JP4815901B2 - Hydrogen purification filter and method for producing the same - Google Patents

Hydrogen purification filter and method for producing the same Download PDF

Info

Publication number
JP4815901B2
JP4815901B2 JP2005199803A JP2005199803A JP4815901B2 JP 4815901 B2 JP4815901 B2 JP 4815901B2 JP 2005199803 A JP2005199803 A JP 2005199803A JP 2005199803 A JP2005199803 A JP 2005199803A JP 4815901 B2 JP4815901 B2 JP 4815901B2
Authority
JP
Japan
Prior art keywords
hydrogen
purification filter
permeable resin
resin film
hydrogen purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005199803A
Other languages
Japanese (ja)
Other versions
JP2007014892A (en
Inventor
綱一 鈴木
裕 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005199803A priority Critical patent/JP4815901B2/en
Publication of JP2007014892A publication Critical patent/JP2007014892A/en
Application granted granted Critical
Publication of JP4815901B2 publication Critical patent/JP4815901B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、水素精製用フィルタとその製造方法に係り、特に各種の炭化水素系燃料を水蒸気改質して水素リッチガスを生成するための改質器等に使用する水素精製フィルタと、これを簡便に製造することができる製造方法に関する。   The present invention relates to a hydrogen purification filter and a method for producing the same, and more particularly to a hydrogen purification filter used in a reformer or the like for steam reforming various hydrocarbon fuels to produce a hydrogen rich gas, The present invention relates to a manufacturing method that can be manufactured.

近年、地球規模の環境やエネルギー・資源の問題が顕在化し、これらと産業との調和を図るエネルギー供給システムの一つとして燃料電池が注目されている。燃料電池は、予め用意した水素ガスや、天然ガス、ガソリン、ブタンガス、メタノール等の炭化水素系燃料を改質して得られる水素リッチガスを、空気中の酸素と電気化学的に反応させて直接電気を取り出す発電装置である。上記の水素リッチガスを用いる燃料電池は炭化水素系燃料を水蒸気改質して水素リッチガスを生成する改質器と、電気を発生させる燃料電池本体と、発生した直流電気を交流に変換する変換器等で構成されている。
このような燃料電池は、燃料電池本体に使用する電解質、反応形態等により、リン酸型燃料電池(PAFC)、溶融炭酸塩型燃料電池(MCFC)、固体電解質型燃料電池(SOFC)、アルカリ型燃料電池(AFC)、固体高分子型燃料電池(PEFC)の5種類がある。このうち、固体高分子型燃料電池(PEFC)は、リン酸型燃料電池(PAFC)、アルカリ型燃料電池(AFC)等の他の燃料電池と比較して、電解質が固体である点において有利な条件を備えている。
In recent years, global environmental and energy / resource problems have become apparent, and fuel cells have been attracting attention as one of energy supply systems that harmonize these with industry. A fuel cell directly produces hydrogen gas or hydrogen-rich gas obtained by reforming a hydrocarbon-based fuel such as natural gas, gasoline, butane gas, or methanol by electrochemical reaction with oxygen in the air. It is the electric power generating apparatus which takes out. The fuel cell using the hydrogen-rich gas includes a reformer that generates hydrogen-rich gas by steam reforming a hydrocarbon-based fuel, a fuel cell body that generates electricity, a converter that converts the generated DC electricity into AC, and the like It consists of
Such a fuel cell may be a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), a solid electrolyte fuel cell (SOFC), an alkaline type, depending on the electrolyte used in the fuel cell body, the reaction mode, and the like. There are five types of fuel cells (AFC) and polymer electrolyte fuel cells (PEFC). Among these, the polymer electrolyte fuel cell (PEFC) is advantageous in that the electrolyte is solid compared to other fuel cells such as a phosphoric acid fuel cell (PAFC) and an alkaline fuel cell (AFC). Have the requirements.

しかし、固体高分子型燃料電池(PEFC)は触媒に白金を使用し、かつ、作動温度が低いため、電極触媒が少量のCOによって被毒し、特に高電流密度領域において性能劣化が著しいという欠点がある。このため、改質器で生成された改質ガス(水素リッチガス)に含有されるCO濃度を10ppm程度まで低減する必要がある。
改質ガスからCOを除去して水素を精製する手段の一つとして、スルホン化ポリイミド等の水素のみが透過可能な水素分離膜を備えた水素精製フィルタが開発されている(特許文献1)。
特開2003−265937号公報
However, the polymer electrolyte fuel cell (PEFC) uses platinum as the catalyst and has a low operating temperature, so that the electrode catalyst is poisoned by a small amount of CO, and the performance deterioration is particularly remarkable in a high current density region. There is. For this reason, it is necessary to reduce the CO concentration contained in the reformed gas (hydrogen-rich gas) generated by the reformer to about 10 ppm.
As one of means for purifying hydrogen by removing CO from the reformed gas, a hydrogen purification filter having a hydrogen separation membrane that allows only hydrogen such as sulfonated polyimide has been developed (Patent Document 1).
JP 2003-265937 A

しかしながら、上記の水素分離膜は、塗布した水素分離膜の塗膜が未乾燥の状態にある一対のガラス基板を積層し、その後、乾燥して水素分離膜を成膜し、これを温水に浸漬して水素分離膜を剥離して回収し、支持体上に載置して乾燥して製造するものであり、工程が煩雑で作業性が悪いという問題があった。
また、水素分離膜における水素の透過速度は膜厚に反比例する。このため水素分離膜の薄膜化が要求されるが、薄い水素分離膜を温水中で剥離して回収する際に、水面との張力等により水素分離膜が破損し易いという問題があった。
However, the hydrogen separation membrane is formed by laminating a pair of glass substrates on which the applied hydrogen separation membrane is undried, and then drying to form a hydrogen separation membrane, which is then immersed in warm water. Then, the hydrogen separation membrane is peeled off and collected, and placed on a support and dried to produce. There is a problem that the process is complicated and workability is poor.
Further, the hydrogen permeation rate in the hydrogen separation membrane is inversely proportional to the film thickness. For this reason, it is required to reduce the thickness of the hydrogen separation membrane. However, when the thin hydrogen separation membrane is peeled off and collected in warm water, there is a problem that the hydrogen separation membrane is easily damaged due to tension with the water surface.

また、カーボンペーパー等の多孔質の支持体上に水素分離膜を固定する際に、支持体と水素分離膜との密着性を確保することが難しく、水素精製フィルタとして使用する際に水素分離膜と支持体との擦れが生じて、水素分離膜の劣化が生じ易いという問題があった。
さらに、水素精製フィルタを構成するには、支持体に支持された水素分離膜を挟持するためのラビリンス溝を備えた一対のセルと、支持体と水素分離膜の周囲をシールするためのシール枠とが必要であり、水素分離膜以外の構成部材が多く必要であるという問題があった。
本発明は上述のような実情に鑑みてなされたものであり、水素精製において優れた水素透過効率を示す水素精製フィルタと、このようなフィルタを簡便に製造するための製造方法を提供することを目的とする。
In addition, when fixing a hydrogen separation membrane on a porous support such as carbon paper, it is difficult to ensure the adhesion between the support and the hydrogen separation membrane. There was a problem that the hydrogen separation membrane was likely to be deteriorated due to friction between the support and the support.
Furthermore, to constitute a hydrogen purification filter, a pair of cells having a labyrinth groove for sandwiching a hydrogen separation membrane supported by a support, and a seal frame for sealing the periphery of the support and the hydrogen separation membrane There is a problem that many components other than the hydrogen separation membrane are necessary.
The present invention has been made in view of the above circumstances, and provides a hydrogen purification filter exhibiting excellent hydrogen permeation efficiency in hydrogen purification and a production method for easily producing such a filter. Objective.

このような目的を達成するために、本発明の水素精製フィルタは、複数の孔部を有する一対の多孔支持体と、該多孔支持体で挟持された水素透過樹脂膜と、を備え、前記水素透過樹脂膜は、前記多孔支持体と接していない部位の表面が、前記多孔支持体と接している部位の表面よりも平滑であるような構成とした。
本発明の他の態様として、前記多孔支持体は、厚みが10〜100μmの範囲であるような構成とした。
本発明の他の態様として、前記多孔支持体は、水素透過樹脂膜側の前記孔部の開口の合計面積が多孔支持体の孔部形成領域の20〜70%を占めるような構成とした。
本発明の他の態様として、前記水素透過樹脂膜は、厚みが1〜20μmの範囲であるような構成とした。
本発明の他の態様として、前記多孔支持体は、水素透過樹脂膜側の表面粗さRaが0.02〜2μmの範囲であるような構成とした。
本発明の他の態様として、前記多孔支持体は、前記孔部形成領域の外側に保持用縁部を有するような構成とした。
In order to achieve such an object, the hydrogen purification filter of the present invention comprises a pair of porous supports having a plurality of pores, and a hydrogen-permeable resin membrane sandwiched between the porous supports , transmitting resin film, the surface of the portion not in contact with the porous support, and a smooth der so that structure than the surface of the portion in contact with the porous support.
As another aspect of the present invention, the porous support has a configuration in which the thickness is in the range of 10 to 100 μm.
As another aspect of the present invention, the porous support is configured such that the total area of the openings of the holes on the hydrogen permeable resin membrane side occupies 20 to 70% of the hole forming region of the porous support.
As another aspect of the present invention, the hydrogen permeable resin film has a thickness in the range of 1 to 20 μm.
As another aspect of the present invention, the porous support is configured such that the surface roughness Ra on the hydrogen permeable resin membrane side is in the range of 0.02 to 2 μm.
As another aspect of the present invention, the porous support is configured to have a holding edge outside the hole forming region.

本発明の水素精製フィルタの製造方法は、水素透過樹脂膜用の樹脂組成物を一対の支持体の各々の一方の面に塗布して、表面が未乾燥な状態の薄膜を形成する薄膜形成工程と、前記一対の支持体を前記薄膜が対向して当接するように重ね合わせ、その後、前記薄膜を乾燥して水素透過樹脂膜を形成する密着乾燥工程と、前記水素透過樹脂膜を挟持する各支持体にエッチングにより複数の孔部を形成して多孔支持体とし、該孔部に前記水素透過樹脂膜を露出させる孔部形成工程と、を有するような構成とした。
本発明の他の態様として、前記薄膜形成工程で用いる一対の前記支持体の前記薄膜を形成する面は、前記孔部形成工程にて形成する孔部に対応した部位が平滑面であり、他の部位が粗面化されているような構成とした。
本発明の他の態様として、前記平滑面の表面粗さRaは0.1μm以下であり、粗面化された部位の表面粗さRaは0.02〜2μmの範囲であるような構成とした。
In the method for producing a hydrogen purification filter of the present invention, a thin film forming step of forming a thin film having an undried surface by applying a resin composition for a hydrogen permeable resin film to one surface of each of a pair of supports. And a pair of supports so that the thin films are in contact with each other, and then, the thin film is dried to form a hydrogen permeable resin film, and each of the hydrogen permeable resin films is sandwiched. A plurality of holes are formed in the support by etching to form a porous support, and the hole forming step is performed to expose the hydrogen permeable resin film in the holes.
As another aspect of the present invention, the surface of the pair of supports used in the thin film forming step that forms the thin film has a smooth surface corresponding to the hole formed in the hole forming step. The structure was such that the portion of [2] was roughened.
As another aspect of the present invention, the surface roughness Ra of the smooth surface is 0.1 μm or less, and the surface roughness Ra of the roughened portion is in the range of 0.02 to 2 μm. .

このような本発明の水素精製フィルタは、水素透過樹脂膜を両面から多孔支持体で挟持しているため機械的強度が高く、水素透過樹脂膜を薄くして水素透過性能を向上させることができるとともに、取り扱い性が極めて良好であり、また、セルやシール枠等の他の部材が不要で構造が簡便でありながら、例えば、多孔支持体の保持用縁部(孔部形成領域の外側の部位)を挟み込むようにして装着するだけで使用することができ、使用時の利便性が高いものである。
また、本発明の水素精製フィルタの製造方法は、水素透過樹脂膜を形成した支持体に直接孔部を形成して多孔支持体とするので、従来の製造方法に比べて工程数が少なく、また、水素透過樹脂膜を剥離することがないので水素透過樹脂膜の破損を防止することができ、生産効率が高いものなり、さらに、水素透過樹脂膜が多孔支持体に直接形成されているので、両者の密着性が高く、高性能で高耐久性の水素精製フィルタの製造が可能となる。
Such a hydrogen purification filter of the present invention has high mechanical strength because the hydrogen permeable resin membrane is sandwiched between the porous supports from both sides, and the hydrogen permeable resin membrane can be thinned to improve the hydrogen permeation performance. In addition, the handleability is extremely good, and other members such as cells and seal frames are unnecessary, and the structure is simple. For example, the holding edge of the porous support (the part outside the hole forming region) ) Can be used simply by sandwiching them, and the convenience of use is high.
In addition, the method for producing a hydrogen purification filter of the present invention forms a porous portion by directly forming a hole in a support on which a hydrogen permeable resin film is formed, and therefore, the number of steps is smaller than that of a conventional production method. Since the hydrogen permeable resin film is not peeled off, the hydrogen permeable resin film can be prevented from being damaged, and the production efficiency is high. Further, since the hydrogen permeable resin film is directly formed on the porous support, It is possible to produce a hydrogen purification filter having high adhesion and high performance and high durability.

