JP3831569B2 - Fluidized bed combustor - Google Patents

Fluidized bed combustor Download PDF

Info

Publication number
JP3831569B2
JP3831569B2 JP2000057216A JP2000057216A JP3831569B2 JP 3831569 B2 JP3831569 B2 JP 3831569B2 JP 2000057216 A JP2000057216 A JP 2000057216A JP 2000057216 A JP2000057216 A JP 2000057216A JP 3831569 B2 JP3831569 B2 JP 3831569B2
Authority
JP
Japan
Prior art keywords
furnace
fluidized bed
pyrolysis
pyrolysis furnace
char combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000057216A
Other languages
Japanese (ja)
Other versions
JP2001241613A (en
Inventor
浩俊 堀添
良則 寺澤
佐藤  淳
義仁 清水
静生 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000057216A priority Critical patent/JP3831569B2/en
Publication of JP2001241613A publication Critical patent/JP2001241613A/en
Application granted granted Critical
Publication of JP3831569B2 publication Critical patent/JP3831569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、都市ごみや産業廃棄物を焼却し、その焼却熱によって、廃棄物に含有される灰分を溶融し、及びボイラー給水を加熱して、建築用骨材等、及び発電プラント用等の蒸気を製造するシステムにおける流動床式燃焼装置に関する。
【0002】
【従来の技術】
都市ごみや産業廃棄物を焼却し、その焼却熱によって、廃棄物に含有される灰分を溶融後冷却して建築用骨材等を得、更に発電プラント用の蒸気等を製造するシステムにおいて、廃棄物の焼却を、熱分解炉で熱分解ガスを生成させ、該熱分解炉での未分解残渣をチャー燃焼炉に導いて燃焼させる方式のものが特開平9−79539に開示されている。
【0003】
上記の開示においては、熱分解炉内の流動層からオーバーフローさせた未分解残渣(チャー)と流動媒体との混合物であるチャー混合物を、前記チャー燃焼炉内の流動層に供給する手段明示されていないが、連結ダクトとスクリューコンベアが用いられている。即ち、図6に示すように、熱分解炉1の流動層上層部を連結ダクト60にオーバーフローさせて重力で下方に配設されたスクリューコンベア61に導き、該スクリューコンベア61でチャー燃焼炉の流動層に押込んでいる。
また、共通炉壁を介して熱分解炉とチャー燃焼炉が隣接した構造のものもあるが(三菱重工技報 Vol.34 No.3 1997-5)、これは図7に示すように、熱分解炉1とチャー燃焼炉2とが共通炉壁3で隣接しているが、前記熱分解炉1が、それぞれ流動層を有する2つの熱分解炉に分けられておらず、本発明の流動床式燃焼炉とは熱分解炉の熱分解残渣であるチャー混合物をチャー燃焼炉に供給する方式が異なるものである。なお、図7において、7は熱分解炉1の流動層、8はチャー燃焼炉2の流動層、9は熱分解炉1の炉床散気板、11はチャー燃焼炉の炉床散気部、30はボイラーである。
【0004】
【発明が解決しようとする課題】
前記熱分解炉からチャー燃焼炉にチャー混合物を送込む手段には前述したように通常スクリューコンベアが用いられる。
図6に示すように、流動床式熱分解炉1の流動層上層部をオーバーフローさせて連結ダクト60でスクリューコンベア61に導き、該スクリューコンベア61でチャー燃焼炉2の流動層に押込むが、このオーバーフローしたチャー混合物の温度は400〜450℃の高温であり、これをチャー燃焼炉の流動層に押込むスクリューコンベアは、スクリュー軸やケーシングを冷却する等の対策が必要であった。また、チャーの中には鉄、アルミニウム、瓦礫等の不燃物が混じっていることがあり、これらが前記スクリューに噛み込みスクリューの破損を来たすこともあった。
図7に示す公知の流動床式燃焼炉では、熱分解炉とチャー燃焼炉が共通隔壁で隣接していて両炉の流動層は開口で連通されているが、前記熱分解炉の流動層をなすチャー混合物を前記チャー燃焼炉に供給する積極的手段が講じられておらず、これを制御する手段がない。
【0005】
本発明は、上記の問題点に鑑み、共通炉壁を介して隣接する熱分解炉とチャー燃焼炉からなる流動床式燃焼炉において熱分解炉のチャー混合物をチャー燃焼炉に供給する制御可能な積極的手段を熱分解炉内に構成し、以って熱分解炉からチャー混合物をチャー燃焼炉に導くためのダクトやコンベアを排除して、製作コスト、ランニングコスト、および設置スペースを節減するとともに熱分解炉およびチャー燃焼炉の熱分解および燃焼の制御が容易な流動床式燃焼炉を提供することを目的とする。本発明の他の目的は、熱分解炉からの不燃物排出口とチャー燃焼炉不燃物排出口間の距離を近づけることが可能で、熱分解炉から排出される不燃物とチャー燃焼炉から排出される不燃物を共通の不燃物排出分離装置で処置する流動床式燃焼炉を提供することである。
【0006】
【課題を解決するための手段】
請求項1記載の発明は、一つの共通炉壁を介して隣接する1対の流動床炉の一方を熱分解炉、他方をチャー燃焼炉とした流動床式燃焼炉において、
前記熱分解炉内に隔壁を設けて第1熱分解炉と第2熱分解炉に分け、
前記共通炉壁側の第2熱分解炉の流動層と前記チャー燃焼炉の流動層を連通する開口を前記共通炉壁に設け、前記第2熱分解炉の炉床散気部は、前記開口を介してチャー燃焼炉の前記開口より下向き傾斜させた炉床散気部に連なるように、前記開口に向かって下向きに傾斜させるとともに、前記第2熱分解炉の空塔速度を前記チャー燃焼炉の空気での空塔速度より低くして、前記第2熱分解炉の流動媒体が前記共通炉壁に設けられた開口を通して前記チャー燃焼炉に供給され、
更に前記第1、第2熱分解炉を分ける隔壁を前記第1熱分解炉流動層が前記第2熱分解炉流動層側にオーバーフローできる高さとして前記第1、第2熱分解炉はそれぞれの流動層上部空間を共有することを特徴とする。
【0007】
かかる発明では、前記第1熱分解炉に廃棄物が投入され、該第1熱分解炉の流動層で熱分解が進んだ該流動層の上層部を前記隔壁をオーバーフローさせて前記第2の熱分解炉に導き、該第2熱分解炉ではさらに熱分解が進み、該第2熱分解炉の所要のチャー生成率(逆に言うと熱分解ガス発生率)に達したチャー混合物が該第2熱分解炉の流動層下部が前記チャー燃焼炉の流動層下部に流入する。
前記第1および第2熱分解炉の炉底からはEGR(再循環排ガス)が供給されて、流動層の流動媒体(砂)と廃棄物物の混合物は350〜500℃に熱せられて熱分解ガスを発生するが、該流動層は前記炉底から吹込まれる前記EGR吹込み流量の炉底区域による加減により旋回運動され、砂と廃棄物との混合が促進されている。
【0008】
即ち、流動層は、前記EGRの吹込みにより該EGRが混入し比重が小さく軽くなって浮上し易くなり該EGRに押上げられるが、該EGR量が多い区域上の流動層は強く押上げられ、該EGR量の少ない区域上の流動層がその後を埋める形で、流動層内には旋回運動が形成される。
前記チャー燃焼炉の炉底からは燃焼用の空気が供給されて前記第一熱分解炉から進入したチャー混合物が燃焼され、流動層は700〜750℃になる。該流動層も炉底から吹き込まれる前記空気が前記炉底の区域によって加減されて旋回運動が形成されている。
【0009】
前記第2熱分解炉流動層の前記チャー燃焼炉流動層への進入はつぎのようにして行われる。即ち、前記第2熱分解炉EGRの空塔速度すなわち流動層がない場合の速度を前記チャー燃焼炉の空気での空塔速度より低くすることで、前記第2熱分解炉とチャー燃焼炉の流動層に密度差が生じ、空塔速度の低い前記第2熱分解炉の流動層密度が前記チャー燃焼炉の流動層密度よりも大きくなる。この密度差が推進力となり、前記第2熱分解炉の流動層すなわちは砂・チャー・不燃物が前記共通炉壁に設けられた開口を通して前記チャー燃焼炉に供給される。したがって、前記密度差を前記第2熱分解炉に供給するEGRと前記チャー燃焼炉に供給する空気の流量を制御することにより、前記第2熱分解炉から前記チャー燃焼炉へのチャー混合物の供給を制御することができる。
【0010】
本発明では、熱分解炉が前記第1熱分解炉と第2熱分解炉とに分けられ、前記第2熱分解炉流動層の密度を前記第1熱分解炉流動層とは切離して調整できるので、前記第2熱分解炉流動層密度を前記チャー燃焼炉流動層密度との相対関係で適切に調整でき、前記第2熱分解炉流動層からチャー混合物すなわち砂・チャー・不燃物を適切な速度で前記チャー燃焼炉流動層に供給することができる。
【0011】
請求項2記載の発明は、前記第2熱分解炉の流動層密度が前記チャー燃焼炉の流動層密度よりも高くなるように炉床散気部から吹込まれる流動化ガスの量が調整されることを特徴とするもので、上に述べたように、前記第2熱分解炉の炉床散気部から吹込まれるEGRと前記チャー燃焼炉の炉床散気部から吹込まれる空気の量を調整して前記第2熱分解炉流動層の密度を前記チャー燃焼炉流動層の密度よりも高くされ、主としてこの密度差を推進力として、前記第2熱分解炉流動層をなすチャー混合物が前記共通炉壁に設けられた開口を通じて前記チャー燃焼炉に供給される。
【0012】
又本発明は、前記第1熱分解炉の炉床散気部及び前記チャー燃焼炉の炉床散気部はそれぞれの不燃物排出口側に向って傾斜していることを特徴とするもので、流動層底部に偏析する流動層よりも重い、つまり密度が高い不燃物が前記炉床散気部に沿って前記不燃物排出口に向って流下し易くする。なお、前述の流動層内旋回流は、前記炉床散気部の傾斜に沿う流れを持つように形成される。
【0013】
発明は、前記第2熱分解炉の炉床散気部は、前記チャー燃焼炉の炉床散気部に向って下がるように傾斜していることを特徴とするもので、前記第2熱分解炉の炉底散気部が前記チャー燃焼炉の炉床散気部に下がっているので、前記第2熱分解炉流動層をなす砂・チャー・不燃物が、前述のように、該第2熱分解炉流動層と前記チャー燃焼炉流動層との密度差によって前記共通炉壁の開口を通じて前記チャー燃焼炉に流入する際に、流入を助ける。また、前記第2熱分解炉の炉床散気部の傾斜は前記チャー燃焼炉の炉床散気部の傾斜に連なるので、前記第2熱分解炉の炉床散気部の傾斜に沿って前記共通炉壁の開口を通って前記チャー燃焼炉流動層に流入する前記第2熱分解炉流動層をなす砂・チャー・不燃物は、該チャー燃焼炉流動層旋回流の該炉床散気部傾斜に沿う流れに巻込まれ、前記チャー燃焼炉流動層との混合が促進される。
【0014】
請求項3記載の発明は、前記第1熱分解炉と第2熱分解炉からなる熱分解炉は方形をなし、前記チャー燃焼炉も方形をなすことを特徴とするもので、前記第1熱分解炉、第2熱分解炉およびチャー燃焼炉の性能にほとんど影響を与えないで前記第1熱分解炉の部分と前記チャー燃焼炉を相対的に90°あるいは180°回転した形に構成できるので、前記第1熱分解炉の廃棄物供給口、不燃物排出口、および前記チャー燃焼炉の不燃物排出口の位置を変えることが可能で、これらの位置を決める際の自由度が増え、燃焼炉の設置場所あるいは付属機器場所等への対応が容易である。
【0015】
請求項記載の発明は、一つの共通炉壁を介して隣接する1対の流動床炉の一方を熱分解炉、他方をチャー燃焼炉とした流動床式燃焼炉において、
前記熱分解炉内に隔壁を設けて第1熱分解炉と第2熱分解炉に分け、
前記共通炉壁側の第2熱分解炉の流動層と前記チャー燃焼炉の流動層を連通する開口を前記共通炉壁に設けるとともに、
前記第1熱分解炉及び前記チャー燃焼炉の夫々の不燃物排出口に接続される不燃物排出分離装置が
篩の上側に仕切り板で仕切った2つの部屋を形成し、該2つの部屋を前記不燃物排出口に夫々接続させるとともに、前記篩の下側に砂受けを配設し、
前記両部屋を形成する外殻の上側に前記熱分解炉から排出される不燃物と流動媒体の混合物と、前記チャー燃焼炉から排出される不燃物と流動媒体の混合物をそれぞれ前記両部屋に供給するフィーダを配設し、
両フィーダの排出口を前記両部屋にそれぞれ開口するように前記外殻に接続し、前記両部屋にはそれぞれ排出口を設けた不燃物排出分離装置であることを特徴とする。
【0016】
かかる発明によれば、熱分解炉から排出される不燃物と流動砂の混合物とチャー燃焼炉から排出される不燃物と流動砂の混合物は不燃物排出分離装置の不燃物分離部に導かれ、該不燃物分離部では篩の上で前記両混合物が流入する部屋が仕切られており、篩い分けされた砂は共通の砂受けに受け、熱分解炉排出不燃物とチャー燃焼炉排出不燃物は、全般的に大きさや種類が異なるので、前記分離部の別々の排出口から排出される。従来は熱分解炉とチャー燃焼炉とが離れているため、不燃物分離及び分離砂の搬送は別々の装置で行われていたが、本発明では共通の装置で行うことができるので、設備スペース、コストの低減ができる。
上記各項記載の発明は熱分解炉の不燃物排出口とチャー燃焼炉の不燃物排出口を近づけることができるので、本項発明の不燃物排出分離装置を適用するのに最適である。
【0017】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される寸法、材質、形状、その相対位置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例にすぎない。
図1は、本発明の第1実施例に係わる流動床式燃焼装置の構成図で、(A)は縦断面図、(B)は下面図、(C)は(A)におけるX−X断面図である。
【0018】
図1において、1は熱分解炉、2はチャー燃焼炉であり、前記両炉は共通炉壁3を介して隣接している。前記熱分解炉1内は隔壁4によって第1熱分解炉1aと第2熱分解炉1bとに分かれ、該第2熱分解炉の流動層5は前記共通炉壁3に設けられた開口6によって前記チャー燃焼炉2の流動層8に連通する。7は前記第1熱分解炉1aの流動層、9は該第1熱分解炉1aの炉床散気部、10は前記第2熱分解炉炉1bの炉床散気部、11は前記チャー燃焼炉2の炉床散気部である。12は前記第1熱分解炉1bの炉床散気部9の下部を仕切る炉底仕切り板、13、13'は前記チャー燃焼炉2の炉床散気部11の下部を仕切る炉底仕切り板、である。14は前記第1熱分解炉1aに供給される廃棄物、15は前記第1熱分解炉1aの不燃物排出口から排出される不燃物、16は前記チャー燃焼炉の不燃物排出口から排出される不燃物、17は前記第1、第2熱分解炉1a、1bに供給されるEGR(再循環排ガス)、18は前記チャー燃焼炉に供給される燃焼用空気である。前記第1熱分解炉1aへの廃棄物は従来流動層上部空間に供給されるのが普通であるが、流動層中に供給される場合もある。
【0019】
廃棄物供給口から都市ごみ等の廃棄物14が前記第1熱分解炉1aに供給され、炉底から供給され炉床散気部9を通って流動層に進入する再循環排ガス(EGR)と必要に応じて温度調整のために同時に送込まれる燃焼用空気による燃焼によって前記熱分解炉1内廃棄物と流動媒体(砂)は熱せられ、流動化され、発生する熱分解ガスは図示しない灰溶融炉等に送られる。
前記第1熱分解炉1a内では熱せられた廃棄物と流動媒体(砂)が流動層7を形成し、該流動層7の旋回運動によって廃棄物と流動砂は混合し、廃棄物を満遍なく熱して熱分解させる。該流動層7の上層部は前記隔壁4をオーバーフローして前記第1熱分解炉1bに流下し、該第2熱分解炉1bにおいても前記炉床散気部10を通して前記EGRが吹き込まれて熱分解が進み、所定のチャー発生率(逆に言えば熱分解ガス発生率)に達した砂・チャー・不燃物からなるチャー混合物は該第2熱分解炉1bの炉床散気部10に沿って前記共通炉壁3に設けられた開口6から前記チャー燃焼炉2の流動層8に進入する。
【0020】
前記第2熱分解炉1bの流動層7に吹込まれる前記EGRは前記チャー燃焼炉の流動層8に吹込まれる空気よりも空塔速度を低くして前記第2熱分解炉1bの流動層密度が前記チャー燃焼炉2の流動層8の密度よりも大きくし、この密度差を推進力として前記第2熱分解炉1bの流動層7をなすチャー混合物は前記チャー燃焼炉の流動層8に進入するのである。前記第2熱分解炉に供給するEGRと前記チャー燃焼炉に供給する空気の流量を制御することにより、前記密度差を制御し、前記第1熱分解炉から前記チャー燃焼炉へのチャー混合物の供給を制御することができる。
前記第1熱分解炉1aの炉床散気部9下部の炉底仕切り板12で仕切られた各室に吹込まれるEGR17は、流動層7内に矢印S1で示される旋回運動が生じるように前記各室によって流量が調節される。
【0021】
前記チャー燃焼炉2の炉床散気部11下の炉底仕切り板13、13’で仕切られた各室に吹込まれる空気18は前記炉床散気部11を通って流動層8内に進入し、該流動層8内のチャーを燃焼させ、燃焼ガスは図示しないボイラーに送られる。
前記炉底仕切り板13、13'で仕切られたの各室に吹込まれる空気18の流量は流動層8内に矢印S2で示される旋回運動が生じるように前記各室によって調節される。前記熱分解炉1及びチャー燃焼炉2の流動砂を伴った不燃物15及び16は図示しない不燃物排出分離装置に導入されて流動砂と不燃物が分離される。
【0022】
図2は、本発明の第2実施例に係わる流動床式燃焼装置の構成図で、(A)は縦断面図、(B)は下面図である。第1実施例と同じ構成には図1と同じ符号が付してある。本実施例は図1における第1熱分解炉1aを90°回転した形であり、その結果図1と異なる点は、第1熱分解炉1aの不燃物15はチャー燃焼炉2に隣接する第2熱分解炉1bの下方に排出され、両炉の不燃物排出口間の距離が第1の実施例の場合よりも短くなったことと、廃棄物14の供給口が前記第2熱分解炉1bに対面する第1熱分解炉の側壁に設けられることである。
【0023】
前記第1熱分解炉1aの流動層7における旋回運動S1は炉床散気部9の下部が炉底仕切り板12で仕切られた各室に吹込まれるEGR17の各室による流量の調整で行なわれる。即ち図2(A)において、前記第1熱分解炉1aの流動層7に矢印S1方向の旋回流を形成するためには、前記炉床散気部9の下部で炉底仕切り板12で仕切られ仕切り室12a、12bのうち、仕切り室12aに吹込まれるEGR17の流量を仕切り室17aに吹込まれるEGR17aの流量流量よりも多くする。そうすると、仕切り室17bの上方の流動層は密度が小さくなり前記EGR17aに押上げられて上昇し、その跡を仕切り室17aの上方の流動層が埋めることになり、流動層7には矢印S1方向の旋回流が形成される。
【0024】
前記流動層7の上部空間に廃棄物14を投入する場合は、投入された廃棄物を前記流動層に巻込むために、前記廃棄物14は流動層旋回運動が下向きの場所に投入する必要があり、前記廃棄物14の投入口は前記第2熱分解炉1bに対面する第1熱分解炉の側壁に設けられることになる。したがって、前記廃棄物14は前記第2熱分解炉1bから最も遠い所から投入されることになり、該廃棄物14が前記第2熱分解炉1bにシュートパスされることが無くなる利点がある。
なお、本実施例では上記第1の実施例に比べて、前記第1熱分解炉1aの流動層7の旋回運動の方向が90°回転した方向となり、前記第2熱分解炉1bの流動層5に対する前記流動層7の旋回運動の相対関係が変るが、前記第1熱分解炉1aと第2熱分解炉1bとは前記隔壁4で分離されており、また、前記第2熱分解炉1bの流動層5は旋回運動をするものではないので、熱分解性能に影響を与えるものではない。
【0025】
図3は第3実施例に係わる流動床式燃焼装置の構成図で、(A)は縦断面図、(B)は下面図、(C)は(A)におけるX−X断面図、(D)は(A)におけるY−Y断面図である。第1実施例と同じ構成には図1と同じ符号が付してある。本実施例は、図1におけるチャー燃焼炉2を90°回転した形であり、第1熱分解炉1aと前記チャー燃焼炉2の不燃物排出口間の距離が上記第2の実施例よりもさらに短くなる。この距離が短い程、両炉から排出される不燃物を1台の不燃物排出分離装置で処理するのに好都合である。
【0026】
本発明の流動床式燃焼装置は、上述のように、第1熱分解炉1aとチャー燃焼炉2を相対的に90°あるいは180°回転させることができるので、前記第1熱分解炉の廃棄物供給口、不燃物排出口、および前記チャー燃焼炉の不燃物排出口の位置を変えることが可能で、これらの位置を決める際の自由度が増え、燃焼炉の設置場所あるいは付属機器場所等への対応が容易である。
【0027】
図4は、熱分解炉から排出される不燃物とチャー燃焼炉から排出される不燃物を、1台の不燃物排出分離装置で排出不燃物に混じっている流動砂と不燃物を分離する不燃物排出分離装置の構成図である。
図4において、1、2はそれぞれ熱分解炉、チャー燃焼炉で、両炉1、2の底部から排出される不燃物と流動媒体の混合物は、それぞれフィーダ41、42内をスクリュ―43、44により、外殻45と篩46と仕切り板47とで形成される部屋48、49に送られ、篩46を振動させるなどして前記両部屋48、49の流動媒体(砂)を砂受け50に落下させ、砂が分離された不燃物は前記篩46の外周部から不燃物排出口51、52に落下して排出される。
前記熱分解炉からの不燃物とチャー燃焼炉からの不燃物は全般的に大きさや種類が異なるので、別々に排出するようにしてある。前記砂受け50で受けられた砂はバケットコンベア等により所定の場所に搬送される。
【0028】
上記図4では本発明の不燃物排出分離装置を、熱分解炉とチャー燃焼炉と別体に作られている場合に適用したものであるが、図5は本発明の第2実施例の流動床式燃焼炉に装着した場合を示す。本発明の流動床式燃焼炉に適用すると熱分解炉とチャー燃焼炉との不燃物排出口間距離が短いので、スクリュー43、44が短くて済み、コストが低減する。
【0029】
【発明の効果】
以上説明したように、本発明によれば、都市ごみ等の廃棄物の熱分解炉とチャー燃焼炉を含む熱分解ガス化溶融システムにおいて、熱分解炉とチャー燃焼炉を一体化して熱分解炉からチャー燃焼炉へのチャー混合物の搬送手段を排除することにより、高温のチャー混合物搬送に伴う種種の問題、即ち、搬送スクリュー軸やケーシングの冷却を要する問題、搬送するチャーに含まれていることがある鉄やアルミニウム片、瓦礫等の不燃物によるスクリュー等の破損問題が完全に無くなり、設備スペース及びコストの低減がもたらされ、また、両炉の不燃物排出口を近づけることが出きるので、不燃物排出分離装置を共通化することにより、さらに設備スペース及びコストの低減がもたらされる。また、熱分解炉とチャー燃焼炉を相対的に90°あるいは180°回転することが可能であり、その結果廃棄物供給口及び不燃物排出口を燃焼装置の設置スペース等の関係で好ましい位置にすることができる。
【図面の簡単な説明】
【図1】 本発明の第1実施例に係わる流動床式燃焼装置の構成図である。
【図2】 本発明の第2実施例に係わる流動床式燃焼装置の構成図である。
【図3】 本発明の第3実施例に係わる流動床式燃焼装置の構成図である。
【図4】 本発明の熱分解炉とチャー燃焼炉からの不燃物の砂分離を行う不燃物排出分離装置を従来の熱分解炉とチャー燃焼炉に適用した構成図である。
【図5】 本発明の熱分解炉とチャー燃焼炉からの不燃物の砂分離を行う不燃物排出分離装置を本発明の熱分解炉とチャー燃焼炉に適用した構成図である。
【図6】 従来の熱分解炉からチャー燃焼炉へチャー混合物を供給する手段の1例を示す図である。
【図7】 従来の共通炉壁を有する熱分解・チャー燃焼炉を示す図である。
【符号の説明】
1 熱分解炉
1a 第1熱分解炉
1b 第2熱分解炉
2 チャー燃焼炉
3 共通炉壁
4 隔壁
5 流動層
6 開口
7 流動層(熱分解炉)
8 流動層(チャー燃焼炉)
9 炉床散気部(熱分解炉)
10 炉床散気部(第2熱分解炉)
11 炉床散気部(チャー燃焼炉)
12 炉底仕切り板(熱分解炉)
13、13' 炉底仕切り板(チャー燃焼炉)
14 廃棄物
15 不燃物(熱分解炉)
16 不燃物(チャー燃焼炉)
17 EGR
18 空気
41、42 フィーダ
43、44 スクリュー
45 外殻
46 篩
47 仕切り板
48、49 部屋
50 砂受け
51、52 不燃物排出口
[0001]
BACKGROUND OF THE INVENTION
The present invention incinerates municipal waste and industrial waste, melts the ash contained in the waste by the incineration heat, and heats the boiler feed water, for building aggregates, for power plants, etc. The present invention relates to a fluidized bed combustion apparatus in a system for producing steam.
[0002]
[Prior art]
Municipal waste and industrial waste are incinerated, and the ash contained in the waste is melted and cooled by the incineration heat to obtain architectural aggregates, etc., and then discarded in a system that produces steam for power plants, etc. Japanese Patent Laid-Open No. 9-79539 discloses a method of incineration of an object in which pyrolysis gas is generated in a pyrolysis furnace, and undecomposed residues in the pyrolysis furnace are led to a char combustion furnace for combustion.
[0003]
In the above disclosure, the means for supplying the char mixture, which is a mixture of the undecomposed residue (char) overflowed from the fluidized bed in the pyrolysis furnace and the fluidized medium, to the fluidized bed in the char combustion furnace is specified. There are no connection ducts and screw conveyors. That is, as shown in FIG. 6, the upper part of the fluidized bed of the pyrolysis furnace 1 is overflowed to the connecting duct 60 and led to the screw conveyor 61 disposed below by gravity, and the flow of the char combustion furnace is caused by the screw conveyor 61. Pushing into the layer.
There is also a structure in which a pyrolysis furnace and a char combustion furnace are adjacent to each other through a common furnace wall (Mitsubishi Heavy Industries Technical Report Vol.34 No.3 1997-5). Although the cracking furnace 1 and the char combustion furnace 2 are adjacent to each other by a common furnace wall 3, the pyrolysis furnace 1 is not divided into two pyrolysis furnaces each having a fluidized bed, and the fluidized bed of the present invention. The method of supplying the char mixture, which is the pyrolysis residue of the pyrolysis furnace, to the char combustion furnace is different from the type combustion furnace. In FIG. 7, 7 is a fluidized bed of the pyrolysis furnace 1, 8 is a fluidized bed of the char combustion furnace 2, 9 is a hearth diffuser plate of the pyrolysis furnace 1, and 11 is a hearth diffuser part of the char combustion furnace. , 30 is a boiler.
[0004]
[Problems to be solved by the invention]
As described above, a screw conveyor is usually used as a means for feeding the char mixture from the pyrolysis furnace to the char combustion furnace.
As shown in FIG. 6, the fluidized bed upper layer of the fluidized bed pyrolysis furnace 1 is overflowed and guided to the screw conveyor 61 by the connecting duct 60, and pushed into the fluidized bed of the char combustion furnace 2 by the screw conveyor 61. The temperature of the overflowed char mixture is as high as 400 to 450 ° C. The screw conveyor that pushes the char mixture into the fluidized bed of the char combustion furnace requires measures such as cooling the screw shaft and casing. In addition, char may contain incombustible materials such as iron, aluminum, and rubble, and these may bite into the screw and cause damage to the screw.
In the known fluidized bed combustion furnace shown in FIG. 7, the pyrolysis furnace and the char combustion furnace are adjacent to each other by a common partition, and the fluidized beds of both furnaces are communicated with each other through the opening. There is no positive means to supply the char mixture to the char combustion furnace, and there is no means to control it.
[0005]
In view of the above problems, the present invention can control the char mixture of a pyrolysis furnace to be supplied to the char combustion furnace in a fluidized bed combustion furnace including a pyrolysis furnace and a char combustion furnace adjacent to each other through a common furnace wall. Proactive means are built in the pyrolysis furnace, thus eliminating ducts and conveyors that guide the char mixture from the pyrolysis furnace to the char combustion furnace, saving manufacturing costs, running costs, and installation space It is an object of the present invention to provide a fluidized bed combustion furnace in which the thermal decomposition and combustion control of the pyrolysis furnace and the char combustion furnace are easy. Another object of the present invention is to reduce the distance between the incombustible material discharge port from the pyrolysis furnace and the char combustion furnace incombustible material discharge port. It is intended to provide a fluidized bed combustion furnace that treats the incombustible material to be treated with a common incombustible material discharge separation device.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 is a fluidized bed combustion furnace in which one of a pair of fluidized bed furnaces adjacent via a common furnace wall is a pyrolysis furnace and the other is a char combustion furnace.
A partition wall is provided in the pyrolysis furnace and divided into a first pyrolysis furnace and a second pyrolysis furnace,
An opening for communicating the fluidized bed of the second pyrolysis furnace on the common furnace wall side and the fluidized bed of the char combustion furnace is provided in the common furnace wall, and the hearth diffuser of the second pyrolysis furnace is provided with the opening. Inclined downward toward the opening so as to continue to the hearth diffuser inclined downward from the opening of the char combustion furnace via the char combustion furnace, and the superficial velocity of the second pyrolysis furnace is set to the char combustion furnace Lower than the superficial velocity in the air, the fluid medium of the second pyrolysis furnace is supplied to the char combustion furnace through an opening provided in the common furnace wall,
Furthermore, the first and second pyrolysis furnaces have a partition wall separating the first and second pyrolysis furnaces so that the first pyrolysis furnace fluidized bed can overflow to the second pyrolysis furnace fluidized bed side. It shares the fluidized bed upper space.
[0007]
In this invention, waste is introduced into the first pyrolysis furnace, and the upper part of the fluidized bed that has undergone pyrolysis in the fluidized bed of the first pyrolysis furnace overflows the partition wall to overflow the second heat Then, the pyrolysis proceeds further in the second pyrolysis furnace, and the char mixture that has reached the required char generation rate (in other words, pyrolysis gas generation rate) of the second pyrolysis furnace is the second pyrolysis furnace. The lower part of the fluidized bed of the pyrolysis furnace flows into the lower part of the fluidized bed of the char combustion furnace.
EGR (recirculated exhaust gas) is supplied from the bottoms of the first and second pyrolysis furnaces, and the fluidized bed (sand) and waste mixture in the fluidized bed is heated to 350 to 500 ° C. for thermal decomposition. Although gas is generated, the fluidized bed is swirled by adjusting the flow rate of the EGR blown from the bottom of the furnace by the furnace bottom area, and the mixing of sand and waste is promoted.
[0008]
That is, the fluidized bed is pushed up by the EGR because the EGR is mixed and the specific gravity is small and light, and the fluidized bed is pushed up by the EGR. A swirling motion is formed in the fluidized bed in such a manner that the fluidized bed on the area with a small amount of EGR fills the following.
Combustion air is supplied from the bottom of the char combustion furnace, the char mixture entering from the first pyrolysis furnace is combusted, and the fluidized bed reaches 700 to 750 ° C. In the fluidized bed, the air blown from the bottom of the furnace is adjusted by the area of the bottom of the furnace to form a swirling motion.
[0009]
The second pyrolysis furnace fluidized bed enters the char combustion furnace fluidized bed as follows. That is, by making the superficial velocity of the second pyrolysis furnace EGR, that is, the speed when there is no fluidized bed, lower than the superficial velocity in the air of the char combustion furnace, the second pyrolysis furnace and the char combustion furnace A difference in density occurs in the fluidized bed, and the fluidized bed density of the second pyrolysis furnace having a low superficial velocity becomes larger than the fluidized bed density of the char combustion furnace. This density difference becomes a driving force, and the fluidized bed of the second pyrolysis furnace, that is, sand, char, and non-combustible material is supplied to the char combustion furnace through an opening provided in the common furnace wall. Therefore, the char mixture is supplied from the second pyrolysis furnace to the char combustion furnace by controlling the flow rate of the EGR that supplies the density difference to the second pyrolysis furnace and the air supplied to the char combustion furnace. Can be controlled.
[0010]
In the present invention, the pyrolysis furnace is divided into the first pyrolysis furnace and the second pyrolysis furnace, and the density of the second pyrolysis furnace fluidized bed can be adjusted separately from the first pyrolysis furnace fluidized bed. Therefore, the second pyrolysis furnace fluidized bed density can be appropriately adjusted in a relative relationship with the char combustion furnace fluidized bed density, and the char mixture, that is, sand / char / incombustible material can be appropriately adjusted from the second pyrolysis furnace fluidized bed density. The char combustion furnace fluidized bed can be supplied at a speed.
[0011]
According to the second aspect of the present invention, the amount of fluidized gas injected from the hearth diffuser is adjusted so that the fluidized bed density of the second pyrolysis furnace is higher than the fluidized bed density of the char combustion furnace. As described above, the EGR blown from the hearth diffuser of the second pyrolysis furnace and the air blown from the hearth diffuser of the char combustion furnace By adjusting the amount, the density of the second pyrolysis furnace fluidized bed is made higher than the density of the char combustion furnace fluidized bed, and mainly using this density difference as a driving force, the char mixture forming the second pyrolysis furnace fluidized bed Is supplied to the char combustion furnace through an opening provided in the common furnace wall.
[0012]
Matahon invention that hearth diffuser portion of the hearth spraying component and the char combustion furnace of the first pyrolysis furnace which is inclined towards the respective incombustible discharge port side shall be the feature Thus, the incombustible material that is heavier than the fluidized bed that segregates at the bottom of the fluidized bed, that is, has a higher density, can easily flow down toward the incombustible discharge port along the hearth diffuser. The above-mentioned swirl flow in the fluidized bed is formed so as to have a flow along the inclination of the hearth diffuser.
[0013]
The present invention hearth diffuser portion of the second pyrolysis furnace, characterized in that you are inclined to fall toward the hearth diffuser portion of the char combustion furnace, the second Since the bottom gas diffusion part of the pyrolysis furnace is lowered to the hearth gas diffusion part of the char combustion furnace, the sand, char, and non-combustible material forming the second pyrolysis furnace fluidized bed, as described above, When the gas flows into the char combustion furnace through the opening of the common furnace wall due to the density difference between the second pyrolysis furnace fluidized bed and the char combustion furnace fluidized bed, the inflow is assisted. In addition, since the inclination of the hearth diffusion part of the second pyrolysis furnace is continuous with the inclination of the hearth diffusion part of the char combustion furnace, the inclination of the hearth diffusion part of the second pyrolysis furnace is followed. The sand, char, and non-combustible material forming the second pyrolysis furnace fluidized bed flowing into the char combustion furnace fluidized bed through the opening of the common furnace wall is the hearth diffused gas of the char combustion furnace fluidized bed swirl flow. Involved in the flow along the part inclination, mixing with the char combustion furnace fluidized bed is promoted.
[0014]
The invention of claim 3 Symbol placing a thermal cracking furnace comprising a first pyrolysis furnace and the second pyrolysis furnace forms a square, the char combustion furnace is also characterized in that forming a square, the first The first pyrolysis furnace portion and the char combustion furnace can be configured to rotate relative to each other by 90 ° or 180 ° without substantially affecting the performance of the pyrolysis furnace, the second pyrolysis furnace, and the char combustion furnace. Therefore, it is possible to change the positions of the waste supply port of the first pyrolysis furnace, the noncombustible discharge port, and the noncombustible discharge port of the char combustion furnace, and the degree of freedom in determining these positions increases. It is easy to correspond to the location of the combustion furnace or the accessory equipment.
[0015]
The invention according to claim 4 is a fluidized bed combustion furnace in which one of a pair of fluidized bed furnaces adjacent via a common furnace wall is a pyrolysis furnace and the other is a char combustion furnace.
A partition wall is provided in the pyrolysis furnace and divided into a first pyrolysis furnace and a second pyrolysis furnace,
An opening is provided in the common furnace wall for communicating the fluidized bed of the second pyrolysis furnace on the common furnace wall side and the fluidized bed of the char combustion furnace;
An incombustible material discharge separation device connected to each incombustible material discharge port of the first pyrolysis furnace and the char combustion furnace ,
Two chambers partitioned by a partition plate are formed on the upper side of the sieve, and the two chambers are connected to the incombustible discharge port, respectively, and a sand receiver is disposed on the lower side of the sieve,
A mixture of incombustible material discharged from the pyrolysis furnace and a fluidized medium and a mixture of incombustible material discharged from the char combustion furnace and a fluidized medium are respectively supplied to both chambers above the outer shells forming the two chambers. Arrange the feeder to
The outlet of both feeders connected to the outer shell so as to open respectively into the two chambers, characterized in that said both chambers are incombustible discharge separating device provided with a respective outlet.
[0016]
According to this invention, the mixture of incombustible material and fluidized sand discharged from the pyrolysis furnace and the mixture of incombustible material and fluidized sand discharged from the char combustion furnace are led to the incombustible material separation part of the incombustible material discharge separation device, In the incombustible material separation part, a room into which the both mixtures flow is partitioned on a sieve, and the screened sand is received by a common sand receiver, and the pyrolysis furnace exhaust incombustible material and the char combustion furnace exhaust incombustible material are Since the size and type are generally different, they are discharged from separate discharge ports of the separation unit. Conventionally, since the pyrolysis furnace and the char combustion furnace are separated from each other, the separation of incombustibles and the transport of separated sand have been performed by separate apparatuses. Cost can be reduced.
The invention described in each of the above items can be brought close to the incombustible material discharge port of the pyrolysis furnace and the incombustible material discharge port of the char combustion furnace, and is therefore optimal for applying the incombustible material discharge separation device of the present invention.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative positions, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention unless otherwise specified.
FIG. 1 is a configuration diagram of a fluidized bed combustion apparatus according to a first embodiment of the present invention, in which (A) is a longitudinal sectional view, (B) is a bottom view, and (C) is an XX section in (A). FIG.
[0018]
In FIG. 1, 1 is a pyrolysis furnace, 2 is a char combustion furnace, and both the furnaces are adjacent to each other with a common furnace wall 3 interposed therebetween. The inside of the pyrolysis furnace 1 is divided into a first pyrolysis furnace 1 a and a second pyrolysis furnace 1 b by a partition wall 4, and a fluidized bed 5 of the second pyrolysis furnace is formed by an opening 6 provided in the common furnace wall 3. It communicates with the fluidized bed 8 of the char combustion furnace 2. 7 is a fluidized bed of the first pyrolysis furnace 1a, 9 is a hearth diffusion part of the first pyrolysis furnace 1a, 10 is a hearth diffusion part of the second pyrolysis furnace 1b, and 11 is the char. It is a hearth diffusion part of the combustion furnace 2. 12 is a bottom partition plate that partitions the bottom of the hearth diffuser 9 of the first pyrolysis furnace 1b, and 13 and 13 'are bottom partition plates that partition the bottom of the hearth diffuser 11 of the char combustion furnace 2. . 14 is waste material supplied to the first pyrolysis furnace 1a, 15 is non-combustible material discharged from the non-combustible discharge port of the first pyrolysis furnace 1a, and 16 is discharged from the non-combustible discharge port of the char combustion furnace. Incombustible material, 17 is EGR (recirculated exhaust gas) supplied to the first and second pyrolysis furnaces 1a and 1b, and 18 is combustion air supplied to the char combustion furnace. The waste to the first pyrolysis furnace 1a is conventionally supplied to the upper space of the fluidized bed, but may be supplied to the fluidized bed.
[0019]
Waste gas such as municipal waste 14 is supplied from the waste supply port to the first pyrolysis furnace 1a, and is supplied from the bottom of the furnace and recirculated exhaust gas (EGR) entering the fluidized bed through the hearth diffuser 9. The waste in the pyrolysis furnace 1 and the fluid medium (sand) are heated and fluidized by combustion with combustion air that is sent simultaneously for temperature adjustment as necessary, and the pyrolysis gas generated is ash (not shown). It is sent to a melting furnace.
In the first pyrolysis furnace 1a, the heated waste and the fluidized medium (sand) form a fluidized bed 7, and the waste and fluidized sand are mixed by the swirling motion of the fluidized bed 7 to heat the waste evenly. And pyrolyze. The upper layer portion of the fluidized bed 7 overflows the partition wall 4 and flows down to the first pyrolysis furnace 1b. In the second pyrolysis furnace 1b as well, the EGR is blown through the hearth diffuser 10 to generate heat. The char mixture composed of sand, char and non-combustible material that has reached a predetermined char generation rate (in other words, pyrolysis gas generation rate) progresses along the hearth diffuser 10 of the second pyrolysis furnace 1b. Then, the fluid enters the fluidized bed 8 of the char combustion furnace 2 through the opening 6 provided in the common furnace wall 3.
[0020]
The EGR blown into the fluidized bed 7 of the second pyrolysis furnace 1b has a superficial velocity lower than that of the air blown into the fluidized bed 8 of the char combustion furnace, so that the fluidized bed of the second pyrolysis furnace 1b. The density is larger than the density of the fluidized bed 8 of the char combustion furnace 2, and the char mixture that forms the fluidized bed 7 of the second pyrolysis furnace 1b using this density difference as a driving force becomes a fluidized bed 8 of the char combustion furnace. Enter. By controlling the flow rate of EGR supplied to the second pyrolysis furnace and the air supplied to the char combustion furnace, the density difference is controlled, and the char mixture from the first pyrolysis furnace to the char combustion furnace is controlled. The supply can be controlled.
The EGR 17 that is blown into each chamber partitioned by the furnace bottom partition plate 12 below the hearth diffuser 9 of the first pyrolysis furnace 1a causes a swirling motion indicated by an arrow S1 in the fluidized bed 7. The flow rate is adjusted by each chamber.
[0021]
The air 18 blown into the chambers partitioned by the furnace bottom partition plates 13 and 13 ′ below the hearth diffuser 11 of the char combustion furnace 2 passes through the hearth diffuser 11 and enters the fluidized bed 8. It enters and burns the char in the fluidized bed 8, and the combustion gas is sent to a boiler (not shown).
The flow rate of the air 18 blown into the respective chambers partitioned by the furnace bottom partition plates 13 and 13 ′ is adjusted by the respective chambers so that the swirling motion indicated by the arrow S2 occurs in the fluidized bed 8. The incombustible materials 15 and 16 accompanied with the fluidized sand of the pyrolysis furnace 1 and the char combustion furnace 2 are introduced into a noncombustible material discharge separation device (not shown) to separate the fluidized sand and the incombustible material.
[0022]
2A and 2B are configuration diagrams of a fluidized bed combustion apparatus according to a second embodiment of the present invention, in which FIG. 2A is a longitudinal sectional view and FIG. 2B is a bottom view. The same components as those in the first embodiment are denoted by the same reference numerals as those in FIG. In this embodiment, the first pyrolysis furnace 1a in FIG. 1 is rotated by 90 °. As a result, the non-combustible material 15 of the first pyrolysis furnace 1a is adjacent to the char combustion furnace 2. 2 is discharged below the pyrolysis furnace 1b, the distance between the incombustible discharge ports of both furnaces is shorter than that of the first embodiment, and the supply port of the waste 14 is the second pyrolysis furnace. It is to be provided on the side wall of the first pyrolysis furnace facing 1b.
[0023]
The swirl motion S1 in the fluidized bed 7 of the first pyrolysis furnace 1a is performed by adjusting the flow rate of each chamber of the EGR 17 that is blown into each chamber in which the lower portion of the hearth diffuser 9 is partitioned by the furnace bottom partition plate 12. It is. That is, in FIG. 2 (A), in order to form a swirling flow in the direction of arrow S1 in the fluidized bed 7 of the first pyrolysis furnace 1a, the bottom of the hearth diffuser 9 is partitioned by a furnace bottom partition plate 12. Of the partition chambers 12a and 12b, the flow rate of the EGR 17 that is blown into the partition chamber 12a is made larger than the flow rate and flow rate of the EGR 17a that is blown into the partition chamber 17a. As a result, the density of the fluidized bed above the partition chamber 17b becomes small and is pushed up by the EGR 17a and rises, and the fluidized bed above the partition chamber 17a is filled in the fluidized bed 7 in the direction of arrow S1. The swirling flow is formed.
[0024]
When the waste 14 is thrown into the upper space of the fluidized bed 7, the waste 14 needs to be thrown into a place where the fluidized bed swirling motion is downward in order to wind the thrown waste into the fluidized bed. Yes, the input port for the waste 14 is provided on the side wall of the first pyrolysis furnace facing the second pyrolysis furnace 1b. Therefore, the waste 14 is introduced from a place farthest from the second pyrolysis furnace 1b, and there is an advantage that the waste 14 is not shoot-passed to the second pyrolysis furnace 1b.
In this embodiment, as compared with the first embodiment, the direction of the swirling motion of the fluidized bed 7 of the first pyrolysis furnace 1a is rotated by 90 °, and the fluidized bed of the second pyrolysis furnace 1b. However, the first pyrolysis furnace 1a and the second pyrolysis furnace 1b are separated by the partition wall 4, and the second pyrolysis furnace 1b is changed. Since the fluidized bed 5 does not swivel, it does not affect the thermal decomposition performance.
[0025]
FIG. 3 is a block diagram of a fluidized bed combustion apparatus according to the third embodiment, in which (A) is a longitudinal sectional view, (B) is a bottom view, (C) is a sectional view taken along line XX in (A), (D ) Is a YY sectional view in (A). The same components as those in the first embodiment are denoted by the same reference numerals as those in FIG. In this embodiment, the char combustion furnace 2 in FIG. 1 is rotated by 90 °, and the distance between the first pyrolysis furnace 1a and the incombustible discharge port of the char combustion furnace 2 is larger than that in the second embodiment. It becomes even shorter. The shorter this distance is, the more convenient it is to process incombustibles discharged from both furnaces with a single incombustible discharge separator.
[0026]
Since the fluidized bed combustion apparatus of the present invention can relatively rotate the first pyrolysis furnace 1a and the char combustion furnace 2 by 90 ° or 180 ° as described above, the first pyrolysis furnace is discarded. It is possible to change the position of the material supply port, the non-combustible material discharge port, and the non-combustible material discharge port of the char combustion furnace, and the degree of freedom in deciding these positions is increased. Is easy to deal with.
[0027]
Fig. 4 shows the incombustible material that separates incombustible material from the incombustible material discharged from the pyrolysis furnace and incombustible material discharged from the char combustion furnace into fluidized sand and incombustible material mixed in the incombustible material discharged by a single incombustible material discharge separator It is a block diagram of a thing discharge separation apparatus.
In FIG. 4, reference numerals 1 and 2 denote a pyrolysis furnace and a char combustion furnace, respectively. The mixture of incombustible material and fluidized medium discharged from the bottoms of both furnaces 1 and 2 is fed into screws 41 and 44 in feeders 41 and 42, respectively. Accordingly, the fluid medium (sand) in both the chambers 48 and 49 is sent to the sand receiver 50 by vibrating the sieve 46 and the like. The incombustible material that has been dropped and from which the sand has been separated falls from the outer periphery of the sieve 46 to the incombustible material discharge ports 51 and 52 and is discharged.
Since the incombustible material from the pyrolysis furnace and the incombustible material from the char combustion furnace are generally different in size and type, they are discharged separately. The sand received by the sand receiver 50 is conveyed to a predetermined place by a bucket conveyor or the like.
[0028]
In FIG. 4, the incombustible discharge / separation apparatus of the present invention is applied to a case where the pyrolysis furnace and the char combustion furnace are separately provided, but FIG. 5 shows the flow of the second embodiment of the present invention. The case where it is installed in a floor-type combustion furnace is shown. When applied to the fluidized bed combustion furnace of the present invention, the distance between the incombustible discharge ports of the pyrolysis furnace and the char combustion furnace is short, so that the screws 43 and 44 can be shortened and the cost can be reduced.
[0029]
【The invention's effect】
As described above, according to the present invention, in a pyrolysis gasification melting system including a pyrolysis furnace for waste such as municipal waste and a char combustion furnace, the pyrolysis furnace and the char combustion furnace are integrated into a pyrolysis furnace. By removing the means for transporting the char mixture from the furnace to the char combustion furnace, various problems associated with the transport of the hot char mixture, that is, the problem of cooling the transport screw shaft and casing, being included in the transporting char The problem of screw damage due to non-combustible materials such as iron, aluminum pieces, and debris is completely eliminated, resulting in reduced equipment space and costs, and the incombustible discharge ports of both furnaces can be brought closer. By making the non-combustible discharge / separation device in common, the equipment space and cost can be further reduced. In addition, the pyrolysis furnace and the char combustion furnace can be relatively rotated by 90 ° or 180 °, and as a result, the waste supply port and the non-combustible discharge port are placed in a preferable position in relation to the installation space of the combustion device. can do.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a fluidized bed combustion apparatus according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a fluidized bed combustion apparatus according to a second embodiment of the present invention.
FIG. 3 is a configuration diagram of a fluidized bed combustion apparatus according to a third embodiment of the present invention.
FIG. 4 is a configuration diagram in which the incombustible material discharge separation device for separating incombustible material from the pyrolysis furnace and the char combustion furnace according to the present invention is applied to a conventional pyrolysis furnace and a char combustion furnace.
FIG. 5 is a configuration diagram in which the incombustible material discharge separation device for separating the incombustible material from the pyrolysis furnace and the char combustion furnace of the present invention is applied to the pyrolysis furnace and the char combustion furnace of the present invention.
FIG. 6 is a diagram showing an example of means for supplying a char mixture from a conventional pyrolysis furnace to a char combustion furnace.
FIG. 7 is a view showing a conventional pyrolysis / char combustion furnace having a common furnace wall.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pyrolysis furnace 1a 1st pyrolysis furnace 1b 2nd pyrolysis furnace 2 Char combustion furnace 3 Common furnace wall 4 Partition wall 5 Fluidized bed 6 Opening 7 Fluidized bed (pyrolysis furnace)
8 Fluidized bed (char combustion furnace)
9 Hearth diffuser (pyrolysis furnace)
10 Hearth diffuser (second pyrolysis furnace)
11 Hearth diffuser (char combustion furnace)
12 Furnace bottom partition plate (pyrolysis furnace)
13, 13 'Furnace bottom partition plate (char combustion furnace)
14 Waste 15 Incombustible (Pyrolysis furnace)
16 Incombustible material (char combustion furnace)
17 EGR
18 Air 41, 42 Feeder 43, 44 Screw 45 Outer shell 46 Sieve 47 Partition plate 48, 49 Room 50 Sand receiver 51, 52 Incombustible discharge port

Claims (4)

一つの共通炉壁を介して隣接する1対の流動床炉の一方を熱分解炉、他方をチャー燃焼炉とした流動床式燃焼炉において、
前記熱分解炉内に隔壁を設けて第1熱分解炉と第2熱分解炉に分け、
前記共通炉壁側の第2熱分解炉の流動層と前記チャー燃焼炉の流動層を連通する開口を前記共通炉壁に設け、前記第2熱分解炉の炉床散気部は、前記開口を介してチャー燃焼炉の前記開口より下向き傾斜させた炉床散気部に連なるように、前記開口に向かって下向きに傾斜させるとともに、前記第2熱分解炉の空塔速度を前記チャー燃焼炉の空気での空塔速度より低くして、前記第2熱分解炉の流動媒体が前記共通炉壁に設けられた開口を通して前記チャー燃焼炉に供給され、
更に前記第1、第2熱分解炉を分ける隔壁を前記第1熱分解炉流動層が前記第2熱分解炉流動層側にオーバーフローできる高さとして前記第1、第2熱分解炉はそれぞれの流動層上部空間を共有することを特徴とする流動床式燃焼装置。
In a fluidized bed combustion furnace in which one of a pair of fluidized bed furnaces adjacent via a common furnace wall is a pyrolysis furnace and the other is a char combustion furnace,
A partition wall is provided in the pyrolysis furnace and divided into a first pyrolysis furnace and a second pyrolysis furnace,
An opening for communicating the fluidized bed of the second pyrolysis furnace on the common furnace wall side and the fluidized bed of the char combustion furnace is provided in the common furnace wall, and the hearth diffuser of the second pyrolysis furnace is provided with the opening. Inclined downward toward the opening so as to continue to the hearth diffuser inclined downward from the opening of the char combustion furnace via the char combustion furnace, and the superficial velocity of the second pyrolysis furnace is set to the char combustion furnace Lower than the superficial velocity in the air, the fluid medium of the second pyrolysis furnace is supplied to the char combustion furnace through an opening provided in the common furnace wall,
Furthermore, the first and second pyrolysis furnaces have a partition wall separating the first and second pyrolysis furnaces so that the first pyrolysis furnace fluidized bed can overflow to the second pyrolysis furnace fluidized bed side. A fluidized bed combustor which shares a fluidized bed upper space.
前記第2熱分解炉の流動層密度が前記チャー燃焼炉の流動層密度よりも高くなるように炉床散気部から吹込まれる流動化ガスの量が調整されることを特徴とする請求項1記載の流動床式燃焼装置。 Claims, characterized in that the amount of fluidizing gas fluidized bed density is blown from the hearth diffuser portion to be higher than the fluidized bed density of the char combustion furnace of the second pyrolysis furnace is adjusted The fluidized bed combustion apparatus according to 1. 前記第1熱分解炉と第2熱分解炉からなる熱分解炉は方形をなし、前記チャー燃焼炉も方形をなすことを特徴とする前記請求項1乃至4のいずれか1項に記載の流動床式燃焼装置。  The flow according to any one of claims 1 to 4, wherein a pyrolysis furnace including the first pyrolysis furnace and the second pyrolysis furnace has a square shape, and the char combustion furnace also has a square shape. Floor combustion system. 一つの共通炉壁を介して隣接する1対の流動床炉の一方を熱分解炉、他方をチャー燃焼炉とした流動床式燃焼炉において、
前記熱分解炉内に隔壁を設けて第1熱分解炉と第2熱分解炉に分け、
前記共通炉壁側の第2熱分解炉の流動層と前記チャー燃焼炉の流動層を連通する開口を前記共通炉壁に設けるとともに、
前記第1熱分解炉及び前記チャー燃焼炉の夫々の不燃物排出口に接続される不燃物排出分離装置が
篩の上側に仕切り板で仕切った2つの部屋を形成し、該2つの部屋を前記不燃物排出口に夫々接続させるとともに、前記篩の下側に砂受けを配設し、
前記両部屋を形成する外殻の上側に前記熱分解炉から排出される不燃物と流動媒体の混合物と、前記チャー燃焼炉から排出される不燃物と流動媒体の混合物をそれぞれ前記両部屋に供給するフィーダを配設し、
両フィーダの排出口を前記両部屋にそれぞれ開口するように前記外殻に接続し、前記両部屋にはそれぞれ排出口を設けた不燃物排出分離装置であることを特徴とする流動床式燃焼装置。
In a fluidized bed combustion furnace in which one of a pair of fluidized bed furnaces adjacent via a common furnace wall is a pyrolysis furnace and the other is a char combustion furnace,
A partition wall is provided in the pyrolysis furnace and divided into a first pyrolysis furnace and a second pyrolysis furnace,
An opening is provided in the common furnace wall for communicating the fluidized bed of the second pyrolysis furnace on the common furnace wall side and the fluidized bed of the char combustion furnace;
An incombustible material discharge separation device connected to each incombustible material discharge port of the first pyrolysis furnace and the char combustion furnace ,
Two chambers partitioned by a partition plate are formed on the upper side of the sieve, and the two chambers are connected to the incombustible discharge port, respectively, and a sand receiver is disposed on the lower side of the sieve,
A mixture of incombustible material discharged from the pyrolysis furnace and a fluidized medium and a mixture of incombustible material discharged from the char combustion furnace and a fluidized medium are respectively supplied to both chambers above the outer shells forming the two chambers. Arrange the feeder to
The outlet of both feeders connected to the outer shell so as to open respectively into the two chambers, the two rooms flow you wherein it is incombustible discharge separating device provided with a respective outlet Doyukashiki Combustion device.
JP2000057216A 2000-03-02 2000-03-02 Fluidized bed combustor Expired - Fee Related JP3831569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000057216A JP3831569B2 (en) 2000-03-02 2000-03-02 Fluidized bed combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000057216A JP3831569B2 (en) 2000-03-02 2000-03-02 Fluidized bed combustor

Publications (2)

Publication Number Publication Date
JP2001241613A JP2001241613A (en) 2001-09-07
JP3831569B2 true JP3831569B2 (en) 2006-10-11

Family

ID=18578045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000057216A Expired - Fee Related JP3831569B2 (en) 2000-03-02 2000-03-02 Fluidized bed combustor

Country Status (1)

Country Link
JP (1) JP3831569B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919635B2 (en) * 2005-08-31 2012-04-18 中国電力株式会社 Bed density optimization method and bed density optimization system of fluidized medium in pressurized fluidized bed boiler
JP5524159B2 (en) * 2011-09-27 2014-06-18 Jx日鉱日石金属株式会社 Gasification melting furnace and operation method of gasification melting furnace
CN104566977B (en) * 2014-12-24 2017-02-22 重庆大学 Conduction oil heating furnace with dual fluidized beds
CN107723017A (en) * 2017-11-29 2018-02-23 广州市新望谷环保科技有限公司 One kind fluidisation pyrolysis oven

Also Published As

Publication number Publication date
JP2001241613A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
KR100264723B1 (en) Method and apparatus for producing superheated steam using heat generated through incineration of wastes
JP5753585B2 (en) Waste treatment facility
KR101237761B1 (en) Centrifugal continuous combustion apparatus having function of division on fly ash
JP3831569B2 (en) Fluidized bed combustor
US4262611A (en) Method of and apparatus for waste incineration
JP3749144B2 (en) Water-cooled stoker
JP4972944B2 (en) Combustion treatment method and apparatus for combustible waste
US4753180A (en) Method of stable combustion for a fluidized bed incinerator
JP4116698B2 (en) Ash fusion incineration system
EP0836053B1 (en) Fluidized bed incinerator
JP3839709B2 (en) Gas supply device, gas supply utilization system, gasification and melting system, and gas supply method
JP3542280B2 (en) Fluid bed incinerator
JP3535835B2 (en) Fluidized bed incinerator
JP6888786B2 (en) Small incinerator
JP4660757B2 (en) Fluidized bed furnace and its incineration method
JP3779681B2 (en) Incinerator
JP4102167B2 (en) Gasifier
JPH08261657A (en) Vertical burning furnace
WO2002086026A2 (en) Gasification apparatus and method of operating the same
JP2888396B2 (en) Fluidized bed combustion device
JP2991638B2 (en) Waste incineration equipment
JPS5932805Y2 (en) Fluidized bed furnace
JPH10232008A (en) Waste incinerating device
JP2664645B2 (en) Fluidized bed heat recovery equipment
JPH0335575B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees