JP3836935B2 - Semiconductor position detector - Google Patents
Semiconductor position detector Download PDFInfo
- Publication number
- JP3836935B2 JP3836935B2 JP09756697A JP9756697A JP3836935B2 JP 3836935 B2 JP3836935 B2 JP 3836935B2 JP 09756697 A JP09756697 A JP 09756697A JP 9756697 A JP9756697 A JP 9756697A JP 3836935 B2 JP3836935 B2 JP 3836935B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive layer
- psd
- semiconductor
- signal extraction
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
- Light Receiving Elements (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、入射光の位置を検出する半導体位置検出器(PSD)に関する。
【0002】
【従来の技術】
半導体位置検出器(PSD)は所謂三角測量の原理等を用いて被測定物の距離を測定する装置として知られている。PSDはアクティブ方式の距離測定器としてカメラ等の撮像機器に搭載されており、このような撮像機器においてはPSDによって測定された被測定物の距離に基づいて撮影レンズのフォーカシングが行われている。
【0003】
【発明が解決しようとする課題】
上述のPSDにおいては、被測定物までの距離に応じてPSDの受光面上の入射光スポットの位置が移動する。入射光スポット位置に応じてPSD抵抗層の抵抗値が分割され、抵抗分割比に応じてPSDからの出力電流が変化するため、当該出力電流に基づいて被測定物までの距離を検出することができる。ところが、三角測量法の原理を用いて距離測定を行う場合、近距離にある被測定物までの距離が変化したときには入射光スポットの位置が受光面上で大きく移動するのに対し、遠距離にある被測定物までの距離が変化したときには入射光スポットの位置はあまり移動しない。すなわち、従来、遠距離にある被測定物までの距離検出精度は近距離における精度と比較して低いとされていた。そこで、入射光スポットの照射される抵抗層の幅を受光面の近距離側から遠距離側に向かうにしたがって1次関数的に狭くすることで、遠距離にある被測定物からの入射光スポットの移動量が微小であっても抵抗層の抵抗分割比が大きく変化するようにしたものが、特開平4−240511号公報に記載されている。
【0004】
しかしながら、同公報に記載のPSDでは、抵抗層の幅を遠距離側から近距離側に向かうにしたがって1次関数的に広くする、すなわち、抵抗層の幅を近距離側から遠距離側に向かうにしたがって1次関数的に狭くしている。この抵抗層は受光面を形成している。抵抗層は、微小な抵抗がマトリクス状に結線された微小抵抗集合体として考えることができる。抵抗層に光が入射することによって発生する電荷は、入射光位置から抵抗層両端の電極までの抵抗比に基づいて分割されるが、抵抗層幅方向に整列した微小抵抗群の一部のみにスポット形状の入射光が照射されると、発生した電荷は抵抗層長さ方向に沿って均一にこれを通過せず、したがって、抵抗層の形状から理論的に計算される入射光位置と出力電流との関係式が、入射光位置及び入射光形状毎に異なり、出力電流から単一の関係式を用いて入射光位置を正確に演算することは困難である。すなわち、出力電流から正確な入射光位置を得るためには、入射光位置及び入射光形状毎に異なる複数の演算回路を必要とする。換言すれば、上記従来のPSDにおいては、抵抗層幅方向に整列した微小抵抗群の全部に入射光が照射される場合、すなわち、スリット形の入射光が抵抗層を縦断するように入射する場合にのみ、単一の演算回路を用いて入射光位置を求めることができる。
【0005】
本発明は、上述の課題を解決するためになされたものであり、従来に比して位置検出精度を更に向上させることができ、且つ、入射光形状に制限がない半導体位置検出器を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に係る半導体位置検出器は、複数の抵抗領域が所定方向に連続してなる基幹導電層と、受光面上の入射光位置に応じて基幹導電層両端からの出力電流が異なるように基幹導電層から受光面に沿って延びた複数の分枝導電層と、を備え、抵抗領域は、実質的に同一の抵抗率を有し、且つ、所定方向に垂直な幅が基幹導電層の一端から他端に向かうにしたがって広くなっており、受光面は、分枝導電層の形成された半導体基板の表面領域で規定されることを特徴とする。なお、複数の抵抗領域は、各抵抗領域間に分枝導電層を介在させつつ連続していることが望ましいが、各抵抗領域が互いに接触しつつ連続していてもよい。
【0007】
入射光の位置は被測定物の距離に応じて受光面上を移動する。受光面への入射光の照射に応じて発生した電荷は分枝導電層を通って基幹導電層に流れ込む。分枝導電層は受光面上の入射光位置に応じて基幹導電層両端からの出力電流が異なるように延びているため、この出力電流から入射光位置を検出することができる。基幹導電層を構成する複数の抵抗領域の幅は一端から他端に向かうにしたがって広くなっており、それぞれの抵抗率は実質的に同一であるため、遠距離にある被測定物からの入射光に応じて発生した電荷が幅狭の抵抗領域に流れ込むように本半導体位置検出器を配置すると、被測定物の距離が変化することによって入射光位置が受光面上で微小にしか移動しない場合においても、幅狭の抵抗領域の抵抗値は高いため、基幹導電層両端からの出力電流は大きく変化する。
【0008】
なお、入射光は分枝導電層にて受光し、発生した電荷は基幹導電層にて抵抗分割しているため、基幹導電層の幅を狭くすることができ、不純物濃度を上げて抵抗率を下げても所望の抵抗値を得ることができる。すなわち、不純物濃度を上げることにより、制御可能な最小不純物濃度の全体の不純物濃度に対する割合が小さくなるため、抵抗率のばらつきが小さくなり、位置検出精度が向上する。
【0009】
また、抵抗領域の幅は、基幹導電層の一端からの所定方向に沿った位置の1次関数又は2次関数であることが望ましく、入射光が分枝導電層の形成された受光面に照射されるため、入射光の形状を制限することなく、抵抗領域の幅が位置の1次関数又は2次関数であることから導出される距離検出のための関数を用いて、基幹導電層両端からの出力電流から被測定物までの距離を演算することができる。
【0010】
基幹導電層の両端に出力電流を取り出すための信号取出電極を設けた場合、これに隣接する分枝導電層に入射光が照射されると、入射光の一部分が信号取出電極に照射されるため、入射光の重心位置が真の位置から分枝導電層側にずれ、位置検出精度が劣化する。
【0011】
そこで、本発明の半導体位置検出器は、基幹導電層の一端部に位置する最も狭い幅を有する抵抗領域から延びた所定の分枝導電層に隣接し、基幹導電層よりも低い抵抗率を有する高濃度半導体領域と、入射光に応じて高濃度半導体領域を通過した電荷が基幹導電層を介することなく流れ込むことが可能な位置に設けられ、前記出力電流の一方が取り出される信号取出電極とを更に備えることを特徴とする。
【0012】
高濃度半導体領域がない場合、基幹導電層の一端部に位置する最も狭い幅を有する抵抗領域から延びた分枝導電層及び信号取出電極に入射光が照射されると、信号取出電極からの出力電流は、入射光が信号取出電極に遮られることによって減少する。しかしながら、本発明の半導体位置検出器は、高濃度半導体領域を備えており、高濃度半導体領域に照射された入射光に応じて発生した電荷は基幹導電層を介することなく信号取出電極に流れ込み、信号取出電極からの出力電流を増加させるので、演算される入射光の重心位置を真の位置に近づけ、位置検出精度を向上させることができる。
【0013】
基幹導電層に光が照射された場合、光の形状によっては演算される入射光位置が真の値からずれてしまうことがある。そこで、更に高い精度を要求する場合、本半導体位置検出器は、基幹導電層上に形成された遮光膜を更に備えることとし、位置検出精度をさらに向上させることとした。
【0014】
また、本半導体位置検出器が、基幹導電層両端からの出力電流がそれぞれ取り出される一対の信号取出電極を備え、基幹導電層が信号取出電極間に位置する場合には、遮光膜は絶縁性の材料から構成され、信号取出電極間の基幹導電層を覆っていることを特徴とする。遮光膜を絶縁性の材料から構成した場合、信号電極間の基幹導電層の全領域を遮光膜で覆っても信号取出電極が短絡されることがない。
【0015】
また、この遮光膜は黒色のホトレジストからなることが好ましい。通常のホトレジストは金属配線等の素子を形成する際のマスクとして用いられるが、本発明ではホトレジスト自体に黒色のものを用いる。したがって、硬化前のホトレジストに光を照射して現像するのみで遮光膜を形成することができる。
【0016】
【発明の実施の形態】
以下、実施の形態に係る半導体位置検出器について説明する。同一要素又は同一機能を有する要素には同一符号を用いるものとし、重複する説明は省略する。
【0017】
(第1実施形態)
図1は第1実施形態に係る半導体位置検出器(PSD)の平面図、図2は図1に示したPSDのA−A矢印断面図、図3は図1に示したPSDのB−B矢印断面図である。なお、説明に用いるPSDの断面図は、その端面を示す。
【0018】
本実施形態に係るPSDは、低濃度n型Siからなる半導体基板2nと、半導体基板2nの裏面に形成された高濃度n型Siからなる裏面側n型半導体層1nとを備える。半導体基板2nの表面は長方形である。以下の説明では、裏面側n型半導体層1nからn型半導体基板2nへ向かう方向を上方向とし、n型半導体基板2nの長方形表面の長辺の伸延方向を長さ方向(長手方向)X、短辺の伸延方向を幅方向Y、長さ方向X及び幅方向Y双方に垂直な方向を深さ方向(厚さ方向)Zとする。すなわち、方向X、Y及びZは互いに直交している。
【0019】
本PSDは、半導体基板2n内に形成され、長さ方向Xに沿って延びた基幹導電層PNを備える。基幹導電層PNはp型Siからなり、基幹導電層PNの抵抗率は半導体基板2nの抵抗率よりも低い。基幹導電層PNは、複数のp型の抵抗領域P1〜P20がPSDの長さ方向Xに沿って連続してなり、n型半導体基板2n内に形成されている。各抵抗領域P1〜P20は実質的に同一の不純物濃度を有しており、n型半導体基板2nの表面から厚さ方向Zに沿って実質的に同一の深さまで延びている。各抵抗領域P1〜P20は実質的に同一の抵抗率ρを有する。各抵抗領域P1〜P20の表面は台形をしており、台形表面の上底及び下底は共に幅方向Yに平行であり、残りの2辺のうちのPSD表面の外縁側にある一方の辺は長さ方向Xに平行であって上底及び下底と直交し、他方の辺は長さ方向Xに対して同一の角度をなしており、且つ、これら2辺はそれぞれ同一直線上に位置する。したがって、基幹導電層PNの表面の輪郭は全体として略台形を構成する。
【0020】
本PSDは、PSDの表面両端部に形成され、基幹導電層PN両端からの出力電流がそれぞれ取り出される一対の信号取出電極1e,2eを備える。以下の説明では、基幹導電層PNの最も信号取出電極1eに近い位置を長さ方向Xの基準位置(X=0)とする。また、基幹導電層PN表面を構成する辺のうち、長さ方向Xに平行なものの位置を幅方向Yの基準位置(Y=0)とする。また、信号取出電極1eから信号取出電極2eに向かう方向をXの正方向とし、基幹導電層PNから受光面へ向かう方向をYの正方向とする。本実施形態のPSDでは、基幹導電層PNの幅Yは信号取出電極1eから2eに向かうに従って広くなっており、幅Y=aX+bの関係を有する。但し、a及びbは定数である。
【0021】
本PSDは、基幹導電層PNから受光面に沿って延びた複数の分枝導電層4PNを備える。分枝導電層4PNは高濃度p型Siからなる。分枝導電層4PNの不純物濃度は、基幹導電層PNの不純物濃度よりも高く、また、分枝導電層4PNの抵抗率は、基幹導電層PNの抵抗率よりも低い。分枝導電層4PNを構成する複数の分枝導電層4P1〜4P19は、n型半導体基板2n内に形成されており、基幹導電層PNを構成する複数の抵抗領域P1〜P20間から幅方向Yに沿って延びている。分枝導電層4P1〜4P19は、厚み方向Zに沿ってn型半導体基板2nの表面から基幹導電層PNの深さよりも深い位置まで延びており、分枝導電層4P1〜4P19の幅方向Yの長さは同一である。
【0022】
また、分枝導電層4PNの幅方向Yに沿った長さは、入射光スポットの直径よりも長く、このスポットが基幹導電層PNに照射されないようにすることができる。
【0023】
本PSDは、抵抗領域P1〜P20が長さ方向Xに連続してなる基幹導電層PNの両端にそれぞれ連続し、半導体基板2n内に形成された一対の高濃度信号取出用半導体層1p,2pを備える。高濃度信号取出用半導体層1p,2pは、高濃度p型Siからなる。高濃度信号取出用半導体層1p,2pは、半導体基板2nの表面から厚み方向Zに沿って抵抗領域P1〜P20の深さよりも深い位置まで延びている。高濃度信号取出用半導体層1p,2pは、それぞれ長方形の表面を有しており、その長辺は幅方向Yに平行であって、短辺は長さ方向Xに平行である。基幹導電層PNの両端は、それぞれ高濃度信号取出用半導体層1p,2pの長方形表面の長辺の一端部を境界として高濃度信号取出用半導体層1p,2pに連続している。換言すれば、基幹導電層PNの長さ方向Xに沿った一方の端部、すなわち、最も幅Yの狭い抵抗領域P1は、一方の高濃度信号取出用半導体層1pの幅方向Yに沿った一方の端部に連続しており、基幹導電層PNの長さ方向Xに沿った他方の端部、すなわち、最も幅Yの広い抵抗領域P20は他方の高濃度信号取出用半導体層2pの幅方向Yに沿った一方の端部に連続している。
【0024】
本PSDは、半導体基板2nの長方形表面の外周部に形成された外枠半導体層3nを備える。外枠半導体層3nは、高濃度n型Siである。外枠半導体層3nは、半導体基板2nの長方形表面の外縁領域内に形成されてロの字形をなし、分枝導電層4PN、基幹導電層PN及び高濃度信号取出用半導体層1p,2pの形成された基板表面領域を包囲し、n型半導体基板2nの表面から厚み方向Zに沿って所定の深さまで延びている。
【0025】
本PSDは、半導体基板2n内に形成された分枝導電層隔離用半導体層4nを備える。分枝導電層隔離用半導体層4nは、高濃度n型Siである。分枝導電層隔離用半導体層4nは、ロの字形の外枠半導体層3nの一方の長辺の内側から幅方向Yに沿って基幹導電層PN方向に延びた複数のn型の分枝領域4n1〜4n20からなる。各分枝領域4n1〜4n20は、厚み方向Zに沿ってn型半導体基板2nの表面から所定深さまで延びている。n型の分枝領域4n2〜4n19は、p型の分枝導電層4P1〜4P19と略同一の深さを有し、分枝導電層4P1〜4P19間に介在し、分枝導電層4P1〜4P19を電気的に隔離している。すなわち、分枝領域4n2〜4n19は、分枝導電層4P1〜4P19の隣接するもの同士間を長さ方向Xに沿って流れる電流を阻止している。最も外側に位置する分枝領域4n1及び4n20は、長さ方向Xに沿って最も外側にある分枝導電層4P1,4P19と高濃度信号取出用半導体層1p,2pとの間にそれぞれ介在し、分枝導電層4P1,4P19と高濃度信号取出用半導体層1p,2pとをそれぞれ電気的に隔離している。
【0026】
本PSDは、n型半導体基板2nの長方形表面を覆うパッシベーション膜5を備える。なお、図1及び以下の実施形態に係るPSDの平面図においてはパッシベーション膜5の記載を省略する。パッシベーション膜5は、信号取出電極用の1対の長方形開口を長さ方向両端部に有し、外枠電極用のロの字形開口を外周部に有する。パッシベーション膜5は、SiO2からなる。信号取出電極1e,2eは、パッシベーション膜5の信号取出電極用の1対の開口をそれぞれ介して、それぞれ高濃度信号取出用半導体層1p,2p上に形成されており、高濃度信号取出用半導体層1p,2pにオーミック接触している。なお、信号取出電極1e,2eの表面形状は、高濃度信号取出用半導体層1p,2pの表面形状と同一である。
【0027】
本PSDは、パッシベーション膜5の外枠電極用の開口を介して、n型の外枠半導体層3n上に形成された外枠電極3eを備える。外枠電極3eは、外枠半導体層3nとオーミック接触している。外枠電極3eは、半導体基板2n外周部への光の入射を阻止する。また、外枠電極3eと信号取出電極1e,2eとの間に所定の電圧を印加することもできる。
【0028】
本PSDは、裏面側n型半導体層1nの下面に形成された下面電極4eを備える。下面電極4eは、裏面側n型半導体層1nとオーミック接触している。
【0029】
1対の信号取出電極1e,2eと下面電極4eとの間に、p型分枝導電層4PN及びn型半導体基板2nから構成されるpn接合ダイオードに逆バイアス電圧が印加されるような電圧を与えた状態で、分枝導電層4PNの形成されたn型半導体基板2nの表面領域で規定される受光面に入射光がスポット光として入射すると、この入射光に応じてPSD内部で正孔電子対(電荷)が発生し、拡散及びPSD内部の電界にしたがってその一方は分枝導電層4PN内に流れ込む。この電荷は、分枝導電層4PN内を伝導して基幹導電層PNの所定の抵抗領域に流れ込み、所定の抵抗領域の基幹導電層PNの長さ方向Xの位置に応じてその電荷量が分配され、分配された電荷はそれぞれ基幹導電層PNの両端を介して信号取出電極1e及び2eから取り出される。
【0030】
本実施形態に係るPSDでは、上述の分枝導電層4PNを備えており、入射光は分枝導電層4PNの形成された受光面に照射される。したがって、入射光形状の影響を受けず、位置を正確に検出することができ、位置検出精度を従来のPSDよりも向上させることができる。
【0031】
以下の説明では、入射光の受光面への入射に応じて信号取出電極1e及び2eからそれぞれ出力される出力電流をそれぞれI1及びI2とする。
【0032】
図4は、図1に示したPSD100を用いた測距装置を示し、この測距装置はカメラ等の撮像機器に設けることができる。なお、この測距装置には図1に示したPSDの代わりに以下の実施形態のPSDのいずれを用いてもよい。この測距装置は、PSD100と、発光ダイオード(LED)101と、投光用レンズ102と、集光用レンズ103と、演算回路104とを備える。なお、PSD100には上記電圧が印加されている。PSD100は、その長さ方向Xがレンズ102及び103の光軸間距離(基線長)Bによって規定される線分と平行となるように配置され、且つ、信号取出電極1eが信号取出電極2eよりもレンズ103の光軸に近くなるように配置されている。また、レンズ102,103とPSD100の受光面との間の距離fは、これらのレンズ102,103の焦点距離に略一致する。なお、集光レンズ103の光軸上には、基幹導電層PNの最も信号取出電極1eに近い端部に一致する受光面が位置する。
【0033】
LED101から出射された赤外光が、投光用レンズ102を介して近距離(L1)にある被測定物OB1に照射されると、被測定物OB1からの反射光は集光レンズ103を介してPSDの受光面の近距離側、すなわち、信号取出電極2eに近い方の分枝導電層4PNに入射する。また、遠距離(L2)にある被測定物OB2からの反射光は、集光レンズ103を介してPSDの受光面の遠距離側、すなわち、信号取出電極1eに近い方の分枝導電層4PNに入射する。
【0034】
近距離にある被測定物OB1で反射された光の受光面上への入射位置X1は、集光レンズ103の光軸からPSDの長さ方向Xに沿って距離X1離れた位置にあり、遠距離にある被測定物OB2で反射された光の受光面上への入射位置X2は、集光レンズ103の光軸からPSDの長さ方向Xに沿って距離X2離れた位置にある。また、基幹導電層PNの長さ方向Xの全長をCとする。
【0035】
被測定物までの距離L(L1,L2)と入射光スポット位置X(X1,X2)は、以下の式で与えられる関係を有し、この関係を図5に示す。なお、本実施形態のPSDでは基線長B=30mm、焦点距離f=15mmとする。
【0036】
【数1】
【0037】
図5に示すように、距離Lが長くなるにしたがって距離Lの変動量に対する入射光スポット位置Xの移動量は小さくなる。一方、基幹導電層PNの幅Yと長さ方向位置Xとは、Y=aX+bの関係を有する。すなわち、抵抗領域P1〜P20の幅Yは、基幹導電層PNの一端からの長さ方向に沿った位置Xの1次関数である。この場合、入射光位置Xと光電流相対出力(%)とは図6に示す関係を有する。ここでは、基幹導電層PNの全長Cを1000μmとし、幅Yと位置XがY=0.1X+10(μm)を満たすものとする。なお、光電流相対出力とは、基幹導電層PN両端からの出力電流I1及びI2の全出力電流I1+I2に対する比率である。また、比率R1=I1/(I1+I2)及びR2=I2/(I1+I2)が算出された場合、入射光スポット位置Xは以下の式で求められる。
【0038】
【数2】
【0039】
演算回路104は、出力電流I1及びI2から比率R1及びR2を演算した後、位置Xを演算し、予め算出された距離Lと位置Xとの関係を示す表を格納したメモリ内の位置Xに対応する距離Lを検索することによって、距離Lを求めることができる。なお、入射光位置Xは、以下の関係を有するので、以下の式から直接Xを演算した後、上式から距離Lを算出してもよい。
【0040】
【数3】
【0041】
(第2実施形態)
図7は、第2の実施形態に係るPSDの平面図である。なお、図7におけるPSDのA−A矢印断面及びB−B矢印断面はそれぞれ図2及び図3と同一であるのでその記載を省略する。すなわち、図1に示したPSDと図7に示したPSDとは、その基幹導電層PNの表面形状のみが異なる。基幹導電層PNの幅Yと長さ方向位置Xとは、Y=aX2+bの関係を有する。すなわち、抵抗領域P1〜P20の幅Yは、基幹導電層PNの一端からの長さ方向に沿った位置Xの2次関数である。この場合、入射光位置Xと光電流相対出力(%)とは図8に示す関係を有する。ここでは、基幹導電層PNの全長Cを1000μmとし、幅Yと位置XがY=0.0001X2+10(μm)を満たすものとする。また、比率R2=I2/(I1+I2)が算出された場合、入射光位置Xは以下の式で求められる。
【0042】
【数4】
【0043】
この場合、演算回路104は、出力電流I1及びI2から比率R2を演算した後、位置Xを演算し、予め算出された距離Lと位置Xとの関係を示す表を格納したメモリ内の位置Xに対応する距離Lを検索することによって、距離Lを求めることができる。
【0044】
なお、入射光位置Xは以下の関係を有するので、以下の式から直接Xを算出した後、上式から距離Lを算出してもよい。
【0045】
【数5】
【0046】
図9は、長さ方向位置(抵抗長)Xと基幹導電層PNの幅(抵抗幅)Yの関係を示すグラフである。基幹導電層PNの全長Cは1000μm、基幹導電層PNの遠距離側(X=0に近い方)の幅Yの最小値は10μm、基幹導電層PNの近距離側(X=0から遠い方)の幅Yの最大値は100μmである。幅Yが位置Xの1次関数(Y=aX+b)である場合、X=100μm及び200μmにおける幅Yは、それぞれ19μm及び28μmである。また、幅Yが位置Xの2次関数(Y=aX2+b)である場合、X=100μm及び200μmにおける幅Yは、それぞれ10.9μm及び13.6μmである。上記第1及び第2実施形態に係るPSDのように、基幹導電層PNの幅Yと長さ方向位置Xが1次関数(Y=aX+b)又は2次関数(Y=aX2+b)の関係を満たしている場合、遠距離側におけるXの変化に対して大きくYが変化する。したがって、X及びYが、これらの関係にある場合、通常の製造精度で基幹導電層PNを製造しても、製造精度に対する幅Yの変化率が大きいため、必要とされる特性を有する基幹導電層PNを製造することができる。
【0047】
ところが、これらの幅Yと位置Xとの関係が3次関数(Y=aX3+b)の関係を満たす場合、X=100μm及び200μmにおける幅Yは、それぞれ10.09μm及び10.72μmであり、4次関数(Y=aX4+b)の関係を満たす場合、X=100μm及び200μmにおける幅Yは、それぞれ10.009μm及び10.144μmとなり、長さ方向位置Xの変化に対する幅Yの変化が著しく小さくなる。
【0048】
したがって、幅Yと長さ方向位置Xが3次関数以上の関係を有する場合は、その幅Yを非常に高い精度で制御する必要があり、通常の精度で製造した場合には位置検出精度が劣化する。
【0049】
そこで、上記3次及び4次関数の関係を満たす場合のX=100μmにおける幅Yを2次関数の関係を満たす場合と同一、すなわち、Y=10.9μmとなるようにaを設定した場合には、近距離側(X=0から遠い方)の幅Yは、それぞれ、910μm、9010μmと非常に広くなってしまう。すなわち、幅Yと長さ方向位置Xが3次関数以上の関係を有する場合に、1次及び2次関数と同様、通常の製造精度で基幹導電層PNを製造できるようにするには、PSDを非常に大型化しなければならない。
【0050】
上記実施形態に係るPSDでは、基幹導電層PNの幅Yと長さ方向位置Xが1次関数又は2次関数の関係を満たすこととしたため、PSDを大型化することなしに受光面の面積を広くするとともに、基幹導電層幅の精度を低下させることがないため、これらのPSDの位置検出精度は向上する。
【0051】
(第3実施形態)
図10は第3実施形態に係るPSDの平面図、図11は図10に示したPSDのA−A矢印断面図、図12は図10に示したPSDのB−B矢印断面図である。本実施形態に係るPSDは、第1実施形態のPSDに遮光膜6を付加したものである。遮光膜6は、基幹導電層PN上に形成されており、基幹導電層PNへ入射する光を遮光する。
【0052】
第1実施形態のPSDの基幹導電層PNに光が照射された場合には、光の形状によっては演算される入射光位置が真の値とずれてしまうことがある。そこで、本半導体位置検出器は、基幹導電層PN上に形成された遮光膜6を更に備えることとし、位置検出精度を更に向上させることとした。なお、本遮光膜6は、基幹導電層PNの幅Yが位置Xの2次関数として規定されている第2実施形態のPSDにも適用することができる。
【0053】
遮光膜6は、黒色の顔料又は染料を含有する光感応性樹脂、すなわち黒色のホトレジストからなる。すなわち、遮光膜6は絶縁体であるため、遮光膜6で基幹導電層PN表面の全領域を覆っても信号取出電極1eと信号取出電極2eとが電気的に短絡されることがない。また、遮光膜6自体が黒色のホトレジストからなるため、ホトレジストをPSDの全表面上に塗布した後に、これに所定パターンの露光光を照射し、現像するのみで遮光膜6を形成できるため、遮光膜6を容易に製造することができる。
【0054】
(第4実施形態)
図13は第4実施形態に係るPSDの平面図、図14は図13に示したPSDのA−A矢印断面図、図15は図13に示したPSDのB−B矢印断面図である。本実施形態に係るPSDは、第1実施形態に示したPSDの基幹導電層PNの抵抗領域P1〜P20の表面形状及び外枠半導体層3n、外枠電極3eの形状並びに分枝導電層PNの幅方向Yの長さを代えたものである。
【0055】
本PSDの基幹導電層PNの抵抗領域P1〜P20は台形の表面を有するが、各抵抗領域P1〜P20の台形表面の受光面側の辺はPSDの長さ方向Xに平行であって、同一直線上に位置する。また、各抵抗領域P1〜P20のPSDの長方形表面の外縁側の辺は長さ方向Xと所定の角度で交差しており、基幹導電層P N のPSDの長方形表面の外縁側の辺のY方向の位置Y1と長さ方向位置Xとは、Y1=−aX−b(但し、a>0)の関係を有する。さらに、ロの字形の外枠半導体層3nの内側の辺であって、基幹導電層PNに隣接する辺は、基幹導電層PNのPSDの長方形表面の外縁側の辺、すなわち、直線Y1=−aX−b(但し、a>0)に平行である。本実施形態のPSDにおいては、基幹導電層PNの受光面側の辺から分枝導電層4PN先端までの距離は一定である。したがって、それぞれの分枝導電層4PNの基幹導電層PNの受光面側の辺から先端までの抵抗値が略一定となるため、分枝導電層4PNの幅方向Yの抵抗値のばらつきによる位置検出精度の低下を抑制することができる。また、外枠電極3eの内側の一辺を基幹導電層PNの形状にあわせてこれに近接させることにより、外枠電極3eによって、基幹導電層PNの外側に入射する外乱光を遮光し、このような外乱光による位置検出精度の低下を更に抑制することができる。
【0056】
(第5実施形態)
図16は第5実施形態に係るPSDの平面図、図17は図16に示したPSDのA−A矢印断面図、図18は図16に示したPSDのB−B矢印断面図である。本実施形態に係るPSDは、第4実施形態のPSDにおける信号取出電極1e,2eと最外側にある分枝導電層4P1,4P19との間に所定の領域を設け、高濃度信号取出用半導体層1p,2pを信号取出電極1e,2eの直下からこの領域内まで延ばしたものである。なお、高濃度信号取出用半導体層1p,2pの伸延部分である高濃度半導体領域11p,12pの直上には、信号取出電極1e,2eが設けられておらず、高濃度半導体領域11p,12p内には入射光が入射可能である。高濃度半導体領域11p,12pは、最も外側の分枝導電層4P1,4P19と所定間隔離隔しており、且つ、これに平行な幅方向Yに沿って延びている。したがって、入射光がこの高濃度半導体領域11p,12pに入射した場合、高濃度半導体領域11p,12pで発生及び収集された電荷のうち、それぞれの高濃度半導体領域11p,12pに近い方の信号取出電極1e,2eに流れ込む電荷は、基幹導電層PNを介することなく信号取出電極1e,2eから取り出される。
【0057】
すなわち、第4実施形態のPSDにおいては、最も外側のPSDの分枝導電層4P1,4P19近傍に入射光がスポット光として入射した場合、スポットの一部分は信号取出電極1e,2eにより遮られるため、スポットの遮られた部分に応じて入射光重心位置がずれるが、本実施形態のPSDにおいては、このような場合においてもスポット光に応じて発生した電荷を高濃度半導体領域11p,12pにて収集することが可能となり、PSDによる位置検出精度をさらに向上させることができる。
【0058】
(第6実施形態)
図19は第6実施形態に係るPSDの平面図、図20は図19に示したPSDのA−A矢印断面図、図21は図19に示したPSDのB−B矢印断面図である。本実施形態に係るPSDは、第4実施形態のPSDの信号取出電極1e,2eを一部分取り除き、信号取出電極1e,2eの取り除かれた部分直下の高濃度信号取出用半導体層1p,2pを高濃度半導体領域11p,12pとしたものであり、高濃度半導体領域11p,12p内には入射光が入射可能である。高濃度半導体領域11p,12pは、最も外側の分枝導電層4P1,4P19と所定間隔離隔しており、且つ、これに平行な幅方向Yに沿って延びている。したがって、入射光がこの高濃度半導体領域11p,12pに入射した場合、高濃度半導体領域11p,12pで発生及び収集された電荷のうち、それぞれの高濃度半導体領域11p,12pに近い方の信号取出電極1e,2eに流れ込む電荷は、基幹導電層PNを介することなく信号取出電極1e,2eから取り出される。
【0059】
すなわち、第4実施形態のPSDにおいては、最も外側のPSDの分枝導電層4P1,4P19近傍に入射光がスポット光として入射した場合、スポットの一部分は信号取出電極1e,2eにより遮られるため、スポットの遮られた部分に応じて入射光重心位置がずれるが、本実施形態のPSDにおいては、このような場合においてもスポット光に応じて発生した電荷を高濃度半導体領域11p,12pにて収集することが可能となり、PSDによる位置検出精度をさらに向上させることができる。
【0060】
また、信号取出電極1e,2eは、基幹導電層PNの長さ方向X両端の延長線上に配置されているが、分枝導電層4PNの形成された受光面の長さ方向X両端の延長線上には配置されていない。このように信号取出電極1e,2eを配置することにより、第5実施形態のPSDと比較してPSDの長さ方向Xの長さを短くすることができ、PSDを小型化することができる。
【0061】
(第7実施形態)
図22は第7実施形態に係るPSDの平面図、図23は図22に示したPSDのA−A矢印断面図、図24は図22に示したPSDのB−B矢印断面図である。本実施形態のPSDは、第6実施形態のPSDの基幹導電層PN上に遮光膜6を形成したものである。遮光膜6は黒色の顔料又は染料を含有する光感応性樹脂、すなわち黒色のホトレジストからなる。
【0062】
(第8実施形態)
図25は第8実施形態に係るPSDの平面図、図26は図25に示したPSDのA−A矢印断面図、図27は図25に示したPSDのB−B矢印断面図である。本実施形態のPSDは、第6実施形態のPSDの基幹導電層PNの長さ方向X両端部に位置する抵抗領域P1,P20及び高濃度信号取出用半導体層1p,2pに跨がるように信号取出電極1e,2eを配置したものである。両端の抵抗領域P1,P20は、それぞれ信号取出電極1e,2eに直接接続され、また、高濃度半導体領域11p,12pも信号取出電極1e,2eに直接接続されている。このPSDでは、基幹導電層PNからの電荷及び高濃度半導体領域11p,12pで収集された電荷は、直接信号取出電極1e,2eから取り出すことができる。
【0063】
(第9実施形態)
図28は第9実施形態に係るPSDの平面図、図29は図28に示したPSDのA−A矢印断面図、図30は図28に示したPSDのB−B矢印断面図である。本実施形態に係るPSDは、第1実施形態の基幹導電層PN、分枝導電層4PN及び高濃度信号取出用半導体層1p,2pの不純物濃度を実質的に同一としたものである。このPSDは、半導体基板2nにp型の不純物を添加することにより、基幹導電層PN、分枝導電層4PN及び高濃度信号取出用半導体層1p,2pを同時に製造したものである。高濃度信号取出用半導体層1p,2pの不純物濃度を電極1e,2eとオーミック接触ができるように増加させると、抵抗層である基幹導電層PNの抵抗率が低下する。そこで、基幹導電層PNの深さZを浅くすることで、抵抗率を増加させ、所望の抵抗値を得る。本実施形態のPSDでは、基幹導電層PN、分枝導電層4PN及び高濃度信号取出用半導体層1p,2pの不純物濃度は高く、且つ、表面の厚み方向の深さZは同一であるが、その深さZは浅いため、高濃度信号取出用半導体層1p,2pは電極1e,2eとオーミック接触し、基幹導電層PNは位置検出に十分な抵抗値を有する。また、n型の分枝領域4n2〜4n19は、p型の分枝導電層4P1〜4P19よりも深い深さを有するため、分枝導電層4P1〜4P 19 間に介在し、分枝導電層4P1〜4P19をさらに電気的に隔離する。分枝領域4n1及び4n20は、長さ方向Xに沿って最も外側にある分枝導電層4P1,4P19と高濃度信号取出用半導体層1p,2pとの間にそれぞれ介在し、分枝導電層4P1,4P19と高濃度信号取出用半導体層1p,2pとをそれぞれ電気的に隔離する。本実施形態のPSDによれば、基幹導電層PN、分枝導電層4PN及び高濃度信号取出用半導体層1p,2pを同一の工程で製造することができるので、上記実施形態のPSDと比較して製造が容易である。
【0064】
(第10実施形態)
図31は第10実施形態に係るPSDの平面図、図32は図31に示したPSDのA−A矢印断面図、図33は図31に示したPSDのB−B矢印断面図である。本実施形態に係るPSDは、基幹導電層PNを構成する抵抗領域P1〜P20の幅Yをそれぞれ第1実施形態のPSDの抵抗領域P1〜P20の幅の2分の1とするとともに、PSDの長さ方向Xに沿った幅方向Yの中心線に対して抵抗領域P1〜P20と線対称な抵抗領域P21〜P40を設け、対称関係にある抵抗領域同士を分枝導電層4PNで接続し、信号取出電極1e,2e間を抵抗領域P1〜P20と抵抗領域P21〜P40とで並列接続したものである。
【0065】
(第11実施形態)
図34は第11実施形態に係るPSDの平面図、図35は図34に示したPSDのA−A矢印断面図、図36は図34に示したPSDのB−B矢印断面図である。本実施形態に係るPSDは、第1実施形態のPSDの基幹導電層PNを構成する抵抗領域P1〜P20の偶数番目の抵抗領域P2n(nは整数で1〜10)をPSDの長さ方向Xに沿った幅方向Yの中心線に対して線対称移動させ、偶数番目の抵抗領域P2nと隣接する奇数番目の抵抗領域P2n-1,P2n+1(2n+1<21)とを分枝導電層4PNで接続し、信号取出電極1e,2e間を抵抗領域P1〜P20で直列接続したものである。
【0066】
(第12実施形態)
図37は第12実施形態に係るPSDの平面図、図38は図37に示したPSDのA−A矢印断面図、図39は図37に示したPSDのB−B矢印断面図である。本実施形態に係るPSDは、第1実施形態のPSDの基幹導電層PNを構成する各抵抗領域P1〜P20の幅方向Yの中心線をPSDの長方形表面の長さ方向Xに沿った幅方向Yの中心線と一致させたものである。
【0067】
【発明の効果】
本発明に係る半導体位置検出器は、分枝導電層で収集された光生成電荷を幅を可変した基幹導電層両端から取り出すので、スポット形状やスリット形状等の入射光形状の制限されることなく半導体位置検出器からの距離に応じた出力電流を高精度に取り出すことができる。
【図面の簡単な説明】
【図1】第1実施形態に係るPSDの平面図。
【図2】図1に示したPSDのA−A矢印断面図。
【図3】図1に示したPSDのB−B矢印断面図。
【図4】PSDを用いた測距装置の構成図。
【図5】測定距離L(m)と入射光位置X(μm)との関係を示すグラフ。
【図6】入射光スポット位置X(μm)と光電流相対出力(%)との関係を示すグラフ。
【図7】第2実施形態に係るPSDの平面図。
【図8】入射光スポット位置X(μm)と光電流相対出力(%)との関係を示すグラフ。
【図9】抵抗長(μm)と抵抗幅(μm)との関係を示すグラフ。
【図10】第3実施形態に係るPSDの平面図。
【図11】図10に示したPSDのA−A矢印断面図。
【図12】図10に示したPSDのB−B矢印断面図。
【図13】第4実施形態に係るPSDの平面図。
【図14】図13に示したPSDのA−A矢印断面図。
【図15】図13に示したPSDのB−B矢印断面図。
【図16】第5実施形態に係るPSDの平面図。
【図17】図16に示したPSDのA−A矢印断面図。
【図18】図16に示したPSDのB−B矢印断面図。
【図19】第6実施形態に係るPSDの平面図。
【図20】図19に示したPSDのA−A矢印断面図。
【図21】図19に示したPSDのB−B矢印断面図。
【図22】第7実施形態に係るPSDの平面図。
【図23】図22に示したPSDのA−A矢印断面図。
【図24】図22に示したPSDのB−B矢印断面図。
【図25】第8実施形態に係るPSDの平面図。
【図26】図25に示したPSDのA−A矢印断面図。
【図27】図25に示したPSDのB−B矢印断面図。
【図28】第9実施形態に係るPSDの平面図。
【図29】図28に示したPSDのA−A矢印断面図。
【図30】図28に示したPSDのB−B矢印断面図。
【図31】第10実施形態に係るPSDの平面図。
【図32】図31に示したPSDのA−A矢印断面図。
【図33】図31に示したPSDのB−B矢印断面図。
【図34】第11実施形態に係るPSDの平面図。
【図35】図34に示したPSDのA−A矢印断面図。
【図36】図34に示したPSDのB−B矢印断面図。
【図37】第12実施形態に係るPSDの平面図。
【図38】図37に示したPSDのA−A矢印断面図。
【図39】図37に示したPSDのB−B矢印断面図。
【符号の説明】
1n…高濃度n型半導体層(基板)、2n…低濃度n型半導体層、3n…高濃度n型半導体層、4n…高濃度n型半導体層、1p,2p…高濃度p型半導体層、4PN…複数の分枝導電層、4P1〜4P19…分枝導電層、PN…基幹導電層、P1〜P40…抵抗領域、5…パッシベーション膜、6…遮光膜、11p,12p…高濃度p型半導体領域。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor position detector (PSD) that detects the position of incident light.
[0002]
[Prior art]
A semiconductor position detector (PSD) is known as a device for measuring the distance of an object to be measured using a so-called triangulation principle or the like. The PSD is mounted on an imaging device such as a camera as an active distance measuring device, and in such an imaging device, focusing of the photographing lens is performed based on the distance of the object measured by the PSD.
[0003]
[Problems to be solved by the invention]
In the PSD described above, the position of the incident light spot on the light receiving surface of the PSD moves according to the distance to the object to be measured. Since the resistance value of the PSD resistance layer is divided according to the incident light spot position, and the output current from the PSD changes according to the resistance division ratio, the distance to the object to be measured can be detected based on the output current. it can. However, when distance measurement is performed using the principle of triangulation, when the distance to the object to be measured at a short distance changes, the position of the incident light spot moves largely on the light receiving surface, but at a long distance. When the distance to a certain object to be measured changes, the position of the incident light spot does not move much. That is, conventionally, the distance detection accuracy to an object to be measured at a long distance is considered to be lower than the accuracy at a short distance. Therefore, by narrowing the width of the resistance layer irradiated with the incident light spot in a linear function from the short distance side to the long distance side of the light receiving surface, the incident light spot from the object to be measured at a long distance is obtained. Japanese Patent Application Laid-Open No. 4-240511 discloses a technique in which the resistance division ratio of the resistance layer is greatly changed even if the amount of movement is small.
[0004]
However, in the PSD described in the publication, the width of the resistance layer is increased in a linear function as it goes from the long distance side to the short distance side, that is, the width of the resistance layer goes from the short distance side to the long distance side. Is narrowed by a linear function. This resistance layer forms a light receiving surface. The resistance layer can be considered as a micro resistance assembly in which micro resistances are connected in a matrix. The charge generated when light enters the resistance layer is divided based on the resistance ratio from the incident light position to the electrodes at both ends of the resistance layer, but only to a part of the micro resistance group aligned in the width direction of the resistance layer. When spot-shaped incident light is irradiated, the generated charge does not pass uniformly along the length of the resistive layer, and therefore the incident light position and output current calculated theoretically from the resistive layer shape. Is different for each incident light position and incident light shape, and it is difficult to accurately calculate the incident light position from the output current using a single relational expression. That is, in order to obtain an accurate incident light position from the output current, a plurality of different arithmetic circuits are required for each incident light position and incident light shape. In other words, in the above-mentioned conventional PSD, when the incident light is irradiated to all of the minute resistance groups aligned in the resistance layer width direction, that is, when the slit-shaped incident light enters the resistance layer vertically. In addition, the incident light position can be obtained using a single arithmetic circuit.
[0005]
The present invention has been made to solve the above-described problems, and provides a semiconductor position detector that can further improve the position detection accuracy as compared with the prior art and has no restriction on the shape of incident light. For the purpose.
[0006]
[Means for Solving the Problems]
The semiconductor position detector according to the present invention has a basic conductive layer in which a plurality of resistance regions are continuously arranged in a predetermined direction, and the basic current layer so that output currents from both ends of the basic conductive layer differ depending on the incident light position on the light receiving surface. A plurality of branched conductive layers extending from the conductive layer along the light receiving surface;,The resistance region has substantially the same resistivity, and the width perpendicular to the predetermined direction becomes wider from one end of the basic conductive layer to the other end.The light receiving surface is defined by the surface region of the semiconductor substrate on which the branched conductive layer is formed.It is characterized by that. The plurality of resistance regions are preferably continuous with the branch conductive layer interposed between the resistance regions, but the resistance regions may be continuous while in contact with each other.
[0007]
The position of the incident light moves on the light receiving surface according to the distance of the object to be measured. The charge generated in response to the incident light irradiation on the light receiving surface flows through the branched conductive layer into the basic conductive layer. Since the branched conductive layer extends so that output currents from both ends of the main conductive layer differ depending on the incident light position on the light receiving surface, the incident light position can be detected from this output current. The width of the plurality of resistance regions constituting the basic conductive layer becomes wider from one end to the other end, and the respective resistivities are substantially the same. Therefore, the incident light from the object to be measured at a long distance When this semiconductor position detector is arranged so that the electric charge generated according to the current flows into a narrow resistance region, the incident light position moves only slightly on the light receiving surface due to the change in the distance of the object to be measured. However, since the resistance value of the narrow resistance region is high, the output current from both ends of the basic conductive layer changes greatly.
[0008]
The incident light is received by the branch conductive layer, and the generated charges are resistance-divided by the basic conductive layer. Therefore, the width of the basic conductive layer can be reduced, and the resistivity is increased by increasing the impurity concentration. Even if it is lowered, a desired resistance value can be obtained. That is, by increasing the impurity concentration, the ratio of the minimum controllable impurity concentration to the total impurity concentration is reduced, so that the variation in resistivity is reduced and the position detection accuracy is improved.
[0009]
The width of the resistance region is preferably a linear function or a quadratic function at a position along a predetermined direction from one end of the basic conductive layer, and incident light is applied to the light receiving surface on which the branched conductive layer is formed. Therefore, without limiting the shape of the incident light, a distance detection function derived from the fact that the width of the resistance region is a linear function or a quadratic function of the position can be used. The distance from the output current to the object to be measured can be calculated.
[0010]
When signal extraction electrodes for extracting output current are provided at both ends of the main conductive layer, when incident light is irradiated to the branch conductive layer adjacent to the signal extraction electrode, a part of the incident light is irradiated to the signal extraction electrode.Be doneFor this reason, the position of the center of gravity of the incident light is shifted from the true position to the branched conductive layer side, and the position detection accuracy is deteriorated.
[0011]
Therefore, the semiconductor position detector of the present invention is adjacent to a predetermined branched conductive layer extending from the narrowest resistance region located at one end of the basic conductive layer and has a lower resistivity than the basic conductive layer. A high-concentration semiconductor region, and a signal extraction electrode provided at a position where charge that has passed through the high-concentration semiconductor region can flow without passing through the basic conductive layer in response to incident light, and from which one of the output currents is extracted It is further provided with the feature.
[0012]
When there is no high-concentration semiconductor region, when incident light is irradiated to the branch conductive layer extending from the narrowest resistance region located at one end of the basic conductive layer and the signal extraction electrode, the output from the signal extraction electrode The current is reduced by the incident light being blocked by the signal extraction electrode. However, the semiconductor position detector of the present invention includes a high concentration semiconductor region, and the high concentration semiconductorregionThe charge generated according to the incident light applied to the light flows into the signal extraction electrode without going through the basic conductive layer, and increases the output current from the signal extraction electrode. The position detection accuracy can be improved.
[0013]
When the basic conductive layer is irradiated with light, the calculated incident light position may deviate from the true value depending on the shape of the light. Therefore, when higher accuracy is required, the semiconductor position detector is further provided with a light shielding film formed on the basic conductive layer to further improve the position detection accuracy.
[0014]
In addition, when the semiconductor position detector includes a pair of signal extraction electrodes from which output currents from both ends of the basic conductive layer are respectively extracted, and the basic conductive layer is located between the signal extraction electrodes, the light shielding film has an insulating property. It is made of a material and covers a basic conductive layer between signal extraction electrodes. When the light shielding film is made of an insulating material, the signal extraction electrode is not short-circuited even if the entire region of the basic conductive layer between the signal electrodes is covered with the light shielding film.
[0015]
The light shielding film is preferably made of a black photoresist. A normal photoresist is used as a mask for forming an element such as a metal wiring. In the present invention, a black photoresist is used for the photoresist itself. Therefore, the light-shielding film can be formed simply by irradiating light to the uncured photoresist and developing it.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the semiconductor position detector according to the embodiment will be described. The same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.
[0017]
(First embodiment)
1 is a plan view of a semiconductor position detector (PSD) according to the first embodiment, FIG. 2 is a cross-sectional view of the PSD shown in FIG. 1 taken along the line AA, and FIG. 3 is a BB of the PSD shown in FIG. It is arrow sectional drawing. Note that the sectional view of the PSD used for the description shows the end face.
[0018]
The PSD according to this embodiment includes a
[0019]
The PSD is formed in the
[0020]
This PSD is formed at both ends of the surface of the PSD, and the basic conductive layer PNA pair of
[0021]
This PSD is the basic conductive layer PNA plurality of branched conductive layers 4P extending along the light receiving surface fromNIs provided. Branched conductive layer 4PNIs made of high-concentration p-type Si. Branched conductive layer 4PNThe impurity concentration of the basic conductive layer PNHigher than the impurity concentration of the branched conductive layer 4P.NThe resistivity of the basic conductive layer PNLower than the resistivity. Branched conductive layer 4PNA plurality of branched conductive layers 4P constituting1~ 4P19Is formed in the n-
[0022]
Further, the branch conductive layer 4PNThe length along the width direction Y is longer than the diameter of the incident light spot, and this spot is the main conductive layer P.NCan be prevented from being irradiated.
[0023]
This PSD has a resistance region P1~ P20Is a core conductive layer P that is continuous in the length direction XNAnd a pair of high concentration signal extraction semiconductor layers 1p and 2p formed in the
[0024]
The present PSD includes an outer
[0025]
The present PSD includes a branched conductive layer isolating
[0026]
The PSD includes a
[0027]
The PSD includes an
[0028]
The PSD includes a
[0029]
Between the pair of
[0030]
In the PSD according to the present embodiment, the above-described branched conductive layer 4P.NThe incident light is branched conductive layer 4P.NThe light receiving surface on which is formed is irradiated. Therefore, the position can be accurately detected without being affected by the shape of the incident light, and the position detection accuracy can be improved as compared with the conventional PSD.
[0031]
In the following description, output currents output from the
[0032]
FIG. 4 shows a distance measuring device using the
[0033]
When the infrared light emitted from the
[0034]
The incident position X1 of the light reflected by the object OB1 at a short distance on the light receiving surface is located at a distance X1 from the optical axis of the condensing
[0035]
The distance L (L1, L2) to the object to be measured and the incident light spot position X (X1, X2) have a relationship given by the following equation, and this relationship is shown in FIG. In the PSD of the present embodiment, the base line length B = 30 mm and the focal length f = 15 mm.
[0036]
[Expression 1]
[0037]
As shown in FIG. 5, as the distance L increases, the amount of movement of the incident light spot position X with respect to the amount of change in the distance L decreases. On the other hand, the basic conductive layer PNThe width Y and the position X in the length direction have a relationship of Y = aX + b. That is, the resistance region P1~ P20Width Y of the main conductive layer PNIt is a linear function of the position X along the length direction from one end. In this case, the incident light position X and the relative photocurrent output (%) have the relationship shown in FIG. Here, the basic conductive layer PNThe total length C is 1000 μm, and the width Y and the position X satisfy Y = 0.1X + 10 (μm). The photocurrent relative output is the basic conductive layer P.NIt is the ratio of the output currents I1 and I2 from both ends to the total output current I1 + I2. Further, when the ratios R1 = I1 / (I1 + I2) and R2 = I2 / (I1 + I2) are calculated, the incident light spot position X is obtained by the following equation.
[0038]
[Expression 2]
[0039]
The
[0040]
[Equation 3]
[0041]
(Second Embodiment)
FIG. 7 is a plan view of a PSD according to the second embodiment. 7A and 7B are the same as those in FIGS. 2 and 3, respectively, so that description thereof is omitted. That is, the PSD shown in FIG. 1 and the PSD shown in FIG.NOnly the surface shape is different. Core conductive layer PNWidth Y and length direction position X of Y = aX2+ B relationship. That is, the resistance region P1~ P20Width Y of the main conductive layer PNIt is a quadratic function of the position X along the length direction from one end. In this case, the incident light position X and the photocurrent relative output (%) have the relationship shown in FIG. Here, the basic conductive layer PNThe total length C is 1000 μm, and the width Y and position X are Y = 0.0001X2It shall satisfy +10 (μm). Further, when the ratio R2 = I2 / (I1 + I2) is calculated, the incident light position X is obtained by the following equation.
[0042]
[Expression 4]
[0043]
In this case, the
[0044]
Since the incident light position X has the following relationship, the distance L may be calculated from the above equation after calculating X directly from the following equation.
[0045]
[Equation 5]
[0046]
FIG. 9 shows the position in the length direction (resistance length) X and the basic conductive layer P.NIt is a graph which shows the relationship of width | variety (resistance width | variety) Y. Core conductive layer PNTotal length C of 1000μm, basic conductive layer PNThe minimum value of the width Y on the far side (closer to X = 0) is 10 μm, the basic conductive layer PNThe maximum value of the width Y on the short distance side (the far side from X = 0) is 100 μm. When the width Y is a linear function of the position X (Y = aX + b), the width Y at X = 100 μm and 200 μm is 19 μm and 28 μm, respectively. In addition, a quadratic function (Y = aX) where the width Y is the position X2+ B), the width Y at X = 100 μm and 200 μm is 10.9 μm and 13.6 μm, respectively. Like the PSD according to the first and second embodiments, the basic conductive layer PNThe width Y and the longitudinal direction position X are linear functions (Y = aX + b) or quadratic functions (Y = aX2When the relationship of + b) is satisfied, Y greatly changes with respect to the change of X on the long distance side. Therefore, when X and Y are in these relations, the basic conductive layer P with normal manufacturing accuracy.NThe basic conductive layer P having the required characteristics because the change rate of the width Y with respect to the manufacturing accuracy is largeNCan be manufactured.
[0047]
However, the relationship between the width Y and the position X is a cubic function (Y = aXThree+ B), the width Y at X = 100 μm and 200 μm is 10.09 μm and 10.72 μm, respectively, and is a quartic function (Y = aXFourWhen the relationship of + b) is satisfied, the width Y at X = 100 μm and 200 μm becomes 10.09 μm and 10.144 μm, respectively, and the change in the width Y with respect to the change in the length direction position X becomes extremely small.
[0048]
Therefore, when the width Y and the position X in the length direction have a relationship of a cubic function or more, it is necessary to control the width Y with very high accuracy. to degrade.
[0049]
Therefore, when the width Y at X = 100 μm when satisfying the relationship between the cubic and quaternary functions is the same as when satisfying the relationship of the quadratic function, that is, when a is set so that Y = 10.9 μm. The width Y on the short distance side (the one far from X = 0) becomes very wide as 910 μm and 9010 μm, respectively. That is, when the width Y and the position X in the length direction have a relationship of a cubic function or more, the basic conductive layer P with normal manufacturing accuracy is obtained as in the case of the linear function and the quadratic function.NIn order to be able to manufacture the PSD, the PSD must be very large.
[0050]
In the PSD according to the embodiment, the basic conductive layer PNSince the width Y and the position X in the length direction satisfy the relationship between the linear function and the quadratic function, the area of the light receiving surface is increased without increasing the size of the PSD, and the accuracy of the width of the basic conductive layer is reduced. Therefore, the position detection accuracy of these PSDs is improved.
[0051]
(Third embodiment)
10 is a plan view of a PSD according to the third embodiment, FIG. 11 is a cross-sectional view of the PSD shown in FIG. 10 taken along the line AA, and FIG. 12 is a cross-sectional view of the PSD shown in FIG. The PSD according to this embodiment is obtained by adding a
[0052]
The basic conductive layer P of the PSD of the first embodimentNWhen the light is irradiated, the calculated incident light position may deviate from the true value depending on the shape of the light. Therefore, the present semiconductor position detector has the basic conductive layer P.NThe
[0053]
The
[0054]
(Fourth embodiment)
13 is a plan view of a PSD according to the fourth embodiment, FIG. 14 is a cross-sectional view of the PSD shown in FIG. 13 taken along the line AA, and FIG. 15 is a cross-sectional view of the PSD shown in FIG. The PSD according to the present embodiment is the basic conductive layer P of the PSD shown in the first embodiment.NResistance region P of1~ P20Surface shape, outer
[0055]
Basic conductive layer P of this PSDNResistance region P of1~ P20Has a trapezoidal surface, but each resistance region P1~ P20The side of the trapezoidal surface on the light receiving surface side is parallel to the length direction X of the PSD and is located on the same straight line. In addition, each resistance region P1~ P20The side of the outer edge of the rectangular surface of the PSD intersects the length direction X at a predetermined angle,Core conductive layer P N Y1 position Y1 of the outer edge side of the PSD rectangular surfaceAnd the length direction position X is Y1 = −aX−b(However, a> 0)Have the relationship. Furthermore, it is an inner side of the outer
[0056]
(Fifth embodiment)
16 is a plan view of a PSD according to the fifth embodiment, FIG. 17 is a cross-sectional view of the PSD shown in FIG.FIG.It is BB arrow sectional drawing of PSD shown in FIG. The PSD according to the present embodiment includes the
[0057]
That is, in the PSD of the fourth embodiment, the branched conductive layer 4P of the outermost PSD.1, 4P19When incident light is incident as spot light in the vicinity, a part of the spot is blocked by the
[0058]
(Sixth embodiment)
FIG. 19 is a plan view of a PSD according to the sixth embodiment, FIG. 20 is a cross-sectional view taken along the line AA of the PSD shown in FIG. 19, and FIG. 21 is a cross-sectional view taken along the line BB of the PSD shown in FIG. In the PSD according to the present embodiment, the
[0059]
That is, in the PSD of the fourth embodiment, the branched conductive layer 4P of the outermost PSD.1, 4P19When incident light is incident as spot light in the vicinity, a part of the spot is blocked by the
[0060]
Further, the
[0061]
(Seventh embodiment)
22 is a plan view of a PSD according to the seventh embodiment, FIG. 23 is a cross-sectional view of the PSD shown in FIG. 22 taken along the line AA, and FIG. 24 is a cross-sectional view of the PSD shown in FIG. The PSD of the present embodiment is the basic conductive layer P of the PSD of the sixth embodiment.NA
[0062]
(Eighth embodiment)
25 is a plan view of the PSD according to the eighth embodiment, FIG. 26 is a cross-sectional view of the PSD shown in FIG. 25 taken along the line AA, and FIG. 27 is a cross-sectional view of the PSD shown in FIG. The PSD of the present embodiment is the basic conductive layer P of the PSD of the sixth embodiment.NResistance region P located at both ends of length direction X of1, P20In addition, the
[0063]
(Ninth embodiment)
FIG. 28 is a plan view of a PSD according to the ninth embodiment, FIG. 29 is a cross-sectional view taken along the line AA of the PSD shown in FIG. 28, and FIG. The PSD according to the present embodiment is the basic conductive layer P of the first embodiment.NBranched conductive layer 4PNThe impurity concentrations of the high concentration signal extraction semiconductor layers 1p and 2p are substantially the same. This PSD is obtained by adding a p-type impurity to the
[0064]
(10th Embodiment)
FIG. 31 is a plan view of a PSD according to the tenth embodiment, FIG. 32 is a cross-sectional view of the PSD shown in FIG.FIG.FIG. 32 is a cross-sectional view of the PSD shown in FIG. 31 taken along the line B-B. The PSD according to this embodiment includes the basic conductive layer P.NResistance region P constituting1~ P20The width Y of the PSD is the resistance region P of the PSD of the first embodiment, respectively.1~ P20The resistance region P with respect to the center line in the width direction Y along the length direction X of the PSD.1~ P20Resistance region P symmetrical totwenty one~ P40And the resistive regions having a symmetrical relationship are connected to the branched conductive layer 4P.NAnd connect the
[0065]
(Eleventh embodiment)
34 is a plan view of the PSD according to the eleventh embodiment, FIG. 35 is a cross-sectional view of the PSD shown in FIG. 34 taken along the line AA, and FIG. 36 is a cross-sectional view of the PSD shown in FIG. The PSD according to this embodiment is the basic conductive layer P of the PSD according to the first embodiment.NResistance region P constituting1~ P20Even-numbered resistance region P2n(N is an
[0066]
(Twelfth embodiment)
37 is a plan view of a PSD according to the twelfth embodiment, FIG. 38 is a cross-sectional view of the PSD shown in FIG. 37 taken along the line AA, and FIG. 39 is a cross-sectional view of the PSD shown in FIG. The PSD according to this embodiment is the basic conductive layer P of the PSD according to the first embodiment.NEach resistance region P constituting1~ P20The center line in the width direction Y is made to coincide with the center line in the width direction Y along the length direction X of the rectangular surface of the PSD.
[0067]
【The invention's effect】
The semiconductor position detector according to the present invention takes out the photogenerated charges collected in the branched conductive layer from both ends of the main conductive layer having a variable width, so that the incident light shape such as the spot shape or the slit shape is not limited. The output current corresponding to the distance from the semiconductor position detector can be taken out with high accuracy.
[Brief description of the drawings]
FIG. 1 is a plan view of a PSD according to a first embodiment.
2 is a cross-sectional view of the PSD shown in FIG.
3 is a cross-sectional view of the PSD shown in FIG.
FIG. 4 is a configuration diagram of a distance measuring device using PSD.
FIG. 5 is a graph showing a relationship between a measurement distance L (m) and an incident light position X (μm).
FIG. 6 is a graph showing the relationship between an incident light spot position X (μm) and a photocurrent relative output (%).
FIG. 7 is a plan view of a PSD according to a second embodiment.
FIG. 8 is a graph showing the relationship between incident light spot position X (μm) and relative photocurrent output (%).
FIG. 9 is a graph showing the relationship between resistance length (μm) and resistance width (μm).
FIG. 10 is a plan view of a PSD according to a third embodiment.
11 is an AA arrow cross-sectional view of the PSD shown in FIG. 10;
12 is a cross-sectional view of the PSD shown in FIG.
FIG. 13 is a plan view of a PSD according to a fourth embodiment.
14 is a cross-sectional view of the PSD shown in FIG.
15 is a cross-sectional view of the PSD shown in FIG.
FIG. 16 is a plan view of a PSD according to a fifth embodiment.
17 is a cross-sectional view taken along the line AA of the PSD shown in FIG.
18 is a cross-sectional view of the PSD shown in FIG. 16 taken along the line B-B.
FIG. 19 is a plan view of a PSD according to a sixth embodiment.
20 is a cross-sectional view taken along the line AA of the PSD shown in FIG. 19;
FIG. 21 is a cross-sectional view of the PSD shown in FIG. 19 taken along the line B-B.
FIG. 22 is a plan view of a PSD according to a seventh embodiment.
23 is a cross-sectional view of the PSD shown in FIG.
24 is a cross-sectional view of the PSD shown in FIG. 22 taken along the line BB.
FIG. 25 is a plan view of a PSD according to an eighth embodiment.
26 is a cross-sectional view of the PSD shown in FIG. 25 taken along the line AA.
27 is a cross-sectional view of the PSD shown in FIG. 25 taken along the line BB.
FIG. 28 is a plan view of a PSD according to a ninth embodiment.
29 is a cross-sectional view of the PSD shown in FIG. 28 taken along the line AA.
30 is a cross-sectional view of the PSD shown in FIG. 28 taken along the line BB.
FIG. 31 is a plan view of a PSD according to a tenth embodiment.
32 is a cross-sectional view of the PSD shown in FIG. 31 taken along the line AA.
33 is a cross-sectional view of the PSD shown in FIG. 31 taken along the line BB.
FIG. 34 is a plan view of a PSD according to an eleventh embodiment.
35 is a cross-sectional view of the PSD shown in FIG. 34 taken along the line AA.
36 is a cross-sectional view of the PSD shown in FIG. 34 taken along the line BB.
FIG. 37 is a plan view of a PSD according to a twelfth embodiment.
38 is a cross-sectional view taken along the line AA of the PSD shown in FIG. 37.
39 is a cross-sectional view of the PSD shown in FIG. 37 taken along the line B-B.
[Explanation of symbols]
1n: high concentration n-type semiconductor layer (substrate), 2n: low concentration n-type semiconductor layer, 3n: high concentration n-type semiconductor layer, 4n ... high concentration n-type semiconductor layer, 1p, 2p ... high concentration p-type semiconductor layer, 4PN... Multiple branched conductive layers, 4P1~ 4P19... Branched conductive layer, PN... Basic conductive layer, P1~ P40... resistance region, 5 ... passivation film, 6 ... light shielding film, 11p, 12p ... high concentration p-type semiconductor region.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09756697A JP3836935B2 (en) | 1997-04-15 | 1997-04-15 | Semiconductor position detector |
TW87117053A TW385552B (en) | 1997-04-15 | 1998-10-14 | Semiconductor position detection apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09756697A JP3836935B2 (en) | 1997-04-15 | 1997-04-15 | Semiconductor position detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10290013A JPH10290013A (en) | 1998-10-27 |
JP3836935B2 true JP3836935B2 (en) | 2006-10-25 |
Family
ID=14195792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09756697A Expired - Fee Related JP3836935B2 (en) | 1997-04-15 | 1997-04-15 | Semiconductor position detector |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3836935B2 (en) |
TW (1) | TW385552B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002289908A (en) * | 2001-03-26 | 2002-10-04 | Hamamatsu Photonics Kk | Optical semiconductor device |
DE102006013461B3 (en) | 2006-03-23 | 2007-11-15 | Prüftechnik Dieter Busch AG | Photodetector arrangement, measuring arrangement with a photodetector arrangement and method for operating a measuring arrangement |
DE102006013460B3 (en) | 2006-03-23 | 2007-11-08 | Prüftechnik Dieter Busch AG | Photodetector arrangement, measuring arrangement with a photodetector arrangement and method for operating a measuring arrangement |
-
1997
- 1997-04-15 JP JP09756697A patent/JP3836935B2/en not_active Expired - Fee Related
-
1998
- 1998-10-14 TW TW87117053A patent/TW385552B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JPH10290013A (en) | 1998-10-27 |
TW385552B (en) | 2000-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9577121B2 (en) | Tetra-lateral position sensing detector | |
US5567976A (en) | Position sensing photosensor device | |
US6529281B2 (en) | Position sensitive detectors and distance measuring apparatus using them | |
JP3836935B2 (en) | Semiconductor position detector | |
CN100372131C (en) | Semiconductor position sensor | |
US6459109B2 (en) | Semiconductor position sensor | |
JPH0476055B2 (en) | ||
JPH11145510A (en) | Semiconductor position sensor | |
JP4180708B2 (en) | Semiconductor position detector | |
JP2008227430A (en) | Photodetector for position detection, production process thereof, sensor, and electronic instrument | |
JPH0644640B2 (en) | Incident position detection semiconductor device | |
JPH11145509A (en) | Semiconductor position sensor | |
JP2002280600A (en) | Semiconductor position detector | |
JP2001015797A (en) | Semiconductor device for detecting light incidence position and manufacture thereof | |
CN116817752A (en) | position sensor | |
JP2545144Y2 (en) | Semiconductor optical position detector | |
JPH11230784A (en) | Optical encoder | |
JPH06224467A (en) | Position sensor | |
JPH04320917A (en) | Semiconductor optical rotation angle sensor | |
JPH0691279B2 (en) | Semiconductor position detector | |
JP2000261028A (en) | Semiconductor position detector and distance measuring device using the same | |
JP2000091624A (en) | Semiconductor position detector | |
JPH01115172A (en) | Semiconductor device for incident position detection | |
JPS63155780A (en) | Photo-semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060522 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060530 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060630 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060725 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060728 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100804 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100804 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110804 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120804 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120804 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130804 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |