JP3830838B2 - Method for producing hydrogen separation membrane - Google Patents

Method for producing hydrogen separation membrane Download PDF

Info

Publication number
JP3830838B2
JP3830838B2 JP2002070807A JP2002070807A JP3830838B2 JP 3830838 B2 JP3830838 B2 JP 3830838B2 JP 2002070807 A JP2002070807 A JP 2002070807A JP 2002070807 A JP2002070807 A JP 2002070807A JP 3830838 B2 JP3830838 B2 JP 3830838B2
Authority
JP
Japan
Prior art keywords
hydrogen separation
separation membrane
hydrogen
thin films
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002070807A
Other languages
Japanese (ja)
Other versions
JP2003265937A (en
Inventor
一志 岡登
敦之 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002070807A priority Critical patent/JP3830838B2/en
Publication of JP2003265937A publication Critical patent/JP2003265937A/en
Application granted granted Critical
Publication of JP3830838B2 publication Critical patent/JP3830838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、水素分離膜の製造方法に関するものである。
【0002】
【従来の技術】
近年、石油資源が枯渇化する一方、化石燃料の消費による地球温暖化等の環境問題が深刻化している。そこで、二酸化炭素の発生を伴わないクリーンな電動機用電力源として燃料電池が注目され、広範に開発されている。
【0003】
前記燃料電池の燃料として、例えば、イソプロパノール等の低級アルコールを分解して得られる水素ガスを用いることが考えられる。前記イソプロパノールは通常は液体であるが、触媒存在下で80℃程度に加熱することにより、分解してアセトンと水素との混合気体が得られる。また、液体の前記イソプロパノールを80℃未満の温度で加熱して気化させた後、イソプロパノール蒸気に触媒を作用させて分解することによっても、アセトンと水素との混合気体が得られる。前記混合気体は、水素分離膜を透過させることにより、水素が富化された気体とすることができる。
【0004】
従来、前記水素分離膜の原料樹脂として、例えばスルホン化ポリイミド、酸修飾ポリベンズイミダゾール等が知られている。前記水素分離膜は、前記原料樹脂の溶液をガラス基板上に流延した後、乾燥させることにより製造することができる。このとき、前記水素分離膜は、高度の水素分離性能を得る上で、膜厚ができるだけ薄いことが望まれる。
【0005】
しかしながら、前記水素分離膜の膜厚を薄くすると、得られた膜にピンホールができやすく、水素分離膜として使用することができないことがあるとの不都合がある。
【0006】
【発明が解決しようとする課題】
本発明は、かかる不都合を解消して、膜厚が極めて薄く優れた水素分離性能を備える水素分離膜の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
かかる目的を達成するために、本発明の水素分離膜の製造方法は、水素分離膜の原料樹脂の溶液を一のガラス基板上に流延して薄膜を形成する工程と、該原料樹脂の溶液を他のガラス基板上に流延して薄膜を形成する工程と、両基板上に形成された薄膜を、表面が未乾燥の状態で、該表面を相対向させて積層する工程とを備えることを特徴とする。
【0008】
本発明の製造方法によれば、2枚のガラス基板上に流延して形成された薄膜を、互いの表面が未乾燥の状態で、該表面を相対向させて積層し、重ね合わせることにより、容易に一体化させることができる。前記のようにして2枚の薄膜を一体化することにより、たとえ一方の薄膜にピンホールが生じていたとしても、該ピンホールを他方の薄膜で塞ぐことができる。
【0009】
従って、本発明の製造方法によれば、前記2枚の薄膜が互いに補完しあうことにより、極めて薄い膜厚で優れた水素分離性能を備え、しかもピンホールが無い水素分離膜を得ることができる。
【0010】
本発明の製造方法では、前記両基板上に形成された薄膜を、表面が未乾燥の状態で、該表面を相対向させて積層した後、加圧して乾燥させることにより、2枚の薄膜が一体化された水素分離膜を得ることができる。前記水素分離膜は、例えば温水中で前記基板から剥離された後、例えばガラス、不織布等の支持体上で真空乾燥することにより完成される。
【0011】
本発明の製造方法は、形成された水素分離膜の膜厚が2〜10μmの範囲にある場合に好適に用いることができる。前記水素分離膜の膜厚が2μm未満では、製膜すること自体が難しい。また、製膜できた場合に、前記2枚の薄膜を積層して互いに補完しあうようにするとしても、ピンホールの発生を防ぐことが極めて難しい。また、前記水素分離膜の膜厚が10μmを超えるときには、本発明の製造方法によらなくても製造することができるが、優れた水素分離性能を得ることが難しい。
【0012】
本発明の製造方法において、前記原料樹脂は、水素分離膜を形成できる樹脂であればどのようなものであってもよいが、例えばスルホン化ポリイミドを用いることができる。前記スルホン化ポリイミドは、例えば、2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物と、スルホン酸基を有する少なくとも1種の芳香族アミンとの共重合により得ることができる。前記芳香族アミンとしては、例えば、2,4,6−トリメチルフェニレンジアミンを挙げることができる。
【0013】
【発明の実施の形態】
次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の水素分離膜の製造方法の各工程を示す工程図、図2は水素分離装置の構成を示す組立図、図3は図2の装置の断面図である。
【0014】
次に、水素分離膜の原料樹脂として、2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物と、スルホン酸基を有する2,4,6−トリメチルフェニレンジアミンとの共重合により得られるスルホン化ポリイミドを用いる場合を例として、本実施形態の水素分離膜の製造方法について説明する。
【0015】
本実施形態の製造方法では、まず、前記スルホン化ポリイミドと、溶媒としてのジメチルスルホキシド(以下、DIMSOと略記する)とを乾留器付きのフラスコに入れる。前記スルホン化ポリイミドは、ジメチルスルホキシドとの合計量に対して5重量%の量となるようにする。前記フラスコを140℃のオイルバス中で2時間加熱することにより、前記スルホン化ポリイミドをDIMSOに溶解させた後、残渣を0.45μmミリポアフィルター(商品名)で濾別し、試料溶液を調製する。
【0016】
次に、図1(a)に示すように、前記試料溶液を2枚のガラス基板1a,1bに滴下し、例えばYBA型ベーカリーアプリケーターを用いて所定の厚さに流延する。前記流延後、前記試料溶液を乾燥させ、各ガラス基板1a,1b上に薄膜2a,2bを形成させる。前記試料溶液の乾燥は、ピンホールの発生を抑制するために、前記DIMSOが急激に気化しないような条件で行うことが好ましく、例えば、扁平なガラス容器で覆ったガラス基板1a,1bを、120〜140℃のホットプレート上に載置して行う。前記試料溶液の乾燥は、薄膜2a,2bがガラス基板1a,1bに接する面では固化し、開放されれている側の表面が未乾燥の状態となるまで行う。
【0017】
次に、薄膜2a,2bのガラス基板1a,1bに接する面が固化したならば、前記表面が未乾燥の状態で、図1(b)に示すように、薄膜2a,2bを前記表面で相対向させて積層し、重ね合わせる。前記積層は、薄膜2a,2bがガラス基板1a,1bに付着したままの状態で行う。
【0018】
次に、前記のように積層された薄膜2a,2bを乾燥させ、図1(c)示のようにガラス基板1a,1bに挟持された状態で、薄膜2a,2bが一体化した水素分離膜3を形成する。前記のように積層された薄膜2a,2bの乾燥は、例えば100〜300kg/cm2の圧力でプレスしながら行ってもよい。また、前記乾燥は、ピンホールの発生を抑制するために、真空乾燥により行うことが好ましい。
【0019】
前記乾燥が完了したならば、次に、図1(d)に示すように、ガラス基板1a,1bに挟持された水素分離膜3を60〜80℃の温水4に浸漬し、ガラス基板1a,1bから剥離する。
【0020】
剥離された水素分離膜3は、図1(e)に示すように、支持体5上、105℃程度の温度で乾燥することにより完成する。支持体5としては、ガラス、不織布等を用いることができる。
【0021】
次に、図1(a)に示す工程で前記試料溶液を流延する厚さを変量して、厚さ2.0〜10.0μmの水素分離膜3を11種(実施例1〜11)形成した。各実施例の水素分離膜3について、ピンホールの有無を目視試験と、ヘリウムガスのリーク試験とにより調べ、両試験の結果から総合的に判定した。結果を表1に示す。
【0022】
尚、ヘリウムガスのリーク試験は、各実施例の水素分離膜3に0.04MPaの圧力でヘリウムガスの負荷をかけ、透過以外のリークを判定した。
【0023】
【表1】

Figure 0003830838
【0024】
次に、比較のために、前記試料溶液を1枚のガラス基板に所定厚さに流延し、乾燥することにより水素分離膜を形成した。前記水素分離膜は、前記試料溶液を流延する厚さを変量して、厚さ1.5〜33.1μmの16種(比較例1〜16)を形成し、前記実施例と同一の方法によりピンホールの有無を調べ、目視試験とヘリウムガスのリーク試験との結果から総合的に判定した。結果を表2に示す。
【0025】
【表2】
Figure 0003830838
【0026】
表1から、本実施形態の製造方法(実施例1〜11)によれば、厚さ2.0〜10.0μmの範囲でピンホールの無い水素分離膜を得ることができることが明らかである。これに対して、表2から、前記試料溶液を1枚のガラス基板に所定厚さに流延し乾燥する方法(比較例1〜16)では、厚さが17μm以上にならなければピンホールの無い水素分離膜を得ることができないことが明らかである。
【0027】
次に、水素分離装置(水素分離膜モジュール)を用いて、実施例1,11、比較例15の3種の水素分離膜について、水素分離性能を試験した。
【0028】
図2に示すように、水素分離装置11は、相対向する面に蛇行状に設けられたラビリンス溝12を備えるセル13a,13bの間に、カーボンペーパーからなる支持体14に支持された水素分離膜3を挟持し、支持体14と水素分離膜3との周囲はシール枠15によりシールされている。水素分離装置11では、図3示のように、セル13aの側のラビリンス溝12に水素含有気体を供給すると、該気体がラビリンス溝12に沿って流れながら、支持体14に支持された水素分離膜3を透過し、セル13bの側のラビリンス溝12に水素が富化された水素富化気体が得られる。
【0029】
次に、前記3種の水素分離膜のそれぞれについて、セル13aの側のラビリンス溝12に、エタノールを0.1ml/分、水素を10ml/分で同時に供給し、水素分離装置11を80℃に加熱することにより、装置内でエタノール−水素混合気体を発生させた。該混合気体は、約15重量%の水素を含有している。そして、供給開始から3分後に、セル13bの側のラビリンス溝12から流出する気体を、窒素置換した25mlの採気ビンに捕集し、ガスクロマトグラフィーにより該流出気体の水素濃度を定量した。結果を表3に示す。
【0030】
【表3】
Figure 0003830838
【0031】
表3から、水素分離膜は、樹脂の種類が同一であれば、膜厚が薄いほど水素分離性能に優れており、実施例1,11の水素分離膜は比較例15の水素分離膜に比較して格段に優れた水素分離性能を備えていることが明らかである。
【0032】
尚、本実施形態のスルホン化ポリイミドでは、2,4,6−トリメチルフェニレンジアミンを用いているが、他の芳香族ジアミンを用いてもよい。また、前記芳香族ジアミンは、複数の芳香族ジアミンを併用してもよく、芳香族以外のジアミンと併用してもよい。
【0033】
また、本実施形態では前記原料樹脂として、スルホン化ポリイミドを用いる場合について説明しているが、前記原料樹脂は水素分離膜を形成できるものであれば、どのようなものであってもよい。
【図面の簡単な説明】
【図1】本発明の製造方法の各工程を示す工程図。
【図2】水素分離装置の構成を示す組立図。
【図3】図2の装置の断面図。
【符号の説明】
1a,1b…ガラス基板、 2a,2b…薄膜、 3…水素分離膜。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hydrogen separation membrane.
[0002]
[Prior art]
In recent years, while petroleum resources are depleted, environmental problems such as global warming due to consumption of fossil fuels have become serious. Therefore, fuel cells have attracted attention as a clean power source for electric motors that does not generate carbon dioxide, and have been widely developed.
[0003]
As the fuel for the fuel cell, for example, it is conceivable to use hydrogen gas obtained by decomposing a lower alcohol such as isopropanol. The isopropanol is usually a liquid, but is decomposed by heating to about 80 ° C. in the presence of a catalyst to obtain a mixed gas of acetone and hydrogen. Further, a mixture gas of acetone and hydrogen can also be obtained by heating and vaporizing the liquid isopropanol at a temperature of less than 80 ° C. and then decomposing it by applying a catalyst to isopropanol vapor. The mixed gas can be made a gas enriched with hydrogen by permeating through a hydrogen separation membrane.
[0004]
Conventionally, as raw material resins for the hydrogen separation membrane, for example, sulfonated polyimide, acid-modified polybenzimidazole, and the like are known. The hydrogen separation membrane can be manufactured by casting a solution of the raw material resin on a glass substrate and drying it. At this time, the hydrogen separation membrane is desirably as thin as possible in order to obtain a high degree of hydrogen separation performance.
[0005]
However, when the thickness of the hydrogen separation membrane is reduced, there is a disadvantage that pinholes are easily formed in the obtained membrane, and it may not be used as a hydrogen separation membrane.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a hydrogen separation membrane that eliminates such disadvantages and has an excellent hydrogen separation performance with a very thin film thickness.
[0007]
[Means for Solving the Problems]
In order to achieve this object, the method for producing a hydrogen separation membrane of the present invention comprises a step of casting a raw material resin solution of a hydrogen separation membrane on one glass substrate to form a thin film, and the raw resin solution Casting a thin film on another glass substrate to form a thin film, and laminating the thin film formed on both substrates with the surfaces facing each other in an undried state. It is characterized by.
[0008]
According to the production method of the present invention, a thin film formed by casting on two glass substrates is laminated with the surfaces facing each other in an undried state, and then laminated. Can be easily integrated. By integrating the two thin films as described above, even if a pin hole is generated in one thin film, the pin hole can be closed with the other thin film.
[0009]
Therefore, according to the manufacturing method of the present invention, the two thin films complement each other, so that it is possible to obtain a hydrogen separation membrane having excellent hydrogen separation performance with a very thin film thickness and having no pinholes. .
[0010]
In the production method of the present invention, the thin films formed on the two substrates are laminated with the surfaces facing each other in an undried state, and then pressed and dried to form two thin films. An integrated hydrogen separation membrane can be obtained. The hydrogen separation membrane is completed by, for example, vacuum drying on a support such as glass or nonwoven fabric after being peeled from the substrate in warm water, for example.
[0011]
The manufacturing method of this invention can be used suitably when the film thickness of the formed hydrogen separation membrane exists in the range of 2-10 micrometers. If the thickness of the hydrogen separation membrane is less than 2 μm, it is difficult to form the membrane itself. Moreover, even if the two thin films are stacked and complement each other when they can be formed, it is extremely difficult to prevent the occurrence of pinholes. Moreover, when the film thickness of the hydrogen separation membrane exceeds 10 μm, it can be produced without using the production method of the present invention, but it is difficult to obtain excellent hydrogen separation performance.
[0012]
In the production method of the present invention, the raw material resin may be any resin as long as it can form a hydrogen separation membrane. For example, sulfonated polyimide can be used. The sulfonated polyimide is obtained, for example, by copolymerization of 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride and at least one aromatic amine having a sulfonic acid group. Can do. Examples of the aromatic amine include 2,4,6-trimethylphenylenediamine.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a process diagram showing each process of the method for producing a hydrogen separation membrane of the present embodiment, FIG. 2 is an assembly diagram showing the configuration of the hydrogen separator, and FIG. 3 is a cross-sectional view of the apparatus of FIG.
[0014]
Next, as a raw material resin for the hydrogen separation membrane, 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride and 2,4,6-trimethylphenylenediamine having a sulfonic acid group The method for producing the hydrogen separation membrane of this embodiment will be described by taking as an example the case of using a sulfonated polyimide obtained by copolymerization.
[0015]
In the production method of this embodiment, first, the sulfonated polyimide and dimethyl sulfoxide as a solvent (hereinafter abbreviated as DIMSO) are placed in a flask equipped with a dry distillation apparatus. The sulfonated polyimide is used in an amount of 5% by weight based on the total amount with dimethyl sulfoxide. The flask is heated in an oil bath at 140 ° C. for 2 hours to dissolve the sulfonated polyimide in DIMSO, and then the residue is separated by a 0.45 μm Millipore filter (trade name) to prepare a sample solution. .
[0016]
Next, as shown in FIG. 1 (a), the sample solution is dropped onto two glass substrates 1a and 1b and cast to a predetermined thickness using, for example, a YBA-type bakery applicator. After the casting, the sample solution is dried to form thin films 2a and 2b on the glass substrates 1a and 1b. The sample solution is preferably dried under the condition that the DIMSO is not rapidly vaporized in order to suppress the generation of pinholes. For example, the glass substrates 1a and 1b covered with a flat glass container are 120 It is carried out by placing on a hot plate of ˜140 ° C. The sample solution is dried until the thin films 2a and 2b are solidified on the surfaces in contact with the glass substrates 1a and 1b, and the open surface is in an undried state.
[0017]
Next, when the surfaces of the thin films 2a and 2b that are in contact with the glass substrates 1a and 1b are solidified, the thin films 2a and 2b are relatively opposed to each other as shown in FIG. Laminate and stack. The lamination is performed with the thin films 2a and 2b still attached to the glass substrates 1a and 1b.
[0018]
Next, the thin films 2a and 2b laminated as described above are dried, and the hydrogen separation membrane in which the thin films 2a and 2b are integrated while being sandwiched between the glass substrates 1a and 1b as shown in FIG. 3 is formed. The thin films 2a and 2b laminated as described above may be dried while being pressed at a pressure of 100 to 300 kg / cm 2 , for example. The drying is preferably performed by vacuum drying in order to suppress the generation of pinholes.
[0019]
When the drying is completed, next, as shown in FIG. 1D, the hydrogen separation membrane 3 sandwiched between the glass substrates 1a and 1b is immersed in hot water 4 at 60 to 80 ° C. Peel from 1b.
[0020]
The peeled hydrogen separation membrane 3 is completed by drying on the support 5 at a temperature of about 105 ° C., as shown in FIG. As the support body 5, glass, a nonwoven fabric, etc. can be used.
[0021]
Next, the thickness of casting the sample solution is varied in the step shown in FIG. 1A, and 11 types of hydrogen separation membranes 3 having a thickness of 2.0 to 10.0 μm (Examples 1 to 11). Formed. About the hydrogen separation membrane 3 of each Example, the presence or absence of a pinhole was investigated by the visual test and the leak test of helium gas, and it determined comprehensively from the result of both tests. The results are shown in Table 1.
[0022]
In the helium gas leak test, a load of helium gas was applied to the hydrogen separation membrane 3 of each example at a pressure of 0.04 MPa, and leaks other than permeation were determined.
[0023]
[Table 1]
Figure 0003830838
[0024]
Next, for comparison, a hydrogen separation membrane was formed by casting the sample solution onto a glass substrate to a predetermined thickness and drying. The hydrogen separation membrane is formed by changing the thickness of casting the sample solution to form 16 types (comparative examples 1 to 16) having a thickness of 1.5 to 33.1 μm. Thus, the presence or absence of pinholes was examined, and comprehensively judged from the results of the visual test and the helium gas leak test. The results are shown in Table 2.
[0025]
[Table 2]
Figure 0003830838
[0026]
From Table 1, according to the manufacturing method (Examples 1-11) of this embodiment, it is clear that a hydrogen separation membrane without a pinhole can be obtained in the thickness range of 2.0-10.0 μm. On the other hand, from Table 2, in the method (Comparative Examples 1 to 16) in which the sample solution is cast on a single glass substrate and dried to a predetermined thickness, the thickness of the pinhole is not increased to 17 μm or more. It is clear that no hydrogen separation membrane can be obtained.
[0027]
Next, the hydrogen separation performance of the three types of hydrogen separation membranes of Examples 1 and 11 and Comparative Example 15 was tested using a hydrogen separation device (hydrogen separation membrane module).
[0028]
As shown in FIG. 2, the hydrogen separator 11 includes a hydrogen separator supported by a support 14 made of carbon paper between cells 13 a and 13 b having labyrinth grooves 12 provided in a meandering manner on opposite surfaces. The membrane 3 is sandwiched, and the periphery of the support 14 and the hydrogen separation membrane 3 is sealed by a seal frame 15. In the hydrogen separator 11, as shown in FIG. 3, when a hydrogen-containing gas is supplied to the labyrinth groove 12 on the cell 13 a side, the hydrogen separation supported by the support 14 while the gas flows along the labyrinth groove 12. A hydrogen-enriched gas that permeates the membrane 3 and is enriched with hydrogen in the labyrinth groove 12 on the cell 13b side is obtained.
[0029]
Next, for each of the three types of hydrogen separation membranes, ethanol is simultaneously supplied to the labyrinth groove 12 on the cell 13a side at a rate of 0.1 ml / min and hydrogen is 10 ml / min. By heating, an ethanol-hydrogen mixed gas was generated in the apparatus. The mixed gas contains about 15% by weight of hydrogen. Then, 3 minutes after the start of supply, the gas flowing out from the labyrinth groove 12 on the cell 13b side was collected in a 25 ml sampling bottle purged with nitrogen, and the hydrogen concentration of the flowing gas was quantified by gas chromatography. The results are shown in Table 3.
[0030]
[Table 3]
Figure 0003830838
[0031]
From Table 3, the hydrogen separation membrane is superior in hydrogen separation performance as the film thickness is smaller if the resin type is the same. It is clear that the hydrogen separation performance is remarkably excellent.
[0032]
In the sulfonated polyimide of the present embodiment, 2,4,6-trimethylphenylenediamine is used, but other aromatic diamines may be used. The aromatic diamine may be used in combination with a plurality of aromatic diamines or in combination with diamines other than aromatics.
[0033]
In the present embodiment, the case where sulfonated polyimide is used as the raw material resin is described. However, the raw material resin may be any material as long as it can form a hydrogen separation membrane.
[Brief description of the drawings]
FIG. 1 is a process diagram showing each process of a production method of the present invention.
FIG. 2 is an assembly diagram illustrating a configuration of a hydrogen separator.
3 is a cross-sectional view of the apparatus of FIG.
[Explanation of symbols]
1a, 1b ... glass substrate, 2a, 2b ... thin film, 3 ... hydrogen separation membrane.

Claims (4)

水素分離膜の原料樹脂の溶液を一のガラス基板上に流延して薄膜を形成する工程と、
該原料樹脂の溶液を他のガラス基板上に流延して薄膜を形成する工程と、
両基板上に形成された薄膜を、表面が未乾燥の状態で、該表面を相対向させて積層する工程とを備えることを特徴とする水素分離膜の製造方法。
A step of casting a solution of a raw material resin of a hydrogen separation membrane on one glass substrate to form a thin film;
Casting the raw resin solution on another glass substrate to form a thin film;
And a step of laminating the thin films formed on both substrates in a state where the surfaces are undried with the surfaces facing each other.
両基板上に形成された薄膜を、表面が未乾燥の状態で、該表面を相対向させて積層した後、加圧して乾燥させることを特徴とする請求項1記載の水素分離膜の製造方法。2. The method for producing a hydrogen separation membrane according to claim 1, wherein the thin films formed on both the substrates are laminated with the surfaces facing each other in a state in which the surfaces are undried, and then pressed and dried. . 形成された水素分離膜の膜厚が2〜10μmの範囲にあることを特徴とする請求項1または請求項2記載の水素分離膜の製造方法。The method for producing a hydrogen separation membrane according to claim 1 or 2, wherein the thickness of the formed hydrogen separation membrane is in the range of 2 to 10 µm. 前記原料樹脂は、スルホン化ポリイミドであることを特徴とする請求項1乃至請求項3のいずれか1項記載の水素分離膜の製造方法。The method for producing a hydrogen separation membrane according to any one of claims 1 to 3, wherein the raw resin is a sulfonated polyimide.
JP2002070807A 2002-03-14 2002-03-14 Method for producing hydrogen separation membrane Expired - Fee Related JP3830838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002070807A JP3830838B2 (en) 2002-03-14 2002-03-14 Method for producing hydrogen separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002070807A JP3830838B2 (en) 2002-03-14 2002-03-14 Method for producing hydrogen separation membrane

Publications (2)

Publication Number Publication Date
JP2003265937A JP2003265937A (en) 2003-09-24
JP3830838B2 true JP3830838B2 (en) 2006-10-11

Family

ID=29201277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002070807A Expired - Fee Related JP3830838B2 (en) 2002-03-14 2002-03-14 Method for producing hydrogen separation membrane

Country Status (1)

Country Link
JP (1) JP3830838B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011619A1 (en) * 2004-07-26 2006-02-02 Ngk Insulators, Ltd. Separator and membrane reactor
JP4815901B2 (en) * 2005-07-08 2011-11-16 大日本印刷株式会社 Hydrogen purification filter and method for producing the same

Also Published As

Publication number Publication date
JP2003265937A (en) 2003-09-24

Similar Documents

Publication Publication Date Title
CA1241241A (en) Method of making membranes for gas separation and the composite membranes
Han et al. Hydrophilic chitosan-modified polybenzoimidazole membranes for pervaporation dehydration of isopropanol aqueous solutions
US7344791B1 (en) Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
Vanherck et al. Cross-linked polyimide membranes for solvent resistant nanofiltration in aprotic solvents
US8561812B2 (en) Blend polymer membranes comprising thermally rearranged polymers derived from aromatic polyimides containing ortho-positioned functional groups
US8372474B2 (en) Method of making fuel cell components including a catalyst layer and a plurality of ionomer overcoat layers
US9314736B2 (en) Separation composite membrane and separating membrane module using the same
CN106582318B (en) It is a kind of to pass through graphene oxide modified organic solvent-resistant nanofiltration membrane, preparation method and application
US8758491B2 (en) Thin film gas separation membranes
CN108292760B (en) Method and apparatus for producing joined body comprising polymer electrolyte membrane
Choi et al. In-line formation of chemically cross-linked P84® co-polyimide hollow fibre membranes for H2/CO2 separation
Naik et al. Influence of support layer and PDMS coating conditions on composite membrane performance for ethanol/water separation by pervaporation
US10367217B2 (en) Membrane electrode assembly manufacturing process
JP2013161557A (en) Manufacturing method of film-catalyst layer junction and manufacturing apparatus of film-catalyst layer junction
CN106621856A (en) Stable-structure high-performance graphene oxide nanofiltration composite membrane and preparation method thereof
Shi et al. Teflon AF2400/polyethylene membranes for organic solvent nanofiltration (OSN)
WO2018221684A1 (en) Gas separation membrane, gas separation membrane element, gas separator, and gas separation method
Zuo et al. Dehydration of industrial isopropanol (IPA) waste by pervaporation and vapor permeation membranes
CN109890491A (en) Film composite film for fluid separation
JP3830838B2 (en) Method for producing hydrogen separation membrane
Li et al. Vapor‐phase polymerization of high‐performance thin‐film composite membranes for nanofiltration
Lee et al. Effects of monomer rigidity on microstructures and properties of novel polyamide thin-film composite membranes prepared through interfacial polymerization for pervaporation dehydration
JP2017128105A (en) Laminate
CN111534270B (en) Laser stripping material and preparation method and application thereof
JP5821094B2 (en) Laminated film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061106

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees