部の不均一乾留を改善するには極めて有効な方法である。しかし、この方法では、ガス通路へ外部から空気もしくは酸素を吹き込む方法が重要な課題である。通常コークス窯出しの際は、コークス炉の炉蓋を窯口から取外す仕組みになっており、炉蓋に直接、空気もしくは酸素を吹き込む配管を設けることは、炉蓋の離着脱のたびに配管を取外し、また取付ける必要がある。このため、実操業においては、非常に手間な作業となり、また、稼働率が高いときは、その作業に要する時間が生産性に響いてくる可能性がある。
【0008】
この発明の目的は、上記コークス炉の炉蓋に形成したガス通路へ乾留中の発生ガスを導入し、外部より空気もしくは酸素を吹き込んで燃焼させる方法の欠点を解消し、炉蓋の離着脱に関係なく、容易に外部から炉蓋に形成したガス通路へ空気もしくは酸素を吹き込みできるコークス炉窯口部の乾留促進方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意試験検討を重ねた。その結果、コークス炉窯口のソールプレートに着目し、窯口のソールプレート部から炉蓋に形成したガス通路へ空気もしくは酸素を吹き込むことによって、炉蓋の離着脱に関係なく、容易に外部から炉蓋に形成したガス通路へ空気もしくは酸素を吹き込みできることを見出し、この発明に到達した。
【0010】
すなわちこの発明は、コークス炉で石炭を乾留する際に発生するコークス炉ガスを炉蓋に形成したガス通路へ導入し、乾留中に空気もしくは酸素を吹き込んで前記コークス炉ガスを燃焼させ、窯口部の石炭の乾留を促進する方法において、コークス炉窯口のソールプレート部より前記ガス通路へ空気もしくは酸素を吹き込むことを特徴とするコークス炉窯口部の乾留促進方法である。
【0011】
【作用】
この発明においては、コークス炉窯口のソールプレート部より前記ガス通路へ空気もしくは酸素を吹き込むことによって、炉蓋の離着脱のたびに配管を取外し、また取付ける必要がなく、炉蓋離着脱の際に、特別な労力や装置を取り付ける必要なく、炉蓋に形成したガス通路で任意にコークス炉ガスを燃焼させることができ、コークス炉の窯出し作業に支障を与えることなく、得られた熱を炭化室内装入炭に有効に伝達し、炉壁側への熱伝達を少なくして、ドアーフレームからの抜熱による熱損失を抑制してコークス炉窯口部の乾留促進を図ることができる。
【0012】
ソールプレート部より前記炉蓋ガス通路への空気もしくは酸素の吹込みは、マシンサイドおよびコークサイドの作業デッキのコークス炉に沿って空気もしくは酸素の供給管を配設し、該空気もしくは酸素の供給管から各窯口のソールプレートの炉蓋ガス通路に対応する位置に切替弁付きの支管を配設し、切替弁を開閉することによって、炉蓋のガス通路へ空気もしくは酸素を供給することができる。
ガス通路を流れる乾留中に発生したコークス炉ガスの一部を吹き込みノズルから吹き込む空気または酸素により燃焼させる場合のガス通路の温度は、600℃以上とすることが必要である。これは、乾留中に発生するコークス炉ガス中にはタール成分が含有されており、600℃以下では一部コンデンスし炭化室とガス通路の空隙部を閉塞する恐れがあるからである。また、乾留末期の窯口部コークス端面温度は、700℃以上となるように加熱することが好ましい。その理由は、乾留不足による窯出し時の黒煙・粉塵発生防止、コークスの収縮確保の観点から当然のことである。ガス通路温度の上限については、温度上昇に伴う炉蓋の本体金物の熱歪みによるシール性悪化の程度を勘案して決定すればよい。
【0013】
【実施例】
実施例1
以下にこの発明方法の詳細を実施の一例を示す図1ないし図2に基づいて説明する。図1はこの発明方法の概略説明図、図2はこの発明方法で使用する炉蓋の横断面図である。
図1および図2において、1はこの発明方法に使用する炉蓋で、炉蓋1は本体金物2、断熱材3、内部にガス通路4を形成せしめた断面凹状の耐熱部材5、断熱材3に耐熱部材5を密着固定する連結部材6とからなる。
7は炭化室8の窯口下部の作業デッキ9上にコークス炉列に沿って配設した空気配管、10は空気配管7からの分岐管で、開閉弁11を介して各炭化室8の窯口のソールプレート12部に開口し、開閉弁11を開放すれば、炉蓋1のガス通路4にソールプレート12部から空気を吹込みでき、耐熱部材5、5間の隙間からガス通路4内に流入した発生コークス炉ガスを点火燃焼させるよう構成されている。なお、空気吹き込み分岐管10の先端には、図示していないがイグニッションプラグ等の着火装置が設けられている。
【0014】
炉蓋1の耐熱部材5は、各種スチールファイバー、カーボンファイバー、セラミックファイバー等の補強用ファイバーを混入したキャスタブルで形成し、装入炭のガス通路4への侵入を防止するため、図1に示すとおり、上端面を外向き傾斜面13とし、下端面を内向き傾斜面14となし、耐熱部材5の複数個を、縦向きに配列して上下端の傾斜面を隙間15をもって対向させ、各耐熱部材5、5間の間隔Aは、50mm以下とし、重複部Bを50mm以上として隙間15を設けて連結部材6により断熱材3に密着固定することが好ましい。
この耐熱部材5、5間の間隔Aを50mm以下としたのは、これ以上ではガス通路4への装入炭の侵入が十分防止できないことがテストにより確認されたからである。また、この耐熱部材5、5間の間隔Aは、ガス通路4と炭化室とのガス流れ確保の点から広い方がよく、50mm以下でできるだけ広い方が好ましい。さらに、各耐熱部材5、5間の重複部Bを50mm以上としたのは、ガス通路4への装入炭の侵入防止のためには最低50mmが必要なことをテストにより確認したからである。耐熱部材5、5間の間隔Aを50mm以下、ガス通路4との間隔Bを50mm以上とし、炭化室8の炉壁16と耐熱部材5との隙間を、従来一般に用いられてきた図4に示す炉蓋並みに10〜20mmに設定する。
【0015】
また、耐熱部材5は、側面部厚みDを前面部厚みCより厚くし、ガス通路4に侵入した発生コークス炉ガスの燃焼により得られた熱を炭化室内石炭層に有効に伝達し、炉壁16側への熱伝達を少なくして、ドアーフレーム17からの抜熱による熱損失を抑制する。耐熱部材5の側面部厚みDと前面部厚みCとの比率は、使用する耐熱部材5の断熱性能により異なるが、概ねD/C=2以上とすればドアフレーム17への抜熱量を最小限度に抑えることができる。また前面部厚みCは、熱容量を小さくするために薄い方が好ましく、強度の得られる範囲内で適宜選択すればよい。
【0016】
上記のとおり構成したことによって、各耐熱部材5、5の外向き傾斜面13と内向き傾斜面14間の隙間15からガス通路4内に流入した発生コークス炉ガスは、開閉弁11の開放により炉蓋1のガス通路4にソールプレート12部から吹込まれる空気によって燃焼し、ガス通路4の煙突効果によって上部空間に導出される間に、燃焼熱が各耐熱部材5の前面を介して炭化室内の装入炭18に伝達され、各耐熱部材5の前面に接触した装入炭18が加熱されて、乾留が促進される。
また、各耐熱部材5の側面部厚みDを前面部厚みCより厚くしたことによって、ガス通路4に侵入した発生コークス炉ガスの燃焼により得られた熱が炭化室内の装入炭18に有効に伝達され、炉壁16側への熱伝達が少なくなって、ドアーフレーム17からの抜熱による熱損失を抑制することができる。
しかも、炉蓋1のガス通路4への空気の供給は、作業デッキ9上にコークス炉列に沿って配設した空気配管7から開閉弁11を介して分岐した分岐管10により行われるから、炉蓋1の離脱着作業に煩わされることなく、実施することができる。
【0017】
実施例2
炉高7125mm、炉幅460mm、炉長16500mmのコークス炉において、稼働率100%、平均フリュー温度1053℃、装入炭水分6%、平均装入蒿密度780kg/m3の調湿炭操業条件下において、マシンサイドの炉蓋に、スチールファイバーで補強し、中央部にガス通路を形成せしめ、断熱部との連結部は装入炭がガス通路に侵入しないように閉じた形状としたキャスタブルからなる耐熱部材を、それぞれ上方に傾斜した空隙部を残して嵌合して、本体金物内側に設けた断熱部と連結部材で一体に連結固定した前記実施例1の本発明法の炉蓋と、比較例の図4に示す従来炉蓋の2種類の炉蓋を装着し、炉底から3.5m、炉蓋端面より100mの位置の昇温状況、コークスの火落ち状況を調査した。なお、本発明の炉蓋に対しては、コークス炉窯口のソールプレート部より乾留開始10時間後より20時間後まで空気を吹き込み、ガス通路でコークス炉ガスを燃焼させてガス通路の温度を830℃程度に保持した。その結果を表1に示す。
【0018】
【表1】

Figure 0003838379
【0019】
表1に示すとおり、窯出し時における炉窯端面より100mmの位置のコークス温度は、比較例の従来炉蓋では、555℃と乾留不十分で、十分なコークス化温度に達しているとは言えず、窯出し時の目視観察でも黒煙の発生が認められた。これに対し、本発明例では、コークス端面温度は782℃とほぼ十分なコークス化温度に到達しており、窯出し時の目視観察でも黒煙の発生は認められず、ドアフレーム温度、バックステー温度共に断熱を強化したため、従来炉蓋に比べて低下できた。
本発明例での火落ち時間は、窯口部での昇温が早く、乾留遅れが改善されたことにより、本発明例で19.4時間と従来炉蓋の21.6時間に比べ、大幅に改善されたことが確認された。
【0020】
【発明の効果】
以上述べたとおり、この発明方法によれば、炉蓋の離脱着に何ら支障を与えることなく、炉蓋のガス通路に空気または酸素を供給でき、安定的に乾留中の発生ガスの一部を燃焼させることにより、ドアフレームの昇温に伴う炉体損傷の畏れなしに、有効に端部石炭の加熱が可能となり、乾留の均一化、生産性の向上、乾留熱量の低減およびコークス品質の改善を図ることができ、コークス炉の乾留効率化とコークス品質の安定化に大きく寄与する。
【図面の簡単な説明】
【図1】この発明方法の概略説明図である。
【図2】この発明方法で使用する炉蓋の横断面図である。
【図3】従来の炉蓋のガス通路への空気または酸素吹込み管の配置を示す縦断面図である。
【図4】従来の炉蓋構造例の一例を示す概略横断面図である。
【図5】従来の炉蓋構造例の他の一例を示す概略横断面図である。
【符号の説明】
1、31、42、51 炉蓋
2、32、52 本体金物
3、33、53 断熱材
4、34、56 ガス通路
5、35 耐熱部材
6、37、54 連結部材
7 空気配管
8 炭化室
9 作業デッキ
10 分岐管
11 開閉弁
12 ソールプレート
13 外向き傾斜面
14 内向き傾斜面
15、36 隙間
16、41 炉壁
17 ドアーフレーム
18、44 装入炭
38、57 管
43 断熱煉瓦
55 耐熱板[0001]
[Industrial application fields]
The present invention relates to a method for promoting dry distillation of a kiln opening for improving non-uniform dry distillation in a method for producing coke in a chamber-type coke oven.
[0002]
[Prior art]
A normal chamber-type coke oven has a heat storage chamber at the lower portion of the furnace body, and combustion chambers and carbonization chambers are alternately arranged at the upper portion thereof. The carbonization chamber has a furnace width of 400 to 500 mm, a furnace height of 4000 to 7500 mm, a furnace length of 13,000 to 17000 mm, and a coke side having a taper that is about 50 to 80 mm wider than the machine side in order to facilitate the extrusion of coke. .
The raw coal to be charged into the carbonization chamber of the coke oven is usually a blended coal having a total water content of 5 to 10% and a grain size of 3 mm or less and 80 to 90%, or a blended coal composed of the blended coal and a grain size of 20 to 50 mm. Are loaded by gravity drop from a coal-coating vehicle. For this reason, it is inevitable that the charged bulk density in the carbonization chamber is segregated in the vertical and horizontal directions of the carbonization chamber due to a difference in angle of repose based on the impact at the time of dropping or the difference in particle size.
In the production of coke by a chamber-type coke oven, it is known that the quality of coke produced in the direction of the length, height, and width of the coking chamber varies.
[0003]
Moreover, the charging coal charged in the carbonization chamber is indirectly heated from the combustion chamber consisting of 25 to 30 or more flue rows on both sides via the furnace wall. As shown in FIG. 4, the end flue of this combustion chamber is in contact with the outside air through the furnace wall 41, and the furnace lid 42 is removed each time the coke is discharged from the kiln, and the kiln opening is exposed to the outside air. Therefore, heat dissipation is large, and the temperature becomes lower by about 100 ° C. compared to the average temperature of each flue train. Moreover, the furnace lid 42 attached after the completion of the coke oven is brought into contact with the outside air during the coke extrusion and cooled, and the heat insulating brick 43 of the furnace lid 42 is in contact with the ordinary charging coal 44 to be charged. While being cooled, the heat dissipation from the furnace lid 42 is large. For this reason, it is inevitable that the charging coal 44 in the vicinity of the kiln is delayed in coking from the center of the furnace.
In this way, the quality deviation at the kiln opening is remarkably large, and it can be said that if the non-uniform carbonization of these kiln mouths is not improved, the efficiency of the carbonization of the coke oven and the stabilization of the coke quality cannot be achieved. That's right.
[0004]
As measures to improve the dry distillation delay of the kiln opening, measures such as increasing the amount of fuel gas supplied to the end flue compared to other flues or raising the temperature by increasing the calorie of the fuel gas Attempts have been made to increase the temperature of the end flue, but it has not been fully effective. As another method, a method (Japanese Patent Laid-Open No. 60-32885) is proposed in which the moisture content of the charging coal charged into the kiln opening portion is reduced from the moisture content of the charging coal charged into the central portion. Yes. Although this method can be affirmed in principle, a specific method for charging charging coal having different moisture into the kiln opening and the central portion of the carbonization chamber has not been established and is not practical.
[0005]
Further, as a positive measure on the furnace lid side, as shown in FIG. 5, a heat insulating material 53 is lined on the metal body 52 of the furnace lid 51, a heat-resistant plate 55 is installed via a connecting member 54, and the heat insulating material 53 and the heat-resistant material are heat-resistant. A gas passage 56 that facilitates the derivation of the gas generated during dry distillation is formed vertically between the plates 55, and air or oxygen is further introduced into the gas passage from a tube 57 to actively increase heat ( Japanese Patent Publication No. 5-38795) has been proposed.
As the heat-resistant plate 55 disclosed in Japanese Patent Publication No. 5-38795, a stainless steel material is generally used in consideration of economic efficiency, but its durability is insufficient due to problems such as thermal deformation and corrosion. Further, although a durable ceramic material has been tried, it is expensive and inferior in impact resistance and cannot withstand practical use. Further, since the connecting member 54 is directly exposed to the high-temperature combustion gas due to the introduced air or oxygen, there is a problem in durability due to thermal deformation and corrosion. Furthermore, a predetermined gap is provided between the heat-resistant plate 55 and the furnace wall 58 in order to avoid a contact trouble at the time of attaching / detaching the furnace lid. Part of the charged coal enters the gas passage 56, coke and adheres, and not only can the furnace lid demounting work be performed smoothly, but a large amount of debris is generated at the kiln opening, which hinders the kiln unloading work. May come. This trend is particularly noticeable in recent conditioned coal operations. In addition, in this furnace lid structure, it is inevitable that the gas passing through the gas passage is in direct contact with the metal door frame of the kiln opening, and a considerable part of the heat burned by air or oxygen introduced into the gas passage. Is diffused to the outside through the door frame and is not used effectively to improve the dry distillation of the kiln, but it also causes a rise in the temperature of the cast iron protective plate through the door frame, causing serious damage to the furnace body due to expansion damage of the protective plate. The possibility of giving is great. For these reasons, it has not yet been put into practical use.
[0006]
Therefore, the present inventors fitted a castable heat-resistant member mixed with a reinforcing fiber, leaving a gap, attached to the main body of the furnace lid, and blowing air or oxygen into the formed gas passage, The gas pressure at the mouth is reduced, and further, the gas flow from the carbonization chamber to the gas passage can be ensured while preventing the entry of the charged coal into the gas passage, and stable combustion with air or oxygen becomes possible. , Found that heat removal to the door frame can be prevented. And as shown in FIG. 3, the connection part with the heat insulating material 33 provided in the inner side of the main body hardware 32 of the furnace lid 31 of the coke oven is closed so that the charging coal does not enter the gas passage 34. A plurality of heat-resistant members 35 made of a castable material containing a reinforcing fiber and having a gas passage 34 formed in the center thereof are fitted with each other leaving a gap 36, and fixed using a connecting member 37. By blowing air or oxygen from a pipe 38 connected to the furnace lid 31 into the gas passage 34, and burning a part of the combustible gas generated during the dry distillation, the dry distillation of the coke oven furnace coke is promoted, After confirming that the furnace body is not damaged, a patent application has already been filed as Japanese Patent Application No. 6-201446.
[0007]
[Problems to be solved by the invention]
The invention of the above Japanese Patent Application No. Hei 6-201446 introduces the gas generated during dry distillation into the gas passage formed in the furnace lid of the coke oven, blows air or oxygen from the outside, and burns it. This is an extremely effective method. However, in this method, a method of blowing air or oxygen from the outside into the gas passage is an important issue. Normally when a coke oven is taken out, the furnace lid of the coke oven is removed from the kiln opening, and piping for blowing air or oxygen directly into the furnace lid is provided every time the furnace lid is detached or attached. It needs to be removed and installed again. For this reason, in an actual operation, it becomes a very troublesome work, and when the operation rate is high, the time required for the work may affect the productivity.
[0008]
The object of the present invention is to eliminate the disadvantages of the method of introducing the gas generated during dry distillation into the gas passage formed in the furnace lid of the coke oven and injecting air or oxygen from the outside and burning it. Regardless of the object, it is an object of the present invention to provide a method for promoting the dry distillation of a coke oven kiln opening, which can easily blow air or oxygen into the gas passage formed in the furnace lid from the outside.
[0009]
[Means for Solving the Problems]
The inventors of the present invention made extensive examinations to achieve the above object. As a result, paying attention to the sole plate of the coke oven kiln, by blowing air or oxygen from the sole plate portion of the kiln to the gas passage formed in the furnace lid, it can be easily applied from the outside regardless of whether the furnace lid is detached or attached. It has been found that air or oxygen can be blown into the gas passage formed in the furnace lid, and the present invention has been achieved.
[0010]
That is, the present invention introduces coke oven gas generated when carbonizing coal in a coke oven into a gas passage formed in the furnace lid, and blows air or oxygen during dry distillation to burn the coke oven gas, In the method for promoting carbonization of coal in the coke oven kiln, air or oxygen is blown into the gas passage from the sole plate portion of the coke oven kiln.
[0011]
[Action]
In this invention, by blowing air or oxygen from the sole plate portion of the coke oven kiln into the gas passage, it is not necessary to remove the pipe every time the furnace lid is detached or attached. In addition, coke oven gas can be arbitrarily burned in the gas passage formed in the furnace lid without the need for special labor or equipment, and the obtained heat can be used without hindering the operation of the coke oven. It effectively transmits to the carbonization chamber interior coal, reduces heat transfer to the furnace wall side, suppresses heat loss due to heat removal from the door frame, and promotes dry distillation of the coke oven kiln.
[0012]
Air or oxygen is blown into the furnace cover gas passage from the sole plate portion by providing air or oxygen supply pipes along the coke ovens of the machine side and coke side work decks. A branch pipe with a switching valve is arranged from the pipe at a position corresponding to the furnace lid gas passage on the sole plate of each kiln, and air or oxygen can be supplied to the gas passage of the furnace lid by opening and closing the switching valve. it can.
When a part of the coke oven gas generated during the carbonization flowing through the gas passage is burned with air or oxygen blown from the nozzle, it is necessary that the temperature of the gas passage be 600 ° C. or higher. This is because the coke oven gas generated during dry distillation contains a tar component, and at 600 ° C. or lower, there is a risk of partial condensation and clogging the carbonization chamber and the gap between the gas passages. Moreover, it is preferable to heat so that the kiln mouth part coke end surface temperature at the end of dry distillation may be 700 ° C. or more. The reason is natural from the viewpoint of preventing black smoke and dust generation when leaving the kiln due to insufficient dry distillation, and ensuring the shrinkage of coke. The upper limit of the gas passage temperature may be determined in consideration of the degree of deterioration of the sealing performance due to the thermal distortion of the metal body of the furnace lid accompanying the temperature rise.
[0013]
【Example】
Example 1
Details of the method of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic explanatory view of the method of the present invention, and FIG. 2 is a cross-sectional view of a furnace lid used in the method of the present invention.
1 and 2, reference numeral 1 denotes a furnace lid used in the method of the present invention. The furnace lid 1 includes a body metal 2, a heat insulating material 3, a heat resistant member 5 having a concave cross section in which a gas passage 4 is formed, and a heat insulating material 3. And a connecting member 6 for tightly fixing the heat-resistant member 5.
7 is an air pipe arranged along the coke oven line on the work deck 9 at the lower part of the kiln chamber 8, and 10 is a branch pipe from the air pipe 7. If the opening is made in the sole plate 12 part of the mouth and the on-off valve 11 is opened, air can be blown into the gas passage 4 of the furnace lid 1 from the sole plate 12 part, and the gas passage 4 is opened from the gap between the heat-resistant members 5 and 5. The generated coke oven gas that has flowed into the cylinder is ignited and burned. Although not shown, an ignition device such as an ignition plug is provided at the tip of the air blowing branch pipe 10.
[0014]
The heat-resistant member 5 of the furnace lid 1 is formed of a castable material in which reinforcing fibers such as various steel fibers, carbon fibers, and ceramic fibers are mixed, and is shown in FIG. 1 in order to prevent the charging coal from entering the gas passage 4. As described above, the upper end surface is an outward inclined surface 13, the lower end surface is an inward inclined surface 14, a plurality of heat-resistant members 5 are arranged vertically, and the upper and lower inclined surfaces are opposed to each other with a gap 15. It is preferable that the distance A between the heat-resistant members 5 and 5 is 50 mm or less, the overlapping portion B is 50 mm or more, the gap 15 is provided, and the connection member 6 is closely fixed to the heat insulating material 3.
The reason why the distance A between the heat-resistant members 5 and 5 is set to 50 mm or less is that it has been confirmed by tests that the penetration of charging coal into the gas passage 4 cannot be sufficiently prevented. The distance A between the heat-resistant members 5 and 5 is preferably wide from the viewpoint of securing the gas flow between the gas passage 4 and the carbonization chamber, and is preferably as wide as possible with 50 mm or less. Further, the reason why the overlapping portion B between the heat-resistant members 5 and 5 is set to 50 mm or more is that it has been confirmed by a test that a minimum of 50 mm is necessary to prevent the charging coal from entering the gas passage 4. . The distance A between the heat-resistant members 5 and 5 is 50 mm or less, the distance B between the gas passage 4 is 50 mm or more, and the gap between the furnace wall 16 of the carbonization chamber 8 and the heat-resistant member 5 is shown in FIG. Set to 10-20 mm, similar to the furnace cover shown.
[0015]
Further, the heat-resistant member 5 has a side face thickness D larger than the front face thickness C, and effectively transfers heat obtained by combustion of the generated coke oven gas that has entered the gas passage 4 to the coal bed in the carbonization chamber. Heat transfer to the 16 side is reduced, and heat loss due to heat removal from the door frame 17 is suppressed. The ratio between the side surface thickness D and the front surface thickness C of the heat-resistant member 5 varies depending on the heat insulation performance of the heat-resistant member 5 to be used, but if D / C = 2 or more, the amount of heat removed to the door frame 17 is minimized. Can be suppressed. Further, the front portion thickness C is preferably thin in order to reduce the heat capacity, and may be appropriately selected within a range in which strength can be obtained.
[0016]
By configuring as described above, the generated coke oven gas flowing into the gas passage 4 from the gap 15 between the outward inclined surface 13 and the inward inclined surface 14 of each heat-resistant member 5, 5 is released by opening the on-off valve 11. Combustion heat is carbonized via the front surface of each heat-resistant member 5 while being burned by the air blown into the gas passage 4 of the furnace lid 1 from the sole plate 12 and being led to the upper space by the chimney effect of the gas passage 4. The charge coal 18 that is transmitted to the indoor charge coal 18 and contacts the front surface of each heat-resistant member 5 is heated to promote dry distillation.
Moreover, by making the side surface thickness D of each heat-resistant member 5 thicker than the front surface thickness C, the heat obtained by the combustion of the generated coke oven gas that has entered the gas passage 4 is effectively applied to the charging coal 18 in the carbonization chamber. As a result, heat transfer to the furnace wall 16 side is reduced, and heat loss due to heat removal from the door frame 17 can be suppressed.
Moreover, the supply of air to the gas passage 4 of the furnace lid 1 is performed by the branch pipe 10 branched from the air pipe 7 arranged along the coke oven row on the work deck 9 through the on-off valve 11. This can be carried out without being bothered by the work of detaching and attaching the furnace lid 1.
[0017]
Example 2
In a coke oven with a furnace height of 7125 mm, a furnace width of 460 mm, and a furnace length of 16500 mm, operating conditions of conditioned coal with an operating rate of 100%, an average flue temperature of 1053 ° C., a charging coal moisture of 6%, and an average charging soot density of 780 kg / m 3 In this case, the furnace lid on the machine side is reinforced with steel fiber, a gas passage is formed in the center, and the connecting portion with the heat insulating portion is made of a castable that is closed so that the charged coal does not enter the gas passage. Compared with the furnace cover of the method of the present invention of Example 1 in which the heat-resistant members were fitted with each other leaving a gap portion inclined upward, and the heat-insulating portion provided on the inner side of the main body metal and the connection member were integrally connected and fixed. Two types of conventional furnace lids as shown in FIG. 4 of the example were mounted, and the temperature rise situation at a position 3.5 m from the furnace bottom and 100 m from the end face of the furnace lid, and the coke burnout situation were investigated. For the furnace lid of the present invention, air was blown from the sole plate portion of the coke oven kiln from 10 hours to 20 hours after the start of dry distillation, and the coke oven gas was combusted in the gas passage to set the temperature of the gas passage. The temperature was maintained at about 830 ° C. The results are shown in Table 1.
[0018]
[Table 1]
Figure 0003838379
[0019]
As shown in Table 1, it can be said that the coke temperature at a position 100 mm from the end face of the furnace kiln at the time of taking out the kiln has reached a sufficient coking temperature at 555 ° C. due to insufficient dry distillation at 555 ° C. In addition, the occurrence of black smoke was also observed by visual observation when leaving the kiln. In contrast, in the example of the present invention, the coke end face temperature reached 782 ° C., which was a sufficiently sufficient coking temperature, and black smoke was not observed even by visual observation at the time of leaving the kiln. Since both the temperature and the heat insulation were strengthened, it could be reduced compared to the conventional furnace lid.
In the example of the present invention, the fire-off time in the example of the present invention is significantly higher than that of 19.4 hours in the example of the present invention and 21.6 hours of the conventional furnace lid because the temperature rise at the kiln opening portion is quick and the dry distillation delay is improved. It was confirmed that it was improved.
[0020]
【The invention's effect】
As described above, according to the method of the present invention, air or oxygen can be supplied to the gas passage of the furnace lid without any trouble in the removal and attachment of the furnace lid, and a part of the generated gas during dry distillation can be stably supplied. Combustion makes it possible to heat the end coal effectively without causing damage to the furnace body due to the temperature rise of the door frame, making the dry coal uniform, improving the productivity, reducing the dry heat, and improving the coke quality. This contributes greatly to the efficiency of dry distillation of coke ovens and the stabilization of coke quality.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of the method of the present invention.
FIG. 2 is a cross-sectional view of a furnace lid used in the method of the present invention.
FIG. 3 is a longitudinal sectional view showing an arrangement of air or oxygen blowing pipes in a gas path of a conventional furnace lid.
FIG. 4 is a schematic cross-sectional view showing an example of a conventional furnace lid structure example.
FIG. 5 is a schematic cross-sectional view showing another example of a conventional furnace lid structure example.
[Explanation of symbols]
1, 31, 42, 51 Furnace lids 2, 32, 52 Body hardware 3, 33, 53 Heat insulating materials 4, 34, 56 Gas passages 5, 35 Heat-resistant members 6, 37, 54 Connecting members 7 Air piping 8 Coking chamber 9 Work Deck 10 Branch pipe 11 Open / close valve 12 Sole plate 13 Inwardly inclined surface 14 Inwardly inclined surface 15, 36 Clearance 16, 41 Furnace wall 17 Door frame 18, 44 Charging coal 38, 57 Pipe 43 Thermal insulation brick 55 Heat resistant plate

Claims (1)

コークス炉で石炭を乾留する際に発生するコークス炉ガスを炉蓋に形成したガス通路へ導入し、乾留中に空気もしくは酸素を吹き込んで前記コークス炉ガスを燃焼させ、窯口部の石炭の乾留を促進する方法において、前記空気もしくは酸素をコークス炉窯口のソールプレート部より炉蓋に形成したガス通路へ吹き込むことを特徴とするコークス炉窯口部の乾留促進方法。The coke oven gas generated when carbonizing coal in the coke oven is introduced into the gas passage formed in the furnace lid, and the coke oven gas is burned by blowing air or oxygen during the carbonization, and the coal in the kiln mouth is carbonized. A method for promoting dry distillation of a coke oven kiln part, wherein the air or oxygen is blown into a gas passage formed in a furnace lid from a sole plate part of the coke oven kiln.
JP11786795A 1994-08-02 1995-04-18 Method for promoting dry distillation of coke oven kiln Expired - Fee Related JP3838379B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11786795A JP3838379B2 (en) 1995-04-18 1995-04-18 Method for promoting dry distillation of coke oven kiln
US08/619,616 US5735917A (en) 1994-08-02 1995-08-02 Method of promoting carbonization in the door region of a coke oven and oven door therefor
DE19581091T DE19581091T1 (en) 1994-08-02 1995-08-02 Process for accelerating carbonization in the door area of a coke oven and oven door therefor
PCT/JP1995/001536 WO1996004352A1 (en) 1994-08-02 1995-08-02 Method of promoting carbonization at coke oven port and oven cover structure therefor
KR1019960701704A KR100342331B1 (en) 1994-08-02 1995-08-02 How to promote dry distillation at the coke snow port entrance and the furnace cover of coke snow for this purpose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11786795A JP3838379B2 (en) 1995-04-18 1995-04-18 Method for promoting dry distillation of coke oven kiln

Publications (2)

Publication Number Publication Date
JPH08283735A JPH08283735A (en) 1996-10-29
JP3838379B2 true JP3838379B2 (en) 2006-10-25

Family

ID=14722259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11786795A Expired - Fee Related JP3838379B2 (en) 1994-08-02 1995-04-18 Method for promoting dry distillation of coke oven kiln

Country Status (1)

Country Link
JP (1) JP3838379B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321963A (en) * 2005-05-19 2006-11-30 Kikutake Masanobu Method for operating coke oven in which in-oven gas combustion chamber is disposed on carbonization oven side of oven lid

Also Published As

Publication number Publication date
JPH08283735A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
US10526541B2 (en) Horizontal heat recovery coke ovens having monolith crowns
JPH11131074A (en) Operation of coke oven
US8517725B2 (en) Ceramic burner
JP3838379B2 (en) Method for promoting dry distillation of coke oven kiln
CA1163062A (en) Device and process for operating an open baking furnace for manufacturing carbon-bearing shaped bodies
JPH0948973A (en) Method for accelerating carbonization in the throat of coke oven
JP2953319B2 (en) Method for promoting dry distillation at the mouth of coke oven
US5735917A (en) Method of promoting carbonization in the door region of a coke oven and oven door therefor
JPH05132673A (en) Equipment for producing coke
CA1146495A (en) Regeneratively operated coke-oven
JP2516222Y2 (en) Coke oven lid
KR100605685B1 (en) Method for improving dedman permeability by injecting steam and oxygen in blast furnace tuyere
JPH05117659A (en) Vertical coke oven
JP4246355B2 (en) Coke oven operation method
KR100649069B1 (en) Coke carbonization furnace cover for promoting increase in temperature of coal particles near the cover
JP3125617U (en) Coke carbonization furnace lid with in-furnace gas flow chamber on the coke carbonization furnace side
JP2526000B2 (en) Measuring method of airtightness of coke oven coke chamber group and coke chamber repair method
JP2770713B2 (en) How to raise the temperature of the coke oven flue
JPH07118638A (en) Vertical chamber style coke oven
JP4022655B2 (en) Heating method of coal particles charged near the top of coke carbonization furnace
JPH06184540A (en) Process for producing coke and equipment therefor
JP2715858B2 (en) Manufacturing method of coke for metallurgy
JP2021138859A (en) Method of repairing pillar wall of regeneration chamber in coke oven
CN115707757A (en) Method for ceramic welding repair of furnace wall of deep vertical flue of coke oven carbonization chamber
SU600371A1 (en) Tunnel-type furnace

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees