JP3832348B2 - Impermeable structure - Google Patents

Impermeable structure Download PDF

Info

Publication number
JP3832348B2
JP3832348B2 JP2002013580A JP2002013580A JP3832348B2 JP 3832348 B2 JP3832348 B2 JP 3832348B2 JP 2002013580 A JP2002013580 A JP 2002013580A JP 2002013580 A JP2002013580 A JP 2002013580A JP 3832348 B2 JP3832348 B2 JP 3832348B2
Authority
JP
Japan
Prior art keywords
water
steel
water shielding
joint
joints
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002013580A
Other languages
Japanese (ja)
Other versions
JP2003213670A (en
Inventor
浩 喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002013580A priority Critical patent/JP3832348B2/en
Publication of JP2003213670A publication Critical patent/JP2003213670A/en
Application granted granted Critical
Publication of JP3832348B2 publication Critical patent/JP3832348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本願発明は、水中または地中に構築される遮水構造に関し、例えば、廃棄物処分場などの廃棄物を取り扱う施設において、何らかの理由で地中に有害な物質が含まれ、それが地下水や海水の流れとともにその部位から流出・拡散するおそれがある場合に、これを防ぐための連続壁として構築されるものである。
【0002】
【従来の技術】
一般に、地中連続壁といった名称で地中に構築される構造物として、例えばRC構造の地中連続壁を構築するもの、ソイルセメントを連続して形成し、その中にH形鋼などの鋼材を挿入するもの、鋼矢板を連接して建て込んで鋼製壁体を形成するもの、H形または箱形などの鋼矢板を建て込む地中壁体構築用鋼製パネル(以下、「鋼製パネル」という)と呼ばれるもの、さらにそのH形または箱形の閉鎖空間にモルタルやコンクリート等の固化材を充填して壁体の曲げ剛性を向上させたもの、そして鋼管矢板を連接して打ち込んで壁構造とするもの等が知られている。
【0003】
これらの構造物は元来、地盤を掘削する際の周囲地盤の崩壊を防止する土留め壁や地中連続壁などとして取り扱われているもので、使われ方に対する強度・剛性を碓保することが目的で、遮水という側面からは工事に支障を生じない程度という意味で十分なものであった。
【0004】
ところで近年、廃棄物中に生物や人体にとって有害な物質が含まれていることが明らかになるつれ、既存の廃棄物処理地や廃棄物処分場に対して遮水性を考慮した構造が従来の構造に対して順次開発されてきている。
【0005】
具体的には、地中に連続壁として打ち込まれた鋼管矢板の継手部に遮水用のモルタルやアスファルト等の固化材を充填するもの、鋼矢板の継手部に膨潤材を塗布するもの、上記鋼製パネルにソイルセメント系固化遮水材またはアスファルト系固化遮水材を充填するもの、さらに鋼矢板の継手部にアングル材や溝形鋼を取り付け、固化遮水材または膨潤型遮水材を充填するもの等である。
【0006】
図4は、廃棄物埋立処分場における遮水構造の施工例を示し、図において符号9は海岸・海中などに護岸として構築されたケーソン堤であり、ケーソン堤9は予め所定の厚さに敷き詰められた基礎捨石10の上に構築されている。
【0007】
また、符号11はケーソン堤9の内陸側にケーソン堤9から離れた位置に構築された遮水構造であり、遮水構造11は予め造成された改良地盤12を貫通し、その下側の不透水性層13まで連続して構築され、その先端は不透水性層13内に所定深さ根入れされている。
【0008】
また、符号14と15はそれぞれ、ケーソン堤9前部の海底の浸食を防止するために敷き詰められた被覆石と根固めブロック、16はケーソン堤9と遮水構造11との間に充填された裏込め石、17は裏込め石16の上に敷設された砂防シート、そして符号18は遮水構造11の内陸側(内側)に充填された捨石などである。
【0009】
また、図5〜図8は上述した遮水構造11に用いられた鋼製矢板壁を示したものであり、その概要を順次示す。
【0010】
図5は、壁体として地中に連接して打ち込まれた鋼管矢板19どうしの継手部イにモルタル等(図省略)を充填して構築された鋼管矢板壁であり、また図6は壁体として地中に連接して打ち込まれたU形鋼矢板20どうしの継手部イに膨張材(図省略)を施した鋼矢板壁であり、そして図7は、二枚の直線矢板21,21に鋼板22を溶接して平面ほぼH形状の組合せ鋼矢板を形成し、その閉領域a内にモルタル等23を充填した組み合わせ鋼矢板壁である。
【0011】
さらに、この他としては、例えば図8(a),(b)に図示するように、両端に通常の対象継手20aを有するU形鋼矢板20,20どうしの継手部イの近傍にL形の鋼材24を溶着し、その空間部にモルタル等23を充填したU形鋼矢板壁などがある。
【0012】
【発明が解決しようとする課題】
従来の遮水構造などにおいて、継手部に用いられる膨潤性遮水材を塗布する遮水方法については、室内試験や深度の浅い模擬的現場実験などでその有意性が認められるものの、深度が深く、遮水構造部材が長い場合の遮水の確かさについては、継手部における遮水材の塗布の碓実性や施工状況などにより変化すると考えられる。
【0013】
さらに、鋼管矢板の継手部にモルタルやアスファルト等の固化材を充填する遮水方法も提案されているが、上述と同様、深度が深い場合の遮水性の確かさがその施工状況との関係で決定される。
【0014】
対象とする廃棄物処理・処分場での鉛直壁構造による遮水可否の観点から見ると、従来技術に示した強度・剛性を満たす地中壁構造では、RC連続壁構造の場合にはコンクリートのひび割れや打ち継ぎ面での管理状況に依存してその部位の透水性が大きくなることが防ぎ難く、鋼矢板連続壁では継手部の施工状況により遮水性が不確実となり、例えばH形鋼矢板などや鋼管矢板継手の内部にコンクリートやモルタルを充填しても、これらの収縮や壁体の曲げ変形によるひび割れ発生、さらには施工時の打ち継ぎ面の発生などにより、遮水し難い部分が局部的に生じることは免れ難い。
【0015】
近年の遮水方法にしても、深度増加に伴い鋼矢板の継手に塗布する膨潤性遮水材の塗布状況の確かさに対する信頼性の低減や鋼矢板打設に伴う温度上昇のあり方による遮水材自身の性能の低下などのほか、遮水材として加熱して柔らかくなったアスファルト系材料を用いる際、施工深度が深くなるにつれて周辺地盤・水等による冷却によりアスファルトが施工途上に固化し、その部位より深いところに遮水性能低下領域が形成される可能性がある。
【0016】
即ち、上記いずれの場合もどこかに遮水性能が低下する部分ができ、いわゆる「みずみち」が生じる可能性があり、その場合には地盤や充填遮水材などをそれぞれ一様とみなして平均的な解を得る解析結果と実現象とが異なり、局部的な「みずみち」からの流出量が大きくなるため、その付近での有害物質の作用が環境に関る課題となる。このため、遮水構造としての信頼性を向上する遮水材料の開発・適用やこの種の現象の検査方法の確立が望まれている。
【0017】
また、処理・処分される廃棄物の有害物質によっては有機材料による遮水材(例えば、遮水シートなど)を透過する有害物質の存在も考えられ、遮水材に何を用いるかといった課題もある。
【0018】
本願発明は、以上の課題を解決するためになされたもので、廃棄物処分場などにおいて、地下水とともに流出し得る有害物質を、従来程度の常識的な施工管理により確実に封鎖することができる遮水構造を提供することを目的とする。
【0019】
【課題を解決する為の手段】
請求項1記載の遮水構造は、ウェブの両端にフランジを有する断面U字形鋼材の両端に、ウェブと平行な腕部と左右非対称の継手が設けられたハット形鋼材の継手どうしを結合してなる連続壁が二重に形成された遮水構造であって、それぞれの連続壁はウェブどうしが重なるように形成され、かつ前記二重壁内に柔な遮水材が充填され、さらに該二重壁内に外側と内側の継手部を隔てる邪魔板が配置されてなることを特徴とするものである。
【0020】
本発明は、上述するようなハット形鋼材により形成される二重壁構造の内側に柔な遮水材を充填することにより、遮水材の透水性能に依存する遮水構造を可能とするものであ
【0021】
この場合の鋼材としては、他に例えば両端に継手を有する直線矢板またはウェブの両端にフランジを有する断面U字形鋼材などを用いることができる。
【0022】
また、柔な遮水材としては、二重壁の構造変形に追従し得るものであれば良く、例えばベントナイトやカオリン等を含む粘土のような土質系のもの、あるいはアスファルトを細粒化して乳化材と混練した乳化アスファルトのようなもの等を用いることができる他、常温付近で「みずみち」を生じない遮水材を用いることもできる。
【0023】
特に本発明の場合、上述するような非対称継手を有するハット形鋼材によって連続壁が形成され、かつ連続壁は二重に配置されたハット形鋼材が、双方のウェブどうしが重なり合うように形成され、みずみちとなり得る継手部分にのみ必要量の柔な遮水材が充填されているので、通常の二重壁内に遮水材を充填した構造に比べて遮水材の充填量を大幅に低減することができる。
【0024】
現在、自然地盤中で最も信頼される遮水材としては、厚みを有する粘性土、いわゆる粘性土層が存在し、これに対し遮水性能確保のための具体的な値として、層の厚さが50cm以上、透水係数が1×10-6cm/sec以下が示されている。また、アスファルトを遮水材として扱うためには、厚さが5cm以上、透水係数が1×10-7cm/sec以下が見られる。
【0025】
また、本発明は鋼矢板どうし、鋼矢板と鋼材、鋼管矢板や杭と鋼材の種々の組み合わせにより閉空間(閉領域)を形成し、そしてこの閉空間内に柔な遮水材として、例えばベントナイトやカオリン等を含む粘土のような土質系のもの、あるいはアスファルトを細粒化して乳化材と混錬した乳化アスファルトのようなものを充填するとともに、これら柔な遮水材が該閉空間から漏れ出さない遮水構造を提供するものである。
【0026】
即ち、鋼材で形成された閉空間に柔な遮水材を充填するとともにこの遮水材がその閉空間から漏れ出なければ、通常、遮水可能とされる地盤中の水平粘性土層の存在に対応するような鉛直粘性土層あるいはこれに相当する厚さが5cm以上のアスファルト系遮水層が形成されることとなる。
【0027】
より具体的には、既に鋼矢板による地中連続壁もしくは地中壁体構築用鋼製パネルとして提案されているH形鋼矢板や箱型鋼矢板の閉空間に柔な遮水材を充填することで成立するが、このとき形成される閉空間の一部に鋼矢板の継手部が存在する場合は、土質系遮水材が継手部から漏れ出さないように、従来の遮水方法として採用されている膨潤性遮水材を鋼矢板の継手部に塗布しておくこと等の対策を施すと良い。ここに、柔な遮水材の役割は遮水構造が何らかの理由で変形してもその変形に追従し、「みずみち」を形成しない点にある。
【0028】
また、ここで用いられる柔な遮水材の所要深度については、対象地盤内に透水係数kが1×10-6cm/sec以下で、厚さが50cmの粘性土層が存在する場合はその下端以深までとし、存在しない場合は対象処理地盤の表面に土質系または乳化アスファルトなどの遮水材を水平に成層させてその下端以深とする。
【0029】
また、柔な遮水材の上端面については、対象廃棄物処理地盤の地下水面以上の水頭を持つように施工し、鋼矢板の閉空間に充填した柔な遮水材の重さにより処理地盤内の地下水の流出を防ぐものである。
【0030】
さらに、柔な遮水材の所要厚さについては、鋼矢板と鋼材の組み合わせ方、膨潤系遮水材を塗布した遮水構造の見かけ透水係数と柔な透水材の透水係数に依存するが、組合せ鋼材で柔な遮水材を用いる場合、遮水材の透水係数に応じて適宜鋼材の設置幅を変化させて必要な遮水材の幅(水平方向厚さ)を確保するものである。
【0031】
本発明では、柔な遮水材の充填部に遮水材とともに、さらに邪魔板を挿入することで、継手部から継手部に至る流線の長さを延長できて透水係数の調節ができる。
なお、ここで言う邪魔板とは、鋼板、木材等々、土質系遮水材中の流線を変更できるものであれば特に形状や材料を指定するものでない。
【0032】
請求項2記載の遮水構造は、ウェブの両端にフランジを有する断面U字形鋼材の両端に、ウェブと平行な腕部と左右非対称の継手が設けられたハット形鋼材の継手どうしを結合してなる連続壁が二重に形成された遮水構造であって、それぞれの連続壁はハット形鋼材間に間隙を有するように形成され、かつ前記二重壁内に柔な遮水材が充填され、さらに該二重壁内に外側と内側の継手部を隔てる邪魔板が配置されてなることを特徴とするものである。
【0033】
連続壁が各ハット形鋼材のウェブ間にも一定の間隙を有するように形成されていることで、結果として継手部にだけでなく連続壁の全体に柔な遮水が充填されてなる。この場合においても上述するような、非対称継手を有するハット形鋼材によって連続壁が形成されているので、対称継手を有する通常の鋼矢板材からなる二重壁内に遮水材を充填した構造に比べて遮水材の充填量を大幅に低減することができる。さらに邪魔板を挿入することで、継手部から継手部に至る流線の長さを延長できて透水係数の調節ができる。
【0034】
請求項3記載の遮水構造は、所定間隔をおいて並べて配置された複数の鋼管と、該鋼管の並列方向に対する両側に配置される鋼材とからなり、前記鋼材による連続壁が二重に形成された遮水構造であって、前記鋼材の両端に設けられた継手と前記鋼管うち少なくとも一部の鋼管の前記並列方向に対する両側に設けた継手とが結合されており、前記鋼材と前記鋼管とによって形成された閉領域に柔な遮水材が充填されてなることを特徴とするものである。
【0035】
二重に形成された遮水構造の内側に鋼管が並べられた形となるので、鋼管内部の量に相当する量の遮水材を低減することができる。すなわち、断面性能および遮水性を保持したまま遮水材の量を低減することができる。
【0036】
また、鋼管どうしは連結した方が打設しやすいが、必ずしも連結する必要はない。また、連結する鋼管は隣接するものどうしでなくてもよい。鋼管の形状は丸形、角形など適宜決定すればよい。
【0037】
請求項4記載の遮水構造は、請求項記載の遮水構造において、二重壁内に外側と内側の継手部を隔てる邪魔板が配置されてなることを特徴とするものである。
【0038】
請求項3記載の遮水構造の場合は、鋼管と鋼管とを連結して閉空間とするため、邪魔板は二重壁内に配置されていればよい。
【0039】
請求項5記載の遮水構造は、請求項1、2または4記載の遮水構造において、邪魔板によって隔てられた一方の側に空洞部が形成されてなることを特徴とするもので、この空洞部を遮水構造内の観測井戸として利用することにより、止水不良による漏れを検出できる他、観測井戸に集められた浸透水の成分分析を行うことにより遮水構造の効果を定量的に把握することができる。
【0040】
請求項6記載の遮水構造は、請求項5記載の遮水構造において、空洞部は挿入された中空の管であることを特徴とするものであり、観測井戸用の空洞部を遮水構造内に中空の管を挿入して形成することにより、必要規模の観測井戸をきわめて簡単にかつ確実に形成することができる。
【0041】
【発明の実施の形態】
図1(a),(b)は、本願発明が適用される遮水構造の一例を示し、図において2枚のハット形鋼材1(以下、「非対称継手付き形鋼」という)からなる複数の組合せ鋼材1Aが地中に連接して打ち込まれ、隣接する各組合せ鋼材1Aどうしは互いに結合され、かつ隣接する各組合せ鋼材1A,1A間に形成された閉領域a内に柔な遮水材2が充填されている。
【0042】
各組合せ鋼材1Aは2枚の非対称継手付き形鋼1,1を背中合わせに結合して形成され、また各非対称継手付き形鋼1はウェブ1aの両端にフランジ1b,1bを有する断面U字形鋼材1cと、その両端にウェブ1aと平行にそれぞれ突設された腕部1dと、この腕部1dの先端にそれぞれ突設された左右非対称の継手1eとから形成されている。そして、2枚の非対称継手付き形鋼1は背中合わせに配置されているとともに、双方のウェブ1a,1aどうしを溶接する等して一体的に結合されている。
【0043】
こうして形成された複数の組合せ鋼材1Aは、地中に連接して打ち込まれているとともに、隣接する各非対称継手付き形鋼1の継手1eどうしを互いに嵌め合わせることにより互いに結合され、少なくとも廃棄処分地側に位置する継手1eどうしの継手部に膨潤材(図省略)が塗布されている。
【0044】
また、隣接する各組合せ鋼材1A,1A間に形成された閉領域a内に柔な遮水材2が充填され、こうして複数の非対称継手付き形鋼1が二重に配置され、かつ組合せ鋼材1A,1A間の継手部に柔な遮水材2が充填されてなる二重壁の遮水構造が構築されている。
【0045】
この場合の柔な遮水材2としては、構造変形に追従するものであれば良く、例えばベントナイトやカオリンを含む粘土のような土質系のもの、あるいはアスファルトを細粒化して乳化材と混練した乳化アスファルトのようなものを用いることができる。なお、乳化材の代わりに上記土質系の柔な遮水材を用いることもできる。
【0046】
施工に際しては、最初に複数の組合せ鋼材1Aを連接して打ち込み、かつ隣接するハット形鋼材1,1の継手1eどうしを互いに嵌め合わせることにより、二重に配置された複数の非対称継手付き形鋼1からなる二重壁を構築する。
【0047】
次に、組合せ鋼材1A,1A間の各閉領域a内を所定の深さまで洗浄した後、各閉領域a内に柔な遮水材2を充填する。
【0048】
なお、地中に組合せ鋼矢板1Aを打ち込む前に、予め少なくとも廃棄処分地側に位置する継手1eに予め膨潤材を塗布し、またその際、廃棄処分地側に位置する継手1eに塗布した膨潤材が、組合せ鋼材1Aの打ち込み時の抵抗になって組合せ鋼材1Aの打ち込みが困難となる場合には、反対側に位置する継手1eにも同程度の膨潤材を塗布するものとする。
【0049】
また、各閉領域a内に充填された柔な遮水材2の透水係数が大きいために、二重壁の見かけ透水係数がやや大きい場合には、断面寸法の大きい非対称継手付き形鋼1からなる組合せ鋼材1Aを用いる等して対処することにより二重壁の透水係数を小さくすることができる。
【0050】
この場合、例えば断面寸法の大きい非対称継手付き形鋼1からなる組合せ鋼材1Aを用いることにより、各閉領域aの容積が増して柔な遮水材2の充填厚が増すため、二重壁の透水係数を小さくすることができる。
【0051】
図1(c)は、本願の請求項1に係る発明の実施形態を示したもので、組合せ鋼材1Aの断面寸法が小さいとか、あるいは柔な遮水材2の透水係数が大きい等の理由により、二重壁の見かけ透水係数がやや大きい場合の対処方法であり、各組合せ鋼材1A,1A間の閉領域a内に遮水材2が充填され、かつ邪魔板3が挿入されている。
【0052】
このように構成されていることにより、柔な遮水材2の透水距離(邪魔板3の両側に位置する継手部間の距離)が長くなるため、二重壁の見かけ透水係数は小さくなる。以上の構成により、いずれの場合も所要の透水係数を満足させることができる。この邪魔板の設置位置、大きさは適宜決定すればよい。
【0053】
なお、各組合せ鋼材1Aの、背中合せに配置された二枚の非対称継手付き形鋼1どうしを結合しないで、各非対称継手付き形鋼1を個別に打設することもでき、こうすることで二カ所の継手1eを同時に嵌め合わせて打設する組合せ鋼材1Aの場合と違って、非対称継手付き形鋼1を従来の矢板打設法によって容易に打ち込むことができるため、施工効率が大幅に向上し、また継手部に膨潤材を塗布する必要もない。
【0054】
図2(a),(b)は本願の請求項2に係る発明が適用される遮水構造の例を示し、図において水平に配置された導材4の両側にそれぞれ、複数の非対称継手付き形鋼1が連接して打ち込まれ、隣接する各非対称継手付き形鋼1どうしは双方の継手1eどうしを嵌め合わせることで互いに結合され、こうして導材4を間に介在して複数の非対称継手付き形鋼1からなる二重壁が形成されている。そして、二重壁間に柔な遮水材2が充填されている。この二重壁内に、さらに外側と内側の継手部を隔てる邪魔板を配置することで、請求項2に係る遮水構造となる。
【0055】
この場合の導材4は、非対称継手付き形鋼1を打ち込む際の、特に非対称継手付き形鋼1,1間の間隔wを一定に保持するための定規(ガイド)的な働きをなすものであり、この導材4が配置されていることで非対称継手付き形鋼1を所定の間隔wを保持しつつ鉛直に打ち込むことができるため、柔な遮水材2の充填厚を設計どおりに保持できて高い止水性を確保することができる。
【0056】
なお、この場合の導材4にはH形鋼や溝形鋼などの鋼材が用いられ、また二重壁間に柔な遮水材2の透水係数に見合った間隔を保持し得るの導材4が用いられている。
【0057】
施工に際しては、最初に導材4を水平に配置する。次に導材4の片側に複数の非対称継手付き形鋼1を打ち込み、かつ隣接する非対称継手付き形鋼1,1の継手1eどうしを互いに嵌め合わせることにより連続壁を形成する。
【0058】
次に、導材4の反対側にも、同様に複数の非対称継手付き形鋼1を打ち込み、こうして導材4の両側に複数の非対称継手付き形鋼1からなる二重壁をそれぞれ構築する。そして、二重壁間を所定の深さまで洗浄した後、その中に柔な遮水材2を充填する。
【0059】
図3(a)〜(g)は同じく、本願の請求項3に係る遮水構造の実施形態を示し、図3(a)の例においては、複数の継手付き鋼管5が地中に所定間隔おきに連接して打ち込まれている。また、隣接する継手付き鋼管5,5間の両側に、遮水鋼材として平面円弧状に形成された遮水鋼板6がそれぞれ配置されている。
【0060】
各遮水鋼板6と継手付き鋼管5とは、遮水鋼板6の両端部に突設されたL形継手6aと継手付き鋼管5の側面部に突設されたリップ付きT形継手5aとを互いに嵌め合わせることにより結合されている。
【0061】
そして、継手付き鋼管5,5と遮水鋼板6とからなる閉領域a内に遮水材2が充填されている。この場合のリップ付きT形継手5aとL形継手6aは継手付き鋼管5および遮水鋼板6の上下方向に連続して形成されている。
【0062】
なお、図3(b)の例においては、各継手付き鋼管5の側面部にリップ付きT形継手の代わりとしてリップ付きI形継手5bが突設されており、その他の構成は図3(a)に示した例と同じである。
【0063】
また、図3(c)の例においては、複数の継手付き鋼管5が地中に所定間隔おきに連接して打ち込まれ、かつ隣接する各継手付き鋼管5,5間に鋼管(または杭)7が打ち込まれている。
【0064】
また、継手付き鋼管5,5間の両側に、遮水鋼材として平面円弧状に形成された遮水鋼板6がそれぞれ配置されている。各遮水鋼板6と各継手付き鋼管5とは、遮水鋼板6の両端部に突設されたL形継手6aと継手付き鋼管5の側面部に突設されたリップ付きT形継手5aとを互いに嵌め合わせることにより結合されている。
【0065】
そして、継手付き鋼管5,5と遮水鋼板6とからなる閉領域a内に遮水材2が充填されている。なお、この場合のリップ付きT形継手5aとL形継手6aは継手付き鋼管5および遮水鋼板6の上下方向に連続して形成されている。
【0066】
なお、図3(d)の例においては、継手付き鋼管5の側面部にリップ付きT形継手の代わりとしてリップ付きI形継手5bが突設されており、その他の構成は図3(c)に示した例と同じである。
【0067】
【発明の効果】
本願発明によれば、廃棄物処分場が例えば海上埋立地の場合などのように、個々の工事の施工とその管理が気象・海象条件により左右される場合でも、地下水とともに流出し得る有害物質を、従来程度の常識的な施工管理により遮水構造および海底地盤内の粘性土層または造海底面上の造成遮水層とによりほぼ完全に封鎖することができる。
【0068】
また特に、請求項1記載の遮水構造によれば、上述するような非対称継手を有する非対称継手付き形鋼によって連続壁が形成され、かつ連続壁は二重に配置された非対称継手付き形鋼が、双方のウェブどうしが重なり合うように形成され、水道となり得る継手部分にのみ必要量の柔な遮水材が充填されているので、対称継手を有する通常の鋼矢板材からなる通常の二重壁内に遮水材を充填した構造に比べて遮水材の充填量を大幅に低減できる等の効果がある。
【0069】
さらに、請求項1記載の遮水構造によれば、二重壁内に外側と内側の継手部を隔てる邪魔板が配置されていることで、継手部から継手部に至る流線の長さを延長できて透水係数の調節ができる等の効果を有する。
【0070】
請求項2記載の遮水構造によれば、連続壁が各非対称継手付き形鋼のウェブ間にも一定の間隙を有するように形成され、結果として非対称継手付き形鋼どうしの継手部にだけでなく連続壁の全体に柔な遮水が充填されてなるので、遮水性をより確実なものとすることができ、またこの場合においても、上述するような非対称継手を有する非対称継手付き形鋼によって連続壁が形成されているので、通常の鋼矢板材からなる二重壁内に遮水材を充填した構造に比べて遮水材の充填量を大幅に低減することができる。
【0071】
また、請求項2の遮水構造の場合も、二重壁内に外側と内側の継手部を隔てる邪魔板が配置されていることで、継手部から継手部に至る流線の長さを延長できて透水係数の調節ができる等の効果を有する。
【0072】
請求項3記載の遮水構造は、両端に継手を有する鋼材によって形成される二重壁がその内部に位置する複数の鋼管と結合されていることで、鋼管内部の量に相当する量の遮水材を低減することができる。すなわち、断面性能および遮水性を保持したまま遮水材の量を低減することができる。
【0073】
請求項4記載の遮水構造によれば、二重壁内に外側と内側の継手部を隔てる邪魔板が配置されていることで、継手部から継手部に至る流線の長さを延長できて透水係数の調節ができる等の効果を有する。
【0074】
請求項5記載の遮水構造によれば、邪魔板によって隔てられた一方の側に空洞部が形成されてなるので、この空洞部を遮水構造内の観測井戸として利用することにより、止水不良による漏れを検出できる他、観測井戸に集められた浸透水の成分分析を行うことにより遮水構造の効果を定量的に把握することができる等の効果を有する。
【0075】
請求項6記載の遮水構造によれば、観測井戸用の空洞部を遮水構造内に中空の管を挿入して形成することにより、必要規模の観測井戸をきわめて簡単にかつ確実に形成することができる等の効果を有する。
【図面の簡単な説明】
【図1】 組合せ鋼材と柔な遮水材とによる遮水構造の例を示し、(a),(c)はその断面図、(b)は組合せ鋼材の断面図である。
【図2】 非対称継手付き形鋼と導材と柔な遮水材とによる遮水構造の他の例を示し、(a)はその断面図、(b)は非対称継手付き形鋼の断面図である。
【図3】 継手付き鋼管と遮水鋼板と柔な遮水材とによる遮水構造の例を示し、(a),(b),(c),(d)はその断面図、(e),(f)は継手付き鋼管の断面図、(g)は遮水鋼板の断面図である。
【図4】 廃棄物埋立処分場向け遮水構造例を示す縦断面図である。
【図5】 鋼管矢板を用いた遮水構造例を示す横断面図である。
【図6】 鋼矢板を用いた遮水構造例を示す横断面図である。
【図7】 組合せ矢板を用いた遮水構造例を示す横断面図である。
【図8】 (a)は遮水用鋼矢板を用いた遮水構造例を示す横断面図、(b)は遮水用鋼矢板の横断面図である。
【符号の説明】
1 非対称継手付き形鋼(ハット形鋼材)
1A 組合せ鋼材
2 柔な遮水材
1a ウェブ
1b フランジ
1c 断面U字形鋼材
1d 腕部
1e 継手
2 柔な遮水材
3 邪魔板
4 導材
5 継手付き鋼管
5a リップ付きT形継手
5b リップ付きI形継手
6 遮水鋼板(鋼材)
6a L形継手
7 鋼管(または杭)
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a water-impervious structure constructed underwater or in the ground. For example, in a facility that handles waste such as a waste disposal site, a harmful substance is contained in the ground for some reason. It is constructed as a continuous wall to prevent this from flowing out and diffusing from the site along with the flow of water.
[0002]
[Prior art]
  Generally, as a structure built in the ground with a name such as underground continuous wall, for example, a structure in which an underground continuous wall of RC structure is constructed, a soil cement is continuously formed, and steel materials such as H-section steel are formed therein. Inserts, steel sheet piles connected to form a steel wall body, steel panels for underground wall construction to build steel sheet piles such as H-shaped or box-shaped (hereinafter referred to as "steel panels") Panel)), the H-shaped or box-shaped closed space filled with solidified material such as mortar or concrete to improve the bending rigidity of the wall, and steel pipe sheet piles are connected and driven A wall structure is known.
[0003]
  These structures are originally handled as retaining walls and underground continuous walls that prevent the surrounding ground from collapsing when excavating the ground, and ensure the strength and rigidity of how it is used. Therefore, from the aspect of water shielding, it was sufficient in the sense that it would not hinder the construction.
[0004]
  In recent years, it has become clear that waste contains substances that are harmful to living things and the human body.InAs a result, structures that take account of water-imperviousness have been sequentially developed for existing waste disposal sites and waste disposal sites compared to conventional structures.
[0005]
  Specifically, a steel pipe sheet pile joint that is driven into the ground as a continuous wall is filled with a solidifying material such as mortar or asphalt for water shielding, a steel sheet pile joint is coated with a swelling material, the above A steel panel filled with soil cement solidified water shielding material or asphalt solidified water shielding material, and angle members and channel steel are attached to the joints of steel sheet piles. It is what is filled.
[0006]
  FIG. 4 shows an example of construction of a water-impervious structure at a waste landfill site. In the figure, reference numeral 9 is a caisson embankment constructed as a revetment on the coast, underwater, etc. It is constructed on the foundation rubble 10
[0007]
  Reference numeral 11 denotes a water-impervious structure constructed on the inland side of the caisson embankment 9 at a position away from the caisson embankment 9, and the water-impervious structure 11 penetrates the improved ground 12 previously formed, The water-permeable layer 13 is continuously constructed, and the tip thereof is embedded in the water-impermeable layer 13 to a predetermined depth.
[0008]
  Further, reference numerals 14 and 15 are respectively a covering stone and a consolidation block laid in order to prevent erosion of the sea floor of the front part of the caisson dam 9, and 16 is filled between the caisson dam 9 and the impermeable structure 11. A backfill stone, 17 is a sabo sheet laid on the backfill stone 16, and 18 is a rubble filled on the inland side (inner side) of the water shielding structure 11.
[0009]
  Moreover, FIGS. 5-8 shows the steel sheet pile wall used for the water-impervious structure 11 mentioned above, and shows the outline one by one.
[0010]
  FIG. 5 shows a steel pipe sheet pile wall constructed by filling mortar or the like (not shown) in the joint portion a between the steel pipe sheet piles 19 driven into the ground as a wall body, and FIG. 6 shows the wall body. Is a steel sheet pile wall obtained by applying an expansion material (not shown) to the joint part A between U-shaped steel sheet piles 20 that are driven into the ground as shown in FIG. This is a combined steel sheet pile wall in which a steel plate 22 is welded to form a plane substantially H-shaped combined steel sheet pile and mortar 23 is filled in the closed region a.
[0011]
  Further, as shown in FIGS. 8 (a) and 8 (b), for example, an L-shape is formed in the vicinity of the joint portion A between the U-shaped steel sheet piles 20 and 20 each having a normal target joint 20a at both ends. There is a U-shaped steel sheet pile wall in which a steel material 24 is welded and a mortar or the like 23 is filled in the space.
[0012]
[Problems to be solved by the invention]
  In the conventional water-blocking structure, etc., the water-blocking method for applying the swellable water-blocking material used for the joint is recognized by laboratory tests and simulated field experiments at shallow depth, but the depth is deep. The reliability of the water shielding when the water shielding structural member is long is considered to change depending on the reliability of the application of the water shielding material at the joint and the construction status.
[0013]
  Furthermore, a water shielding method for filling the joints of steel pipe sheet piles with solidification materials such as mortar and asphalt has also been proposed, but as described above, the certainty of water shielding at a deep depth is related to the construction status. It is determined.
[0014]
  From the point of view of whether or not the vertical wall structure can be used for water treatment at the target waste disposal / disposal site, the underground wall structure that satisfies the strength and rigidity shown in the prior art has a concrete structure in the case of the RC continuous wall structure. It is difficult to prevent the water permeability of the part from becoming large depending on the management situation at the crack and the joint surface, and the water shielding is uncertain depending on the construction situation of the joint part in the steel sheet pile continuous wall, for example H-shaped steel sheet pile etc. Even if concrete or mortar is filled inside a steel pipe sheet pile joint, the parts that are difficult to block water are localized due to such shrinkage, cracking due to bending deformation of the wall, and the occurrence of a joint surface during construction. It is hard to escape.
[0015]
  Even in recent water-blocking methods, water-blocking due to reduced reliability of the application of swellable water-blocking material applied to steel sheet pile joints as the depth increases and the temperature rise associated with steel sheet pile placement In addition to degradation of the performance of the material itself, when using asphalt material that has been softened by heating as a water barrier, asphalt solidifies during construction due to cooling by the surrounding ground and water as the construction depth increases. There is a possibility that a region of reduced water shielding performance is formed at a deeper position.
[0016]
  In other words, in any of the above cases, there is a possibility that the water shielding performance is lowered somewhere, and so-called “mizumichi” may occur. In that case, the ground and the filled water shielding material are regarded as uniform. The analysis result that obtains an average solution differs from the actual phenomenon, and the outflow from the local “Mizumichi” increases, so the action of harmful substances in the vicinity becomes an environmental issue. For this reason, development and application of a water shielding material that improves the reliability of the water shielding structure and establishment of an inspection method for this kind of phenomenon are desired.
[0017]
  In addition, depending on the hazardous substances in the waste to be treated and disposed of, there may be harmful substances that permeate the organic water shielding material (for example, water shielding sheet). is there.
[0018]
  The present invention has been made to solve the above-described problems. In a waste disposal site or the like, a harmful substance that can flow out together with groundwater can be reliably blocked by conventional common sense construction management. The purpose is to provide a water structure.
[0019]
[Means for solving the problems]
  The water-impervious structure according to claim 1 is formed by joining joints of hat-shaped steel members provided with arms parallel to the web and asymmetrical joints at both ends of a U-shaped steel member having flanges at both ends of the web. A continuous water barrier structure in which the continuous walls are formed in double, each continuous wall is formed so that the webs overlap each other, and a flexible water barrier material is filled in the double walls.In addition, a baffle plate that separates the joint portion between the outside and the inside is disposed in the double wall.It is characterized by.
[0020]
  Main departureMing enables a water-impervious structure that depends on the water permeability of the water-impervious material by filling the inner wall of the double-walled structure formed by the hat-shaped steel material as described above with a soft water-impervious material. AhRu.
[0021]
  As the steel material in this case, for example, a straight sheet pile having joints at both ends or a U-shaped steel material having a flange at both ends of the web can be used.
[0022]
  Further, the soft water-proof material may be any material that can follow the structural deformation of the double wall. For example, a soil-based material such as clay containing bentonite or kaolin, or asphalt is finely granulated and emulsified. In addition to emulsified asphalt kneaded with the material, a water-impervious material that does not produce “water” near room temperature can also be used.
[0023]
  In particularMain departureIn the case of the light, the continuous wall is formed by the hat-shaped steel material having the asymmetric joint as described above, and the continuous wall is formed by the double-shaped hat-shaped steel material so that both webs overlap each other. Since the required amount of flexible water-blocking material is filled only in the joints that can be used, the amount of water-blocking material can be greatly reduced compared to a structure in which a double wall is filled with water-blocking material. Can do.
[0024]
  At present, the most reliable water shielding material in natural ground is a thick clay soil, so-called viscous soil layer. On the other hand, as a concrete value for ensuring water shielding performance, the layer thickness Is 50cm or more and the permeability is 1 × 10-6cm / sec or less is shown. In addition, in order to treat asphalt as a water shielding material, the thickness is 5 cm or more and the water permeability is 1 × 10.-7cm / sec or less is observed.
[0025]
  Also,Main departureMing forms a closed space (closed region) by various combinations of steel sheet piles, steel sheet piles and steel, steel pipe sheet piles and piles and steel materials, and as a flexible water shielding material in this closed space, for example bentonite, kaolin, etc. It is filled with soil-based clay such as clay, or emulsified asphalt that is kneaded with emulsified material after asphalt is finely granulated, and the soft water shielding material does not leak from the closed space. Provide water structure.
[0026]
  That is, if a closed space formed of steel is filled with a soft water-impervious material and the water-impervious material does not leak out of the closed space, the presence of a horizontal cohesive soil layer in the ground that can normally be impermeable is present. A vertical cohesive soil layer corresponding to the above or an asphalt water-impervious layer having a thickness equivalent to 5 cm or more is formed.
[0027]
  More specifically, filling the closed space of H-shaped steel sheet piles and box-type steel sheet piles, which have already been proposed as steel sheet piles or steel panels for building underground wall bodies, with a flexible water shielding material. However, when there is a steel sheet pile joint part in the part of the closed space formed at this time, it is adopted as a conventional water shielding method so that the soil-based water shielding material does not leak from the joint part. It is advisable to take measures such as applying the swellable water shielding material applied to the joint portion of the steel sheet pile. Here, the role of the flexible water shielding material is that even if the water shielding structure is deformed for some reason, it follows the deformation and does not form a “waterway”.
[0028]
  Moreover, about the required depth of the flexible water-insulating material used here, the permeability coefficient k is 1 × 10 in the target ground.-6If there is a viscous soil layer with a thickness of 50 cm or less at a cm / sec or less, the depth should be deeper than the lower end of the viscous soil layer. It is deeper than the bottom of the lever.
[0029]
  In addition, the upper surface of the soft water shielding material is constructed so that it has a head above the groundwater surface of the target waste treatment ground, and the weight of the flexible water shielding material filled in the closed space of the steel sheet pile is used to treat the ground. It prevents the outflow of groundwater inside.
[0030]
  Furthermore, the required thickness of the flexible water shielding material depends on the combination of the steel sheet pile and the steel material, the apparent water permeability coefficient of the water shielding structure to which the swelling water shielding material is applied, and the water permeability coefficient of the flexible water permeable material, When a soft water shielding material is used as a combination steel material, the necessary width of the water shielding material (thickness in the horizontal direction) is ensured by appropriately changing the installation width of the steel material according to the water permeability coefficient of the water shielding material.
[0031]
  In the present invention, by inserting a baffle plate together with the water shielding material in the soft water shielding material filling portion, the length of the streamline from the joint portion to the joint portion can be extended, and the water permeability coefficient can be adjusted.
  The baffle plate referred to here is not particularly specified in terms of shape or material as long as it can change the streamline in the soil-based water shielding material such as a steel plate or wood.
[0032]
  The water-impervious structure according to claim 2 is formed by connecting hat-shaped steel joints provided with arm portions parallel to the web and asymmetrical joints at both ends of a U-shaped steel section having flanges at both ends of the web. Each continuous wall is formed so as to have a gap between the hat-shaped steel materials, and the double wall is filled with a flexible water shielding material.In addition, a baffle plate that separates the joint portion between the outside and the inside is disposed in the double wall.It is characterized by.
[0033]
  Since the continuous wall is formed so as to have a certain gap between the webs of the hat-shaped steel materials, as a result, not only the joint portion but also the entire continuous wall is filled with soft water shielding. Even in this case, since the continuous wall is formed by the hat-shaped steel material having the asymmetric joint as described above, the structure in which the double wall made of the normal steel sheet pile material having the symmetric joint is filled with the water shielding material. In comparison, the filling amount of the water shielding material can be greatly reduced.Furthermore, by inserting a baffle plate, the length of the stream line from the joint part to the joint part can be extended, and the hydraulic conductivity can be adjusted.
[0034]
  The water shielding structure according to claim 3 is:A plurality of steel pipes arranged side by side at a predetermined interval and a steel material arranged on both sides with respect to the parallel direction of the steel pipes. Provided on both sides with respect to the parallel direction of at least some of the steel pipes and joints provided at both ends of the steel materialA joint is coupled, and a closed region formed by the steel material and the steel pipe is filled with a soft water-proof material.
[0035]
  Steel pipes are lined up inside the double water-proof structureTherefore, the amount of the water shielding material corresponding to the amount inside the steel pipe can be reduced. That is, the amount of the water shielding material can be reduced while maintaining the cross-sectional performance and the water shielding performance.
[0036]
  Moreover, although it is easier to drive steel pipes connected, it is not always necessary to connect them. Moreover, the steel pipe to connect does not need to be adjacent. The shape of the steel pipe may be appropriately determined such as a round shape or a square shape.
[0037]
  The water-blocking structure according to claim 4 is characterized in that3In the described water-impervious structure, a baffle plate that separates the outer and inner joint portions is arranged in the double wall.
[0038]
  In the case of the water-impervious structure according to the third aspect, the baffle plate only needs to be disposed within the double wall in order to connect the steel pipe and the steel pipe to form a closed space.
[0039]
  The water-blocking structure according to claim 5 is the claim1, 2 or 4The described water-blocking structure is characterized in that a cavity is formed on one side separated by a baffle plate, and this cavity is used as an observation well in the water-blocking structure. In addition to detecting leaks due to water defects, it is possible to quantitatively grasp the effect of the water-blocking structure by analyzing the components of the permeated water collected in the observation well.
[0040]
  The water-impervious structure according to claim 6 is the water-impervious structure according to claim 5, wherein the hollow portion is a hollow tube inserted therein, and the hollow portion for the observation well is By forming a hollow tube in the tube, it is possible to form an observation well of a necessary scale very easily and reliably.
[0041]
DETAILED DESCRIPTION OF THE INVENTION
  1 (a) and 1 (b) show the present invention.ApplyAn example of a water-impervious structure, and in the figure, a plurality of combination steel materials 1A made up of two hat-shaped steel materials 1 (hereinafter referred to as "shape steels with asymmetrical joints") are driven into the ground to connect each adjacent combination The steel materials 1A are coupled to each other, and a soft water-proof material 2 is filled in a closed region a formed between the adjacent combined steel materials 1A and 1A.
[0042]
  Each combination steel material 1A is formed by joining two asymmetric joint-equipped steels 1 and 1 back to back, and each asymmetric joint-equipped steel 1 is a U-shaped steel material 1c having a flange 1b and 1b at both ends of a web 1a. The arm 1d projecting from both ends in parallel with the web 1a, and the left-right asymmetric joint 1e projecting from the tip of the arm 1d. The two shaped steels 1 with asymmetric joints are arranged back to back, and are integrally joined by welding both webs 1a, 1a.
[0043]
  The plurality of combined steel materials 1A formed in this way are connected and driven into the ground, and are connected to each other by fitting the joints 1e of the adjacent shaped steels 1 with asymmetric joints to each other. A swelling material (not shown) is applied to the joint portion between the joints 1e located on the side.
[0044]
  Moreover, the soft water-proof material 2 is filled in the closed region a formed between the adjacent combined steel materials 1A and 1A, and thus the plurality of shaped steels 1 with asymmetric joints are arranged in a double manner, and the combined steel material 1A , 1A, a double wall water shielding structure is constructed in which a flexible water shielding material 2 is filled in the joint portion.
[0045]
  In this case, the soft water-insulating material 2 may be any material that can follow the structural deformation. For example, a soil-based material such as clay containing bentonite or kaolin, or asphalt is finely granulated and kneaded with the emulsifying material. Things like emulsified asphalt can be used. Note that the above soil-based soft water shielding material may be used instead of the emulsifying material.
[0046]
  At the time of construction, first, a plurality of combined steel materials 1A are connected and driven, and the joints 1e of the adjacent hat-shaped steel materials 1 and 1 are fitted to each other so that a plurality of asymmetric joint-attached shape steels are arranged. Build a double wall consisting of one.
[0047]
  Next, after each closed region a between the combined steel materials 1A and 1A is washed to a predetermined depth, the soft water shielding material 2 is filled in each closed region a.
[0048]
  Before the combined steel sheet pile 1A is driven into the ground, a swelling material is applied in advance to at least the joint 1e located on the disposal site side, and at that time, the swelling applied to the joint 1e located on the disposal site side When the material becomes resistance when the combined steel material 1A is driven and it becomes difficult to drive the combined steel material 1A, a similar swelling material is applied to the joint 1e located on the opposite side.
[0049]
  Moreover, since the flexible water-impervious material 2 filled in each closed region a has a large permeability coefficient, when the apparent permeability coefficient of the double wall is slightly large, from the shaped steel with asymmetric joint 1 having a large cross-sectional dimension. By taking measures such as using the combined steel material 1A, the water permeability coefficient of the double wall can be reduced.
[0050]
  In this case, for example, by using the combined steel material 1A made of the shape steel 1 with an asymmetric joint having a large cross-sectional dimension, the volume of each closed region a is increased and the filling thickness of the flexible water shielding material 2 is increased. The water permeability can be reduced.
[0051]
  FIG. 1 (c)An embodiment of the invention according to claim 1 of the present application is shown.What to do when the apparent permeability coefficient of the double wall is slightly large due to the small cross-sectional size of the combined steel material 1A or the large permeability coefficient of the flexible water shielding material 2AndThe water shielding material 2 is filled in the closed region a between the combined steel materials 1A and 1A, and the baffle plate 3 is inserted.
[0052]
  By being comprised in this way, since the water permeation distance (distance between the joint parts located in the both sides of the baffle plate 3) of the flexible water shielding material 2 becomes long, the apparent water permeation coefficient of a double wall becomes small. With the above configuration, a required water permeability can be satisfied in any case. What is necessary is just to determine the installation position and magnitude | size of this baffle board suitably.
[0053]
  In addition, without connecting the two asymmetrical joint-equipped structural steels 1A arranged back to back in each combination steel material 1A, the structural steels 1 with asymmetrical joints can be individually placed. Unlike the case of the combined steel 1A in which the joints 1e are simultaneously fitted and driven, the shaped steel 1 with an asymmetric joint can be easily driven by the conventional sheet pile driving method, so that the construction efficiency is greatly improved. Moreover, it is not necessary to apply a swelling material to the joint.
[0054]
  2 (a) and 2 (b) show the present applicationAccording to claim 2 ofinventionApplyImpermeable structureExampleA plurality of shaped steels 1 with asymmetric joints are connected and driven on both sides of the conductive material 4 arranged horizontally in the figure, and the adjacent shaped steels 1 with asymmetrical joints are connected to each other between the joints 1e. The double wall which consists of the shape steel 1 with a plurality of asymmetrical joints by interposing the conducting material 4 between them is formed. And the flexible water-insulating material 2 is filled between the double walls.By disposing a baffle plate that further separates the outer and inner joint portions in the double wall, the water shielding structure according to claim 2 is obtained.
[0055]
  In this case, the conductive material 4 serves as a ruler (guide) for keeping the interval w between the shape steels 1 and 1 with asymmetric joints constant when the shape steel 1 with asymmetric joints is driven. Yes, the arrangement of this conductive material 4 allows the shaped steel 1 with asymmetric joint to be driven vertically while maintaining a predetermined interval w, so that the filling thickness of the flexible water shielding material 2 is maintained as designed. And can ensure high water-stopping properties.
[0056]
  In addition, steel materials, such as H-shaped steel and a channel steel, are used for the conducting material 4 in this case, and the space | interval corresponding to the water-permeability coefficient of the flexible water-insulating material 2 can be hold | maintained between double walls.widthThe conductive material 4 is used.
[0057]
  At the time of construction, the conductive material 4 is first arranged horizontally. Next, a continuous wall is formed by driving a plurality of shaped steels 1 with asymmetric joints into one side of the conductor 4 and fitting the joints 1e of the adjacent shaped steels 1 and 1 with asymmetrical joints together.
[0058]
  Next, similarly, a plurality of shaped steels 1 with asymmetric joints are also driven on the opposite side of the conducting material 4, thus constructing double walls made of the shaped steels 1 with a plurality of asymmetrical joints on both sides of the conducting material 4, respectively. And after wash | cleaning between double walls to the predetermined depth, the soft water-proof material 2 is filled in it.
[0059]
  3 (a) to 3 (g) are the same in this application.According to claim 3 ofImpermeable structureEmbodimentIn the example of FIG. 3A, a plurality of steel pipes 5 with joints are driven into the ground at predetermined intervals. Further, on both sides between adjacent steel pipes 5 and 5 with joints, a water shielding steel plate 6 formed in a planar arc shape as a water shielding steel material is respectively disposed.
[0060]
  Each of the water-impervious steel plates 6 and the steel pipe 5 with a joint includes an L-shaped joint 6 a projecting from both ends of the water-impervious steel sheet 6 and a T-shaped joint 5 a with a lip projecting from the side surface of the steel pipe 5 with a joint. They are joined together by mating.
[0061]
  And the water shielding material 2 is filled in the closed area | region a which consists of the steel pipes 5 and 5 with a joint, and the water shielding steel plate 6. FIG. In this case, the T-shaped joint 5 a with lip and the L-shaped joint 6 a are formed continuously in the vertical direction of the steel pipe 5 with joint and the water-impervious steel plate 6.
[0062]
  In the example of FIG. 3 (b), I-shaped joints 5b with lips project from the side surfaces of the steel pipes 5 with joints instead of the T-shaped joints with lips. ).
[0063]
  In the example of FIG. 3 (c), a plurality of steel pipes with joints 5 are driven into the ground at predetermined intervals, and a steel pipe (or pile) 7 is provided between adjacent steel pipes 5 and 5 with joints. Has been driven in.
[0064]
  Further, on both sides between the steel pipes 5 and 5 with joints, a water shielding steel plate 6 formed in a planar arc shape as a water shielding steel material is respectively disposed. Each of the water-impervious steel plates 6 and each of the steel pipes 5 with a joint includes an L-shaped joint 6 a projecting from both ends of the water-impervious steel sheet 6, and a T-shaped joint 5 a with a lip projecting from the side surface of the steel pipe 5 with a joint. Are connected by fitting them together.
[0065]
  And the water shielding material 2 is filled in the closed area | region a which consists of the steel pipes 5 and 5 with a joint, and the water shielding steel plate 6. FIG. In this case, the T-shaped joint 5 a with lip and the L-shaped joint 6 a are formed continuously in the vertical direction of the steel pipe 5 with joint and the water-impervious steel plate 6.
[0066]
  In the example of FIG. 3 (d), an I-shaped joint 5b with a lip projects from the side surface of the steel pipe 5 with a joint instead of the T-shaped joint with a lip, and the other configuration is shown in FIG. 3 (c). It is the same as the example shown in.
[0067]
【The invention's effect】
  According to the present invention, harmful substances that can flow out with groundwater even when the construction and management of individual works depend on weather and sea conditions, such as when the waste disposal site is a landfill site, The conventional construction management can be almost completely blocked by the water shielding structure and the viscous soil layer in the seabed ground or the constructed water shielding layer on the sea bottom.
[0068]
  In particular, according to the water-impervious structure according to claim 1, the continuous wall is formed by the asymmetrical joint-equipped steel having the asymmetrical joint as described above, and the continuous wall is double-arranged. However, since the two webs are formed so that they overlap each other and only a joint portion that can be used as a water supply is filled with a necessary amount of a flexible water shielding material, a normal double sheet made of a normal steel sheet pile material having a symmetric joint. Compared to a structure in which a wall is filled with a water shielding material, the amount of the water shielding material can be greatly reduced.
[0069]
  Furthermore, according to the water-impervious structure according to claim 1, the baffle plate separating the outer and inner joint portions is disposed in the double wall, thereby reducing the length of the streamline from the joint portion to the joint portion. It has the effect that it can be extended and the hydraulic conductivity can be adjusted.
[0070]
  According to the water-impervious structure according to claim 2, the continuous wall is formed so as to have a certain gap between the webs of the asymmetric joint-shaped steels. The continuous wall is filled with soft water shielding, so that the water shielding can be further ensured. In this case as well, the shape steel with an asymmetric joint having the asymmetric joint as described above is used. Since the continuous wall is formed, the filling amount of the water shielding material can be greatly reduced as compared with the structure in which the water shielding material is filled in the double wall made of a normal steel sheet pile material.
[0071]
  Further, in the case of the water-impervious structure according to claim 2, the baffle plate that separates the outer and inner joint portions is disposed in the double wall, thereby extending the length of the streamline from the joint portion to the joint portion. It has an effect that the water permeability coefficient can be adjusted.
[0072]
  The water shielding structure according to claim 3 is:A double wall formed by steel with joints at both ends is located inside itBy being combined with a plurality of steel pipes, it is possible to reduce the amount of the water shielding material corresponding to the amount inside the steel pipe. That is, the amount of the water shielding material can be reduced while maintaining the cross-sectional performance and the water shielding performance.
[0073]
  According to the water-impervious structure according to the fourth aspect, the length of the streamline extending from the joint part to the joint part can be extended by disposing the baffle plate separating the joint part between the outer side and the inner side in the double wall. Therefore, the water permeability coefficient can be adjusted.
[0074]
  According to the water-impervious structure according to claim 5, since the hollow portion is formed on one side separated by the baffle plate, the water-stopping structure is used by utilizing the hollow portion as an observation well in the water-impervious structure. In addition to being able to detect leaks due to defects, it has the effect of being able to quantitatively grasp the effect of the water shielding structure by analyzing the components of the permeated water collected in the observation well.
[0075]
  According to the water-impervious structure according to claim 6, the observation well for the necessary scale can be formed very simply and reliably by forming the hollow portion for the observation well by inserting a hollow tube into the water-impervious structure. It has the effect of being able to.
[Brief description of the drawings]
FIG. 1 shows an example of a water-impervious structure using a combination steel material and a flexible water-impervious material, wherein (a) and (c) are sectional views thereof, and (b) is a sectional view of the combination steel material.
FIGS. 2A and 2B show other examples of a water shielding structure including a shape steel with an asymmetric joint, a conductive material, and a flexible water shielding material. FIG. 2A is a cross-sectional view thereof, and FIG. It is.
FIG. 3 shows an example of a water shielding structure using a steel pipe with a joint, a water shielding steel plate, and a flexible water shielding material, (a), (b), (c), (d) are sectional views thereof, (e) (F) is a cross-sectional view of a steel pipe with a joint, and (g) is a cross-sectional view of a water-impervious steel plate.
FIG. 4 is a longitudinal sectional view showing an example of a water shielding structure for a waste landfill disposal site.
FIG. 5 is a cross-sectional view showing an example of a water shielding structure using a steel pipe sheet pile.
FIG. 6 is a cross-sectional view showing an example of a water shielding structure using a steel sheet pile.
FIG. 7 is a cross-sectional view showing an example of a water shielding structure using a combination sheet pile.
8A is a cross-sectional view showing an example of a water-impervious structure using a water-impervious steel sheet pile, and FIG. 8B is a cross-sectional view of the water-impervious steel sheet pile.
[Explanation of symbols]
  1 Shaped steel with asymmetrical joint (hat-shaped steel)
  1A combination steel
  2 Soft water barrier
  1a Web
  1b Flange
  1c U-shaped steel with cross section
  1d arm
  1e Fitting
  2 Soft water barrier
  3 baffle plate
  4 materials
  5 Steel pipe with joint
  5a T joint with lip
  5b I-shaped joint with lip
  6 Impermeable steel plate (steel)
  6a L-shaped fitting
  7 Steel pipe (or pile)

Claims (6)

ウェブの両端にフランジを有する断面U字形鋼材の両端に、ウェブと平行な腕部と左右非対称の継手が設けられたハット形鋼材の継手どうしを結合してなる連続壁が二重に形成された遮水構造であって、それぞれの連続壁はウェブどうしが重なるように形成され、かつ前記二重壁内に柔な遮水材が充填され、さらに該二重壁内に外側と内側の継手部を隔てる邪魔板が配置されてなることを特徴とする遮水構造。The continuous wall formed by joining the joints of the hat-shaped steel material provided with the arm part parallel to the web and the asymmetrical left and right joints was formed at both ends of the U-shaped steel material having flanges at both ends of the web. Each of the continuous walls is formed so that the webs overlap each other, and the double wall is filled with a flexible water shielding material , and the outer wall and the inner joint portion are further filled in the double wall. A water shielding structure characterized in that a baffle plate separating the two is arranged . ウェブの両端にフランジを有する断面U字形鋼材の両端に、ウェブと平行な腕部と左右非対称の継手が設けられたハット形鋼材の継手どうしを結合してなる連続壁が二重に形成された遮水構造であって、それぞれの連続壁はハット形鋼材間に間隙を有するように形成され、かつ前記二重壁内に柔な遮水材が充填され、さらに該二重壁内に外側と内側の継手部を隔てる邪魔板が配置されてなることを特徴とする遮水構造。The continuous wall formed by joining the joints of the hat-shaped steel material provided with the arm part parallel to the web and the asymmetrical left and right joints was formed at both ends of the U-shaped steel material having flanges at both ends of the web. Each of the continuous walls is formed so as to have a gap between the hat-shaped steel materials, and the double wall is filled with a soft water-proof material , and the double wall is further provided with an outer side. A water shielding structure comprising a baffle plate separating inner joint portions . 所定間隔をおいて並べて配置された複数の鋼管と、該鋼管の並列方向に対する両側に配置される鋼材とからなり、前記鋼材による連続壁が二重に形成された遮水構造であって、前記鋼材の両端に設けられた継手と前記鋼管うち少なくとも一部の鋼管の前記並列方向に対する両側に設けた継手とが結合されており、前記鋼材と前記鋼管とによって形成された閉領域に柔な遮水材が充填されてなることを特徴とする遮水構造。 A plurality of steel pipes arranged side by side at a predetermined interval and a steel material arranged on both sides with respect to the parallel direction of the steel pipes. A joint provided on both ends of the steel material and a joint provided on both sides of the steel pipe in the parallel direction of at least some of the steel pipes are coupled to each other, and a flexible shield is formed in a closed region formed by the steel material and the steel pipe. A water shielding structure characterized by being filled with a water material. 前記鋼材と前記鋼管とによって形成された閉領域に、さらに二重壁の外側と内側の継手部を隔てる邪魔板が配置されてなることを特徴とする請求項記載の遮水構造。The water shielding structure according to claim 3 , wherein a baffle plate that further separates an outer joint portion and an inner joint portion of the double wall is disposed in a closed region formed by the steel material and the steel pipe . 邪魔板によって隔てられた一方の側に空洞部が形成されてなることを特徴とする請求項1、2または4記載の遮水構造。The water shielding structure according to claim 1, 2, or 4 , wherein a hollow portion is formed on one side separated by a baffle plate. 空洞部は挿入された中空の管であることを特徴とする請求項5記載の遮水構造。  6. The water shielding structure according to claim 5, wherein the hollow portion is a hollow tube inserted therein.
JP2002013580A 2002-01-22 2002-01-22 Impermeable structure Expired - Fee Related JP3832348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002013580A JP3832348B2 (en) 2002-01-22 2002-01-22 Impermeable structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013580A JP3832348B2 (en) 2002-01-22 2002-01-22 Impermeable structure

Publications (2)

Publication Number Publication Date
JP2003213670A JP2003213670A (en) 2003-07-30
JP3832348B2 true JP3832348B2 (en) 2006-10-11

Family

ID=27650503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013580A Expired - Fee Related JP3832348B2 (en) 2002-01-22 2002-01-22 Impermeable structure

Country Status (1)

Country Link
JP (1) JP3832348B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596469B2 (en) * 2005-06-24 2010-12-08 ワールドエンジニアリング株式会社 Landfill partition revetment
JP4709793B2 (en) * 2007-03-14 2011-06-22 新日本製鐵株式会社 Steel sheet pile, wall body, and steel sheet pile construction method
KR101692542B1 (en) * 2015-07-30 2017-01-09 우종열 Manufacturing method of steel tube pile for retaining wall
CN109778868A (en) * 2018-12-28 2019-05-21 上海建工集团股份有限公司 A kind of clad steel sheet pile combined enclosure structure and its construction method

Also Published As

Publication number Publication date
JP2003213670A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
JP3823029B2 (en) Steel sheet pile joints water-stop structure and impermeable structure and construction method
JP4761780B2 (en) Construction method of impermeable layer
CN104099943B (en) Diaphram wall and discarded underground civil defense engineering intersection processing method
CN111441375A (en) Flexible continuous wall for underground pollution blocking and construction method thereof
CN201538975U (en) Seepage-proofing joint of underground continuous wall
CN101575859B (en) Anti-seepage joint of underground continuous walls and construction method thereof
JP4979228B2 (en) Additional construction method of impermeable layer
JP3832348B2 (en) Impermeable structure
TWI269823B (en) Steel wall and the manufacture method thereof
GB2264739A (en) Diaphragm wall with liquid tight joints
JP6015751B2 (en) Steel wall and construction method of steel wall
JP2003113608A (en) Impervious wall structure and impervious bank protection structure using the same
JP3664166B2 (en) Steel wall manufacturing method
JP4596469B2 (en) Landfill partition revetment
JP4761386B2 (en) Construction method of impermeable walls
JP4440568B2 (en) Revetment structure
JP2005048518A (en) Controlled type revetment
JPH0438846B2 (en)
JP3664717B2 (en) Steel wall and manufacturing method thereof
JP4262169B2 (en) Steel pipe sheet pile impermeable wall structure
JP3098458B2 (en) Construction method of multi-functional underground diaphragm wall
JP5131742B2 (en) Foundation construction method for revetment structures
TWI300106B (en)
JP3240394B2 (en) Construction method of impermeable wall
JP3832438B2 (en) Steel wall manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent or registration of utility model

Ref document number: 3832348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees