JP3835872B2 - Surface acoustic wave resonator - Google Patents

Surface acoustic wave resonator Download PDF

Info

Publication number
JP3835872B2
JP3835872B2 JP01844597A JP1844597A JP3835872B2 JP 3835872 B2 JP3835872 B2 JP 3835872B2 JP 01844597 A JP01844597 A JP 01844597A JP 1844597 A JP1844597 A JP 1844597A JP 3835872 B2 JP3835872 B2 JP 3835872B2
Authority
JP
Japan
Prior art keywords
idt
spurious
saw
reflector
reflectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01844597A
Other languages
Japanese (ja)
Other versions
JPH10215144A (en
Inventor
ホクホア ウー
直人 猪瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP01844597A priority Critical patent/JP3835872B2/en
Publication of JPH10215144A publication Critical patent/JPH10215144A/en
Application granted granted Critical
Publication of JP3835872B2 publication Critical patent/JP3835872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、弾性表面波共振子、特に共振器型弾性表面波フィルタ等の構成に必要不可欠な弾性表面波共振子のスプリアス抑制設計方式に関するものである。
【0002】
【従来の技術】
一般に、弾性表面波装置は弾性表面波(Surface Acoustic Wave 、以下「SAW」という)を励振するためのすだれ状トランスデューサ(Interdigital Transducer 、以下「IDT」という)を有し、このIDTを加工することによってSAW装置にいろいろな特性や機能をもたせることができる。従来、SAW装置といえば主にSAWフィルタを指すことが多く、そしてこのSAWフィルタの中では多電極型SAWフィルタが主として用いられていた。近年、多電極型SAWフィルタの他に共振器型SAWフィルタの研究開発も盛んになり、SAWフィルタといえば必ずしも多電極型SAWフィルタを意味しなくなってきている。
【0003】
図2は、従来の一般的なSAW共振子の平面図である。
このSAW共振子は、圧電基板1を有している。圧電基板1上には、入力端子2と、出力端子3と、アルミニウム薄膜等からなる複数の電極指を有するSAW励振用IDT4と、該IDT4の左右から漏洩したSAWを該IDT4に戻すために音響的に反射するアルミニウム薄膜等からなる複数の電極指を有する左側の反射器5l 及び右側の反射器5r と、アースのボンディングパッド6とが形成されている。このSAW共振子は、構造上、入力側と出力側が対称になっているので、入力端子2を出力端子に、出力端子3を入力端子にしてもよい。通常、隣接しているIDT4の電極指と、反射器5l ,5r の電極指のピッチ(即ち、隣接している2本の電極指中心間隔)は、該IDT4の電極指のピッチと同じく、励振SAWの半波長になるように設計される。
一方、ボンディングパッド6もIDT4と同じ厚みなので、該IDT4の膜厚が4000Å以上あれば、その上に金のボンディングパッドを設ける必要なく、そのままボンディング可能である。反射器5l ,5r はIDT4と同時に形成されるので、該反射器5l ,5r の材質(Al)と膜厚はIDT4と同じであるが、用途によって不要になる場合もある。同様に、IDT4にも使用目的によって多少のバリエーションがある。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のSAW共振子では、次のような問題があり、これを解決することが困難であった。
反射器5l ,5r がない場合とある場合では、SAW共振子の特性が大きく異なってくる。即ち、反射器5l ,5r がない場合では、IDT4の左右から漏洩したSAWはそのまま損失となり、SAW共振子の伝送損失が大きくなる。逆に、反射器5l ,5r がある場合では、IDT4の左右に漏洩したSAWのエネルギーの大部分が該反射器5l ,5r に反射されてIDT4に戻るため、伝送損失が低いが、反射作用によって特性にスプリアスが発生し、SAW共振子の利用範囲を狭めてしまう。
図3(a),(b)は従来の課題を説明するための図であって反射器5l ,5r をもたないSAW共振子の特性図であり、同図(a)はインピーダンス特性図、及び同図(b)は挿入損失特性図である。各特性には、測定回路の略図も示されている。
図3(a)のインピーダンス特性と図3(b)のスルー状態の挿入損失特性は、一般的なLC共振子のインピーダンス特性と挿入損失特性と同じ振る舞いをするが、反射器5l ,5r がないので、IDT4の左右に漏洩するSAWのエネルギーが損失となり、伝送損失を大きくしてしまう。
【0005】
図4(a),(b)は従来の課題を説明するための図であって反射器5l ,5r を有するSAW共振子の特性図であり、同図(a)はインピーダンス特性図、及び同図(b)は挿入損失特性図である。
図4(a)のインピーダンス特性中の7aはインピーダンス特性のスプリアスであり、さらに同図(b)の挿入損失特性中の7bはその挿入損失特性に現われるスプリアスである。反射器5l ,5r を有しているので、図4(b)に示すスルー状態の伝送損失は、図3(b)に比べて大きく改善される代わりに、中心周波数より高域においてスプリアス7bが発生する。
一方、SAW共振子を用いてSAW装置の1つである共振器型SAWフィルタを構成する場合、スプリアス7a,7bの存在は一般的に好ましくない。即ち、利用する周波数帯域内にスプリアス7a,7bが存在すると、挿入損失特性にリップルや吸収帯域が発生し、フィルタ特性に重大な悪影響を与えかねない。従来、これを抑制するためには、SAW共振子のIDT4及び反射器5l ,5r の膜厚を厚くしたり、材料をAuのような重金属に変えたりする方法があるが、うまく調整できなければ、スプリアス7a,7bの悪影響だけでなく、中心周波数の調整問題や、伝送損失の問題等も加わってしまうため、技術的に未だ充分に満足のゆくものが得られなかった。
本発明は、前記従来技術がもっていた課題を解決し、反射器とIDTの設計を工夫することにより、スプリアスの悪影響を抑制し、低損失のSAW共振子を提供することを目的とする。
【0006】
【課題を解決するための手段】
図5は、本発明の原理を説明するためのSAW共振子のIDTと反射器付近の拡大図である。
本発明のSAW共振子では、複数の電極指を有するIDT14を備え、このIDT14の両側に複数の電極指を有する反射器15が設けられている。通常、IDT14のピッチ及び隣接している反射器15と該IDT14の電極指同士の中心間の距離dは、励振SAWの波長λの半波長(=λ/2)に等しいように設計される。この場合、スプリアスがある周波数帯域内に発生するが、距離dの値を変えるとスプリアスの発生する周波数帯域もこれに従って変わり、距離dが半波長増減するごとにスプリアスがもとの周波数帯域に戻る。理論的及び実験的に確認したところ、距離dをλ/2から増加させるとスプリアスが周波数の低域に移動し、距離dの増加分がλ/2に達するとスプリアスがもとの位置に戻る。そのため、距離dの値がスプリアスの発生する周波数帯域を決める重要な要因と言える。以下、断りがない限り、次の条件が常に成立しているとする。
λ/2≦d<λ
一方、SAW共振子の左右の反射器のうちの片側(15)だけを残しても、スプリアスが従来の周波数帯域に発生するが、レベルは例えばインピーダンス特性内のループの大きさが従来のスプリアスループの半分であることがわかった。そのため、左右の反射器の反射で発生するスプリアスが完全に独立していると言える。
【0007】
以上のような原理に基づき、本発明のSAW共振子では、表面を有する圧電基板と、前記圧電基板の前記表面上に設けられる第1の反射器と、前記圧電基板の前記表面上に設けられる第2の反射器と、前記圧電基板の前記表面上であって、前記第1の反射器と前記第2の反射器との間に位置し、前記第1の反射器とは第1の距離をおき、且つ、前記第2の反射器とは前記第1の距離とは異なる第2の距離をおいて設けられるIDTと、前記第1の反射器と隣り合い、前記IDTと前記2の距離をおいて、前記表面上に設けられる第3の反射器と、前記第2の反射器と隣り合い、前記IDTと前記第1の距離をおいて、前記表面上に設けられる第4の反射器とを備えている。
【0010】
【発明の実施の形態】
(参考例)
本発明の参考例であるSAW共振子の(1)構成、(2)動作、及び(3)利点を説明する。
(1) 構成
図6は、本発明の参考例を示すSAW共振子の平面図である。
このSAW共振子は、従来の図2と同様に、圧電基板11を有し、この圧電基板11上に、入力端子12と、出力端子13と、複数の電極指を有する励振用IDT14と、SAWをIDT14に反射するための複数の電極指を有する一方の側である左側の第1の反射器15l 及び他方の側である右側の第2の反射器15r と、アースのボンディングパッド16とが形成されている。入力端子12及び出力端子13は、IDT14に接続されているが、構造上、入力端子12を出力端子に、出力端子13を入力端子にしてもよい。IDT14、左側の第1の反射器15l 、及び右側の第2の反射器15r は、ボンディングパッド16で囲まれており、これらのIDT14、反射器15l ,15r 及びボンディングパッド16が、例えば膜厚が4000Å以上のAl等の薄膜で形成されている。
参考例のSWA共振子の構成は、基本的には従来のものと同じであるが、従来と異なる点は、左側の反射器15l とIDT14との距離dl と、右側の反射器15r とIDT14との距離dr とが、異なる値に設定されていることである。前述したように、各反射器15l ,15r の反射で発生するスプリアスは互いに独立しているので、例えば、左側の距離dl をλ/2+λ/8とし、右側の距離dr を従来と同一の距離に設定する。
【0011】
(2) 動作
例えば、数MHz以上の高周波信号が入力端子12(または出力端子13)に入力されると、この入力端子12と電気的に接続するIDT14の電極指に高周波電圧がかかる。高周波電圧がかかると、隣接する出力端子13(または入力端子12)と電気的に接続するIDT14の電極指に、誘導的に高周波電圧が発生するが、位相的に遅れているため、入力端子12及び出力端子13間に電位差が生じる結果になる。これにより、IDT14の電極指下の圧電基板11の表面が歪み、入力された高周波信号と同じ周波数のSAWが励振する。励振したSAWは、IDT14の左右に伝搬し、該IDT14の外側に向かって行くが、左右の反射器15l ,15r に達すると、ここで反射が起こり、IDT14の両側から反射されたSAWが該IDT14の中心に向かうようになる。
この結果、両反射器15l ,15r 間の領域にSAWの定在波が発生し、入力端子12側の電極指と出力端子13側の電極指の結合が一層強くなり、該出力端子13からある帯域の高周波信号が出力される。ここでは、反射器15l ,15r からの反射波があるので、スプリアスの発生は避けられないが、次のような利点がある。
【0012】
(3) 利点
例えば、距離dl とdr が等しい場合、左側の反射器15l のスプリアスと右側の反射器15r のスプリアスが同じ周波数帯域に発生するので、そのレベルが加算されて1個の大きなスプリアスになる。ところが、本参考例では左側の距離dl と右側の距離dr が異なるため、左側反射器15l のスプリアスと右側反射器15r のスプリアスの発生する周波数の帯域が異なり、この結果、それらのレベルが加算されずに2個の独立したスプリアスになる。この状態を図7(a),(b)に示す。
図7(a),(b)は図6のSAW共振子の特性図であり、同図(a)はインピーダンス特性図、及び同図(b)は挿入損失特性図である。図7(a)中の17al,17arは、インピーダンス特性に現われるスプリアスである。また、図7(b)中の17bl,17brは、挿入損失特性に現われるスプリアスである。
図6のような反射器15l ,15r の配置で従来発生する1個の大きなスプリアスが、図7(a),(b)に示すような2個の小さいスプリアス17al,17ar,17bl,17brに分散される。距離dl とdr を前記のようにうまく調整することにより、スプリアス17al,17ar,17bl,17brの発生する周波数帯域を不要な周波数帯域に導き出すことができ、その上、該スプリアス17al,17ar,17bl,17brのレベルを低く抑えることができる。
【0013】
(第1の実施形態)
本発明の第1の実施形態であるSAW共振子の(1)構成、(2)動作、及び(3)利点を説明する。
(1) 構成
図1は、本発明の第1の実施形態を示すSAW共振子の平面図であり、参考例を示す図6中の要素と共通の要素には共通の符号が付されている。
この第1の実施形態のSAW共振子は、基本的には参考例と同じであるが、該参考例をさらに発展させ、図6のIDT14の一方の側である左側の反射器15l を分割(例えば、2等分した2個の第1、第3の反射器15l1,15l2)すると共に、他方の側である右側の反射器15r を分割(例えば、2等分した2個の第2、第4の反射器15r1,15r2)し、各部のIDT14との距離を次のようにそれぞれ異なる値に設定している。
左側の2等分された反射器15l1,15l2とIDT14との距離をdl1,dl2とし、右側の2等分された反射器15r1,15r2とIDT14との距離をdr1,dr2とする。そして例えば、距離dl1をλ/2+(2/8)λ、距離dl2をλ/2+(3/8)λ、距離dr1を従来と同一のλ/2、及び距離dr2をλ/2+λ/8にそれぞれ設定している。
【0014】
(2) 動作
本実施形態のSAW共振子の動作原理は、参考例の動作原理とほぼ同じなので、説明を簡略化する。高周波信号が入力端子12に入力されると、IDT14でSAWが励振し、この励振したSAWがIDT14の左右に伝搬し、該IDT14までの距離dl1,dl2,dr1,dr2が異なった4つの反射器15l1,15l2,15r1,15r2に反射されてIDT14に戻る。これにより、従来の反射器を有するSAW共振器と同じように定在波が発生し、出力端子13から通過帯域の信号が強く出力される。反射器15l1,15l2,15r1,15r2があるため、漏洩SAWエネルギーはほとんどなく、その出力信号レベルは従来のものと同じであるが、次のような利点を有している。
【0015】
(3) 利点
本実施形態では、IDT14の両側から漏洩したSAWエネルギーはそれぞれの反射器15l1,15l2,15r1,15r2に反射されて該IDT14に戻るが、それぞれの反射器15l1,15l2,15r1,15r2とIDT14との距離dl1,dl2,dr1,dr2が異なるので、4つの反射波が生じる。漏洩したSAWエネルギーがIDT14に戻ることで、損失の面において本実施形態のSAW共振子は従来のSAW共振子と比べて同じである。また、各反射波は1つのスプリアスを発生させるので、本実施形態のSAW共振子の特性には4つのスプリアスがある。
図8(a),(b)は図1のSAW共振子の特性図を示すもので、同図(a)はインピーダンス特性図、及び同図(b)は挿入損失特性図である。図8(a)中の18al1 ,18al2,18ar1 ,18ar2 は、反射器15l1,15l2,15r1,15r2のインピーダンス特性によるスプリアスである。また、図8(b)中の18bl1 ,18bl2 ,18br1 ,18br2 は、反射器15l1,15l2,15r1,15r2による挿入損失特性のスプリアスである。
反射器15r1によるスプリアス18ar1 または18br1 の周波数帯域は、従来のSAW共振子のスプリアスの周波数帯域で、反射器15r2,15l1,15l2によるスプリアス18ar2 ,18al1 ,18al2 または18br2 ,18bl1 ,18bl2 の周波数帯域は、従来のスプリアスの周波数帯域より低域に移動する。
このように反射器15l1,15l2,15r1,15r2を分割すると、スプリアス18al1 ,18al2 ,18ar1 ,18ar2 ,18bl1 ,18bl2 ,18br1 ,18br2 も分散し、その数は分割された反射器15l1,15l2,15r1,15r2の数と同じになるが、大きさがその分だけ小さくなる。
【0016】
(第2の実施形態)
従来のSAW共振子や上記実施形態のSAW共振子は、水晶共振子やセラミック共振子等と同様に、図9に示すような集中定数等価回路図で表すことができる。
この等価回路は、直列に接続したインダクタL、キャパシタc1 及び抵抗rと、これと並列に接続したキャパシタC0 とで構成されている。このようなSAW共振子は、共振周波数と反共振周波数をもっており、これを用いたSAW装置である帯域フィルタを構成する理論は古くから知られているので、これについての詳細な説明は省略するが、参考例である図6のSAW共振子を用いた帯域フィルタの構成例を図10に示す。
図10は、本発明の第2の実施形態を示す4段はしご型フィルタの構成図である。
この4段はしご型フィルタは、図6のSAW共振子を用いて構成したもので、2個の直列腕共振子22,24と、3個の並列腕共振子21,23,25とで構成されている。
図11(a),(b)は従来のSAW共振子を用いて構成したはしご型フィルタと図10のはしご型フィルタの特性図を示すもので、同図(a)は従来のSAW共振子を用いて構成したはしご型フィルタの挿入損失特性図、及び同図(b)は図10のはしご型フィルタの挿入損失特性図である。
【0017】
従来、SAW共振子を用いてはしご型フィルタを構成するとき、直列腕共振子の共振周波数と並列腕共振子の反共振周波数がなるべく一致するように調整する必要がある。例えば、このような条件が満たされれば、はしご型フィルタの挿入損失特性は図11(a)のような特性になる。この図11(a)中の31は通過帯域、32はスプリアスを示す。従来のはしご型フィルタでは、挿入損失の低い周波数帯域が通過帯域31になり、これ以外が禁止帯域になる。また、従来の反射器を有するSAW共振子を用いてはしご型フィルタを構成すると、スプリアス32も発生する。図11(a)から明らかなように、直列腕SAW共振子が1個の大きいスプリアスをもっているので、はしご型フィルタも1個の大きいスプリアス32をもつことになる。
これに対し、参考例のSAW共振子を用いて図10のようなはしご型フィルタを構成すれば、その挿入損失特性が図11(b)のようになる。このはしご型フィルタでは、直列腕共振子22,24が2個の小さいスプリアスをもっているので、該はしご型フィルタも2個の小さいスプリアス41(ここで、2個のスプリアスを1つの名称にまとめる)をもつことになる。このような参考例のSAW共振子を用いることによって、従来のSAW共振子で構成されたはしご型フィルタの悪影響の強い1個のスプリアス32を、2個の悪影響の弱いスプリアス41に分散させ、さらに各反射器15l ,15r の配置の調整で、それぞれのスプリアスを不要な周波数帯域に導き出すことができる。
【0018】
(第3の実施形態)
本願発明の第3の実施形態では、第1の実施形態を示す図1のSAW共振子を用いて図10のようなはしご型フィルタを構成している。
図12は、第1の実施形態を示す図1のSAW共振子を用いて構成した本発明の第3の実施形態のはしご型フィルタの挿入損失特性図である。
図12に示すように、直列腕共振子(図10の22,24に相当)が4個の小さいスプリアスをもっているので、本実施形態のはしご型フィルタも4個の小さいスプリアス51(ここで4個のスプリアスを1つの名称にまとめる)をもつことになる。また、各スプリアス51の大きさも、従来のSAW共振子を用いたはしご型フィルタの1/4になり、さらに参考例のSAW共振子を用いた第2の実施形態のはしご型フィルタの1/2になる。このように、スプリアス51を分散させると、スプリアスの悪影響がさらに低下し、フィルタ特性がより向上する。
【0019】
なお、本発明は上記参考例や実施形態に限定されず、種々の変形が可能である。
例えば、上記参考例や実施形態では、左右の反射器15l ,15r とIDT14との距離dl ,dr を異なった値にしたり、左右の反射器15l1,15l2,15r1,15r2をそれぞれ2等分割し、得られた4つの反射器15l1,15l2,15r1,15r2をIDT14からすべて異なった値の距離dl1,dl2,dr1,dr2に配置したりしているが、これらの反射器の分割の仕方や配置の仕方は図示のものに限定されず、種々の変形が可能である。また、これらのSAW共振子を用いて構成したSAW装置は、図10のような4段はしご型フィルタに限定されず、他の構成の装置であってもよい。
【0020】
【発明の効果】
以上詳細に説明したように、本発明によれば、IDTの左右に第1、第3の反射器と第2、第4の反射器とを設け、IDTと第1、第4の反射器との距離と、IDTと第2、第3の反射器との距離と、を異ならせたので、従来の1個のスプリアスを、4つの小さなスプリアスに分散させることができる。そのため、スプリアスの発生する周波数帯域を不要な周波数帯域に導き出すことができ、しかもスプリアスのレベルを低く抑えることができる。従って、スプリアスの悪影響を抑制し、低損失のSAW共振子を提供できる。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態を示すSAW共振子の平面図である。
【図2】 従来のSAW共振子の平面図である。
【図3】 反射器をもたないSAW共振子の特性図である。
【図4】 反射器を有するSAW共振子の特性図である。
【図5】 本発明の原理を説明するためのSAW共振子のIDTと反射器付近の拡大図である。
【図6】 本発明の参考例を示すSAW共振子の平面図である。
【図7】 図6のSAW共振子の特性図である。
【図8】 図1のSAW共振子の特性図である。
【図9】 SAW共振子の集中定数等価回路図である。
【図10】 本発明の第2の実施形態を示す4段はしご型フィルタの構成図である。
【図11】 従来と図10のはしご型フィルタの特性図である。
【図12】 図1のSAW共振子を用いて構成した本発明の第3の実施形態のはしご型フィルタの挿入損失特性図である。
【符号の説明】
11 圧電基板
12 入力端子
13 出力端子
14 IDT
15 反射器
15l ,15l1,15l2 左側反射器
15r ,15r1,15r2 右側反射器
21,23,25 並列腕共振子
22,24 直列腕共振子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spurious suppression design method for a surface acoustic wave resonator that is indispensable for the configuration of a surface acoustic wave resonator , particularly a resonator-type surface acoustic wave filter.
[0002]
[Prior art]
In general, a surface acoustic wave device has an interdigital transducer (Interdigital Transducer, hereinafter referred to as “IDT”) for exciting a surface acoustic wave (hereinafter referred to as “SAW”), and by processing the IDT. A SAW device can have various characteristics and functions. Conventionally, a SAW device often refers mainly to a SAW filter, and among these SAW filters, a multi-electrode SAW filter has been mainly used. In recent years, research and development of resonator-type SAW filters in addition to multi-electrode type SAW filters has become active, and the term “SAW filter” does not necessarily mean a multi-electrode type SAW filter.
[0003]
FIG. 2 is a plan view of a conventional general SAW resonator.
This SAW resonator has a piezoelectric substrate 1. On the piezoelectric substrate 1, an input terminal 2, an output terminal 3, a SAW excitation IDT 4 having a plurality of electrode fingers made of an aluminum thin film or the like, and an acoustic for returning the SAW leaked from the left and right of the IDT 4 to the IDT 4 A left reflector 5 l and a right reflector 5 r having a plurality of electrode fingers made of a reflective aluminum thin film and the like, and a ground bonding pad 6 are formed. Since this SAW resonator is structurally symmetrical on the input side and the output side, the input terminal 2 may be the output terminal and the output terminal 3 may be the input terminal. Usually, the pitch between the electrode fingers of the IDT 4 adjacent to each other and the electrode fingers of the reflectors 5 l and 5 r (that is, the distance between the centers of the two adjacent electrode fingers) is the same as the pitch of the electrode fingers of the IDT 4. Designed to be half wavelength of excitation SAW.
On the other hand, since the bonding pad 6 has the same thickness as the IDT 4, if the film thickness of the IDT 4 is 4000 mm or more, the bonding can be performed as it is without providing a gold bonding pad thereon. Since the reflectors 5 l and 5 r are formed at the same time as the IDT 4, the material (Al) and the film thickness of the reflectors 5 l and 5 r are the same as those of the IDT 4, but may be unnecessary depending on the application. Similarly, IDT4 has some variations depending on the purpose of use.
[0004]
[Problems to be solved by the invention]
However, the conventional SAW resonator has the following problems, which are difficult to solve.
The characteristics of the SAW resonator differ greatly depending on whether the reflectors 5l and 5r are not provided. That is, in the absence of the reflectors 5l and 5r, the SAW leaked from the left and right of the IDT 4 becomes a loss as it is, and the transmission loss of the SAW resonator increases. On the contrary, when there are reflectors 5l and 5r, most of the SAW energy leaked to the left and right of the IDT 4 is reflected by the reflectors 5l and 5r and returns to the IDT 4, so that the transmission loss is low. Spurious is generated in the characteristics, and the use range of the SAW resonator is narrowed.
3 (a) and 3 (b) are diagrams for explaining a conventional problem, and are characteristic diagrams of a SAW resonator without reflectors 5l and 5r. FIG. 3 (a) is an impedance characteristic diagram. FIG. 4B is an insertion loss characteristic diagram. Each characteristic also shows a schematic diagram of the measurement circuit.
The impedance characteristic of FIG. 3A and the insertion loss characteristic of the through state of FIG. 3B behave the same as the impedance characteristic and insertion loss characteristic of a general LC resonator, but there are no reflectors 5l and 5r. Therefore, the SAW energy leaking to the left and right of the IDT 4 becomes a loss, which increases the transmission loss.
[0005]
4 (a) and 4 (b) are diagrams for explaining the conventional problems and are characteristic diagrams of a SAW resonator having reflectors 5l and 5r. FIG. 4 (a) is an impedance characteristic diagram and FIG. FIG. (B) is an insertion loss characteristic diagram.
7a in the impedance characteristic of FIG. 4A is a spurious impedance characteristic, and 7b in the insertion loss characteristic of FIG. 4B is a spurious appearing in the insertion loss characteristic. Since the reflectors 5l and 5r are provided, the transmission loss in the through state shown in FIG. 4 (b) is greatly improved compared to FIG. 3 (b), but the spurious 7b is higher in the region above the center frequency. appear.
On the other hand, when a resonator-type SAW filter, which is one of SAW devices, is configured using SAW resonators, the presence of spurious 7a and 7b is generally not preferable. That is, if the spurious 7a and 7b exist in the frequency band to be used, ripples and absorption bands are generated in the insertion loss characteristic, which may have a serious adverse effect on the filter characteristic. Conventionally, in order to suppress this, there are methods of increasing the thickness of the IDT 4 and reflectors 5l and 5r of the SAW resonator and changing the material to a heavy metal such as Au. In addition to the adverse effects of the spurs 7a and 7b, the problem of adjusting the center frequency, the problem of transmission loss, and the like are added, so that a technically satisfactory one has not yet been obtained.
An object of the present invention is to solve the problems of the prior art and to provide a low-loss SAW resonator by suppressing the adverse effects of spurious by devising the design of the reflector and IDT.
[0006]
[Means for Solving the Problems]
FIG. 5 is an enlarged view of the SAW resonator IDT and the vicinity of the reflector for explaining the principle of the present invention.
The SAW resonator of the present invention includes an IDT 14 having a plurality of electrode fingers, and a reflector 15 having a plurality of electrode fingers is provided on both sides of the IDT 14. Usually, the pitch d of the IDT 14 and the distance d between the reflectors 15 adjacent to each other and the center of the electrode fingers of the IDT 14 are designed to be equal to the half wavelength (= λ / 2) of the wavelength λ of the excitation SAW. In this case, spurious is generated in a certain frequency band. However, if the value of the distance d is changed, the frequency band in which the spurious is generated also changes accordingly, and the spurious returns to the original frequency band every time the distance d increases or decreases by half wavelength. . As a result of theoretical and experimental confirmation, when the distance d is increased from λ / 2, the spurious shifts to a lower frequency range, and when the increase in the distance d reaches λ / 2, the spurious returns to the original position. . Therefore, it can be said that the value of the distance d is an important factor that determines the frequency band in which spurious is generated. Hereinafter, it is assumed that the following conditions are always satisfied unless otherwise noted.
λ / 2 ≦ d <λ
On the other hand, even if only one side (15) of the left and right reflectors of the SAW resonator is left, spurious is generated in the conventional frequency band. However, the level of the loop in the impedance characteristic is, for example, the conventional spurious loop. It turned out to be half of that. Therefore, it can be said that the spurious generated by the reflection of the left and right reflectors is completely independent.
[0007]
Based on the principle as described above, the SAW resonator according to the present invention is provided on the surface of the piezoelectric substrate, the first reflector provided on the surface of the piezoelectric substrate, and the surface of the piezoelectric substrate. A second reflector and on the surface of the piezoelectric substrate, between the first reflector and the second reflector, the first reflector being a first distance; And an IDT provided at a second distance different from the first distance from the second reflector, and a distance between the IDT and the second adjacent to the first reflector. And a third reflector provided on the surface, and a fourth reflector provided on the surface adjacent to the second reflector and spaced apart from the IDT by the first distance. And .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
(Reference example)
The (1) configuration, (2) operation, and (3) advantages of the SAW resonator as a reference example of the present invention will be described.
(1) Configuration
FIG. 6 is a plan view of a SAW resonator showing a reference example of the present invention.
This SAW resonator has a piezoelectric substrate 11 as in the conventional FIG. 2. On the piezoelectric substrate 11, an input terminal 12, an output terminal 13, an excitation IDT 14 having a plurality of electrode fingers, and a SAW The first reflector 15l on the left side as one side and the second reflector 15r on the right side as the other side, and the ground bonding pad 16 are formed. Has been. Although the input terminal 12 and the output terminal 13 are connected to the IDT 14, the input terminal 12 may be used as an output terminal and the output terminal 13 may be used as an input terminal. The IDT 14, the first reflector 15l on the left side, and the second reflector 15r on the right side are surrounded by the bonding pad 16, and the IDT 14, the reflectors 15l, 15r, and the bonding pad 16 have a film thickness of, for example, It is formed of a thin film such as Al having a thickness of 4000 mm or more.
The configuration of the SWA resonator of the present reference example is basically the same as that of the conventional one, but is different from the conventional one in that the distance dl between the left reflector 15l and IDT 14 and the right reflector 15r and IDT 14 are different. The distance dr is set to a different value. As described above, since the spurious generated by the reflections of the reflectors 15l and 15r is independent from each other, for example, the left distance dl is λ / 2 + λ / 8, and the right distance dr is the same as the conventional distance. Set.
[0011]
(2) Operation For example, when a high frequency signal of several MHz or more is input to the input terminal 12 (or the output terminal 13), a high frequency voltage is applied to the electrode finger of the IDT 14 that is electrically connected to the input terminal 12. When a high frequency voltage is applied, a high frequency voltage is inductively generated at the electrode finger of the IDT 14 that is electrically connected to the adjacent output terminal 13 (or input terminal 12). As a result, a potential difference occurs between the output terminals 13. As a result, the surface of the piezoelectric substrate 11 under the electrode fingers of the IDT 14 is distorted, and a SAW having the same frequency as the input high-frequency signal is excited. The excited SAW propagates to the left and right of the IDT 14 and goes toward the outside of the IDT 14. When the SAW reaches the left and right reflectors 15 l and 15 r , reflection occurs here, and the SAW reflected from both sides of the IDT 14 is reflected. It goes toward the center of the IDT 14.
As a result, a SAW standing wave is generated in the region between the reflectors 15 l and 15 r , and the coupling between the electrode finger on the input terminal 12 side and the electrode finger on the output terminal 13 side is further strengthened. Therefore, a high frequency signal in a certain band is output. Here, since there are reflected waves from the reflectors 15 l and 15 r , spurious generation is inevitable, but there are the following advantages.
[0012]
(3) Advantages For example, when the distances dl and dr are equal, the spurious of the left reflector 15l and the spurious of the right reflector 15r are generated in the same frequency band, so the levels are added to form one large spurious. Become. However, since the left-side distance dl and the right-side distance dr are different in this reference example , the frequency bands generated by the spurious of the left reflector 15l and the spurious of the right reflector 15r are different. As a result, the levels are added. Without becoming two independent spurs. This state is shown in FIGS. 7 (a) and 7 (b).
FIGS. 7A and 7B are characteristic diagrams of the SAW resonator of FIG. 6 , FIG. 7A is an impedance characteristic diagram, and FIG. 7B is an insertion loss characteristic diagram. In FIG. 7A, 17al and 17ar are spurious appearing in the impedance characteristic. Further, 17Bl in FIG 7 (b), 17bR is a spurious appearing in the insertion loss characteristic.
Reflectors 15l as shown in FIG. 6, one large spurious generated conventionally placement 15r is, FIG. 7 (a), (b) as shown in a two small spurious 17al, 17ar, 17bl, dispersed 17br Is done. By adjusting the distances dl and dr as described above, the frequency band generated by the spurs 17al, 17ar, 17bl, 17br can be derived to an unnecessary frequency band, and the spurious 17al, 17ar, 17bl, The 17br level can be kept low.
[0013]
(First embodiment)
The (1) configuration, (2) operation, and (3) advantages of the SAW resonator according to the first embodiment of the present invention will be described.
(1) Configuration
FIG. 1 is a plan view of a SAW resonator showing a first embodiment of the present invention . Elements common to those in FIG. 6 showing a reference example are denoted by common reference numerals.
The SAW resonator of the first embodiment is basically the same as the reference example , but the reference example is further developed to divide the left reflector 15l which is one side of the IDT 14 in FIG. For example, the first and third reflectors 15l1 and 15l2 are divided into two equal parts, and the right reflector 15r which is the other side is divided (for example, two second and second reflectors divided into two equal parts) . 4 reflectors 15r1 , 15r2), and the distance from each part of the IDT 14 is set to different values as follows.
The distance between the left side of the equally divided reflectors 15l1,15l2 the IDT14 and dl1, dl2, the distance between the right bisected reflector 15r1,15r2 the IDT14 and dr1, dr2. For example, the distance dl1 is λ / 2 + (2/8) λ, the distance dl2 is λ / 2 + (3/8) λ, the distance dr1 is λ / 2, and the distance dr2 is λ / 2 + λ / 8. Each is set.
[0014]
(2) Operation The operation principle of the SAW resonator according to the present embodiment is almost the same as the operation principle of the reference example , so the description will be simplified. When a high frequency signal is input to the input terminal 12, the SAW is excited by the IDT 14, the excited SAW propagates to the left and right of the IDT 14, and four reflectors having different distances dl1, dl2, dr1, dr2 to the IDT 14 are provided. Reflected by 15l1, 15l2, 15r1, and 15r2 and returns to IDT14. As a result, a standing wave is generated in the same manner as a SAW resonator having a conventional reflector, and a signal in the passband is strongly output from the output terminal 13. Since there are reflectors 15l1, 15l2, 15r1, and 15r2, there is almost no leakage SAW energy, and the output signal level is the same as the conventional one, but it has the following advantages.
[0015]
(3) Advantages In this embodiment, the SAW energy leaked from both sides of the IDT 14 is reflected by the respective reflectors 15l1, 15l2, 15r1, 15r2 and returns to the IDT 14, but the respective reflectors 15l1, 15l2, 15r1, 15r2 Since the distances dl1, dl2, dr1, dr2 between IDT 14 and IDT 14 are different, four reflected waves are generated. When the leaked SAW energy returns to the IDT 14, the SAW resonator of the present embodiment is the same as the conventional SAW resonator in terms of loss. Since each reflected wave generates one spurious, there are four spurious characteristics in the SAW resonator of this embodiment.
FIGS. 8A and 8B are characteristic diagrams of the SAW resonator of FIG. 1. FIG. 8A is an impedance characteristic diagram, and FIG. 8B is an insertion loss characteristic diagram. 18al1, 18al2, 18ar1, and 18ar2 in FIG. 8A are spurious due to the impedance characteristics of the reflectors 15l1, 15l2, 15r1, and 15r2. Further, 18bl1, 18bl2, 18br1, and 18br2 in FIG. 8B are spurious insertion loss characteristics due to the reflectors 15l1, 15l2, 15r1, and 15r2.
The frequency band of the spurious 18ar1 or 18br1 by the reflector 15r1 is the frequency band of the spurious of the conventional SAW resonator, and the frequency band of the spurious 18ar2, 18al1, 18al2 or 18br2, 18bl1, 18bl2 by the reflectors 15r2, 15l1, 15l2 is: It moves to a lower frequency range than the conventional spurious frequency band.
When the reflectors 15l1, 15l2, 15r1, and 15r2 are divided in this manner, the spurious 18al1, 18al2, 18ar1, 18ar2, 18bl1, 18bl2, 18br1, and 18br2 are also dispersed, and the number thereof is divided into the reflectors 15l1, 15l2, 15r1, and so on. It is the same as the number of 15r2, but the size is reduced accordingly.
[0016]
(Second Embodiment)
The conventional SAW resonator and the SAW resonator of the above-described embodiment can be represented by a lumped constant equivalent circuit diagram as shown in FIG. 9, similarly to the crystal resonator and the ceramic resonator.
This equivalent circuit is composed of an inductor L, a capacitor c1 and a resistor r connected in series, and a capacitor C0 connected in parallel therewith. Such a SAW resonator has a resonance frequency and an anti-resonance frequency, and the theory of constituting a band filter that is a SAW device using the SAW resonator has been known for a long time, but a detailed description thereof will be omitted. FIG. 10 shows a configuration example of a bandpass filter using the SAW resonator of FIG. 6 as a reference example .
FIG. 10 is a configuration diagram of a four-stage ladder filter showing the second embodiment of the present invention.
This four-stage ladder filter is configured by using the SAW resonator of FIG. 6 , and is composed of two series arm resonators 22 and 24 and three parallel arm resonators 21, 23 and 25. ing.
11 (a) and 11 (b) show characteristics of a ladder filter constructed using a conventional SAW resonator and a ladder filter shown in FIG. 10, and FIG. 11 (a) shows a conventional SAW resonator. FIG. 10B is an insertion loss characteristic diagram of the ladder type filter configured using the same, and FIG. 10B is an insertion loss characteristic diagram of the ladder type filter of FIG.
[0017]
Conventionally, when a ladder filter is configured using a SAW resonator, it is necessary to adjust the resonance frequency of the series arm resonator and the anti-resonance frequency of the parallel arm resonator as closely as possible. For example, if such a condition is satisfied, the insertion loss characteristic of the ladder filter becomes a characteristic as shown in FIG. In FIG. 11A, 31 indicates a pass band, and 32 indicates spurious. In the conventional ladder type filter, the frequency band with a low insertion loss is the pass band 31, and the other band is the forbidden band. Further, when a ladder filter is configured using a SAW resonator having a conventional reflector, spurious 32 is also generated. As is clear from FIG. 11A, since the series arm SAW resonator has one large spurious, the ladder filter also has one large spurious 32.
On the other hand, if a ladder filter as shown in FIG. 10 is configured using the SAW resonator of the reference example , the insertion loss characteristic is as shown in FIG. In this ladder type filter, the series arm resonators 22 and 24 have two small spurs. Therefore, the ladder type filter also has two small spurs 41 (here, the two spurs are combined into one name). Will have. By using such a SAW resonator of the reference example , one spurious 32 having a strong adverse effect of the ladder filter constituted by the conventional SAW resonator is dispersed into two spurious 41 having a weak adverse effect, and By adjusting the arrangement of the reflectors 15l and 15r, each spurious can be derived to an unnecessary frequency band.
[0018]
(Third embodiment)
In the third embodiment of the present invention, a ladder filter as shown in FIG. 10 is configured using the SAW resonator shown in FIG. 1 showing the first embodiment.
Figure 12 is an insertion loss characteristic diagram of ladder filter of the third embodiment of the present invention constituted by using the SAW resonator of Fig. 1 showing the first embodiment.
As shown in FIG. 12, since the series arm resonator (corresponding to 22 and 24 in FIG. 10) has four small spurs, the ladder filter of this embodiment also has four small spurious 51 (here, four). Of spurious in one name). The size of each spurious 51 is also ¼ that of a ladder filter using a conventional SAW resonator, and ½ of the ladder filter of the second embodiment using the SAW resonator of the reference example. become. Thus, when the spurious 51 is dispersed, the adverse effect of the spurious is further reduced, and the filter characteristics are further improved.
[0019]
In addition, this invention is not limited to the said reference example and embodiment, A various deformation | transformation is possible.
For example, in the above reference examples and embodiments, the distances dl and dr between the left and right reflectors 15l and 15r and the IDT 14 are set to different values, or the left and right reflectors 15l1, 15l2, 15r1 and 15r2 are divided into two equal parts. The four reflectors 15l1, 15l2, 15r1, and 15r2 obtained are all arranged at different distances dl1, dl2, dr1, and dr2 from the IDT 14, but the way of dividing and arranging these reflectors are different. The method is not limited to the illustrated one, and various modifications are possible. Further, the SAW device configured using these SAW resonators is not limited to the four-stage ladder filter as shown in FIG. 10, and may be a device having another configuration.
[0020]
【The invention's effect】
As described above in detail, according to the present invention, the first and third reflectors and the second and fourth reflectors are provided on the left and right sides of the IDT, and the IDT, the first and fourth reflectors, And the distance between the IDT and the second and third reflectors can be made different, so that one conventional spurious can be dispersed into four small spurs. Therefore, the frequency band in which spurious is generated can be derived to an unnecessary frequency band, and the spurious level can be kept low. Accordingly, it is possible to provide a low-loss SAW resonator while suppressing the adverse effects of spurious.
[Brief description of the drawings]
FIG. 1 is a plan view of a SAW resonator showing a first embodiment of the present invention.
FIG. 2 is a plan view of a conventional SAW resonator.
FIG. 3 is a characteristic diagram of a SAW resonator having no reflector.
FIG. 4 is a characteristic diagram of a SAW resonator having a reflector.
FIG. 5 is an enlarged view of the SAW resonator IDT and the vicinity of the reflector for explaining the principle of the present invention.
FIG. 6 is a plan view of a SAW resonator showing a reference example of the present invention.
FIG. 7 is a characteristic diagram of the SAW resonator of FIG.
8 is a characteristic diagram of the SAW resonator of Fig.
FIG. 9 is a lumped constant equivalent circuit diagram of a SAW resonator.
FIG. 10 is a configuration diagram of a four-stage ladder filter showing a second embodiment of the present invention.
FIG. 11 is a characteristic diagram of the conventional ladder filter and FIG.
12 is an insertion loss characteristic diagram of a ladder filter according to a third embodiment of the present invention configured using the SAW resonator of FIG . 1 ; FIG.
[Explanation of symbols]
11 Piezoelectric substrate 12 Input terminal 13 Output terminal 14 IDT
15 reflectors 15l, 15l1, 15l2 left reflectors 15r, 15r1, 15r2 right reflectors 21 , 23 , 25 parallel arm resonators 22, 24 series arm resonators

Claims (3)

表面を有する圧電基板と、
前記圧電基板の前記表面上に設けられる第1の反射器と、
前記圧電基板の前記表面上に設けられる第2の反射器と、
前記圧電基板の前記表面上であって、前記第1の反射器と前記第2の反射器との間に位置し、前記第1の反射器とは第1の距離をおき、且つ、前記第2の反射器とは前記第1の距離とは異なる第2の距離をおいて設けられるトランスデューサと
前記第1の反射器と隣り合い、前記トランスデューサと前記2の距離をおいて、前記表面上に設けられる第3の反射器と、
前記第2の反射器と隣り合い、前記トランスデューサと前記第1の距離をおいて、前記表面上に設けられる第4の反射器とを備えたことを特徴とする弾性表面波共振子。
A piezoelectric substrate having a surface;
A first reflector provided on the surface of the piezoelectric substrate;
A second reflector provided on the surface of the piezoelectric substrate;
On the surface of the piezoelectric substrate, between the first reflector and the second reflector, at a first distance from the first reflector, and A transducer provided at a second distance different from the first distance ;
A third reflector provided on the surface adjacent to the first reflector and spaced a distance of the transducer from the two;
A surface acoustic wave resonator comprising: a fourth reflector provided on the surface adjacent to the second reflector and spaced from the transducer by the first distance .
前記圧電基板の前記表面の外縁部に設けられる接地されたボンディングパッドを備えたことを特徴とする請求項1記載の弾性表面波共振子。  2. The surface acoustic wave resonator according to claim 1, further comprising a grounded bonding pad provided on an outer edge portion of the surface of the piezoelectric substrate. 前記第1及び第2の距離は、それぞれ、λ  The first and second distances are respectively λ /2/ 2 以上λ未満(λは弾性表面波波長)の範囲内であることを特徴とする請求項1記載の弾性表面波共振子。2. The surface acoustic wave resonator according to claim 1, wherein the surface acoustic wave resonator is within a range of less than λ (λ is a surface acoustic wave wavelength).
JP01844597A 1997-01-31 1997-01-31 Surface acoustic wave resonator Expired - Fee Related JP3835872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01844597A JP3835872B2 (en) 1997-01-31 1997-01-31 Surface acoustic wave resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01844597A JP3835872B2 (en) 1997-01-31 1997-01-31 Surface acoustic wave resonator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006137644A Division JP4124241B2 (en) 2006-05-17 2006-05-17 Surface acoustic wave resonator

Publications (2)

Publication Number Publication Date
JPH10215144A JPH10215144A (en) 1998-08-11
JP3835872B2 true JP3835872B2 (en) 2006-10-18

Family

ID=11971837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01844597A Expired - Fee Related JP3835872B2 (en) 1997-01-31 1997-01-31 Surface acoustic wave resonator

Country Status (1)

Country Link
JP (1) JP3835872B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003296A1 (en) * 2016-06-29 2018-01-04 株式会社村田製作所 Multiplexer, high-frequency front end circuit, and communication device
WO2023074373A1 (en) * 2021-10-29 2023-05-04 株式会社村田製作所 Elastic wave resonator, elastic wave filter device, and multiplexer

Also Published As

Publication number Publication date
JPH10215144A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
KR100210120B1 (en) Surface acoustic wave filter
US6900577B2 (en) Surface acoustic wave device and communication apparatus
EP0652637B1 (en) Surface acoustic wave filter
US6114926A (en) Surface-acoustic-wave device having an improved pass-band characteristic and an improved degree of freedom for setting input and output impedances
US5999069A (en) Surface acoustic wave ladder filter having a parallel resonator with a larger electrostatic capacitance
US4542356A (en) High frequency narrow-band multi-mode filter
JPH0856135A (en) Surface acoustic wave device
JPH03222512A (en) Polarized type saw resonator filter
US6933803B2 (en) Surface acoustic wave filter, branching filter, and communication apparatus
US6346761B1 (en) Surface acoustic wave device capable of suppressing spurious response due to non-harmonic higher-order modes
USRE33957E (en) High frequency narrow-band multi-mode filter
JP3835872B2 (en) Surface acoustic wave resonator
JP2004096250A (en) Elastic surface wave filter and communication apparatus
JPH1188112A (en) Surface acoustic wave element
JPS61192112A (en) Surface acoustic wave device
JPH05335881A (en) Longitudinal dual mode surface acoustic wave filter
US6147574A (en) Unidirectional surface acoustic wave transducer and transversal-type saw filter having the same
JPH0832397A (en) Surface acoustic wave device
JPH10261936A (en) Surface acoustic wave filter
JP4124241B2 (en) Surface acoustic wave resonator
US6812812B2 (en) Longitudinally coupled surface acoustic wave resonator filter
JPH11239035A (en) Saw filter
JP3248231B2 (en) Surface acoustic wave transducer and surface acoustic wave device
US6781282B1 (en) Longitudinally coupled resonator-type surface acoustic wave device
JP2888739B2 (en) Surface acoustic wave filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees