JP2004286498A - Method for measuring surface form - Google Patents

Method for measuring surface form Download PDF

Info

Publication number
JP2004286498A
JP2004286498A JP2003076903A JP2003076903A JP2004286498A JP 2004286498 A JP2004286498 A JP 2004286498A JP 2003076903 A JP2003076903 A JP 2003076903A JP 2003076903 A JP2003076903 A JP 2003076903A JP 2004286498 A JP2004286498 A JP 2004286498A
Authority
JP
Japan
Prior art keywords
data
ball
ball groove
acquired
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003076903A
Other languages
Japanese (ja)
Other versions
JP4348976B2 (en
Inventor
Chiaki Kikyo
千明 桔梗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003076903A priority Critical patent/JP4348976B2/en
Publication of JP2004286498A publication Critical patent/JP2004286498A/en
Application granted granted Critical
Publication of JP4348976B2 publication Critical patent/JP4348976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform dimension management suited for the function of products reflecting importance in a workpiece, where importance in the dimension management differs depending on the site, such as a ball groove in the inner lace of a constant velocity joint. <P>SOLUTION: A probe is moved along the ball groove to acquire a curve (a) for indicating the moving local of the probe at this time. Data on points on the curve (a) are acquired with a sampling period corresponding to the width of tolerance. For a range B having narrow tolerance width, data are acquired densely, while data are acquired roughly for ranges A, C having wide tolerance width. A sphere, where the acquired data are approximated, are obtained, and the radius is obtained. The radius is set to the precision management value of the ball groove. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、製作されたワークの寸法またはその精度を測定する測定方法に関する。
【従来の技術】
製作されたワークの表面のいくつかの点の座標データを取得し、これらのデータに基づきワーク表面の形状を算出する測定装置が知られている(特許文献1参照)。
【0002】
また、等速ジョイントのインナレースまたはアウタレースのボール溝のピッチ半径を測定する装置においても、ボール溝の形状を測定し、この形状に基づきピッチ半径を算出している。これらのボール溝は、その全長にわたって均一な寸法精度を要求されてはおらず、製品の機能上重要な、また必要のある部位には高い精度が要求される一方、その他の部分においては、寸法公差が広めに設定されている場合がある。
【0003】
【特許文献1】
特開平11−211452号公報
【0004】
【発明が解決しようとする課題】
前述のように、ワークの表面形状の算出の基礎となる測定点を均一な密度で取得すると、寸法精度の管理上重要となる部分の測定点が相対的に少なくなり、そうでない部分の測定点のデータによる影響が大きくなる。この結果、本来必要な部分のデータの誤差が大きくなり、測定の信頼性が低下する場合があるという問題があった。
【0005】
【課題を解決するための手段】
本発明は、ワークの表面形状を測定する方法であって、ワーク表面形状の所定の領域ごとに、寸法精度上の重要度に応じて測定点の密度を変えて、各測定点の座標データを取得し、前記取得された座標データに基づきワークの表面形状を算出するものである。
【0006】
また、本発明の他の態様によれば、等速ジョイントのインナレースまたはアウタレースのボール溝のピッチ半径を測定する方法が提供される。この測定方法は、ボール溝の所定の領域ごとに、寸法精度上の重要度に応じて測定点の密度を変えて、各測定点の座標データを取得し、前記取得された座標データに基づきボール溝の形状を算出し、前記算出されたボール溝の形状に基づき、そのピッチ半径を算出するものである。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態(以下実施形態という)を、図面に従って説明する。この実施の形態は、等速ジョイントのインナレースのボール溝のピッチ半径の測定に関するものであるが、他の物品に適用することも可能である。例えば、等速ジョイントのアウタレースに同様に設けられたボール溝に対しても適用することができる。
【0008】
図1は、等速ジョイントのインナレースを示す断面図である。等速ジョイントのインナレース10は、軸線12を対称軸とする複数個のボール溝14を有している。これらのボール溝14は、軸線12を含む平面内に配置され、その溝におけるボール接触線16は、軸線12上の所定点Oを中心とした円弧を描く部分を有している。複数のボール溝のそれぞれのボール接触線16の円弧が規定する中心点は、共通である。言い換えれば、ボール接触線16は、点Oを中心とする球面上に位置し、また個々のボール接触線16は軸線12を含む平面内に位置する。以降、このボール接触線16が形成する球面を溝外接球面、この球面の中心Oを溝外接球心Oと記す。また、この溝外接球心Oからの等速ジョイントの転動体であるボールの中心までの距離をピッチ半径PCRと記す。
【0009】
図1には、さらにボール溝の精度を測定するプローブ18が示されている。プローブ18は、プローブアーム20とその先端に固定され、当該等速ジョイントのボールと同径の当接ボール22を含む。プローブ18は、その当接ボール22をボール接触線16に当接させた状態で、これをなぞるようにして、図中実線の位置から一点鎖線で示される位置へと移動可能となっている。この移動の際の当接ボール22の軌跡によりボール溝14の形状が測定できる。
【0010】
図示するように、ボール溝14は、インナレースの図中上端から下端まで形成されているが、実際の使用時において鋼球が位置するのは、多くの場合、図中Bで示す範囲である。すなわち、鋼球は、球心Oに近い範囲Aや上端付近の範囲Cではなく、その中間の範囲Bに存在する頻度が高い。ボール溝14の公差もこれを反映し、常用位置である範囲Bが公差幅が狭く、一方、存在する機会の少ない範囲A,Cについては幅が広くなっている。したがって、範囲A,Cについては、加工時の誤差が大きい場合が考えられ、この誤差がボール溝14の形状の算出に影響を与える可能性がある。つまり、範囲Bにおいては、精度良く加工させている場合であっても、これ以外の部分で加工誤差が大きい場合、この部分の誤差が全体に影響して、範囲Bについても精度が低いとされる可能性がある。
【0011】
本実施形態においては、公差幅が狭く、寸法管理が厳しい部分のデータを重視するようにして、製品の機能に適合した精度管理を行っている。すなわち、前述の範囲Bに関するデータを重視し、範囲A,Cにおいてはその影響を小さくするようにしている。具体的には、範囲Bの測定点の密度を密にし、範囲A,Cの測定点の密度を粗にすることにより、重要度に応じたデータの取得を行う。
【0012】
次に、ボール溝14の形状、特にピッチ半径PCRの測定について、具体的に説明する。前述したように、プローブ18は、ボール溝14に沿って移動可能であり、この移動時の変位を、複数のボール溝ごとに記録する。このときの軌跡が図2に符号aで示す曲線である。この曲線aは、当接ボール22の中心の軌跡であり、理想的には円弧となるが、実際には加工精度により円弧に対し凹凸が生じている。この軌跡から、前述の範囲Bにおいては密にデータを取得し、範囲A,Cからは粗く取得する。図2中「○」で示す点が、データを取得した点の例である。これらの取得されたデータから、これらのデータを近似する球体を算出する。この球体は、溝外接球と同心である。また、その半径は、溝外接球の半径とボールの半径を足したものに等しく、これは前述のピッチ半径PCRに相当する。
したがって、この球体の半径を求めることにより、当該インナレースのピッチ半径PCRが算出される。さらに、ピッチ半径を管理する手法として、溝外接球心Oから軸線12の方向の所定距離離れた平面内でのピッチ半径PCRを測定して、これを管理する場合がある。この場合は、密度を変えて取得したデータを近似して得られた球体の中心を溝外接球心Oとし、ここから所定距離離れた平面内に、プローブの当接ボール22の中心を位置させた状態で、これをボール溝に当接させ、この位置の座標に基づき精度管理用の測定値としてピッチ半径PCRを算出することができる。
【0013】
前述したデータ密度の変更は、例えば次のようにできる。図示した範囲A,B,Cの寸法公差がそれぞれ±0.02,±0.006,±0.01である場合、当接ボールの軌跡データから、球体算出用のデータ抽出のサンプリング間隔を上記のデータの比率に一致させる。つまり、範囲A,B,Cのデータサンプリング間隔は、3.33:1:1.67となり、範囲Aが最も粗であり、範囲Bが密となる。また、等速ジョイントのボールの存在頻度に応じて、データの密度を変化させることができる。ボールの存在頻度は、過去の使用実績から求めることができ、また製品設計段階において定めることもできる。存在頻度が高い範囲においては、サンプリング間隔を狭め、データの密度を高める。逆に、存在頻度が低い範囲においてはサンプリング間隔を広くしてデータの密度を低くする。
【0014】
以上の説明においては、ボール溝の精度管理を、溝外接球心Oを基準としたピッチ半径で管理しているが、軸線12からボール中心までの距離で管理することも可能である。プローブの当接ボール22の中心が、溝外接球心Oより軸線方向に所定距離の平面内にあるようにして、当接ボール22をボール溝14に当接させ、このときの当接ボール22の中心と軸線12の距離を管理用の測定値とする。この管理用の測定値を得るにあたって、再度プローブ18を用いて実際に測定を行うのではなく、前述のデータを近似して求めた球体から計算によって求めることもできる。
【0015】
以上の実施形態によれば、製品の機能上必要とされる範囲または公差が狭く、寸法管理が厳しい部分を重点的に評価することができ、機能に適合した精度管理を行うことができる。
【図面の簡単な説明】
【図1】本実施形態において測定対象となるインナレースおよび測定用のプローブを示す図である。
【図2】測定されたデータの処理に関する説明図である。
【符号の説明】
10 インナレース、12 軸線、14 ボール溝、16 ボール接触線、18 プローブ、22 当接ボール。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a measurement method for measuring a dimension of a manufactured work or its accuracy.
[Prior art]
2. Description of the Related Art A measuring device that acquires coordinate data of several points on a surface of a manufactured work and calculates a shape of the work surface based on the data is known (see Patent Document 1).
[0002]
Also, in a device for measuring the pitch radius of the ball groove of the inner race or the outer race of the constant velocity joint, the shape of the ball groove is measured, and the pitch radius is calculated based on this shape. These ball grooves are not required to have uniform dimensional accuracy over their entire length, and high precision is required for parts that are important and necessary for product functions, while dimensional tolerances are required for other parts. May be set wider.
[0003]
[Patent Document 1]
JP-A-11-212452
[Problems to be solved by the invention]
As described above, if the measurement points that are the basis of the calculation of the surface shape of the workpiece are acquired at a uniform density, the measurement points of the parts that are important in managing the dimensional accuracy are relatively reduced, and the measurement points of the parts that are not so The effect of the data increases. As a result, there is a problem that an error in data of a part originally required becomes large and reliability of measurement may be reduced.
[0005]
[Means for Solving the Problems]
The present invention is a method for measuring the surface shape of a work, and for each predetermined area of the work surface shape, changing the density of the measurement points in accordance with the degree of importance in dimensional accuracy, and obtaining coordinate data of each measurement point. It is obtained and calculates the surface shape of the work based on the obtained coordinate data.
[0006]
According to another aspect of the present invention, there is provided a method for measuring a pitch radius of a ball groove of an inner race or an outer race of a constant velocity joint. This measuring method acquires the coordinate data of each measuring point by changing the density of the measuring points according to the degree of importance in the dimensional accuracy for each predetermined area of the ball groove, and obtains the ball data based on the acquired coordinate data. The shape of the groove is calculated, and the pitch radius is calculated based on the calculated shape of the ball groove.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention (hereinafter, referred to as embodiments) will be described with reference to the drawings. This embodiment relates to measurement of a pitch radius of a ball groove of an inner race of a constant velocity joint, but can be applied to other articles. For example, the present invention can be applied to a ball groove similarly provided in an outer race of a constant velocity joint.
[0008]
FIG. 1 is a sectional view showing an inner race of a constant velocity joint. The inner race 10 of the constant velocity joint has a plurality of ball grooves 14 having an axis 12 as a symmetric axis. These ball grooves 14 are arranged in a plane including the axis 12, and the ball contact line 16 in the groove has a portion that describes an arc centered on a predetermined point O on the axis 12. The center point defined by the arc of the ball contact line 16 of each of the plurality of ball grooves is common. In other words, the ball contact lines 16 are located on a spherical surface centered on the point O, and the individual ball contact lines 16 are located in a plane including the axis 12. Hereinafter, the spherical surface formed by the ball contact line 16 will be referred to as a groove tangent spherical surface, and the center O of the spherical surface will be referred to as a groove tangent spherical center O. Further, the distance from the groove circumscribed sphere O to the center of the ball which is the rolling element of the constant velocity joint is referred to as a pitch radius PCR.
[0009]
FIG. 1 further shows a probe 18 for measuring the accuracy of the ball groove. The probe 18 includes a probe arm 20 and a contact ball 22 fixed to the tip thereof and having the same diameter as the ball of the constant velocity joint. The probe 18 can be moved from the position indicated by the dashed line to the position indicated by the dashed line in the drawing by tracing the contact ball 22 with the contact ball 22 in contact with the ball contact line 16. The shape of the ball groove 14 can be measured from the trajectory of the contact ball 22 during this movement.
[0010]
As shown in the drawing, the ball groove 14 is formed from the upper end to the lower end of the inner race in the drawing. In actual use, the steel ball is located in the range indicated by B in the drawing in many cases. . That is, the steel ball is frequently present not in the range A near the ball center O or the range C near the upper end but in the middle range B therebetween. The tolerance of the ball groove 14 also reflects this, and the range B, which is a normal position, has a narrow tolerance width, while the ranges A and C where there are few opportunities to exist are wide. Therefore, in the ranges A and C, it is conceivable that an error during processing is large, and this error may affect the calculation of the shape of the ball groove 14. In other words, in the range B, even if the machining is performed with high accuracy, if the machining error is large in other parts, the error in this part affects the whole, and the accuracy in the range B is also low. May be
[0011]
In the present embodiment, the accuracy management that is suitable for the function of the product is performed by emphasizing data in a portion where the tolerance width is narrow and the dimensional control is strict. That is, the data on the range B is emphasized, and the influence is reduced in the ranges A and C. Specifically, the density of the measurement points in the range B is made dense, and the density of the measurement points in the ranges A and C is made coarse, thereby acquiring data according to the importance.
[0012]
Next, the measurement of the shape of the ball groove 14, particularly the pitch radius PCR, will be specifically described. As described above, the probe 18 is movable along the ball groove 14, and records the displacement during the movement for each of the plurality of ball grooves. The locus at this time is a curve indicated by a symbol a in FIG. This curve a is a locus of the center of the contact ball 22 and is ideally an arc, but actually, the arc has irregularities due to processing accuracy. From this trajectory, data is acquired densely in the above-described range B, and coarsely acquired from the ranges A and C. Points indicated by “○” in FIG. 2 are examples of points at which data is acquired. From these acquired data, a sphere approximating these data is calculated. This sphere is concentric with the groove circumscribed sphere. The radius is equal to the sum of the radius of the circumscribed sphere of the groove and the radius of the ball, which corresponds to the above-mentioned pitch radius PCR.
Therefore, by calculating the radius of the sphere, the pitch radius PCR of the inner race is calculated. Further, as a method of managing the pitch radius, there is a case where the pitch radius PCR is measured in a plane separated by a predetermined distance in the direction of the axis 12 from the circumscribed spherical center O and managed. In this case, the center of the sphere obtained by approximating the data obtained by changing the density is defined as the circumscribed sphere O of the groove, and the center of the contact ball 22 of the probe is positioned within a plane separated from the groove by a predetermined distance. In this state, this is brought into contact with the ball groove, and the pitch radius PCR can be calculated as a measurement value for quality control based on the coordinates of this position.
[0013]
The change of the data density described above can be performed, for example, as follows. When the dimensional tolerances of the illustrated ranges A, B, and C are ± 0.02, ± 0.006, and ± 0.01, respectively, the sampling interval for extracting the data for calculating the sphere from the trajectory data of the contacting ball is set as described above. To match the data ratio. That is, the data sampling intervals of the ranges A, B, and C are 3.33: 1: 1.67, the range A is the coarsest, and the range B is dense. In addition, the data density can be changed according to the frequency of the balls of the constant velocity joint. The existence frequency of the ball can be obtained from past use results, or can be determined at the product design stage. In a range where the frequency of occurrence is high, the sampling interval is narrowed to increase the data density. Conversely, in a range where the frequency of occurrence is low, the sampling interval is widened to lower the data density.
[0014]
In the above description, the accuracy of the ball groove is controlled based on the pitch radius based on the circumscribed sphere O, but it can be controlled based on the distance from the axis 12 to the center of the ball. The contact ball 22 is brought into contact with the ball groove 14 such that the center of the contact ball 22 of the probe is located within a plane which is a predetermined distance in the axial direction from the circumscribed sphere O of the groove. Is set as the measured value for management. In obtaining the measurement value for management, it is also possible to obtain the measurement value from the sphere obtained by approximating the above-mentioned data, instead of actually performing the measurement again using the probe 18.
[0015]
According to the above-described embodiment, the range or tolerance required for the function of the product is narrow, and the portion where the dimensional control is strict can be mainly evaluated, and the accuracy control suitable for the function can be performed.
[Brief description of the drawings]
FIG. 1 is a diagram showing an inner race to be measured and a probe for measurement in the present embodiment.
FIG. 2 is an explanatory diagram relating to processing of measured data.
[Explanation of symbols]
10 inner races, 12 axes, 14 ball grooves, 16 ball contact lines, 18 probes, 22 contact balls.

Claims (2)

ワークの表面形状を測定する方法であって、
ワーク表面形状の所定の領域ごとに、寸法精度上の重要度に応じて測定点の密度を変えて、各測定点の座標データを取得し、
前記取得された座標データに基づきワークの表面形状を算出する、測定方法。
A method for measuring the surface shape of a work,
For each predetermined area of the workpiece surface shape, change the density of the measurement points according to the importance on the dimensional accuracy, acquire the coordinate data of each measurement point,
A measuring method for calculating a surface shape of a workpiece based on the acquired coordinate data.
等速ジョイントのインナレースまたはアウタレースのボール溝のピッチ半径を測定する方法であって、
ボール溝の所定の領域ごとに、寸法精度上の重要度に応じて測定点の密度を変えて、各測定点の座標データを取得し、
前記取得された座標データに基づきボール溝の形状を反映した形状データを算出し、
前記算出された形状データに基づき、そのピッチ半径を算出する、ピッチ半径の測定方法。
A method of measuring a pitch radius of a ball groove of an inner race or an outer race of a constant velocity joint,
For each predetermined area of the ball groove, change the density of the measurement points according to the importance on the dimensional accuracy, acquire the coordinate data of each measurement point,
Calculate shape data reflecting the shape of the ball groove based on the acquired coordinate data,
A pitch radius measuring method for calculating a pitch radius based on the calculated shape data.
JP2003076903A 2003-03-20 2003-03-20 Surface shape measurement method Expired - Fee Related JP4348976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076903A JP4348976B2 (en) 2003-03-20 2003-03-20 Surface shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076903A JP4348976B2 (en) 2003-03-20 2003-03-20 Surface shape measurement method

Publications (2)

Publication Number Publication Date
JP2004286498A true JP2004286498A (en) 2004-10-14
JP4348976B2 JP4348976B2 (en) 2009-10-21

Family

ID=33291807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076903A Expired - Fee Related JP4348976B2 (en) 2003-03-20 2003-03-20 Surface shape measurement method

Country Status (1)

Country Link
JP (1) JP4348976B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225984A (en) * 2006-02-24 2007-09-06 Hoya Corp Improved tolerance determining method for inspection of progressive refractive power spectacle lens
JP2011112384A (en) * 2009-11-24 2011-06-09 Sumco Corp Method of measuring shape of semiconductor wafer and shape measuring instrument used therefor
JP2018087743A (en) * 2016-11-29 2018-06-07 株式会社ミツトヨ Control method of shape measurement device
CN113295068A (en) * 2021-03-25 2021-08-24 中船澄西船舶修造有限公司 Flat-bulb steel bulb measuring tool and method for measuring bulb thickness by using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225984A (en) * 2006-02-24 2007-09-06 Hoya Corp Improved tolerance determining method for inspection of progressive refractive power spectacle lens
JP4711853B2 (en) * 2006-02-24 2011-06-29 Hoya株式会社 Improved tolerance determination method for progressive power eyeglass lens inspection
JP2011112384A (en) * 2009-11-24 2011-06-09 Sumco Corp Method of measuring shape of semiconductor wafer and shape measuring instrument used therefor
JP2018087743A (en) * 2016-11-29 2018-06-07 株式会社ミツトヨ Control method of shape measurement device
CN113295068A (en) * 2021-03-25 2021-08-24 中船澄西船舶修造有限公司 Flat-bulb steel bulb measuring tool and method for measuring bulb thickness by using same

Also Published As

Publication number Publication date
JP4348976B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP6199870B2 (en) Measuring method
Zexiao et al. Complete 3D measurement in reverse engineering using a multi-probe system
EP3730896B1 (en) Measurement method
US9151588B2 (en) Method of measuring a circular shape characteristic and circular shape characteristic measuring device and program
JP4459264B2 (en) Three-dimensional shape measurement method
JP5089428B2 (en) Scanning measuring device
JP5053578B2 (en) Method for inspecting the contour of the zone of connection between the cylindrical part and the taper of the roller of a turbomachine roller bearing
CN103196411B (en) The probe shape assay method of scanning type probe microscope
JP2006509194A (en) Workpiece inspection method
JP2012159499A (en) Measuring apparatus and measuring method for ball screw
JP3687896B2 (en) Measuring device for pulley for continuously variable transmission
US6895359B2 (en) Workpiece coordinate system origin setting method, workpiece coordinate system origin setting program and workpiece coordinate system origin setting device of a surface property measuring machine
JP4695374B2 (en) Surface scanning measuring device and scanning probe correction table creation method
JP2004286498A (en) Method for measuring surface form
JP2010256277A (en) Method and apparatus for measuring outer shape of workpiece
JP3832582B2 (en) Screw hole position measurement method
JPH06341826A (en) Screw-hole-center measuring method
US20090299687A1 (en) Reverse engineering disk inspection
JP2006300778A (en) Surface shape measuring apparatus
EP3839421B1 (en) Method, computer-readable medium and apparatus for determining the two-point size of a workpiece
JPH10185551A (en) Apparatus for measuring volume of golf ball dimple and small projection of mold
Chajda et al. Coordinate measurement of complicated parameters like roundness, cylindricity, gear teeth or free-form surface
JP7138283B2 (en) Calibration unit and shape measuring machine calibration device
JP3757074B2 (en) Fairing method of measurement point sequence
JP2002250617A (en) Shape evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

A131 Notification of reasons for refusal

Effective date: 20070508

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070709

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Effective date: 20080317

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090630

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130731

LAPS Cancellation because of no payment of annual fees