JP3832582B2 - Screw hole position measurement method - Google Patents

Screw hole position measurement method Download PDF

Info

Publication number
JP3832582B2
JP3832582B2 JP2002366718A JP2002366718A JP3832582B2 JP 3832582 B2 JP3832582 B2 JP 3832582B2 JP 2002366718 A JP2002366718 A JP 2002366718A JP 2002366718 A JP2002366718 A JP 2002366718A JP 3832582 B2 JP3832582 B2 JP 3832582B2
Authority
JP
Japan
Prior art keywords
screw hole
points
screw
measuring
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002366718A
Other languages
Japanese (ja)
Other versions
JP2004198238A (en
Inventor
哲也 松川
哲司 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002366718A priority Critical patent/JP3832582B2/en
Publication of JP2004198238A publication Critical patent/JP2004198238A/en
Application granted granted Critical
Publication of JP3832582B2 publication Critical patent/JP3832582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、3次元測定機を用いてネジ穴の中心位置の座標を正確に測定するためのネジ穴位置度測定方法に関するものである。
【0002】
【従来の技術】
一般的に、エンジンのシリンダブロック、シリンダヘッド等の機械加工製品の寸法精度を測定するために、3次元測定機が用いられている。ところで、ネジ穴等の内面に細かい凹凸を有する穴の寸法を正確に測定することは困難であり、従来から、このような穴の寸法を測定するための装置が種々提案されている(例えば特許文献1および2参照)。このような事情から、機械加工製品のネジ穴の中心位置を測定する場合には、専用のゲージを用いて測定される場合が多い。
【0003】
【特許文献1】
特開平7−128005号公報
【特許文献2】
特開平11−2503号公報
【0004】
しかしながら、専用のゲージは、測定すべき機械加工製品毎に準備する必要があり、コストがかかるため、汎用の3次元測定機を用いてネジ穴の中心位置の座標を正確に求めることが要求されている。そこで、従来、3次元測定機を用いてネジ穴の中心位置の座標を求めるために、例えば次のような測定方法がとられている。
【0005】
3次元測定機を用いた従来のネジ穴位置度測定方法について、図7を参照して説明する。図7に示されるように、直径がネジピッチPの1.25倍程度(約3mm)の球状の先端部形状を有する3次元測定機の測定子2を製品図面上の寸法に基づいて、ネジ穴1の中心に所定の深さで挿入する。測定子2をネジ穴1の軸に直交する方向に移動させて、測定子2がネジ穴1の内周部(ネジ部)に当接する点Aの座標を求める。次に、測定子2をネジ穴の中心に沿って1/4ピッチ(P/4)移動させ、点Aから90°異なる位置でネジ穴1のネジ部に当接する点Bの座標を求める。同様に測定子2を1/4ピッチおよび90°ずつ移動させて、順次ネジ穴1のネジ部に当接する点Cおよび点Dの座標を求める。
【0006】
このようにして、測定子2をネジ穴1の軸に沿って1/4ピッチおよび90°ずつ異なる位置でネジ穴1のネジ部に当接させることにより、測定子2は、ネジ部のネジ山−ネジ溝間の同様の位置に当接することになるので、4つの点A、B、CおよびDは、ネジ穴1と同心で同じ直径を有する円周上に位置することになる。したがって、これらの4つの点A、B、CおよびDの位置に基づいて、ネジ穴1の中心位置の座標を求めることができる。
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来のネジ穴位置度測定方法では、次のような問題がある。図8に示されるように、測定子2は、先端部の直径がネジピッチPよりも大きいため、ネジ部のネジ山3に当接することになるが、ネジ部を機械加工する際、ネジ山3の頂部に高さ0.15mm程度のバリ4が生じることがあり、測定子2の当接位置がバリ4によって変動してしまう。このため、ネジ穴1の中心位置の座標を正確に求めることができない。
【0008】
なお、測定子2の先端部の直径をネジピッチPより小さくして、測定子2をネジ部のネジ溝5に当接させることにより、バリ4の影響を解消することができるが、測定子2は、必ずしもネジ溝5に当接するわけではなく、ネジ山3に当接する可能性があるため、依然として問題の解決にはならない。
【0009】
本発明は、上記の点に鑑みてなされたものであり、3次元測定機を用いてネジ穴の中心位置の座標を正確に測定することができるネジ穴位置度測定方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の課題を解決するために、請求項1の発明に係るネジ穴位置度測定方法は、測定子をネジ穴内に挿入し、前記測定子を前記ネジ穴の軸に直交する等間隔の3方向に移動させて、前記測定子が前記ネジ穴のネジ部に当接する3点を表す第1位置を測定し、その後、前記測定子を前記ネジ穴の軸に沿って前記ネジ部の1/2ピッチに相当する分だけ異なる位置に移動させ、前記測定子を前記3方向に沿って移動させて、前記測定子が前記ネジ部に当接する3点を表す第2位置を測定し、前記第1位置および前記第2位置が表す6点の中から、前記測定子が前記ネジ部のネジ溝に当接する3点を抽出し、この3点の位置に基づいて、前記ネジ穴の中心位置を求めることを特徴とする。
このように構成したことにより、第1位置の3点のうち、少なくとも1点は、ネジ溝に位置する点となり、第2位置の3点のうち、第1位置のネジ溝に位置する点に対応する点は、ネジ山の点となり、また、第1位置のネジ山の点に対応する点は、ネジ溝に位置する点となるので、第1位置および第2位置の6点の中からネジ溝に位置する3点を抽出し、そのネジ溝に位置する3点の位置に基づいて、ネジ穴の中心位置の座標を決定することができる。
請求項2の発明に係るネジ穴位置度測定方法は、上記請求項1の構成において、前記測定子は、主軸に直交する等間隔の3方向に突出する接触子を有していることを特徴とする。
このように構成したことにより、測定子の接触子がネジ部に当接する。
請求項3の発明に係るネジ穴位置度測定方法は、上記請求項1又は2の構成において、前記第1位置および前記第2位置が表す6点の中から2点を選ぶ全ての組合わせについて、その2点間の距離を計算し、その距離が大きい方から3つの組合わせを抽出し、その3つの組合わせに含まれる3点の位置に基づいて、前記ネジ穴の中心位置を求めることを特徴とする。
このように構成したことにより、簡単なアルゴリズムによってネジ溝に位置する3点を抽出することができる。
また、請求項4の発明に係るネジ穴位置度測定方法は、上記請求項1又は2の構成において、前記第1位置および前記第2位置が表す6点について、前記ネジ穴の所定の仮想中心からの距離を計算し、その距離が大きい方から順に3点を抽出し、該抽出された3点の位置に基づいて、前記ネジ穴の中心位置を求めることを特徴とする。
このように構成したことにより、簡単なアルゴリズムによってネジ溝に位置する3点を抽出することができる。
【0011】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて詳細に説明する。なお、上記従来例と同様の部分については同一の符号を付して説明する。
本実施形態に係る3次元測定機の測定子について、図2および図3を参照して説明する。図2及び図3に示されるように、測定子6は、主軸7の先端部側面に、主軸7と直交する3つの接触子8A、8B及び8Cが等間隔すなわち120°間隔で突出されている。これらの接触子8A、8B及び8Cは、長さが等しく、先端部9A、9B及び9Cが球状に形成されている。先端部9A、9B及び9Cの直径は、測定すべきネジ穴1のネジピッチPよりも充分小さく、好ましくは1mm程度(後述)とされる。また、主軸7の直径および接触子8A、8B及び8Cの長さは、測定子6がネジ穴1に挿入できるように、3つの接触子8A、8B及び8Cの先端を通る円の直径がネジ穴1の直径よりも充分小さくなるようにしてある。
【0012】
次に、測定子6を用いてネジ穴1の中心位置の座標を測定するためのネジ穴位置度測定方法について主に図1を参照して説明する。図1に示されるように、測定すべき製品の図面上の寸法に基づいて、測定子6をネジ穴1の(仮想)中心に所定の深さで挿入する。このときの3つの接触子8A、8B及び8Cの先端部9A、9B及び9Cの中心を通る平面を第1断面とする。そして、測定子6を第1断面上において、ネジ穴1の中心から順次3つの接触子8A、8B及び8Cに沿って(すなわち、ネジ穴1の軸に直交する等間隔の3方向に)移動させて、各接触子の先端部9A、9B及び9Cをネジ部に順次当接させ、各接触子の先端部9A、9B及び9Cがそれぞれネジ部に当接する3点A1、B1及びC1(第1位置)の座標を求める。
【0013】
このとき、3つの接触子8A、8B及び8Cは、120°間隔で配置されているので、3つの接触子の先端部9A、9B及び9Cのうち、少なくとも1つは、ネジ溝5に当接することになる(図示の例では、接触子8Aの先端部9Aが点A1においてネジ溝5に当接し、接触子8B及び8Cの先端部9B及び9Cが点B1及びC1においてネジ山3に当接している)。
【0014】
次いで、測定子6をネジ穴1の軸に沿って1/2ピッチだけ移動させる。このとき、3つの接触子8A、8B及び8Cの先端部9A、9B及び9Cの中心を通る平面を第2断面とする。そして、測定子6を第2断面上において、ネジ穴1の中心から順次3つの接触子8A、8B及び8Cに沿って(すなわち、ネジ穴1の軸に直交する等間隔の3方向に)移動させて、各接触子の先端部9A、9B及び9Cをネジ部に順次当接させ、各接触子の先端部9A、9B及び9Cがそれぞれネジ部に当接する3点A2、B2及びC2(第2位置)の座標を求める。
【0015】
このとき、第1断面と第2断面とは、1/2ピッチだけ離れており、ネジ山3及びネジ溝5の位相が180°異なるので、第1断面においてネジ溝5に当接した接触子8A、8B又は8Cは、第2断面においてネジ山3に当接し、第1断面においてネジ溝5に当接した接触子8A、8B又は8Cは、第2断面においてネジ山3に当接することになる(図示の例では、接触子8Aの先端部9Aが点A2においてネジ山3に当接し、接触子8B及び8Cの先端部9B及び9Cが点B2及びC2においてネジ溝5に当接している)。したがって、第1断面上の3点A1、B1、C1及び第2断面上の3点A2、B2、C2の合計6点のうち3点は、必ずネジ溝5に位置する点である。
【0016】
なお、第1断面と第2断面とでネジ部の位相が180°異なれば、上記と同じ結果が得られるので、測定子6の移動量は、ネジ部の1/2ピッチに限らず、3/2ピッチ、5/2ピッチ等、1/2ピッチに相当するネジ部の位相変化が得られる移動量とすることができる。
【0017】
次に、第1断面上の3点A1、B1、C1及び第2断面上の3点A2、B2、C2の合計6点のうちからネジ溝5に位置する3点を抽出する方法について説明する。
上記6点A1、B1、C1、A2、B2及びC2のうちから2点を選んだ15通りの全ての組合わせについて、その2点間の距離を計算する。このうち、2点間の距離が大きい方から3つの組合わせを抽出する(図1の例では、A1B2、A1C2及びB2C2)。これらの3つの組合わせに含まれる3点(図1の例では、A1、B2及びC2)がネジ溝5に位置する点となる。このようにして、簡単なアルゴリズムによってネジ溝5に位置する3点を抽出することができる。
【0018】
このようにして抽出したネジ溝5に位置する3点の座標に基づいて、ネジ穴1の中心位置の座標を計算することにより、ネジ溝5に位置する点データのみに基づいてネジ穴1の中心位置の座標を求めることができるので、ネジ山3に生じたバリ4(図4参照)の影響を受けることなく、正確な座標を求めることができる。
【0019】
このほか、第1断面上において、製品図面上の寸法に基づくネジ穴1の(仮想)中心から3点A1、B1およびC1までの距離をそれぞれ計算し、また、第2断面上において、ネジ穴1の(仮想)中心から3点A2、B2およびC2までの距離をそれぞれ計算し、ネジ穴1の(仮想)中心からの距離が大きい方から3点を抽出することにより、ネジ溝5に位置する3点を決定することができる。このようにして、簡単なアルゴリズムによってネジ溝5に位置する3点を抽出することができる。
【0020】
上記のほか、他の公知の数学的手法によって、上記6つの点A1、B1、C1、A2、B2及びC2から、ネジ溝5に位置する3点を抽出することもできる。
【0021】
次に、図5を参照して上述のネジ穴位置度測定方法のフローについて説明する。図5を参照して、ステップS1では、3次元測定機の測定子6を製品図面上の寸法に基づいて、ネジ穴1の中心に所定の深さで挿入して、接触子8A、8B及び8Cを第1断面上に配置する。ステップS2では、第1断面上において、測定子6を120°間隔の3方向に移動させて、接触子の先端部9A、9B及び9Cがそれぞれネジ部(ネジ山3又はネジ溝5)に当接する3点A1、B1及びC1の座標を測定する。
【0022】
ステップS3では、測定子6をネジ穴1の軸に沿って1/2ピッチ移動させて、接触子8A、8B及び8Cを第2断面上に移動させる。ステップS4では、第2断面上において、測定子6を120°間隔の3方向に移動させて、接触子の先端部9A、9B及び9Cがそれぞれネジ部(ネジ山3又はネジ溝5)に当接する3点A2、B2及びC2の座標を測定する。
【0023】
ステップS5では、第1および第2断面上の点A1、B1、C1、A2、B2及びC2から、上述の数学的手法によって、ネジ溝5に位置する3点を決定する。ステップS6では、ネジ溝5に位置する3点に基づいて、公知の数学的手法によって、ネジ穴1の中心の座標を計算する。
【0024】
このようにして、ネジ溝5に位置する3点の座標に基づいて、ネジ穴1の中心位置の座標を求めることにより、ネジ山3に生じたバリ4の影響を受けることなく、正確な座標を求めることができる。
【0025】
次に、本発明のネジ穴位置度測定方法による測定精度と接触子の先端部9A、9B及び9Cの直径との関係について、図6を参照して説明する。図6は、接触子先端部9A、9B及び9Cの直径を5mm、3mm及び1mmとした場合におけるネジ穴1の中心位置のズレ量についての測定値と真値との関係を示している。図6から分かるように、直径5mm又は3mmとした場合、測定値と真値との間に一定の割合でズレが生じるのに対して、直径1mmとした場合には、測定値と真値とが一致している。このことから、接触子先端部9A、9B及び9Cの直径は1mm程度とすることが望ましい。
【0026】
【発明の効果】
以上詳述したように、本発明に係るネジ穴位置度測定法法によれば、3次元測定機を用いて、ネジ穴の中心位置の座標を正確に測定することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るネジ穴位置度測定方法を示す説明図である。
【図2】本発明の一実施形態に係るネジ穴位置度測定方法に使用する測定子を示す側面図である。
【図3】図2に示す測定子の正面図である。
【図4】図2に示す測定子がネジ溝に当接した状態を示す図である。
【図5】本発明の一実施形態に係るネジ穴位置度測定方法を示すフローチャートである。
【図6】本発明の一実施形態に係るネジ穴位置度測定方法による測定精度と接触子の先端部の直径との関係を示す図である。
【図7】3次元測定機による従来のネジ穴位置度測定方法を示す説明図である。
【図8】従来のネジ穴位置度測定方法に用いる測定子がネジ山に当接した状態を示す図である。
【符号の説明】
1 ネジ穴
3 ネジ山
5 ネジ溝
6 接触子
A1、B1、C1 点(第1位置)
A2、B2、C2 点(第2位置)
[0001]
[Industrial application fields]
The present invention relates to a screw hole position degree measuring method for accurately measuring the coordinates of the center position of a screw hole using a three-dimensional measuring machine.
[0002]
[Prior art]
Generally, a three-dimensional measuring machine is used to measure the dimensional accuracy of machined products such as engine cylinder blocks and cylinder heads. By the way, it is difficult to accurately measure the size of a hole having fine irregularities on the inner surface thereof such as a screw hole, and various devices for measuring the size of such a hole have been conventionally proposed (for example, patents). Reference 1 and 2). For these reasons, when measuring the center position of a threaded hole of a machined product, the measurement is often performed using a dedicated gauge.
[0003]
[Patent Document 1]
JP-A-7-128005 [Patent Document 2]
Japanese Patent Application Laid-Open No. 11-2503
However, it is necessary to prepare a dedicated gauge for each machined product to be measured, which is costly. Therefore, it is required to accurately obtain the coordinates of the center position of the screw hole using a general-purpose three-dimensional measuring machine. ing. Therefore, conventionally, in order to obtain the coordinates of the center position of the screw hole using a three-dimensional measuring machine, for example, the following measuring method is taken.
[0005]
A conventional screw hole position measuring method using a three-dimensional measuring machine will be described with reference to FIG. As shown in FIG. 7, the measuring element 2 of the three-dimensional measuring machine having a spherical tip shape whose diameter is about 1.25 times the screw pitch P (about 3 mm) is formed on the screw hole based on the dimensions on the product drawing. Inserted into the center of 1 at a predetermined depth. The probe 2 is moved in a direction perpendicular to the axis of the screw hole 1 to obtain the coordinates of the point A where the probe 2 contacts the inner peripheral portion (screw portion) of the screw hole 1. Next, the measuring element 2 is moved by ¼ pitch (P / 4) along the center of the screw hole, and the coordinates of the point B contacting the screw part of the screw hole 1 at a position different from the point A by 90 ° are obtained. Similarly, the measuring element 2 is moved by 1/4 pitch and 90 °, and the coordinates of the points C and D that are in contact with the threaded portions of the screw holes 1 are obtained.
[0006]
In this way, the probe 2 is brought into contact with the screw portion of the screw hole 1 at a position that is different from each other by ¼ pitch and 90 ° along the axis of the screw hole 1. The four points A, B, C, and D are located on a circumference that is concentric with the screw hole 1 and has the same diameter. Therefore, the coordinates of the center position of the screw hole 1 can be obtained based on the positions of these four points A, B, C, and D.
[0007]
[Problems to be solved by the invention]
However, the above-described conventional screw hole position measuring method has the following problems. As shown in FIG. 8, the diameter of the tip of the measuring element 2 is larger than the screw pitch P, so that it contacts the screw thread 3 of the screw part. However, when machining the screw part, the screw thread 3 The burrs 4 having a height of about 0.15 mm may be generated at the top of the rim, and the contact position of the probe 2 varies depending on the burrs 4. For this reason, the coordinates of the center position of the screw hole 1 cannot be obtained accurately.
[0008]
The influence of the burr 4 can be eliminated by making the diameter of the tip of the probe 2 smaller than the screw pitch P and bringing the probe 2 into contact with the screw groove 5 of the screw part. Is not necessarily in contact with the screw groove 5, but may still be in contact with the screw thread 3, and thus still does not solve the problem.
[0009]
The present invention has been made in view of the above points, and an object thereof is to provide a screw hole position degree measuring method capable of accurately measuring the coordinates of the center position of a screw hole using a three-dimensional measuring machine. And
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the screw hole position degree measuring method according to the invention of claim 1 is characterized in that the measuring element is inserted into the screw hole, and the measuring element is arranged in three directions at equal intervals perpendicular to the axis of the screw hole. To measure the first position representing the three points where the probe contacts the screw portion of the screw hole, and then the probe is halved along the axis of the screw hole. Move to different positions corresponding to the pitch, move the probe along the three directions, measure a second position representing the three points where the probe contacts the screw portion, and From the six points represented by the position and the second position, three points where the probe contacts the screw groove of the screw portion are extracted, and the center position of the screw hole is obtained based on the positions of the three points. It is characterized by that.
With this configuration, at least one of the three points at the first position is a point located in the screw groove, and of the three points at the second position, the point is located in the screw groove at the first position. The corresponding point is a thread point, and the point corresponding to the thread point in the first position is a point located in the screw groove, so the point is selected from among the six points in the first position and the second position. Three points located in the screw groove are extracted, and the coordinates of the center position of the screw hole can be determined based on the positions of the three points located in the screw groove.
A screw hole position degree measuring method according to a second aspect of the invention is characterized in that, in the configuration of the first aspect, the measuring element has contacts protruding in three directions at equal intervals orthogonal to the main axis. And
With this configuration, the contact of the measuring element comes into contact with the screw portion.
The screw hole position degree measuring method according to the invention of claim 3 is the configuration of claim 1 or 2 for all combinations in which two points are selected from the six points represented by the first position and the second position. , Calculating the distance between the two points, extracting three combinations from the larger distance, and determining the center position of the screw hole based on the positions of the three points included in the three combinations It is characterized by.
With this configuration, three points located in the thread groove can be extracted by a simple algorithm.
According to a fourth aspect of the present invention, there is provided a screw hole position degree measuring method according to the first or second aspect, wherein a predetermined virtual center of the screw hole is defined for the six points represented by the first position and the second position. Is calculated, the three points are extracted in order from the largest one, and the center position of the screw hole is obtained based on the positions of the extracted three points.
With this configuration, three points located in the thread groove can be extracted by a simple algorithm.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected and demonstrated about the part similar to the said prior art example.
A probe of the coordinate measuring machine according to the present embodiment will be described with reference to FIGS. 2 and 3. As shown in FIG. 2 and FIG. 3, the measuring element 6 has three contacts 8 </ b> A, 8 </ b> B, and 8 </ b> C perpendicular to the main shaft 7 projecting at equal intervals, that is, 120 ° intervals, on the side surface of the main shaft 7. . These contacts 8A, 8B, and 8C are equal in length, and the tip portions 9A, 9B, and 9C are formed in a spherical shape. The diameters of the tip portions 9A, 9B and 9C are sufficiently smaller than the screw pitch P of the screw hole 1 to be measured, preferably about 1 mm (described later). Further, the diameter of the main shaft 7 and the length of the contacts 8A, 8B and 8C are such that the diameter of a circle passing through the tips of the three contacts 8A, 8B and 8C is a screw so that the measuring element 6 can be inserted into the screw hole 1. It is made to be sufficiently smaller than the diameter of the hole 1.
[0012]
Next, a screw hole position degree measuring method for measuring the coordinates of the center position of the screw hole 1 using the probe 6 will be described mainly with reference to FIG. As shown in FIG. 1, the measuring element 6 is inserted into the (virtual) center of the screw hole 1 at a predetermined depth based on the dimensions of the product to be measured on the drawing. A plane passing through the centers of the tip portions 9A, 9B and 9C of the three contacts 8A, 8B and 8C at this time is defined as a first cross section. Then, the measuring element 6 is moved along the three contacts 8A, 8B and 8C sequentially from the center of the screw hole 1 on the first cross section (that is, in three directions at equal intervals orthogonal to the axis of the screw hole 1). Thus, the tip portions 9A, 9B and 9C of the respective contacts are sequentially brought into contact with the screw portions, and the three points A1, B1 and C1 (the first points where the tip portions 9A, 9B and 9C of the respective contacts are brought into contact with the screw portions, respectively. Find the coordinates of 1 position.
[0013]
At this time, since the three contacts 8A, 8B and 8C are arranged at intervals of 120 °, at least one of the tip portions 9A, 9B and 9C of the three contacts contacts the screw groove 5. (In the example shown in the figure, the tip 9A of the contact 8A contacts the screw groove 5 at the point A1, and the tips 9B and 9C of the contacts 8B and 8C contact the thread 3 at the points B1 and C1. ing).
[0014]
Next, the probe 6 is moved along the axis of the screw hole 1 by ½ pitch. At this time, a plane passing through the centers of the tip portions 9A, 9B, and 9C of the three contacts 8A, 8B, and 8C is defined as a second cross section. Then, the probe 6 is sequentially moved along the three contacts 8A, 8B and 8C from the center of the screw hole 1 on the second cross section (that is, in three directions at equal intervals orthogonal to the axis of the screw hole 1). Thus, the tip portions 9A, 9B and 9C of each contact are sequentially brought into contact with the screw portions, and the three points A2, B2 and C2 (the first points where the tip portions 9A, 9B and 9C of the respective contacts come into contact with the screw portions, respectively. 2) coordinates are obtained.
[0015]
At this time, the first cross section and the second cross section are separated from each other by ½ pitch, and the phase of the screw thread 3 and the screw groove 5 are 180 ° different from each other. Therefore, the contact that contacts the screw groove 5 in the first cross section. 8A, 8B or 8C is in contact with the screw thread 3 in the second cross section, and the contact 8A, 8B or 8C in contact with the screw groove 5 in the first cross section is in contact with the screw thread 3 in the second cross section. (In the illustrated example, the tip 9A of the contact 8A is in contact with the screw thread 3 at a point A2, and the tips 9B and 9C of the contacts 8B and 8C are in contact with the screw groove 5 at points B2 and C2. ). Therefore, three points out of a total of six points including the three points A1, B1, and C1 on the first cross section and the three points A2, B2, and C2 on the second cross section are points that are always located in the screw groove 5.
[0016]
In addition, if the phase of the screw portion is different by 180 ° between the first cross section and the second cross section, the same result as described above can be obtained. Therefore, the moving amount of the probe 6 is not limited to the 1/2 pitch of the screw portion. The amount of movement can be obtained such that the phase change of the screw portion corresponding to ½ pitch, such as / 2 pitch, 5/2 pitch, and the like.
[0017]
Next, a method of extracting three points located in the screw groove 5 out of a total of six points of the three points A1, B1, C1 on the first cross section and the three points A2, B2, C2 on the second cross section will be described. .
The distance between the two points is calculated for all 15 combinations in which two points are selected from the six points A1, B1, C1, A2, B2, and C2. Among these, three combinations are extracted from the one having the larger distance between the two points (A1B2, A1C2, and B2C2 in the example of FIG. 1). Three points (A1, B2, and C2 in the example of FIG. 1) included in these three combinations are points located in the screw groove 5. In this way, three points located in the screw groove 5 can be extracted by a simple algorithm.
[0018]
By calculating the coordinates of the center position of the screw hole 1 based on the coordinates of the three points located in the screw groove 5 extracted in this way, the screw hole 1 is determined based only on the point data located in the screw groove 5. Since the coordinates of the center position can be obtained, accurate coordinates can be obtained without being affected by the burr 4 (see FIG. 4) generated in the thread 3.
[0019]
In addition, on the first cross section, the distances from the (virtual) center of the screw hole 1 to the three points A1, B1 and C1 based on the dimensions on the product drawing are calculated, respectively. By calculating the distances from the (virtual) center of 1 to the three points A2, B2 and C2, respectively, and extracting the three points from the larger distance from the (virtual) center of the screw hole 1, the position in the screw groove 5 Three points can be determined. In this way, three points located in the screw groove 5 can be extracted by a simple algorithm.
[0020]
In addition to the above, three points located in the thread groove 5 can be extracted from the six points A1, B1, C1, A2, B2, and C2 by other known mathematical methods.
[0021]
Next, the flow of the above-described screw hole position degree measuring method will be described with reference to FIG. Referring to FIG. 5, in step S <b> 1, the probe 6 of the three-dimensional measuring machine is inserted into the center of the screw hole 1 at a predetermined depth based on the dimensions on the product drawing, and the contacts 8 </ b> A, 8 </ b> B and 8C is arranged on the first cross section. In step S2, on the first cross section, the probe 6 is moved in three directions at intervals of 120 °, and the tip portions 9A, 9B, and 9C of the contacts contact the screw portions (thread 3 or screw groove 5), respectively. The coordinates of the three points A1, B1 and C1 in contact are measured.
[0022]
In step S3, the measuring element 6 is moved by 1/2 pitch along the axis of the screw hole 1 to move the contacts 8A, 8B, and 8C on the second cross section. In step S4, on the second cross section, the probe 6 is moved in three directions at intervals of 120 °, and the tip portions 9A, 9B, and 9C of the contacts contact the screw portions (thread 3 or screw groove 5), respectively. The coordinates of the three points A2, B2, and C2 that are in contact are measured.
[0023]
In step S5, three points located in the screw groove 5 are determined from the points A1, B1, C1, A2, B2, and C2 on the first and second cross sections by the mathematical method described above. In step S6, the coordinates of the center of the screw hole 1 are calculated based on the three points located in the screw groove 5 by a known mathematical method.
[0024]
In this way, by obtaining the coordinates of the center position of the screw hole 1 based on the coordinates of the three points positioned in the screw groove 5, accurate coordinates can be obtained without being affected by the burr 4 generated in the screw thread 3. Can be requested.
[0025]
Next, the relationship between the measurement accuracy by the screw hole position degree measuring method of the present invention and the diameters of the tip portions 9A, 9B and 9C of the contact will be described with reference to FIG. FIG. 6 shows the relationship between the measured value and the true value of the shift amount of the center position of the screw hole 1 when the diameters of the contact tip portions 9A, 9B and 9C are 5 mm, 3 mm and 1 mm. As can be seen from FIG. 6, when the diameter is 5 mm or 3 mm, there is a deviation between the measured value and the true value at a constant rate, whereas when the diameter is 1 mm, the measured value and the true value are Match. For this reason, it is desirable that the diameters of the contact tip portions 9A, 9B and 9C be about 1 mm.
[0026]
【The invention's effect】
As described above in detail, according to the screw hole position degree measuring method according to the present invention, the coordinates of the center position of the screw hole can be accurately measured using a three-dimensional measuring machine.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a screw hole position degree measuring method according to an embodiment of the present invention.
FIG. 2 is a side view showing a probe used for a screw hole position degree measuring method according to an embodiment of the present invention.
3 is a front view of the measuring element shown in FIG. 2. FIG.
4 is a view showing a state where the measuring element shown in FIG. 2 is in contact with a screw groove. FIG.
FIG. 5 is a flowchart illustrating a screw hole position degree measuring method according to an embodiment of the present invention.
FIG. 6 is a diagram showing the relationship between the measurement accuracy by the screw hole position degree measuring method according to one embodiment of the present invention and the diameter of the tip of the contact.
FIG. 7 is an explanatory diagram showing a conventional method for measuring screw hole position using a three-dimensional measuring machine.
FIG. 8 is a diagram showing a state in which a probe used in a conventional method for measuring the position of a screw hole is in contact with a screw thread.
[Explanation of symbols]
1 Screw hole 3 Screw thread 5 Screw groove 6 Contact A1, B1, C1 point (first position)
A2, B2, C2 points (second position)

Claims (4)

測定子をネジ穴内に挿入し、前記測定子を前記ネジ穴の軸に直交する等間隔の3方向に移動させて、前記測定子が前記ネジ穴のネジ部に当接する3点を表す第1位置を測定し、その後、前記測定子を前記ネジ穴の軸に沿って前記ネジ部の1/2ピッチに相当する分だけ異なる位置に移動させ、前記測定子を前記3方向に沿って移動させて、前記測定子が前記ネジ部に当接する3点を表す第2位置を測定し、前記第1位置および前記第2位置が表す6点の中から、前記測定子が前記ネジ部のネジ溝に当接する3点を抽出し、この3点の位置に基づいて、前記ネジ穴の中心位置を求めることを特徴とするネジ穴位置度測定方法。A measuring element is inserted into the screw hole, and the measuring element is moved in three directions at equal intervals perpendicular to the axis of the screw hole, so that the measuring element comes into contact with the screw portion of the screw hole. The position is measured, and then the measuring element is moved along the axis of the screw hole to a different position by an amount corresponding to 1/2 pitch of the screw portion, and the measuring element is moved along the three directions. And measuring the second position representing the three points where the probe contacts the screw part, and the measuring element is a screw groove of the screw part among the six points represented by the first position and the second position. A method for measuring the degree of screw hole position, wherein three points in contact with the screw hole are extracted and a center position of the screw hole is obtained based on the positions of the three points. 前記測定子は、主軸に直交する等間隔の3方向に突出する接触子を有していることを特徴とする請求項1に記載のネジ穴位置度測定方法。The screw hole position measuring method according to claim 1, wherein the measuring element has contacts protruding in three directions at equal intervals orthogonal to the main axis. 前記第1位置および前記第2位置が表す6点の中から2点を選ぶ全ての組合わせについて、その2点間の距離を計算し、その距離が大きい方から3つの組合わせを抽出し、その3つの組合わせに含まれる3点の位置に基づいて、前記ネジ穴の中心位置を求めることを特徴とする請求項1又は2に記載のネジ穴位置度測定方法。For all combinations in which two points are selected from the six points represented by the first position and the second position, the distance between the two points is calculated, and the three combinations are extracted from the larger distance, The screw hole position degree measuring method according to claim 1 or 2, wherein a center position of the screw hole is obtained based on positions of three points included in the three combinations. 前記第1位置および前記第2位置が表す6点について、前記ネジ穴の所定の仮想中心からの距離を計算し、その距離が大きい方から順に3点を抽出し、該抽出された3点の位置に基づいて、前記ネジ穴の中心位置を求めることを特徴とする請求項1又は2に記載のネジ穴位置度測定方法。For the six points represented by the first position and the second position, the distance from the predetermined virtual center of the screw hole is calculated, three points are extracted in order from the largest, and the extracted three points The screw hole position degree measuring method according to claim 1 or 2, wherein a center position of the screw hole is obtained based on the position.
JP2002366718A 2002-12-18 2002-12-18 Screw hole position measurement method Expired - Fee Related JP3832582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366718A JP3832582B2 (en) 2002-12-18 2002-12-18 Screw hole position measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366718A JP3832582B2 (en) 2002-12-18 2002-12-18 Screw hole position measurement method

Publications (2)

Publication Number Publication Date
JP2004198238A JP2004198238A (en) 2004-07-15
JP3832582B2 true JP3832582B2 (en) 2006-10-11

Family

ID=32763840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366718A Expired - Fee Related JP3832582B2 (en) 2002-12-18 2002-12-18 Screw hole position measurement method

Country Status (1)

Country Link
JP (1) JP3832582B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4828974B2 (en) * 2006-03-16 2011-11-30 株式会社ミツトヨ Screw measuring method, screw measuring probe, and screw measuring device using the same
CN113819824B (en) * 2021-09-22 2023-06-13 陕西法士特汽车传动集团有限责任公司 Complex hole system position degree gauge and detection method

Also Published As

Publication number Publication date
JP2004198238A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
EP2364427B1 (en) Method for coordinate measuring system
US9151588B2 (en) Method of measuring a circular shape characteristic and circular shape characteristic measuring device and program
CN108050949B (en) Method for measuring three-dimensional pitch diameter and two-dimensional comprehensive parameters of threads
JPH10507268A (en) Roundness measurement
CN110631534B (en) Method for detecting pitch diameter and pitch of taper thread of oil sleeve joint
CN105473981A (en) Calibration of a contact probe
JP2012159499A (en) Measuring apparatus and measuring method for ball screw
NL1014067C2 (en) A method of measuring parameters of internal and external threads and similar grooves using wedge probes.
JP3832582B2 (en) Screw hole position measurement method
CN104154849A (en) Three-axis linkage-based complicated part accurate measurement central path planning realizing method and device
CN106767636A (en) Using the method for the small-sized straight spur gear external diameter of three coordinate measuring engine measurement
JPH06341826A (en) Screw-hole-center measuring method
JP3975815B2 (en) 3D cam shape measurement result correction method and 3D cam profile measurement device
JP2004286498A (en) Method for measuring surface form
JP3701845B2 (en) Redesign value acquisition method for bevel gears
JP2005098752A (en) Measuring device for broach shape
JP2010096722A (en) Posture measuring method and grinding device
JP3205138U (en) Measuring instrument
JPS63175716A (en) Measuring instrument for tooth profile error
CN111687465B (en) Space cutter runout parameter measuring device in micro-milling machining and extracting method
KR100319115B1 (en) A method and an apparatus for measuring the 2-D position error of a NC machine tool
JP2534637B2 (en) Pilot pin device
JPS62297701A (en) Tooth thickness measuring tool for gear
Chajda et al. Coordinate measurement of complicated parameters like roundness, cylindricity, gear teeth or free-form surface
CN114964124A (en) Device and method for detecting symmetry degree of inner hole of small dovetail-shaped mortise

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060711

LAPS Cancellation because of no payment of annual fees