JP3838119B2 - Manufacturing method of multilayer printed wiring board - Google Patents

Manufacturing method of multilayer printed wiring board Download PDF

Info

Publication number
JP3838119B2
JP3838119B2 JP2002048800A JP2002048800A JP3838119B2 JP 3838119 B2 JP3838119 B2 JP 3838119B2 JP 2002048800 A JP2002048800 A JP 2002048800A JP 2002048800 A JP2002048800 A JP 2002048800A JP 3838119 B2 JP3838119 B2 JP 3838119B2
Authority
JP
Japan
Prior art keywords
combination
stacked
prepreg
multiple stages
combinations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002048800A
Other languages
Japanese (ja)
Other versions
JP2003249752A (en
Inventor
力 濱津
正一 吉田
章 名木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002048800A priority Critical patent/JP3838119B2/en
Publication of JP2003249752A publication Critical patent/JP2003249752A/en
Application granted granted Critical
Publication of JP3838119B2 publication Critical patent/JP3838119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数枚の回路板をプリプレグを介して積層成形することによって行なわれる多層プリント配線板の製造方法に関するものである。
【0002】
【従来の技術】
多層プリント配線板を製造するにあたっては、例えば図4に示すようにして行なわれている。すなわち、表面に回路形成をした内層用の回路板1を複数枚用い、図4(a)のように隣合う回路板1間にプリプレグ2を挟んで複数枚の回路板1を重ねることによって回路板1とプリプレグ2からなる組み合せ物3を作製し、さらに必要に応じてその外側にプリプレグ2を介して外層回路形成用の金属箔10を重ねる。そしてこの複数組みの組み合せ物3を成形プレート4を介して多段に積重ね、これを図4(b)のように上下の熱盤5間に配置して、加熱加圧成形をすることによって、プリプレグ2の樹脂が溶融硬化して形成される絶縁接着層で複数枚の回路板1や金属箔10が積層一体化された図4(c)のような多層プリント配線板を得ることができるものである。
【0003】
上記のようにして作製される多層プリント配線板において、複数枚の回路板1によって複数層の回路が形成されており、これらの各回路はスルーホールやバイヤホール等で導通接続されるようになっている。従って、プリプレグ2を介して複数枚の回路板1を重ねて組み合せ物3を作製した後、加熱加圧成形を終了して積層一体化するまでの間に、回路板1が相互に位置ずれすると、回路の位置がずれて導通接続不良が発生するおそれがあるので、各回路板1が相互に位置ずれすることを防止して、それぞれの回路が相互に正確に位置合わせされた状態で積層一体化する必要がある。
【0004】
そこで、プリプレグ2を介して複数枚の回路板1を重ねた組み合せ物3において、図5(a)に示すように、その対向する二辺の各辺を熱圧着ヘッド11で上下から局所的に加熱加圧することによって、プリプレグ2の樹脂を局所的に回路板1に熱溶着させ、この溶着箇所によってプリプレグ2を介して各回路板1を結合することが行なわれている。このように組み合せ物3において各回路板1をプリプレグ2を介して結合しておくことによって、組み合せ物3を多段に積重ねて加熱加圧成形をする際に、各回路板1が相互に位置ずれすることを防止することができものであり、組み合せ物3内で各回路板1の回路を相互に正確に位置合わせした状態で加熱加圧成形して積層一体化することができるのである。
【0005】
ここで、図7は従来の組み合せ物3における溶着箇所を示すものであり、矩形に形成される組み合せ物3の対向する二辺の各辺に端縁に沿った複数箇所で溶着するにあたって、一方の辺は等間隔のa1,a2,a3の三箇所で溶着を行なうと共に他の一辺は等間隔のb1,b2,b3の三箇所で溶着を行なうようにしてある。
【0006】
【発明が解決しようとする課題】
そして図7のような溶着箇所で溶着して結合した回路板1とプリプレグ2の組み合せ物3を成形プレート4を介して多段に積重ね、これを図4(b)のように上下の熱盤5間で加熱加圧成形するにあたって、積重ねた各組み合せ物3の二辺の溶着箇所a1,a2,a3及びb1,b2,b3はそれぞれ、総ての組み合せ物3において同じ位置で上下方向に重なることになる。
【0007】
しかし、組み合せ物3において溶着箇所は上下から熱圧着ヘッド11によって局所的に加熱加圧されているために、図5(b)に示すように溶着箇所は凹となって厚みが部分的に他の部分よりも薄くなっている(図5(b)は溶着箇所の凹を誇大して表示している)。従って、組み合せ物3を多段に積重ねるにあたって各組み合せ物3の二辺の各溶着箇所が総ての組み合せ物3において同じ位置で上下に重なると、多段に積重ねた組み合せ物3の上下方向の総厚みは、溶着箇所が上下に重なっている部分とそれ以外の部分との差が大きくなる。このために熱盤5間で加熱加圧成形する際の圧力のかかり方が不均一になり、積層成形して得られた多層プリント配線板の厚みが不均一になったり、組み合せ物3に積層される外層の金属箔10にシワが発生したりする成形不良が起こるおそれがあるという問題があった。
【0008】
本発明は上記の点に鑑みてなされたものであり、多段に積重ねた組み合せ物を均一な圧力で成形することができ、成形不良を低減することができる多層プリント配線板の製造方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明の請求項1に係る多層プリント配線板の製造方法は、複数枚の回路板1をプリプレグ2を介して重ね、この回路板1とプリプレグ2の組み合せ物3の対向する二辺の各辺を端縁に沿った複数箇所で局所的に加熱加圧することによって、プリプレグ2の樹脂を部分的に回路板1に溶着させてプリプレグ2を介して回路板1を結合させ、この結合した回路板1とプリプレグ2の組み合せ物3を成形プレート4を介して多段に複数積重ねると共にこれを熱盤5間で加熱加圧して成形することによって、プリプレグ2による絶縁接着層6を介して複数枚の回路板1を積層一体化した多層プリント配線板を製造するにあたって、組み合せ物の対向する二辺の相互に対応して対をなす溶着箇所のうち、少なくとも一対の溶着箇所を相互に対向する位置から端縁に沿った方向にずらして熱溶着し、上下に隣合って積重ねられる組み合せ物3において、二辺の各辺の溶着箇所のうち少なくとも一箇所が端縁方向でずれて上下に対応しない位置になるように、組み合せ物3を多段に積重ねることを特徴とするものである。
【0011】
また請求項の発明は、請求項において、組み合せ物3を成形プレート4を介して多段に積重ねるにあたって、上下に隣合う組み合せ物3を交互に表裏反転させた状態で多段に積重ねることを特徴とするものである。
【0012】
また請求項の発明は、請求項1又は2において、複数の組み合せ物3を横に並べて配置し、この組み合せ物3を横に並べた組み合せ物セット7を成形プレート4を介して多段に複数積重ねるにあたって、上下に隣合って積重ねられる組み合せセット7において、横に隣合う組み合せ物3の相互に対向する各辺の溶着箇所のうち少なくとも一箇所が端縁方向でずれて上下に対応しない位置になるように、組み合せ物セット7を多段に積重ねることを特徴とするものである。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0014】
本発明において回路板1としては、内層用回路板などとして用いられている任意のものを使用することができるものである。すなわち、ガラスクロスなどの基材にエポキシ樹脂などの熱硬化性樹脂ワニスを含浸して加熱乾燥することによってプリプレグを作製し、このプリプレグを複数枚重ねると共にその外側に銅箔など金属箔を重ね、これを加熱加圧成形することによって金属箔張り積層板を作製し、そしてこの金属箔張り積層板の金属箔をエッチング加工などして回路形成をすることによって製造されたものを用いることができる。
【0015】
またプリプレグ2としては、多層成形用などとして用いられている任意のものを使用することができるものである。すなわち、ガラスクロスなどの基材にエポキシ樹脂などの熱硬化性樹脂ワニスを含浸し、これを加熱乾燥して含浸した熱硬化性樹脂を半硬化状態にすることによって、製造されたものを用いることができる。
【0016】
上記の複数枚の回路板1を内層材として用い、複数枚の回路板1をプリプレグ2を介して重ね、この回路板1とプリプレグ2の組み合せ物3の対向する二辺の各辺を既述の図5(a)のように熱圧着ヘッド11で上下から局所的に加熱加圧することによって、プリプレグ2の樹脂を局所的に回路板1に熱溶着させ、プリプレグ2を介して各回路板1を結合した組み合わせ物3を得ることができる。
【0017】
ここで、矩形(正方形も含む)に形成される組み合せ物3の対向する二辺の各辺にはそれぞれ端縁に沿った複数箇所で上記の溶着が行なわれるものであり、図1(a)の実施の形態では、組み合せ物3の二辺のうち、一方の辺は片側(図の下側)に片寄った位置で等間隔のa1,a2,a3の三箇所に溶着箇所が設定してあると共に、他の一辺は他の片側(図の上側)に片寄った位置で等間隔のb1,b2,b3の三箇所に溶着箇所が設定してある。このように図1(a)の組み合せ物3では、対向する二辺において相互に対応して対をなす溶着箇所a1とb1、a2とb2、a3とb3は、いずれも相互に対向する位置から端縁に沿った方向にずれた位置に形成されている。
【0018】
図1(b)はこの図1(a)の組み合せ物3を上下に裏返して反転させたものである。このように上下に反転することによって、組み合せ物3の対向する二辺のうち、一方の辺には図の上側に片寄った位置で等間隔のb1,b2,b3の三箇所に溶着箇所が存在することになると共に、他の一辺には図の下側に片寄った位置で等間隔のa1,a2,a3の三箇所に溶着箇所が存在することになる。
【0019】
そして、上記のように回路板1とプリプレグ2を重ねて局所的に溶着結合した組み合せ物3の外側に必要に応じて図4(a)のようにプリプレグ2を介して外層回路形成用の金属箔10を重ねた後、この組み合せ物3を成形プレート4を介して多段に複数積重ね、これを図4(b)のように上下の熱盤5間に配置して、加熱加圧成形をすることによって、プリプレグ2の樹脂が溶融硬化して形成される絶縁接着層6で複数枚の回路板1や金属箔10が積層一体化された図4(c)のような多層プリント配線板を得ることができるものである。
【0020】
ここで、図4(b)のように複数の組み合せ物3を積重ねるにあたって、溶着箇所の配置を図1(a)のように設定した組み合せ物3と、これを上下反転して溶着箇所の配置が図1(b)のようになった組み合せ物3を交互に重ねるようにしてある。このように図1(a)の組み合せ物3と図1(b)の組み合せ物3を交互に重ねて多段に積重ねるようにすると、図1(c)に示すように(図1(c)は上下に隣合う二枚の組み合せ物3のみを取り出して図示したものである)、上下に隣合う組み合せ物3の二辺のうち、一方の辺においては上の組み合せ物3の溶着箇所a1,a2,a3と下の組み合せ物3の溶着箇所b1,b2,b3がそれぞれ組み合せ物3の端縁方向にずれていると共に、他の一辺においては上の組み合せ物3の溶着箇所b1,b2,b3と下の組み合せ物3の溶着箇所a1,a2,a3がそれぞれ組み合せ物3の端縁方向にずれており、二辺の各辺の溶着箇所のいずれの箇所も端縁方向にずれて上下に一致しないようにすることができるものである。
【0021】
従って、回路板1とプリプレグ2の組み合せ物3を多段に積重ねて図4(b)のように加熱加圧成形するにあたって、積重ねた各組み合せ物3の二辺の各溶着箇所が総ての組み合せ物3において同じ位置で上下方向に重なるようなことがなくなる。このために、組み合せ物3を多段に積重ねるにあたって、多段に積重ねた組み合せ物3の上下方向の総厚みが、溶着箇所が上下に重なっている部分とそれ以外の部分との差が大きくならないようにすることができるものであり、この結果、熱盤5間で加熱加圧成形する際の圧力のかかり方を均一にすることができ、積層成形して得られた多層プリント配線板の厚みを均一にすることができると共に組み合せ物3に積層される外層の金属箔10にシワが発生することを防ぐことができ、成形不良の発生を低減することができるものである。
【0022】
図2(a)に示す実施の形態は、組み合せ物3の二辺のうち、一方の辺においてa1,a2,a3の三箇所に溶着箇所を設定すると共にa1,a2の溶着箇所の間隔を広く設定し、他の一辺においてb1,b2,b3の三箇所に溶着箇所を設定すると共にb2,b3の溶着箇所の間隔を広く設定したものである。このように図2(a)の組み合せ物3では、対向する二辺において相互に対応して対をなす溶着箇所a1とb1、a2とb2、a3とb3のうち、a1とb1、a3とb3は相互に対向する位置に形成されているが、a2とb2は相互に対向する位置から端縁に沿った方向にずれた位置に形成されている。
【0023】
図2(b)はこの図2(a)の組み合せ物3を上下に裏返して反転させたものである。このように上下に反転することによって、組み合せ物3の二辺のうち、一方の辺にはb1,b2,b3の三箇所に溶着箇所が存在すると共にb2,b3の溶着箇所は間隔が広く形成されることになり、他の一辺にはa1,a2,a3の三箇所に溶着箇所が存在すると共にa1,a2の溶着箇所の間隔は広く形成されることになる。
【0024】
そして図4(b)のように複数の組み合せ物3を積重ねるにあたって、溶着箇所の配置が図2(a)の組み合せ物3と、これを上下反転して溶着箇所の配置を図2(b)のようにした組み合せ物3を交互に重ねるようにしてある。このように図2(a)の組み合せ物3と図2(b)の組み合せ物3を交互に重ねて多段に積重ねるようにすると、図2(c)に示すように(図2(c)は上下に隣合う二枚の組み合せ物3のみを取り出して図示したものである)、上下に隣合う組み合せ物3の二辺のうち、一方の辺においては上の組み合せ物3の溶着箇所a1,a3と下の組み合せ物3の溶着箇所b1,b3が上下に一致するが、上の組み合せ物3の溶着箇所a2と下の組み合せ物3の溶着箇所b2は組み合せ物3の端縁方向にずれていると共に、他の一辺においては上の組み合せ物3の溶着箇所b1,b3と下の組み合せ物3の溶着箇所a1,a3が上下に一致するが、上の組み合せ物3の溶着箇所b2と下の組み合せ物3の溶着箇所a2は組み合せ物3の端縁方向にずれており、二辺の各辺の溶着箇所はそれぞれ一箇所ずつ端縁方向にずれて上下に一致しないようにすることができるものである。
【0025】
従って、回路板1とプリプレグ2の組み合せ物3を多段に積重ねて図4(b)のように加熱加圧成形するにあたって、積重ねた各組み合せ物3の二辺の各溶着箇所の総てが組み合せ物3において同じ位置で上下方向に重なるようなことがなくなる。このために、組み合せ物3を多段に積重ねるにあたって、多段に積重ねた組み合せ物3の上下方向の総厚みが、溶着箇所が上下に重なっている部分とそれ以外の部分との差が大きくならないようにすることができるものであり、この結果、熱盤5間で加熱加圧成形する際の圧力のかかり方を均一にすることができ、積層成形して得られた多層プリント配線板の厚みを均一にすることができると共に組み合せ物3に積層される外層の金属箔10にシワが発生することを防ぐことができ、成形不良の発生を低減することができるものである。
【0026】
図3は本発明の他の実施の形態を示すものである。すなわち、図1や図2のような回路板1とプリプレグ2の組み合せ物3を複数枚、横に一列に並べて配置したものを一セットの組み合せ物セット7として使用するようにしたものである。
【0027】
そして図6に示すように、この複数の組み合せ物3からなる組み合せ物セット7の上下に必要に応じてプリプレグ2を介して金属箔10を重ね、この組み合せ物セット7を図4(b)と同様にして成形プレート4を介して多段に複数積重ねると共に上下の熱盤5間に配置し、加熱加圧成形をすることによって、プリプレグ2の樹脂が溶融硬化して形成される絶縁接着層3で複数枚の回路板1や金属箔10が積層一体化された図4(c)のような多層プリント配線板を得ることができるものであり、このとき、成形プレート4間の各段において複数の組み合せ物3を同時に成形することができるので、成形を生産性高く行なうことができるものである。
【0028】
ここで、組み合せ物3として例えば既述の図7のように、対向する二辺の各辺にそれぞれ等間隔でa1,a2,a3やb1,b2,b3に箇所に溶着を施したものを用い、この組み合せ物3を横に複数枚配置して図8のような組み合せセット7として使用する場合、この組み合せセット7を成形プレート4を介して多段に積重ね、これを図4(b)のように上下の熱盤5間で加熱加圧成形するにあたって、積重ねた各組み合せ物セット7において、上下に対応する各組み合せ物3は二辺の各溶着箇所が総ての組み合せ物3において同じ位置で上下方向に重なることになる。従って既述の場合と同様に、多段に積重ねた組み合せセット7において、上下に対応する組み合せ物3の上下方向の総厚みは、溶着箇所が上下に重なっている部分とそれ以外の部分との差が大きくなり、成形不良が起こるおそれがある。
【0029】
そこで、図3(a)の実施の形態では、3枚の組み合せ物3を横に並べて組み合せ物セット7を作製するにあたって、左端の組み合せ物3として、対向する二辺のうち、一方の辺において等間隔のa1,a2,a3の三箇所に溶着箇所を設け、他の一辺においてb1,b2,b3の三箇所に溶着箇所を設けると共にb1,b2の溶着箇所の間隔を広く形成したものを用い、中央の組み合せ物3として、対向する二辺のうち、一方の辺においてc1,c2,c3の三箇所に溶着箇所を設けると共にc1,c2の溶着箇所の間隔を広く形成し、他の一辺においてd1,d2,d3の三箇所に溶着箇所を設けると共にd2,d3の溶着箇所の間隔を広く形成したものを用い、右端の組み合せ物3として、一方の辺においてe1,e2,e3の三箇所に溶着箇所を設けると共にe2,e3の溶着箇所の間隔を広く形成し、他の一辺において等間隔のf1,f2,f3の三箇所に溶着箇所を設けたものを用いるようにしてある。図3(b)はこの図3(a)の組み合せ物セット7を上下に裏返して反転させたものである。
【0030】
そして図4(b)のように複数の組み合せ物セット7を積重ねるにあたって、溶着箇所の配置が図3(a)の組み合せ物セット7と、これを上下反転して溶着箇所の配置を図3(b)のようにした組み合せ物セット7を交互に重ねるようにしてある。このように図3(a)の組み合せ物セット7と図3(b)の組み合せ物セット7を交互に重ねて多段に積重ねるようにすると、図3(c)に示すように(図3(c)は上下に隣合う二枚の組み合せ物セット7のみを取り出して図示したものである)、上下に重なる左端の組み合せ物3の二辺のうち、一方の辺においては上の組み合せ物3の溶着箇所a1,a2,a3と下の組み合せ物3の溶着箇所f1,f2,f3が上下に一致し、他の一辺においては上の組み合せ物3の溶着箇所b1,b3と下の組み合せ物3の溶着箇所e1,e3が上下に一致するが、上の組み合せ物3の溶着箇所b2と下の組み合せ物3の溶着箇所e2は組み合せ物3の端縁方向にずれている。また上下に重なる中央の組み合せ物3の二辺のうち、一方の辺においては上の組み合せ物3の溶着箇所c1,c3と下の組み合せ物3の溶着箇所d1,d3が上下に一致するが、上の組み合せ物3の溶着箇所c2と下の組み合せ物3の溶着箇所d2は組み合せ物3の端縁方向にずれており、他の一辺においては上の組み合せ物3の溶着箇所d1,d3と下の組み合せ物3の溶着箇所c1,c3が上下に一致するが、上の組み合せ物3の溶着箇所d2と下の組み合せ物3の溶着箇所c2は組み合せ物3の端縁方向にずれている。さらに上下に重なる右端の組み合せ物3の二辺のうち、一方の辺においては上の組み合せ物3の溶着箇所e1,e3と下の組み合せ物3の溶着箇所b1,b3が上下に一致するが、上の組み合せ物3の溶着箇所e2と下の組み合せ物3の溶着箇所b2は組み合せ物3の端縁方向にずれており、他の一辺においては上の組み合せ物3の溶着箇所f1,f2,f3と下の組み合せ物3の溶着箇所a1,a2,a3が上下に一致している。
【0031】
このように、組み合せ物セット7の両端に位置する組み合せ物3の外側の辺を除く、各組み合わせ物3の辺、すなわち横に隣合う組み合せ物3の相互に対向する各辺において、複数の溶着箇所のうち少なくとも一箇所が端縁方向でずれて上下に対応しない位置になるように、組み合せ物セット7を上下に積重ねることができるものである。従って、組み合せ物セット7を多段に積重ねて図4(b)のように加熱加圧成形するにあたって、積重ねた組み合せ物セット7の各組み合せ物3の相互に対向する各辺の溶着箇所の総てが上下に重なる組み合せ物3において同じ位置で上下方向に重なり合うようなことがなくなる。このために、組み合せ物セット7を多段に積重ねるにあたって、多段に積重ねた組み合せセット7の各組み合せ物3の上下方向の総厚みが、溶着箇所が上下に重なっている部分とそれ以外の部分との差が大きくならないようにすることができるものであり、この結果、熱盤5間で加熱加圧成形する際の圧力のかかり方を均一にすることができ、積層成形して得られた多層プリント配線板の厚みを均一にすることができると共に組み合せ物3に積層される外層の金属箔10にシワが発生することを防ぐことができ、成形不良の発生を低減することができるものである。
【0032】
尚、図3の実施の形態では、組み合せ物セット7の両端に位置する組み合せ物3の外側の辺においては溶着箇所の総てが上下に一致するようにしたが、この溶着箇所のうち少なくとも一箇所が端縁方向でずれて上下に対応しない位置になるようにしてもよいのはいうまでもない。
【0033】
【発明の効果】
上記のように本発明の請求項1に係る多層プリント配線板の製造方法は、複数枚の回路板をプリプレグを介して重ね、この回路板とプリプレグの組み合せ物の対向する二辺の各辺を端縁に沿った複数箇所で局所的に加熱加圧することによって、プリプレグの樹脂を部分的に回路板に溶着させてプリプレグを介して回路板を結合させ、この結合した回路板とプリプレグの組み合せ物を成形プレートを介して多段に複数積重ねると共にこれを熱盤間で加熱加圧して成形することによって、プリプレグによる絶縁接着層を介して複数枚の回路板を積層一体化した多層プリント配線板を製造するにあたって、上下に隣合って積重ねられる組み合せ物において、二辺の各辺の溶着箇所のうち少なくとも一箇所が端縁方向でずれて上下に対応しない位置になるように、組み合せ物を多段に積重ねるようにしたので、積重ねた各組み合せ物の二辺の各溶着箇所の総てが同じ位置で上下方向に重なり合うようなことがなくなるものであり、熱盤間で加熱加圧成形する際の圧力のかかり方を均一にすることができ、成形不良の発生を低減することができるものである。
【0034】
た、組み合せ物の対向する二辺の相互に対応して対をなす溶着箇所のうち、少なくとも一対の溶着箇所を相互に対向する位置から端縁に沿った方向にずらして熱溶着を行なうようにしたので、組み合せ物を多段に積重ねるにあたって、上下に隣合って積重ねられる組み合せ物の二辺の溶着箇所を端縁方向でずらして上下に対応しない位置になるようにすることが容易になるものである。
【0035】
また請求項の発明は、請求項において、組み合せ物を成形プレートを介して多段に積重ねるにあたって、上下に隣合う組み合せ物を交互に表裏反転させた状態で多段に積重ねるようにしたので、上下に隣合って積重ねられる組み合せ物の二辺の溶着箇所を端縁方向でずらして上下に対応しない位置になるようにすることが容易になるものである。
【0036】
また請求項の発明は、複数の組み合せ物を横に並べて配置し、この組み合せ物を横に並べた組み合せ物セットを成形プレートを介して多段に複数積重ねるにあたって、上下に隣合って積重ねられる組み合せセットにおいて、横に隣合う組み合せ物の相互に対向する各辺の溶着箇所のうち少なくとも一箇所が端縁方向でずれて上下に対応しない位置になるように、組み合せ物セットを多段に積重ねるようにしたので、積重ねた各組み合せ物セットにおける組み合せ物の相互に対向する各辺の溶着箇所の総てが同じ位置で上下方向に重なり合うようなことがなくなるものであり、熱盤間で加熱加圧成形する際の圧力のかかり方を均一にすることができ、成形不良の発生を低減することができるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例を示すものであり、(a)は組み合せ物の平面図、(b)は組み合せ物を反転した状態の平面図、(c)は上下に隣合う組み合せ物の重なり合いの状態を示す平面図である。
【図2】本発明の実施の形態の他の一例を示すものであり、(a)は組み合せ物の平面図、(b)は組み合せ物を反転した状態の平面図、(c)は上下に隣合う組み合せ物の重なり合いの状態を示す平面図である。
【図3】本発明の実施の形態の一例を示すものであり、(a)は組み合せ物セットの平面図、(b)は組み合せ物セットを反転した状態の平面図、(c)は上下に隣合う組み合せ物セットの組み合せ物の重なり合いの状態を示す平面図である。
【図4】多層プリント配線板の製造方法の一例を示すものであり、(a),(b),(c)はそれぞれ正面図である。
【図5】組み合せ物を示すものであり、(a)は組み合せ物を溶着する作業の正面図、(b)は溶着箇所が凹になる状態を示す拡大した正面図である。
【図6】組み合せ物セットを示す正面図である。
【図7】従来例の組み合せ物を示す平面図である。
【図8】従来例の組み合せ物セットを示す平面図である。
【符号の説明】
1 回路板
2 プリプレグ
3 組み合せ物
4 成形プレート
5 熱盤
6 絶縁接着層
7 組み合せ物セット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a multilayer printed wiring board, which is performed by laminating a plurality of circuit boards through a prepreg.
[0002]
[Prior art]
For example, the multilayer printed wiring board is manufactured as shown in FIG. That is, a circuit is formed by using a plurality of inner-layer circuit boards 1 having a circuit formed on the surface and stacking a plurality of circuit boards 1 with a prepreg 2 sandwiched between adjacent circuit boards 1 as shown in FIG. A combination 3 composed of the plate 1 and the prepreg 2 is produced, and a metal foil 10 for forming an outer layer circuit is stacked on the outside of the combination 3 via the prepreg 2 as necessary. Then, the plurality of combinations 3 are stacked in multiple stages via the forming plate 4 and placed between the upper and lower heating plates 5 as shown in FIG. A multilayer printed wiring board as shown in FIG. 4 (c) in which a plurality of circuit boards 1 and metal foils 10 are laminated and integrated with an insulating adhesive layer 6 formed by melt-curing the resin 2 can be obtained. It is.
[0003]
In the multilayer printed wiring board manufactured as described above, a plurality of layers of circuits are formed by the plurality of circuit boards 1, and each of these circuits is conductively connected by through holes, via holes, or the like. ing. Therefore, if the circuit boards 1 are displaced from each other during the period from the completion of the heat and pressure molding to the lamination integration after the plurality of circuit boards 1 are stacked through the prepreg 2 to produce the combination 3. Since the circuit position may be shifted and a poor conductive connection may occur, the circuit boards 1 are prevented from being displaced from each other, and the respective circuits are accurately aligned with each other. It is necessary to make it.
[0004]
Therefore, in the combination 3 in which a plurality of circuit boards 1 are stacked via the prepreg 2, as shown in FIG. 5 (a), each of the two opposite sides is locally applied from above and below by the thermocompression bonding head 11. By applying heat and pressure, the resin of the prepreg 2 is locally heat-welded to the circuit board 1, and the circuit boards 1 are coupled to each other via the prepreg 2 by the welding locations. Thus, by connecting each circuit board 1 in the combination 3 via the prepreg 2, the circuit boards 1 are displaced from each other when the combination 3 is stacked in multiple stages and is heated and pressed. It is possible to prevent this from occurring, and it is possible to laminate and integrate by heating and pressing in a state where the circuits of the circuit boards 1 are accurately aligned with each other in the combination 3.
[0005]
Here, FIG. 7 shows the welding location in the conventional combination 3, and when welding at a plurality of locations along the edge on each of two opposite sides of the combination 3 formed in a rectangle, These sides are welded at three locations of equally spaced a1, a2, and a3, and the other side is welded at three locations of equally spaced b1, b2, and b3.
[0006]
[Problems to be solved by the invention]
Then, the combination 3 of the circuit board 1 and the prepreg 2 which are welded and joined at the welding locations as shown in FIG. 7 are stacked in multiple stages via the molding plate 4, and this is combined with the upper and lower heating plates 5 as shown in FIG. In the heat and pressure molding, the two welded points a1, a2, a3 and b1, b2, b3 of each stacked product 3 overlap each other in the vertical direction at the same position in all the combined products 3. become.
[0007]
However, in the combination 3, the welding location is locally heated and pressurized by the thermocompression bonding head 11 from above and below, so that the welding location becomes concave as shown in FIG. (FIG. 5 (b) exaggeratedly shows the concave portion of the welded portion). Therefore, when stacking the combinations 3 in multiple stages, if the welding locations on the two sides of each combination 3 overlap each other in the same position in all combinations 3, the total of the combinations 3 stacked in multiple stages in the vertical direction As for the thickness, the difference between the portion where the welded portions overlap vertically and the other portion becomes large. For this reason, the pressure applied when heating and pressing between the hot plates 5 is non-uniform, the thickness of the multilayer printed wiring board obtained by lamination molding becomes non-uniform, and the laminated product 3 is laminated. There is a problem in that there is a risk of forming defects such as wrinkles occurring in the outer layer metal foil 10.
[0008]
The present invention has been made in view of the above points, and provides a method for manufacturing a multilayer printed wiring board that can form a multi-layer stacked combination with uniform pressure and reduce molding defects. It is for the purpose.
[0009]
[Means for Solving the Problems]
In the method for manufacturing a multilayer printed wiring board according to claim 1 of the present invention, a plurality of circuit boards 1 are overlapped via a prepreg 2, and each side of two opposite sides of the combination 3 of the circuit board 1 and the prepreg 2 is opposed. By locally heating and pressing at a plurality of locations along the edge, the resin of the prepreg 2 is partially welded to the circuit board 1 and the circuit board 1 is coupled via the prepreg 2, and this coupled circuit board A plurality of combinations 3 of the prepreg 2 and the prepreg 2 are stacked in multiple stages through the molding plate 4 and formed by heating and pressing between the hot plates 5 to form a plurality of sheets via the insulating adhesive layer 6 of the prepreg 2. in producing the multilayer printed wiring board was laminated and integrated circuit board 1, of the bonded portion forming a pair in correspondence with each other of the two opposite sides of the combination product, position facing each other at least a pair of bonded portion Shifted in the direction along the edge thermally welded from the combination was 3 to be stacked next to each other vertically, at least one location does not correspond to the vertical offset in the edge direction in the bonded portion of each side of the two sides The combination 3 is stacked in multiple stages so as to be positioned.
[0011]
The invention of claim 2 is that in claim 1 , when the combinations 3 are stacked in multiple stages via the molding plate 4, the adjacent combinations 3 in the vertical direction are stacked in multiple stages in an inverted state. It is characterized by.
[0012]
Further, the invention of claim 3 is the invention according to claim 1 or 2, wherein a plurality of combinations 3 are arranged side by side, and a plurality of combination sets 7 in which the combinations 3 are arranged side by side are arranged in multiple stages via the molding plate 4. At the time of stacking, in the combination set 7 that is stacked next to each other vertically, at least one position among the welding positions of the mutually opposing sides of the horizontally adjacent combination 3 is shifted in the edge direction and does not correspond to the top and bottom Thus, the combination set 7 is stacked in multiple stages.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0014]
As the circuit board 1 in the present invention, any circuit board used as an inner layer circuit board or the like can be used. That is, a base material such as a glass cloth is impregnated with a thermosetting resin varnish such as an epoxy resin and dried by heating, and a plurality of the prepregs are stacked and a metal foil such as a copper foil is stacked on the outside. A metal foil-clad laminate can be produced by heat-pressing this, and a product produced by forming a circuit by etching the metal foil of the metal foil-clad laminate can be used.
[0015]
Further, as the prepreg 2, any one used for multilayer molding or the like can be used. That is, use what was manufactured by impregnating a base material such as glass cloth with a thermosetting resin varnish such as an epoxy resin, and drying and heating the impregnated thermosetting resin into a semi-cured state. Can do.
[0016]
The plurality of circuit boards 1 are used as the inner layer material, the plurality of circuit boards 1 are overlapped via the prepreg 2, and the two opposite sides of the combination 3 of the circuit board 1 and the prepreg 2 are described above. As shown in FIG. 5A, the resin of the prepreg 2 is locally heat-welded to the circuit board 1 by locally applying heat and pressure from above and below with the thermocompression bonding head 11, and each circuit board 1 through the prepreg 2. The combination 3 which couple | bonded can be obtained.
[0017]
Here, the above-mentioned welding is performed at a plurality of locations along the edge on each of two opposing sides of the combination 3 formed in a rectangle (including a square), as shown in FIG. In the embodiment, of the two sides of the combination 3, one side has a position offset toward one side (the lower side in the figure), and welding locations are set at three locations a1, a2, and a3 that are equally spaced. At the same time, the other one side is set at three positions of b1, b2, and b3 at equal intervals at a position shifted to the other side (upper side in the figure). As described above, in the combination 3 in FIG. 1A, the welding locations a1 and b1, a2 and b2, and a3 and b3, which form a pair corresponding to each other on the two opposing sides, are all from the positions facing each other. It is formed at a position shifted in the direction along the edge.
[0018]
FIG. 1 (b) shows the combination 3 of FIG. 1 (a) turned upside down and inverted. By reversing up and down in this way, there are welded locations at three positions b1, b2, and b3 at equal intervals on one side of the two opposite sides of the combination 3 at a position offset to the upper side of the figure. In addition, on the other side, there are three welding locations a1, a2 and a3 at equal intervals at a position shifted to the lower side of the figure.
[0019]
Then, if necessary, a metal for forming an outer layer circuit is provided on the outside of the combination 3 in which the circuit board 1 and the prepreg 2 are overlapped and locally welded as described above, with the prepreg 2 interposed as shown in FIG. After the foils 10 are stacked, a plurality of the combinations 3 are stacked in multiple stages via the forming plate 4 and are arranged between the upper and lower heating plates 5 as shown in FIG. Thus, a multilayer printed wiring board as shown in FIG. 4C in which a plurality of circuit boards 1 and metal foils 10 are laminated and integrated with an insulating adhesive layer 6 formed by melt-curing the resin of the prepreg 2 is obtained. It is something that can be done.
[0020]
Here, when stacking a plurality of combinations 3 as shown in FIG. 4 (b), the combination 3 in which the positions of the welding locations are set as shown in FIG. Combinations 3 whose arrangement is as shown in FIG. 1B are alternately stacked. When the combination 3 in FIG. 1 (a) and the combination 3 in FIG. 1 (b) are alternately stacked to be stacked in multiple stages as shown in FIG. 1 (c) (FIG. 1 (c) 2 shows only two combinations 3 that are adjacent to each other in the vertical direction), and one of the two sides of the combination 3 that is adjacent in the vertical direction is welded a1 of the upper combination 3 on one side. The welding locations b1, b2, and b3 of a2, a3 and the lower combination 3 are shifted in the direction of the edge of the combination 3, respectively, and the welding locations b1, b2, b3 of the upper combination 3 on the other side. The welded locations a1, a2, and a3 of the lower combination 3 are shifted in the direction of the edge of the combined product 3, and any of the welded locations on each side of the two sides is shifted in the direction of the edge and coincides vertically. It is something that can be avoided.
[0021]
Therefore, when the combination 3 of the circuit board 1 and the prepreg 2 is stacked in multiple stages and heated and pressed as shown in FIG. 4B, all the welding locations on the two sides of each stacked combination 3 are all combined. The thing 3 does not overlap in the vertical direction at the same position. For this reason, when stacking the combination 3 in multiple stages, the total thickness in the vertical direction of the combination 3 stacked in multiple stages does not increase the difference between the portion where the welded portions overlap vertically and the other portions. As a result, it is possible to make the pressure applied in the heat press molding between the heating plates 5 uniform, and the thickness of the multilayer printed wiring board obtained by lamination molding can be reduced. In addition to being uniform, it is possible to prevent the outer metal foil 10 laminated on the combination 3 from being wrinkled and to reduce the occurrence of molding defects.
[0022]
In the embodiment shown in FIG. 2 (a), among the two sides of the combination 3, the welding locations are set at three locations a1, a2 and a3 on one side, and the interval between the welding locations a1 and a2 is widened. In other side, the welding locations are set at three locations b1, b2 and b3, and the interval between the welding locations b2 and b3 is set wide. As described above, in the combination 3 in FIG. 2A, among the welding locations a1 and b1, a2 and b2, and a3 and b3 that form a pair corresponding to each other on two opposite sides, a1 and b1, a3 and b3. Are formed at positions facing each other, but a2 and b2 are formed at positions shifted from the positions facing each other in the direction along the edge.
[0023]
FIG. 2B shows the combination 3 of FIG. 2A turned upside down and inverted. By reversing up and down in this way, among the two sides of the combination 3, there are three locations of b 1, b 2 and b 3 on one side, and the weld locations of b 2 and b 3 are formed with a wide interval. As a result, there are three welding locations a1, a2 and a3 on the other side, and the interval between the welding locations a1 and a2 is wide.
[0024]
Then, when stacking a plurality of combinations 3 as shown in FIG. 4B, the arrangement of the welding locations is the combination 3 of FIG. The combination 3 as shown in FIG. When the combination 3 in FIG. 2 (a) and the combination 3 in FIG. 2 (b) are alternately stacked to be stacked in multiple stages, as shown in FIG. 2 (c) (FIG. 2 (c) 2 shows only two combinations 3 that are adjacent to each other in the vertical direction), and one of the two sides of the combination 3 that is adjacent in the vertical direction is welded a1 of the upper combination 3 on one side. The welding locations b1 and b3 of a3 and the lower combination 3 are aligned vertically, but the welding location a2 of the upper combination 3 and the welding location b2 of the lower combination 3 are shifted in the direction of the edge of the combination 3. On the other side, the welding locations b1 and b3 of the upper combination 3 and the welding locations a1 and a3 of the lower combination 3 are aligned vertically, but the welding location b2 of the upper combination 3 and the lower The welding location a2 of the combination 3 is shifted in the direction of the edge of the combination 3. Cage, bonded portion of each side of the two sides are those respectively can be prevented coincident vertically displaced in the edge direction by one position.
[0025]
Therefore, when the combination 3 of the circuit board 1 and the prepreg 2 is stacked in multiple stages and heated and pressed as shown in FIG. 4 (b), all the welding locations on the two sides of each stacked combination 3 are combined. The thing 3 does not overlap in the vertical direction at the same position. For this reason, when stacking the combination 3 in multiple stages, the total thickness in the vertical direction of the combination 3 stacked in multiple stages does not increase the difference between the portion where the welded portions overlap vertically and the other portions. As a result, it is possible to make the pressure applied in the heat press molding between the heating plates 5 uniform, and the thickness of the multilayer printed wiring board obtained by lamination molding can be reduced. In addition to being uniform, it is possible to prevent the outer metal foil 10 laminated on the combination 3 from being wrinkled and to reduce the occurrence of molding defects.
[0026]
FIG. 3 shows another embodiment of the present invention. In other words, a plurality of combinations 3 of the circuit board 1 and the prepreg 2 as shown in FIGS. 1 and 2 are arranged side by side in a row and used as a set of combination sets 7.
[0027]
Then, as shown in FIG. 6, a metal foil 10 is stacked on the upper and lower sides of the combination set 7 composed of the plurality of combinations 3 via the prepreg 2 as necessary, and this combination set 7 is combined with FIG. In the same manner, the insulating adhesive layer 3 is formed by stacking a plurality of layers through the molding plate 4 and arranging them between the upper and lower heating plates 5 and performing heat and pressure molding to melt and cure the resin of the prepreg 2. 4C in which a plurality of circuit boards 1 and metal foils 10 are laminated and integrated, a plurality of printed circuit boards 1 at each stage between the forming plates 4 can be obtained. Since the combination 3 can be simultaneously molded, the molding can be performed with high productivity.
[0028]
Here, as the combination 3, for example, as shown in FIG. 7 described above, the two opposite sides are welded at a1, a2, a3 and b1, b2, b3 at equal intervals. When a plurality of the combinations 3 are arranged side by side and used as a combination set 7 as shown in FIG. 8, the combination sets 7 are stacked in multiple stages via the forming plate 4 and are combined as shown in FIG. 4 (b). In the heating and pressure forming between the upper and lower heating plates 5, in each of the stacked combination sets 7, the respective combinations 3 corresponding to the upper and lower sides are welded at the same position in all the combined products 3 on the two sides. It will overlap in the vertical direction. Accordingly, as in the case described above, in the combination set 7 stacked in multiple stages, the total thickness in the vertical direction of the combination 3 corresponding to the top and bottom is the difference between the portion where the welded portions overlap vertically and the other portions. , Which may cause molding defects.
[0029]
Therefore, in the embodiment of FIG. 3 (a), when producing the combination set 7 by arranging the three combinations 3 side by side, the leftmost combination 3 is used as one of the two opposite sides. Welding points are provided at three equally spaced a1, a2, and a3 locations, and the other one is provided with welding locations at three locations b1, b2, and b3 and a wide interval between the welding locations of b1, b2 is used. As the center combination 3, the welded portions are provided at three locations c1, c2 and c3 on one side of the two opposing sides, and the interval between the welded locations of c1 and c2 is widened. Three welds are provided at three locations, d1, d2, and d3, and a wide interval between the weld locations of d2 and d3 is used. As a right end combination 3, three locations of e1, e2, and e3 are provided on one side. The spacing of the bonded portion of e2, e3 provided with a bonded portion widely formed, are to use a thing in which a bonded portion into three locations equally spaced f1, f2, f3 in other side. FIG. 3B shows the combination set 7 of FIG. 3A turned upside down and inverted.
[0030]
Then, when stacking a plurality of combination sets 7 as shown in FIG. 4 (b), the arrangement of the welding locations is the combination set 7 of FIG. The combination set 7 as shown in (b) is alternately stacked. When the combination set 7 in FIG. 3 (a) and the combination set 7 in FIG. 3 (b) are alternately stacked and stacked in multiple stages as shown in FIG. c) shows only two combinations set 7 that are adjacent to each other in the upper and lower directions), and one of the two sides of the combination 3 at the left end that overlaps the upper and lower sides is one of the upper combination 3. The weld locations a1, a2, and a3 and the weld locations f1, f2, and f3 of the lower combination 3 are aligned vertically, and on the other side, the weld locations b1, b3 of the upper combination 3 and the lower combination 3 Although the welding locations e1 and e3 coincide vertically, the welding location b2 of the upper combination 3 and the welding location e2 of the lower combination 3 are shifted in the edge direction of the combination 3. Further, among the two sides of the center combination 3 that overlaps vertically, the welding locations c1 and c3 of the upper combination 3 and the welding locations d1 and d3 of the lower combination 3 are vertically aligned on one side. The welding location c2 of the upper combination 3 and the welding location d2 of the lower combination 3 are shifted in the direction of the edge of the combination 3. On the other side, the welding locations d1, d3 of the upper combination 3 and the bottom The welded portions c1 and c3 of the combination 3 are aligned vertically, but the welded portion d2 of the upper combination 3 and the welded portion c2 of the lower combination 3 are shifted in the edge direction of the combination 3. Furthermore, among the two sides of the combination 3 at the right end that overlaps vertically, on one side, the welding locations e1, e3 of the upper combination 3 and the welding locations b1, b3 of the lower combination 3 are aligned vertically, The welding location e2 of the upper combination 3 and the welding location b2 of the lower combination 3 are shifted in the direction of the edge of the combination 3, and the welding locations f1, f2, f3 of the upper combination 3 on the other side. And the welding locations a1, a2, and a3 of the lower combination 3 are aligned vertically.
[0031]
In this way, a plurality of welds are provided on the sides of each combination 3 excluding the outer sides of the combination 3 located at both ends of the combination set 7, that is, on the opposite sides of the side-by-side combination 3. The combination set 7 can be stacked up and down so that at least one of the locations is shifted in the edge direction and does not correspond to up and down. Therefore, when the combination set 7 is stacked in multiple stages and is heat-pressed as shown in FIG. 4B, all the welded portions of the opposite sides of the respective combinations 3 of the stacked combination set 7 are all located. Are not overlapped in the vertical direction at the same position in the combination 3 that overlaps vertically. For this reason, when stacking the combination set 7 in multiple stages, the total thickness in the vertical direction of each combination 3 of the combination set 7 stacked in multiple stages is such that the welded portion overlaps vertically and other parts As a result, it is possible to make the method of applying pressure when heating and pressing between the heating plates 5 uniform, and to obtain a multilayer obtained by lamination molding. It is possible to make the thickness of the printed wiring board uniform and prevent the outer layer metal foil 10 laminated on the combination 3 from being wrinkled and reduce the occurrence of molding defects. .
[0032]
In the embodiment of FIG. 3, all the welded portions are aligned vertically on the outer side of the combined product 3 positioned at both ends of the combined product set 7, but at least one of the welded portions is included. Needless to say, the position may be shifted in the edge direction so as not to correspond to the top and bottom.
[0033]
【The invention's effect】
As described above, in the method for manufacturing a multilayer printed wiring board according to claim 1 of the present invention, a plurality of circuit boards are stacked via a prepreg, and the two opposite sides of the combination of the circuit board and the prepreg are arranged. A combination of the combined circuit board and the prepreg is obtained by locally heating and pressing at a plurality of locations along the edge to partially weld the resin of the prepreg to the circuit board and coupling the circuit board through the prepreg. A multilayer printed wiring board in which a plurality of circuit boards are laminated and integrated through an insulating adhesive layer made of prepreg by stacking a plurality of layers in multiple stages via a molding plate and molding them by heating and pressing between hot plates. In manufacturing, in a combination that is stacked next to each other in the vertical direction, at least one of the welding locations on each side of the two sides is shifted in the edge direction and does not correspond to the vertical direction. In this way, the combinations are stacked in multiple stages, so that all the welded parts on the two sides of each stacked combination do not overlap in the vertical direction at the same position. Thus, it is possible to make uniform the pressure applied during hot press molding, and to reduce the occurrence of molding defects.
[0034]
Also, among the bonded portion forming the combination thereof opposing two sides mutually in pairs by corresponding to the, to perform the heat welding is shifted in a direction along the edge from a position facing each other at least a pair of bonded portion Therefore, when stacking the combination in multiple stages, it becomes easy to shift the welding positions on the two sides of the combination stacked next to each other in the vertical direction so that they do not correspond to the top and bottom. Is.
[0035]
Further, the invention of claim 2 is that in claim 1 , when stacking the combinations in multiple stages via the molding plate, the adjacent combinations in the vertical direction are stacked in multiple stages in a state where the front and back are alternately reversed. It is easy to shift the welding locations on the two sides of the combined product stacked next to each other in the vertical direction so that the positions do not correspond to the vertical direction.
[0036]
In the invention of claim 3 , a plurality of combinations are arranged side by side, and when a plurality of combinations sets in which the combinations are arranged side by side are stacked in multiple stages via a molding plate, they are stacked adjacent to each other vertically. In the combination set, the combination set is stacked in multiple stages so that at least one of the welded portions of each side facing each other in the side-by-side combination is shifted in the edge direction and does not correspond vertically. As a result, it is possible to prevent the welded portions of the opposite sides of the combination in each stacked combination set from overlapping each other at the same position in the vertical direction. The method of applying pressure during pressure forming can be made uniform, and the occurrence of molding defects can be reduced.
[Brief description of the drawings]
1A and 1B show an example of an embodiment of the present invention, in which FIG. 1A is a plan view of a combination, FIG. 1B is a plan view of a state in which the combination is inverted, and FIG. It is a top view which shows the state of the overlap of a combination thing.
FIGS. 2A and 2B show another example of the embodiment of the present invention, where FIG. 2A is a plan view of a combination, FIG. 2B is a plan view of a state in which the combination is inverted, and FIG. It is a top view which shows the state of the overlap of an adjacent combination thing.
FIGS. 3A and 3B show an example of an embodiment of the present invention, in which FIG. 3A is a plan view of a combination set, FIG. 3B is a plan view of a state in which the combination set is inverted, and FIG. It is a top view which shows the state of the overlap of the combination of an adjacent combination set.
FIG. 4 shows an example of a method for manufacturing a multilayer printed wiring board, wherein (a), (b), and (c) are front views, respectively.
FIGS. 5A and 5B are views showing a combination, in which FIG. 5A is a front view of an operation for welding the combination, and FIG. 5B is an enlarged front view showing a state in which a welded portion is recessed.
FIG. 6 is a front view showing a combination set.
FIG. 7 is a plan view showing a conventional combination.
FIG. 8 is a plan view showing a combination set of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Circuit board 2 Prepreg 3 Combination 4 Molding plate 5 Heating board 6 Insulation adhesive layer 7 Combination set

Claims (3)

複数枚の回路板をプリプレグを介して重ね、この回路板とプリプレグの組み合せ物の対向する二辺の各辺を端縁に沿った複数箇所で局所的に加熱加圧することによって、プリプレグの樹脂を部分的に回路板に溶着させてプリプレグを介して回路板を結合させ、この結合した回路板とプリプレグの組み合せ物を成形プレートを介して多段に複数積重ねると共にこれを熱盤間で加熱加圧して成形することによって、プリプレグによる絶縁接着層を介して複数枚の回路板を積層一体化した多層プリント配線板を製造するにあたって、組み合せ物の対向する二辺の相互に対応して対をなす溶着箇所のうち、少なくとも一対の溶着箇所を相互に対向する位置から端縁に沿った方向にずらして熱溶着し、上下に隣合って積重ねられる組み合せ物において、二辺の各辺の溶着箇所のうち少なくとも一箇所が端縁方向でずれて上下に対応しない位置になるように、組み合せ物を多段に積重ねることを特徴とする多層プリント配線板の製造方法。A plurality of circuit boards are stacked through a prepreg, and each of the two opposite sides of the combination of the circuit board and the prepreg is locally heated and pressed at a plurality of locations along the edge, whereby the resin of the prepreg is obtained. The circuit board is partially welded to the circuit board and connected to the circuit board through the prepreg. A plurality of combinations of the combined circuit board and prepreg are stacked in multiple stages through the molding plate, and this is heated and pressed between the hot plates. When manufacturing a multilayer printed wiring board in which a plurality of circuit boards are laminated and integrated through an insulating adhesive layer made of prepreg, a pair of welds that form a pair corresponding to the two opposite sides of the combination among locations, thermally welded shifted in the direction along the edge from a position facing each other at least a pair of welding portions, in combination product to be stacked next to each other vertically, So that at least one portion of the bonded portion of each side edge is at a position not corresponding to the vertical offset in the edge direction, a method for manufacturing a multilayer printed circuit board, characterized in that stacking combinations thereof in multiple stages. 組み合せ物を成形プレートを介して多段に積重ねるにあたって、上下に隣合う組み合せ物を交互に表裏反転させた状態で多段に積重ねることを特徴とする請求項に記載の多層プリント配線板の製造方法。2. The multilayer printed wiring board according to claim 1 , wherein when stacking the combinations in multiple stages through the forming plate, the stacks are stacked in multiple stages in a state where the top and bottom adjacent combinations are alternately reversed. Method. 複数の組み合せ物を横に並べて配置し、この組み合せ物を横に並べた組み合せ物セットを成形プレートを介して多段に複数積重ねるにあたって、上下に隣合って積重ねられる組み合せセットにおいて、横に隣合う組み合せ物の相互に対向する各辺の溶着箇所のうち少なくとも一箇所が端縁方向でずれて上下に対応しない位置になるように、組み合せ物セットを多段に積重ねることを特徴とする請求項1又は2に記載の多層プリント配線板の製造方法。When a plurality of combinations are arranged side by side, and a plurality of combination sets in which the combinations are arranged side by side are stacked in multiple stages via a molding plate, they are next to each other in a combination set that is stacked next to each other vertically. The combination set is stacked in multiple stages so that at least one of the welding locations on each side of the combination facing each other is shifted in the edge direction and does not correspond to the top and bottom. Or the manufacturing method of the multilayer printed wiring board of 2 .
JP2002048800A 2002-02-25 2002-02-25 Manufacturing method of multilayer printed wiring board Expired - Lifetime JP3838119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002048800A JP3838119B2 (en) 2002-02-25 2002-02-25 Manufacturing method of multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002048800A JP3838119B2 (en) 2002-02-25 2002-02-25 Manufacturing method of multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2003249752A JP2003249752A (en) 2003-09-05
JP3838119B2 true JP3838119B2 (en) 2006-10-25

Family

ID=28661471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002048800A Expired - Lifetime JP3838119B2 (en) 2002-02-25 2002-02-25 Manufacturing method of multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP3838119B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202374556U (en) * 2011-12-15 2012-08-08 北大方正集团有限公司 Multi-layer printed circuit board

Also Published As

Publication number Publication date
JP2003249752A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
JP6388097B2 (en) Manufacturing method of component-embedded substrate
JP4069787B2 (en) Multilayer substrate and manufacturing method thereof
JP3838119B2 (en) Manufacturing method of multilayer printed wiring board
JP4548210B2 (en) Multilayer circuit board manufacturing method
KR20160062271A (en) Method of manufacturing a printed circuit board
JP2003152336A (en) Method of manufacturing multilayer printed wiring board
JP6516065B2 (en) Method of manufacturing resin multilayer substrate
JP2514849B2 (en) Multilayer flex / rigid printed wiring board and manufacturing method thereof
JP3934826B2 (en) Manufacturing method of multilayer wiring board
JP3838108B2 (en) Manufacturing method of multilayer printed wiring board
JP2000269639A (en) Manufacturing multilayer printed wiring board
KR100662643B1 (en) Laminating method for multi layer flexible printed circuit board
JP2000216543A (en) Manufacture of multilayered printed wiring board
JP2699958B2 (en) Manufacturing method of multilayer board
JP2003318539A (en) Multilayered laminated board and method of manufacturing the same
JP3069605B2 (en) Lay-up method of printed wiring board
KR200168281Y1 (en) Cover board for manufacturing multi-layer board
JP3922148B2 (en) Manufacturing method of multilayer printed wiring board
JP5353027B2 (en) Circuit board manufacturing method
KR20000058333A (en) A fixture and laminating method of multi- layer printed circuit board
JPH09130042A (en) Manufacture of multilayer printed wiring board
KR200240976Y1 (en) A fixture and laminating device of multi-layer PCB
JPH02241091A (en) Lamination of multilayer laminated board
JP2507238B2 (en) Method for manufacturing multilayer printed circuit board
JP2003249753A (en) Method for producing multilayer printed wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R151 Written notification of patent or utility model registration

Ref document number: 3838119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

EXPY Cancellation because of completion of term