以下、本発明の実施形態について図面を参照して説明する。
[水素精製フィルタ]
図1は、本発明の水素精製フィルタの一実施形態を示す部分平面図であり、図2は図1に示される水素製造フィルタのA−A線における断面図である。図1および図2において、本発明の水素精製フィルタ1は、水素透過樹脂膜2と、この水素透過樹脂膜2を両面から挟持する一対の多孔支持体4,4と、を備えるものである。また、各多孔支持体4,4は、複数の孔部5を水素透過樹脂膜2を介して対向するように有している。
Embodiments of the present invention will be described below with reference to the drawings.
[Hydrogen purification filter]
FIG. 1 is a partial plan view showing an embodiment of the hydrogen purification filter of the present invention, and FIG. 2 is a cross-sectional view of the hydrogen production filter shown in FIG. 1 and 2, the hydrogen purification filter 1 of the present invention includes a hydrogen permeable resin film 2 and a pair of porous supports 4 and 4 that sandwich the hydrogen permeable resin film 2 from both sides. Each porous support 4, 4 has a plurality of holes 5 so as to face each other with the hydrogen permeable resin film 2 interposed therebetween.

水素精製フィルタ1を構成する水素透過樹脂膜2は、例えば、スルホン化ポリイミド、芳香族ポリイミド、ポリパラキシレン、ポリエステル、ポリベンゾイミダゾール、酢酸セルロール、ポリグルタミン酸等の樹脂からなるものを使用することができる。このような水素透過樹脂膜2の厚みは、例えば、1〜20μm、好ましくは1〜10μmの範囲とすることができる。水素透過樹脂膜2の厚みが1μm未満であると、膜強度が不十分であり、また、20μmを超えると水素透過性能が低下して好ましくない。
このような水素透過樹脂膜2は、多孔支持体4,4と接していない部位(孔部5に露出している部位)の表面が、多孔支持体4,4と接している部位の表面よりも平滑であることが好ましい。
The hydrogen permeable resin film 2 constituting the hydrogen purification filter 1 may be made of a resin such as sulfonated polyimide, aromatic polyimide, polyparaxylene, polyester, polybenzimidazole, cellulose acetate, and polyglutamic acid. it can. The thickness of the hydrogen permeable resin film 2 can be, for example, in the range of 1 to 20 μm, preferably 1 to 10 μm. If the thickness of the hydrogen permeable resin film 2 is less than 1 μm, the film strength is insufficient, and if it exceeds 20 μm, the hydrogen permeation performance is undesirably lowered.
Such a hydrogen permeable resin film 2 is such that the surface of the part not in contact with the porous supports 4 and 4 (the part exposed in the hole 5) is from the surface of the part in contact with the porous supports 4 and 4. Is also preferably smooth.

水素精製フィルタ1を構成する一対の多孔支持体4,4の材質は、例えば、SUS304、SUS316、SUS430等のオーステナイト系、フェライト系のステンレス、アルミニウム、銅等であってよい。また、各多孔支持体4,4の厚みは、例えば、10〜100μm、好ましくは20〜50μmの範囲内で適宜設定することができる。各多孔支持体4,4の厚みが10μm未満であると、水素精製フィルタ1の強度が不十分となり、100μmを超えると、微細な孔部5,5を高い精度で形成することが困難となり好ましくない。このような多孔支持体4,4の水素透過樹脂膜2と接合している面4aは、その表面粗さRaが0.02〜2μm、好ましくは0.02〜1μmの範囲であることが望ましい。多孔支持体4,4の面4aの表面粗さRaが0.02μm未満であると、水素透過樹脂膜2と多孔支持体4との密着強度が不十分となり、表面粗さRaが2μmを超えると、水素透過樹脂膜2が薄い場合に膜破断等を生じるおそれがあり好ましくない。
尚、本発明における表面粗さRaは、SLOAN社製の触針式表面形状測定器DEKTAKを用いて、長さ250μmの測定部位を荷重20mgにて20秒間で測定する。
The material of the pair of porous supports 4 and 4 constituting the hydrogen purification filter 1 may be, for example, austenitic, ferritic stainless steel, aluminum, copper or the like such as SUS304, SUS316, or SUS430. Moreover, the thickness of each porous support body 4 and 4 can be suitably set, for example in the range of 10-100 micrometers, Preferably it is 20-50 micrometers. When the thickness of each of the porous supports 4 and 4 is less than 10 μm, the strength of the hydrogen purification filter 1 is insufficient, and when the thickness exceeds 100 μm, it is difficult to form the fine pores 5 and 5 with high accuracy. Absent. The surface 4a of the porous supports 4 and 4 joined to the hydrogen permeable resin film 2 has a surface roughness Ra of 0.02 to 2 μm, preferably 0.02 to 1 μm. . When the surface roughness Ra of the surface 4a of the porous supports 4 and 4 is less than 0.02 μm, the adhesion strength between the hydrogen permeable resin film 2 and the porous support 4 becomes insufficient, and the surface roughness Ra exceeds 2 μm. When the hydrogen permeable resin film 2 is thin, there is a risk of film breakage or the like, which is not preferable.
In addition, surface roughness Ra in this invention measures the measurement site | part of length 250 micrometers in 20 seconds by 20 mg of loads using the stylus type surface shape measuring device DEKTAK made from SLOAN.

また、上記の多孔支持体4,4の複数の孔部5,5は、多孔支持体4,4の全域に設けられてもよく、また、図3に示されるように、多孔支持体4,4の孔部形成領域6(図3で斜線を付した領域)に設けられ、この孔部形成領域6の外側に保持用縁部7を配してもよい。このような孔部5,5は、水素透過樹脂膜2側の開口(図1で斜線を付した部位)の合計面積が、孔部形成領域6(多孔支持体4,4の全域に孔部を備える場合には、多孔支持体4,4の全面が孔部形成領域となる)の20〜70%、好ましくは30〜60%の範囲となることが望ましい。孔部5,5の上記開口の合計面積が孔部形成領域6の20%未満であると、水素精製フィルタ1の水素透過性能は不十分となり、70%を超えると、多孔支持体4,4の機械的強度が低下して好ましくない。
このような本発明の水素精製フィルタ1は、水素透過樹脂膜2を両面から多孔支持体4,4で挟持した構造であり、機械的強度が高いものとなっている。このため、水素透過樹脂膜2を薄くして水素透過性能を向上させても、取り扱い性が極めて良好である。
Further, the plurality of pores 5 and 5 of the porous supports 4 and 4 may be provided in the entire area of the porous supports 4 and 4, and as shown in FIG. 4 hole forming regions 6 (regions hatched in FIG. 3), and holding edge portions 7 may be disposed outside the hole forming regions 6. Such hole portions 5 and 5 have a total area of openings on the hydrogen permeable resin film 2 side (the hatched portion in FIG. 1) so that the hole formation region 6 (the hole portions in the entire area of the porous supports 4 and 4 is a hole portion). , The entire surface of the porous supports 4 and 4 is a hole forming region), and it is desirable that it is in the range of 30 to 60%. When the total area of the openings of the holes 5 and 5 is less than 20% of the hole forming region 6, the hydrogen permeation performance of the hydrogen purification filter 1 becomes insufficient, and when it exceeds 70%, the porous supports 4 and 4 This is not preferable because the mechanical strength is reduced.
Such a hydrogen purification filter 1 of the present invention has a structure in which the hydrogen permeable resin film 2 is sandwiched between the porous supports 4 and 4 from both sides, and has high mechanical strength. For this reason, even if the hydrogen permeable resin film 2 is thinned to improve the hydrogen permeation performance, the handleability is very good.

上述の例では、孔部5,5は、水素透過樹脂膜2側の開口が狭くなっているテーパー形状の円形開口であるが、孔部5,5の開口形状や配列等に制限はなく、例えば、開口形状は楕円形状、長円形状、ストライプ形状等であってもよい。また、楕円形状、長円形状の長軸方向、ストライプ形状のライン方向が表裏の多孔支持体4,4で同一方向であってもよく、異なる方向であってもよい。例えば、図4に示すように、ストライプ形状のライン方向(矢印a方向)が表裏の多孔支持体4,4で90°をなすように設定してもよい。この例では、水素透過樹脂膜を介して直交するストライプ形状の孔部の交差部位が水素透過部位となる。尚、図4のストライプ形状の孔部は、便宜的に直線で示してあり、また、本数、ピッチも便宜的に示してある。
尚、上述の例では、水素精製フィルタ1の外形形状は方形であるが、これに限定されるものではなく、円形、楕円形、三角形、五角形以上の多角形等、任意に外形形状を設定することができる。
In the above example, the holes 5 and 5 are tapered circular openings in which the opening on the hydrogen permeable resin film 2 side is narrow, but there is no limitation on the opening shape and arrangement of the holes 5 and 5, For example, the opening shape may be an elliptical shape, an oval shape, a stripe shape, or the like. Further, the major axis direction of the elliptical shape, the elliptical shape, and the line direction of the stripe shape may be the same direction or different directions in the front and back porous supports 4 and 4. For example, as shown in FIG. 4, the stripe-shaped line direction (arrow a direction) may be set so that the front and back porous supports 4 and 4 form 90 °. In this example, the crossing portion of the stripe-shaped holes perpendicular to each other through the hydrogen permeable resin film is the hydrogen permeable portion. Note that the stripe-shaped holes in FIG. 4 are indicated by straight lines for convenience, and the number and pitch are also indicated for convenience.
In the above example, the outer shape of the hydrogen purification filter 1 is a square, but is not limited to this, and the outer shape is arbitrarily set, such as a circle, an ellipse, a triangle, or a pentagon or more polygon. be able to.

図5は、本発明の水素精製フィルタ1の使用状態の一例を示すための図である。図5において、改質ガス供給管11の接続部12の端面12aと、水素排出管21の接続部22の端面22aとが当接した状態で固定部材31により固定接続されている。そして、接続部12の端面12aに形成された凹部13と、接続部22の端面22aに形成された凹部23との間に保持用縁部7を挟持された状態で水素精製フィルタ1が装着されている。凹部13,23には保持用縁部7に対応するように溝部14,24が形成され、この溝部14,24内には、多孔支持体4,4(保持用縁部7)よりも硬度の低い金属からなるガスケット(あるいはゴム製Oリング)15,25が配設されている。このように、本発明の水素精製フィルタ1は、セルやシール枠等の他の部材が不要で構造が簡便でありながら、図示のように、保持用縁部7を挟み込むようにして装着するだけで使用することができる。
尚、図5の水素精製フィルタ1の孔部5は、便宜的に直線で示してあり、また、個数、ピッチも便宜的に示してある。
上述の水素精製フィルタの実施形態は例示であり、本発明はこれに限定されるものではない。
FIG. 5 is a diagram for illustrating an example of a usage state of the hydrogen purification filter 1 of the present invention. In FIG. 5, the end surface 12 a of the connection portion 12 of the reformed gas supply pipe 11 and the end surface 22 a of the connection portion 22 of the hydrogen discharge pipe 21 are fixedly connected by a fixing member 31. Then, the hydrogen purification filter 1 is mounted with the holding edge 7 sandwiched between the recess 13 formed in the end surface 12a of the connection portion 12 and the recess 23 formed in the end surface 22a of the connection portion 22. ing. Grooves 14 and 24 are formed in the recesses 13 and 23 so as to correspond to the holding edge 7, and the grooves 14 and 24 are harder than the porous supports 4 and 4 (holding edge 7). Gaskets (or rubber O-rings) 15 and 25 made of low metal are disposed. As described above, the hydrogen purification filter 1 of the present invention does not require other members such as a cell and a seal frame and is simple in structure, but is simply mounted so as to sandwich the holding edge 7 as shown in the figure. Can be used in
In addition, the hole 5 of the hydrogen purification filter 1 in FIG. 5 is shown by a straight line for convenience, and the number and pitch are also shown for convenience.
The embodiment of the hydrogen purification filter described above is an example, and the present invention is not limited to this.

[水素精製フィルタの製造方法]
次に、本発明の水素精製フィルタの製造方法を説明する。
図6は、本発明の水素精製フィルタの製造方法の一実施形態を、上述の本発明の水素精製フィルタ1を例として示す工程図である。
本発明の製造方法は、まず、薄膜形成工程において、一対の支持体3,3の一方の面に水素透過樹脂膜用の樹脂組成物を塗布し、表面2′aが未乾燥状態の薄膜2′を形成する(図6(A))。
支持体3,3としては、例えば、SUS304、SUS316、SUS430等のオーステナイト系、フェライト系のステンレス基板、アルミニウム基板、銅基板等を使用することができる。この支持体3,3の厚みは、例えば、10〜100μm、好ましくは20〜50μmの範囲内で適宜設定することができる。
[Method for producing hydrogen purification filter]
Next, the manufacturing method of the hydrogen purification filter of this invention is demonstrated.
FIG. 6 is a process diagram showing an embodiment of the method for producing a hydrogen purification filter of the present invention, taking the above-described hydrogen purification filter 1 of the present invention as an example.
In the production method of the present invention, first, in the thin film formation step, the resin composition for the hydrogen permeable resin film is applied to one surface of the pair of supports 3 and 3, and the surface 2 ′ a is in an undried state. 'Is formed (FIG. 6A).
As the supports 3 and 3, for example, austenite-based, ferrite-based stainless steel substrate, aluminum substrate, copper substrate or the like such as SUS304, SUS316, or SUS430 can be used. The thickness of this support body 3 and 3 can be suitably set, for example within the range of 10-100 micrometers, Preferably it is 20-50 micrometers.

水素透過樹脂膜用の樹脂組成物は、例えば、スルホン化ポリイミド、芳香族ポリイミド、ポリパラキシレン、ポリエステル、ポリベンゾイミダゾール、酢酸セルロール、ポリグルタミン酸等の樹脂を含有したものを使用することができる。薄膜2′の成膜は、例えば、流延法、ラビング法、気液界面展開成膜法、蒸着重合法等の方法により行うことができ、通常は、複数回の塗布により、支持体3側は固化しているが、表面2′aが未乾燥である薄膜2′を成膜することができる。このような薄膜2′の厚みは、後述する密着乾燥工程で形成される水素透過樹脂膜2の厚みが、1〜20μm、好ましくは1〜10μmの範囲となるように設定することができる。   As the resin composition for the hydrogen permeable resin film, for example, a resin composition containing a resin such as sulfonated polyimide, aromatic polyimide, polyparaxylene, polyester, polybenzimidazole, cellulose acetate, or polyglutamic acid can be used. The thin film 2 ′ can be formed by, for example, a casting method, a rubbing method, a gas-liquid interface development film forming method, a vapor deposition polymerization method, etc. Can be formed into a thin film 2 'whose surface 2'a is undried. The thickness of such a thin film 2 'can be set so that the thickness of the hydrogen permeable resin film 2 formed in the contact drying process described later is in the range of 1 to 20 µm, preferably 1 to 10 µm.

次に、密着乾燥工程において、一対の支持体3,3を薄膜2′,2′が対向して当接するように重ね合わせ(図6(B))、その後、一体化された薄膜2′を乾燥して水素透過樹脂膜2を形成する(図6(C))。薄膜2′の乾燥は、支持体3,3の両側から加圧(例えば、100〜300kg/cm2)した状態で行うことができ、また、真空下で乾燥することにより、水素透過樹脂膜2にピンホールが発生することとを抑制することができる。
次いで、孔部形成工程において、まず、水素透過樹脂膜2を挟持している支持体3,3の表面に、複数の開口部8a,9aを有するレジストパターン8,9を形成する(図6(D))。次に、上記のレジストパターン8,9をマスクとして支持体3,3を両面からエッチングして、複数の微細な孔部5,5を備えた多孔支持体4,4を形成する(図6(E))。形成した孔部5には、水素透過樹脂膜2が露出しており、レジストパターン8,9を除去することにより、本発明の水素精製フィルタ1が得られる。
Next, in the close-contact drying step, the pair of supports 3 and 3 are overlapped so that the thin films 2 'and 2' are in contact with each other (FIG. 6B), and then the integrated thin film 2 'is formed. By drying, a hydrogen permeable resin film 2 is formed (FIG. 6C). The thin film 2 ′ can be dried under pressure (for example, 100 to 300 kg / cm 2 ) from both sides of the supports 3 and 3, and the hydrogen permeable resin film 2 can be dried by drying under vacuum. It is possible to suppress the occurrence of pinholes.
Next, in the hole forming step, first, resist patterns 8 and 9 having a plurality of openings 8a and 9a are formed on the surfaces of the supports 3 and 3 holding the hydrogen permeable resin film 2 (FIG. 6 ( D)). Next, using the resist patterns 8 and 9 as a mask, the supports 3 and 3 are etched from both sides to form porous supports 4 and 4 having a plurality of fine holes 5 and 5 (FIG. 6 ( E)). The hydrogen permeable resin film 2 is exposed in the formed hole 5, and the hydrogen purification filter 1 of the present invention is obtained by removing the resist patterns 8 and 9.

レジストパターン8,9は、例えば、従来公知のポジ型、ネガ型の感光性レジスト材料から選択した材料を塗布し、所定のマスクを介して露光、現像することにより形成することができる。レジストパターン8の各開口部8aは、支持体3,3を介してレジストパターン9の各開口部9aに対向している。この開口部8a,9aの開口面積が、多孔支持体4,4の孔部5,5を決定するものであり、エッチング条件、支持体3,3の材質、厚み等を考慮して適宜設定することができる。
上記のように製造された水素精製フィルタ1は、水素透過樹脂膜2を形成した支持体3,3に直接孔部5,5を形成して多孔支持体4,4とするので、従来の製造方法に比べて工程数が少ないものとなる。また、水素透過樹脂膜2を剥離する工程が不要であり、水素透過樹脂膜2の破損を防止することができる。さらに、水素透過樹脂膜2が多孔支持体4,4(支持体3,3)に直接形成されているので、両者の密着性が高ものとなる。
The resist patterns 8 and 9 can be formed, for example, by applying a material selected from conventionally known positive and negative photosensitive resist materials, and exposing and developing through a predetermined mask. Each opening 8a of the resist pattern 8 faces each opening 9a of the resist pattern 9 with the supports 3 and 3 interposed therebetween. The opening areas of the openings 8a and 9a determine the holes 5 and 5 of the porous supports 4 and 4, and are appropriately set in consideration of the etching conditions, the materials and thicknesses of the supports 3 and 3, and the like. be able to.
Since the hydrogen purification filter 1 manufactured as described above is formed into the porous supports 4 and 4 by directly forming the holes 5 and 5 in the supports 3 and 3 on which the hydrogen permeable resin film 2 is formed, Compared to the method, the number of steps is small. Moreover, the process which peels the hydrogen permeable resin film 2 is unnecessary, and damage to the hydrogen permeable resin film 2 can be prevented. Furthermore, since the hydrogen permeable resin film 2 is directly formed on the porous supports 4 and 4 (supports 3 and 3), the adhesion between the two becomes high.

本発明の水素精製フィルタの製造方法では、上記の薄膜形成工程で用いる一対の支持体3,3の薄膜2′,2′を形成する面に、予め粗面化処理を施すことにより、支持体3,3と水素透過樹脂膜2の密着性を更に向上させることができる。すなわち、図7に示されるように、支持体3,3の表面のうち、孔部形成工程にて形成する孔部5,5に対応した部位3bを除く面3a(図7で斜線を付した部位)に粗面化処理を施すことができる。この粗面化処理は、上記の部位3bにレジストパターンを形成し、このレジストパターンをマスクとして、ソフトエッチング、サンドブラスト、粗化めっき等により行うことができ、例えば、粗面化処理した部位3aの表面粗さRaを0.02〜2μmの範囲とすることができる。粗面化処理した部位3aの表面粗さRaが0.02μm未満では、支持体3,3と水素透過樹脂膜2の密着性の向上が得られず、また、2μmを超えると、水素透過樹脂膜2の厚みが不均一となり好ましくない。   In the method for producing a hydrogen purification filter of the present invention, the surface of the pair of supports 3 and 3 used in the thin film forming step is subjected to a roughening treatment in advance on the surfaces on which the thin films 2 'and 2' are formed. 3 and 3 and the hydrogen-permeable resin film 2 can be further improved in adhesion. That is, as shown in FIG. 7, the surface 3a of the surfaces of the supports 3 and 3 excluding the portion 3b corresponding to the holes 5 and 5 formed in the hole forming step (hatched in FIG. 7). The surface can be roughened. This roughening treatment can be performed by forming a resist pattern in the portion 3b and using the resist pattern as a mask by soft etching, sandblasting, roughening plating, or the like. The surface roughness Ra can be in the range of 0.02 to 2 μm. If the surface roughness Ra of the roughened portion 3a is less than 0.02 μm, the adhesion between the support 3, 3 and the hydrogen permeable resin film 2 cannot be improved, and if it exceeds 2 μm, the hydrogen permeable resin The thickness of the film 2 is not uniform, which is not preferable.

一方、粗面化処理を施さない部位3bは孔部5,5の位置に対応しており、水素透過樹脂膜2の露出面に部位3bの表面形状が転写される。このため、粗面化処理を施さない部位3bの表面粗さRa′は0.1μm以下の平滑面であることが好ましい。勿論、表面粗さRa′は上記の表面粗さRaよりも小さいものとなる。部位3bの表面粗さRa′が0.1μmを超えると、後工程の孔部形成工程において孔部5,5が形成されたときに、この孔部5,5に露出する水素透過樹脂膜2の表面が粗面状態となり、膜厚の大きな部位が存在して水素透過性能が低下するので好ましくない。
尚、上記の表面粗さRa、Ra′の測定は、上述の表面粗さRaの測定と同様に行うものである。
上述の水素精製フィルタの製造方法の実施形態は例示であり、本発明はこれに限定されるものではない。
On the other hand, the portion 3 b not subjected to the roughening treatment corresponds to the positions of the holes 5 and 5, and the surface shape of the portion 3 b is transferred to the exposed surface of the hydrogen permeable resin film 2. For this reason, it is preferable that the surface roughness Ra ′ of the portion 3b not subjected to the roughening treatment is a smooth surface of 0.1 μm or less. Of course, the surface roughness Ra ′ is smaller than the surface roughness Ra. If the surface roughness Ra ′ of the portion 3b exceeds 0.1 μm, the hydrogen permeable resin film 2 exposed to the holes 5 and 5 when the holes 5 and 5 are formed in the subsequent hole forming process. This is not preferable because the surface becomes rough and there is a portion having a large film thickness, which deteriorates the hydrogen permeation performance.
The measurement of the surface roughness Ra and Ra ′ is performed in the same manner as the measurement of the surface roughness Ra.
The embodiment of the method for producing the hydrogen purification filter described above is an exemplification, and the present invention is not limited to this.

次に、より具体的な実施例を示して本発明を更に詳細に説明する。
[実施例1]
支持体として厚み30μmのSUS304基板(50mm×50mmの正方形状)を2枚準備し、このSUS304基板の一方の面に下記組成の水素透過樹脂膜用の樹脂組成物を流延法により4回塗布(総塗布量:固形分50g/m2)して、表面が未乾燥状態の薄膜を形成した。(以上、薄膜形成工程)
次に、上記のSUS304基板を、薄膜が対向して当接するように重ね合わせ、SUS304基板の両側から加圧(300kg/cm2)した状態で乾燥(100℃、6時間)した。これにより、SUS304基板で挟持された厚み5.0μmの水素透過樹脂膜を形成した。(以上、密着乾燥工程)
Next, the present invention will be described in more detail by showing more specific examples.
[Example 1]
Two SUS304 substrates (50 mm × 50 mm square shape) with a thickness of 30 μm were prepared as a support, and a resin composition for a hydrogen permeable resin film having the following composition was applied four times to one surface of the SUS304 substrate by a casting method. (Total coating amount: solid content 50 g / m 2 ) to form a thin film having an undried surface. (Thin film formation process)
Next, the above SUS304 substrates were stacked so that the thin films were in contact with each other, and dried (100 ° C., 6 hours) in a state of being pressurized (300 kg / cm 2 ) from both sides of the SUS304 substrate. Thus, a hydrogen permeable resin film having a thickness of 5.0 μm sandwiched between the SUS304 substrates was formed. (End of contact drying process)

次いで、水素透過樹脂膜を挟持した各SUS304基板上に感光性レジスト材料(東京応化工業(株)製 OFPR)をディップ法により塗布(塗布量7μm(乾燥時))した。次に、40mm×40mmの正方形領域に、開口寸法(開口直径)が90μmである円形の開口部を、一辺120μmの正三角形の頂点に位置するような配列で複数備えたフォトマスクM1を両面のレジスト塗膜上に配し、これらのフォトマスクM1を介してレジスト塗布膜を露光し、炭酸水素ナトリウムを使用して現像した。尚、対向するフォトマスクM1の各開口部の中心がSUS304基板(水素透過樹脂膜)を介して一致するように位置合わせを行った。これにより、開口寸法(開口直径)が95μmである円形状の開口部を有するレジストパターンを各SUS304基板上に形成した。上記のようにSUS304基板に形成された円形状の各開口部の中心は、SUS304基板(水素透過樹脂膜)を介して対向する開口部の中心と一致するものであった。   Next, a photosensitive resist material (OFPR manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to each SUS304 substrate sandwiching the hydrogen permeable resin film by a dipping method (application amount: 7 μm (when dried)). Next, a photomask M1 having a plurality of circular openings having an opening size (opening diameter) of 90 μm in a square area of 40 mm × 40 mm arranged in an apex of an equilateral triangle having a side of 120 μm is provided on both sides. It distribute | arranged on a resist coating film, the resist coating film was exposed through these photomasks M1, and developed using sodium hydrogencarbonate. In addition, alignment was performed so that the centers of the openings of the opposing photomask M1 coincided with each other through the SUS304 substrate (hydrogen permeable resin film). As a result, a resist pattern having a circular opening having an opening size (opening diameter) of 95 μm was formed on each SUS304 substrate. As described above, the center of each circular opening formed in the SUS304 substrate coincided with the center of the opening facing the SUS304 substrate (hydrogen permeable resin film).

次に、上記のレジストパターンをマスクとして、下記の条件で各SUS304基板をスプレー方式でエッチングした。
(エッチング条件)
・温度 : 50℃
・塩化第二鉄濃度: 45ボーメ
・圧力 : 0.30MPa
上記のエッチング処理が終了した後、水酸化ナトリウムを用いてレジストパターンを除去し、水洗した。これにより、各SUS304基板に複数の孔部が形成されて多孔支持体となった。(以上、孔部形成工程)
Next, using the resist pattern as a mask, each SUS304 substrate was etched by a spray method under the following conditions.
(Etching conditions)
・ Temperature: 50 ℃
・ Ferric chloride concentration: 45 Baume ・ Pressure: 0.30 MPa
After the above etching treatment was completed, the resist pattern was removed using sodium hydroxide and washed with water. Thereby, a plurality of holes were formed in each SUS304 substrate to form a porous support. (End of hole formation process)

上述のようにして本発明の水素精製フィルタが得られた。この水素精製フィルタを構成する多孔支持体の孔部は、表面側の開口直径が95μm、内部側(水素透過樹脂膜側)の開口直径が80μmであるテーパー形状であった。また、上記の内部側の開口の合計面積は、40mm×40mmの正方形状の孔部形成領域の40%を占めるものであった。   As described above, the hydrogen purification filter of the present invention was obtained. The pores of the porous support constituting the hydrogen purification filter had a tapered shape with an opening diameter on the surface side of 95 μm and an opening diameter on the inner side (hydrogen permeable resin film side) of 80 μm. Further, the total area of the openings on the inner side occupies 40% of the square hole forming region of 40 mm × 40 mm.

[実施例2]
薄膜形成工程において、表面が未乾燥状態の薄膜を形成する前に、SUS304基板に下記の粗面化処理を施した他は、実施例1と同様にして、本発明の水素精製フィルタを作製した。
粗面化処理は、まず、各SUS304基板の一方の面に感光性レジスト材料(東京応化工業(株)製 OFPR)をディップ法により塗布(塗布量7μm(乾燥時))した。次に、開口部の開口寸法(開口直径)が95μmである他は実施例1で使用したフォトマスクM1と同様であるフォトマスクM2を一方のレジスト塗膜上に配し、このフォトマスクM2を介してレジスト塗布膜を露光し、炭酸水素ナトリウムを使用して現像した。これにより、直径が95μmである円形状のレジストパターンをSUS304基板上に形成した。
[Example 2]
In the thin film formation step, the hydrogen purification filter of the present invention was produced in the same manner as in Example 1 except that the following roughening treatment was performed on the SUS304 substrate before forming a thin film having an undried surface. .
In the roughening treatment, first, a photosensitive resist material (OFPR manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to one surface of each SUS304 substrate by a dipping method (application amount: 7 μm (when dried)). Next, a photomask M2, which is the same as the photomask M1 used in Example 1 except that the opening size (opening diameter) of the opening is 95 μm, is arranged on one resist coating film, and this photomask M2 is arranged. Then, the resist coating film was exposed and developed using sodium bicarbonate. As a result, a circular resist pattern having a diameter of 95 μm was formed on the SUS304 substrate.

次に、上記のレジストパターンをマスクとして、下記の条件で各SUS304基板をソフトエッチングした。
(エッチング条件)
・温度 : 40℃
・塩化第二鉄濃度: 45ボーメ
・圧力 : 0.1MPa
Next, using the resist pattern as a mask, each SUS304 substrate was soft etched under the following conditions.
(Etching conditions)
・ Temperature: 40 ℃
・ Ferric chloride concentration: 45 Baume ・ Pressure: 0.1 MPa

上記のエッチング処理が終了した後、水酸化ナトリウムを用いてレジストパターンを除去し、水洗した。これにより、各SUS304基板に、直径が95μmである円形状の平滑面を残すように粗面化処理がなされた。この粗面化処理を施した面の表面粗さRaを下記の測定条件で測定した結果、0.08μmであった。また、平滑面の表面粗さRa′は0.03μmであった。
(表面粗さRa,Ra′の測定条件)
SLOAN社製の触針式表面形状測定器DEKTAKを使用し、長さ250μm
の測定部位を荷重20mgにて20秒間で測定した。
After the above etching treatment was completed, the resist pattern was removed using sodium hydroxide and washed with water. As a result, a roughening process was performed on each SUS304 substrate so as to leave a circular smooth surface having a diameter of 95 μm. As a result of measuring the surface roughness Ra of the surface subjected to the roughening treatment under the following measurement conditions, it was 0.08 μm. Further, the surface roughness Ra ′ of the smooth surface was 0.03 μm.
(Measurement conditions for surface roughness Ra, Ra ')
Using a stylus type surface profile measuring device DEKTAK made by SLOAN, length 250μm
The measurement site was measured for 20 seconds with a load of 20 mg.

高純度の水素リッチガスを必要とする種々の分野に利用することができる。   It can be used in various fields that require high-purity hydrogen-rich gas.

本発明の水素精製フィルタの一実施形態を示す部分平面図である。It is a fragmentary top view which shows one Embodiment of the hydrogen purification filter of this invention. 図1に示される水素精製フィルタのA−A線における断面図である。It is sectional drawing in the AA of the hydrogen purification filter shown by FIG. 本発明の水素精製フィルタの平面図である。It is a top view of the hydrogen purification filter of the present invention. 本発明の水素精製フィルタを構成する多孔基板の平面図である。It is a top view of the porous substrate which comprises the hydrogen purification filter of this invention. 本発明の水素精製フィルタの使用状態の一例を示すための図である。It is a figure for showing an example of the use condition of the hydrogen purification filter of the present invention. 本発明の水素精製フィルタの製造方法の一実施形態を示す工程図である。It is process drawing which shows one Embodiment of the manufacturing method of the hydrogen purification filter of this invention. 本発明の水素精製フィルタの製造方法における粗面化処理を説明するための図である。It is a figure for demonstrating the roughening process in the manufacturing method of the hydrogen purification filter of this invention.

符号の説明Explanation of symbols

1…水素精製フィルタ
2…水素透過樹脂膜
3…支持体
4…多孔支持体
5…孔部
6…孔部形成領域
7…保持用縁部
2′…薄膜
DESCRIPTION OF SYMBOLS 1 ... Hydrogen purification filter 2 ... Hydrogen permeable resin film 3 ... Support body 4 ... Porous support body 5 ... Hole 6 ... Hole formation area 7 ... Holding edge 2 '... Thin film

Claims (9)

複数の孔部を有する一対の多孔支持体と、該多孔支持体で挟持された水素透過樹脂膜と、を備え、前記水素透過樹脂膜は、前記多孔支持体と接していない部位の表面が、前記多孔支持体と接している部位の表面よりも平滑であることを特徴とする水素精製フィルタ。 A pair of porous supports having a plurality of pores, and a hydrogen-permeable resin film sandwiched between the porous supports, the surface of the hydrogen-permeable resin film not contacting the porous support, hydrogen purification filter, wherein smoothing der Rukoto than the surface of the portion in contact with the porous support. 前記多孔支持体は、厚みが10〜100μmの範囲であることを特徴とする請求項1に記載の水素精製フィルタ。   The hydrogen purification filter according to claim 1, wherein the porous support has a thickness in a range of 10 to 100 μm. 前記多孔支持体は、水素透過樹脂膜側の前記孔部の開口の合計面積が多孔支持体の孔部形成領域の20〜70%を占めることを特徴とする請求項1または請求項2に記載の水素精製フィルタ。   The said porous support body occupies 20 to 70% of the hole formation area of a porous support body in the total area of the opening of the said hole part by the side of a hydrogen permeable resin film, The Claim 1 or Claim 2 characterized by the above-mentioned. Hydrogen purification filter. 前記水素透過樹脂膜は、厚みが1〜20μmの範囲であることを特徴とする請求項1乃至請求項3のいずれかに記載の水素精製フィルタ。   The hydrogen purification filter according to any one of claims 1 to 3, wherein the hydrogen permeable resin membrane has a thickness in a range of 1 to 20 µm. 前記多孔支持体は、水素透過樹脂膜側の表面粗さRaが0.02〜2μmの範囲であることを特徴とする請求項1乃至請求項4のいずれかに記載の水素精製フィルタ。   The hydrogen purification filter according to any one of claims 1 to 4, wherein the porous support has a surface roughness Ra on the hydrogen permeable resin membrane side in a range of 0.02 to 2 µm. 前記多孔支持体は、前記孔部形成領域の外側に保持用縁部を有することを特徴とする請求項1乃至請求項5のいずれかに記載の水素精製フィルタ。 The hydrogen purification filter according to any one of claims 1 to 5 , wherein the porous support has a holding edge outside the hole forming region. 水素精製フィルタの製造方法において、
水素透過樹脂膜用の樹脂組成物を一対の支持体の各々の一方の面に塗布して、表面が未乾燥な状態の薄膜を形成する薄膜形成工程と、
前記一対の支持体を前記薄膜が対向して当接するように重ね合わせ、その後、前記薄膜を乾燥して水素透過樹脂膜を形成する密着乾燥工程と、
前記水素透過樹脂膜を挟持する各支持体にエッチングにより複数の孔部を形成して多孔支持体とし、該孔部に前記水素透過樹脂膜を露出させる孔部形成工程と、を有することを特徴とする水素精製フィルタの製造方法。
In the method for producing a hydrogen purification filter,
A thin film forming step of applying a resin composition for a hydrogen permeable resin film to one surface of each of a pair of supports to form a thin film having an undried surface;
A close-contact drying process in which the pair of supports are overlapped so that the thin films are in contact with each other, and then the thin films are dried to form a hydrogen-permeable resin film,
A step of forming a porous support by forming a plurality of holes in each support sandwiching the hydrogen permeable resin film to form a porous support, and exposing the hydrogen permeable resin film to the holes. A method for producing a hydrogen purification filter.
前記薄膜形成工程で用いる一対の前記支持体の前記薄膜を形成する面は、前記孔部形成工程にて形成する孔部に対応した部位が平滑面であり、他の部位が粗面化されていることを特徴とする請求項7に記載の水素精製フィルタの製造方法。 The surface of the pair of supports used in the thin film forming step on which the thin film is formed has a smooth surface corresponding to the hole formed in the hole forming step, and the other portions are roughened. The method for producing a hydrogen purification filter according to claim 7 . 前記平滑面の表面粗さRaは0.1μm以下であり、粗面化された部位の表面粗さRaは0.02〜2μmの範囲であることを特徴とする請求項8に記載の水素精製フィルタの製造方法。   9. The hydrogen purification according to claim 8, wherein the smooth surface has a surface roughness Ra of 0.1 μm or less, and the surface roughness Ra of the roughened portion is in the range of 0.02 to 2 μm. A method for manufacturing a filter.
JP2005199803A 2005-07-08 2005-07-08 Hydrogen purification filter and method for producing the same Expired - Fee Related JP4815901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005199803A JP4815901B2 (en) 2005-07-08 2005-07-08 Hydrogen purification filter and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005199803A JP4815901B2 (en) 2005-07-08 2005-07-08 Hydrogen purification filter and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007014892A JP2007014892A (en) 2007-01-25
JP4815901B2 true JP4815901B2 (en) 2011-11-16

Family

ID=37752499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199803A Expired - Fee Related JP4815901B2 (en) 2005-07-08 2005-07-08 Hydrogen purification filter and method for producing the same

Country Status (1)

Country Link
JP (1) JP4815901B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4944656B2 (en) * 2007-03-30 2012-06-06 日本精線株式会社 Membrane support for hydrogen separation and module for hydrogen separation using this support
JP6228498B2 (en) * 2014-03-27 2017-11-08 日立Geニュークリア・エナジー株式会社 Radioactive waste storage container equipped with hydrogen discharge device and hydrogen discharge device
EP3178540A1 (en) * 2015-12-09 2017-06-14 Point Engineering Co., Ltd. Fluid permeable anodic oxide film and fluid permeable body using anodic oxide film
JP6644642B2 (en) * 2016-01-14 2020-02-12 東京応化工業株式会社 Laminate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63296820A (en) * 1987-05-29 1988-12-02 Ube Ind Ltd Production of high-purity hydrogen or helium
JP2960998B2 (en) * 1991-09-25 1999-10-12 三菱重工業株式会社 Hydrogen gas separation membrane
JP3207635B2 (en) * 1993-10-18 2001-09-10 日本碍子株式会社 Hydrogen gas separation device
JP3388840B2 (en) * 1993-10-29 2003-03-24 三菱化工機株式会社 Hydrogen separation membrane and method for producing the same
JP4192463B2 (en) * 2001-11-29 2008-12-10 トヨタ自動車株式会社 Hydrogen separator
JP3830838B2 (en) * 2002-03-14 2006-10-11 本田技研工業株式会社 Method for producing hydrogen separation membrane
JP2003305346A (en) * 2002-04-11 2003-10-28 Toyo Kohan Co Ltd Separation film laminate and production method for component using the same

Also Published As

Publication number Publication date
JP2007014892A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP5076502B2 (en) Hydrogen purification filter and method for producing the same
US8562847B2 (en) Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
JPWO2006043696A6 (en) Hydrogen purification filter and method for producing the same
JP4815901B2 (en) Hydrogen purification filter and method for producing the same
JP4714052B2 (en) Hydrogen purification filter and method for producing the same
JP5050411B2 (en) Hydrogen purification filter and method for producing the same
JP5235489B2 (en) Hydrogen permselective membrane and method for producing the same
JP4714064B2 (en) Method for producing hydrogen purification filter
JP5173931B2 (en) Hydrogen permselective membrane and method for producing the same
US8709199B2 (en) Method of preparing a water vapor transfer membrane
JP5061695B2 (en) Hydrogen purification filter and method for producing the same
JP4224272B2 (en) Thin film support substrate used for hydrogen production filter and method for producing hydrogen production filter
JP4681201B2 (en) HYDROGEN PRODUCTION FILTER AND ITS MANUFACTURING METHOD
JP2004057866A (en) Method of manufacturing hydrogen producing filter
JP5368892B2 (en) Method for producing hydrogen selective permeable membrane
JP5422982B2 (en) Method for producing hydrogen purification filter
JP2014054631A (en) Hydrogen refining filter
JP2024025614A (en) Channel member
JP2007317601A (en) Separator for polymer electrolyte fuel cell of flat surface, and polymer electrolyte fuel cell of flat surface
JP2014110175A (en) Fuel cell
JP2012248371A (en) Method for producing electrolyte membrane-electrode structure for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4815901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees